Curso de Serge Haroche
April 10th, 2012El Dr Serge Haroche es Profesor del College de France y director del Laboratoire Kastler Brossel de la Ecole Normale Superieure de Paris (Francia). Durante su visita, dictará un curso de SEIS CLASES que forma parte del programa de cursos oficiales del College de France.
El Dr Haroche es un científico mundialmente reconocido por sus trabajos de investigación en la frontera de la física cuántica. En su laboratorio se han realizado algunos de los experimentos mas notables en los que se manipulan átomos individuales controlando su interacción con fotones almacenados en cavidades. Estos experimentos no solamente ponen en evidencia los aspectos mas anti intuitivos de la física cuántica sino que permiten explorar una nueva forma de procesar la información: son un paso importante hacia la computación cuántica.
El curso de Serge Haroche tendrá lugar los días 9, 11, 13, 16, 18 y 20 de abril de 14 a 16hs en el AULA MAGNA del PABELLÓN DE INDUSTRIAS de la FCEyN.
SERGE HAROCHE
Serge Haroche, Collège de France and Ecole Normale Supérieure, Paris
College de France abroad lectures
Cavity Quantum Electrodynamics: generation, reconstruction and control of non-classical field states in a cavity
Manipulating states of simple quantum systems has become an important field in quantum optics and in mesoscopic physics, in the context of quantum information science. Various methods for state preparation, reconstruction and control have been recently demonstrated. Two-level systems (qubits) and quantum harmonic oscillators play an important role in this physics. The qubits are information carriers and the oscillators act as memories or quantum bus linking the qubits together. Coupling qubits to oscillators is the domain of Cavity Quantum Electrodynamics (CQED) and Circuit Quantum Electrodynamics (Circuit-QED). In microwave CQED, the qubits are Rydberg atoms and the oscillator is a mode of a high Q cavity while in Circuit QED, Josephson junctions act as artificial atoms playing the role of qubits and the oscillator is a mode of an LC radiofrequency resonator. The goal of these lectures is to analyze various ways to synthesise non-classical states of qubits or quantum oscillators, to reconstruct these states and to protect them against decoherence using quantum feedback methods. Experiments demonstrating these procedures will be described, with examples from both CQED and Circuit-QED physics. These lectures will give us an opportunity to review basic concepts of measurement theory in quantum physics and their links with classical estimation theory.
Clases: