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Abstract. Accretion disks are observed in association with a variety of
astrophysical objects, ranging from binary systems to active galactic nu-
clei. A very e�cient energy conversion process is believed to take place in
accretion disks, transforming gravitational energy into kinetic and thermal
energy of the plasma, and typically converting them into X-ray sources.
Within the general framework of hydrodynamics and magnetohydrody-
namics, we present the basic features required to perform a theoretical
description of the process of accretion for a number of cases of astrophys-
ical interest.

1. Introduction

The gravitational accretion of matter is ubiquitous in Astrophysics. It is a mech-
anism able to e�ciently convert gravitational energy into kinetic energy. This
kinetic energy can in turn be converted into heat and radiation, or it can also
power relativistic jets.

The advent of high resolution X-ray observations required to seek for new
mechanisms to power intense X-ray sources such as binaries, quasars or Active
Galactic Nuclei (AGN).

The gravitational energy delivered by one gram landing on an object of mass
M and radius R is ∆Eacc/m = GM/R. For a compact object such as a neutron
star ( i.e. M ≈ 1M¯ and R ≈ 10km) the accreted energy is

∆Eacc

m
=

GM

R
≈ 1020 erg

g
(1)

For the sake of comparison, the energy per gram delivered by fusion of
hydrogen is

∆Efus

m
≈ 0.007c2 ≈ 6 1018 erg

g
(2)
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If mass is continuously being accreted at a rate Ṁ , the so called accretion
luminosity is

Lacc =
GMṀ

R
(3)

For an extremely compact object such as a black hole, we use the Schwarzschild
radius R = RSch = 2GM/c2 and obtain that Lacc ≈ Ṁc2, which simply states
that virtually all the accreted rest mass is absorbed by the black hole. Even
though we call it luminosity, note that in general it is just accreted energy per
unit time.

Active galactic nuclei (AGNs) have luminosities of about 1047erg/s. If we
have to power these objects with nuclear fusion (with its 0.7% e�ciency), it will
demand a very high mass rate of Ṁ ≈ 250M¯/yr. For a black hole instead, even
at 10% e�ciency, it requires only Ṁ ≈ 20M¯/yr.

Very luminous objects produce radiation pressure on their surrounding ma-
terial, mostly through Thomson scattering so that the net radial force on every
atom is

Fr = −GMmp

r2
+

σT

c

L

4πr2
(4)

where σT = 6.7 10−25 cm2 is the cross-section for Thomson scattering.
This expresion poses an upper limit to the luminosity of an object of mass

M, known as Eddington's luminosity:

LEdd =
4πGMmpc

σT
≈ 1.31038 M

M¯
erg

s
(5)

For luminosities larger than LEdd, the radiation pressure exerted by photons
overcomes the gravitational force, thus halting the accretion process.

Therefore, AGNs would require central objects in excess of M ≈ 109 M¯ if
powered by accretion. The only plausible candidates for such a high concentra-
tion of mass are supermassive black holes.

In this paper we concentrate on the basic features that allow a theoretical
description of accretion disks. Many lines of research have been developed and
hundreds of papers have been published in this fascinating area of Astrophysics,
but a thorough description of these results is well beyond the scope of this pre-
sentation. A descriptive study of the general scenario of accretion in binary
systems is given in �2. In �3 we introduce the theoretical framework of hydro-
dynamics, which is the approach that we use throughout the rest of the paper.
The purely hydrodynamic equations (i.e. with no magnetic �eld) are listed in
subsection 3.1., and the natural extension to include magnetic e�ects (i.e. mag-
netohydrodynamics) is given in subsection 3.2. The particular case of spherical
accretion is addressed in �4, including the classical Bondi model (see subsection
4.2.). The theoretical description of thin disks is discussed with some detail in �5,
showing the important of viscosity in the accretion process. In �6 we describe a
few microphysical processes, specially those that might seriously a�ect the large
scale dynamics of disks, such as the so called magneto-rotational instability (see
subsection 6.1.). Finally, in �7 we summarize the main conclusions of this study.
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Figure 1. Roche potential for a mass ratio q = M2/M1 = 1/3.

2. Accretion in binary systems

Accretion disks can also generate in binary systems, specially in X-ray binaries.
This is particularly important, since probably a fair fraction of all stars are bi-
naries. Mass transfer in binaries can occur when one of the stars displays an
intense wind, and some of this matter is gravitationally captured by its com-
panion. Also, mass transfer in binaries can arise when one of the stars in its
evolution increases its radius or when the binary separation is reduced, and �lls
its Roche lobe. At least in this second scenario, the mass being transferred, also
carries angular momentum. Angular momentum is crucial for the formation of
a disk, and it is just as important for the disk to somehow get rid of its angular
momentum for the accretion mechanism to proceed. The orbital period T and
separation a of a binary system with masses M1 and M2 are related through
Kepler's law, i.e.

Ω2 = (
2π

T
)2 =

G(M1 + M2)
a3

(6)

The mass �ow between the stars is described from the rotating frame by
∂u
∂t

+ (u · ∇)u = −∇Φ− 2Ω× u− 1
ρ
∇p (7)

where
Φ = − GM1

|r− r1| −
GM2

|r− r2| −
1
2
|Ω× r|2 (8)

is the Roche potential. The shape of the Roche potential is fully determined
by the mass ratio. In Figure 1 we show the Roche potential for a mass ratio
q = M2/M1 = 1/3. If for some reason we are able to neglect the Coriolis and
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pressure forces (see Eqn (7)), the Roche potential provides a qualitative idea
of the motion of �uid elements. The Roche lobes are the wells associated with
each star, while the depletion of the potential at large distances from the binary
system is a result of the centrifugal force (the last term in Eqn. (8)).

If for instance one of the stars swells up (supergiant phase) it might �ll its
Roche lobe and start passing matter through the L1 point, which is the local
maximum between the two stars in Figure 1. The accreting star sees matter
approaching from the orbiting point L1, and therefore carrying a large amount
of angular momentum. Typical numbers are

u⊥ ≈ 100
km

s
(

M

M¯
)1/3T

−1/3
days , u‖ ≈ 10

km

s
(

T

105K
)1/2 (9)

Although mass would tend to describe eliptical orbits as it passes through
the L1 point, dissipative processes in the �ow leads to a state of minimum energy
at constant angular momentum, i.e. to a circular orbit.

According to this argument, matter would form a ring rather than a disk.
Also, since angular momentum does not dissipate, this ring will not be accreted.
In �4 we will see that viscous torques within concentric rings will cause matter to
di�use radially, transferring mass preferentially inward and angular momentum
preferentially outwards.

3. Hydrodynamic description

Hydrodynamics (HD) is a reasonable framework to describe the dynamics of
gases, as long as the relevant length and time scales are respectively much larger
than the mean free path and the time between collisions. When the gas particles
are electrically charged, they can generate and interact with self-consistent elec-
tric and magnetic �elds. The large scale dynamics of plasmas (i.e. electrically
charged gases) is appropriately described by magnetohydrodynamics, as shown
in Subsection 3.2.

3.1. HD equations
In the simplest cases, the state of the �ow is described by the mass density ρ(r, t),
the velocity vector �eld u(r, t), and the scalar pressure p(r, t).

The hydrodynamic equations are, the continuity equation, which describes
the conservation of mass

∂ρ

∂t
= −∇·(ρu) , (10)

the Navier-Stokes equation, which is the equation of motion

ρ
∂u
∂t

= −ρ(u · ∇)u−∇p− fext −∇ · σvisc , (11)

and to close the system, a polytropic equation

p = p0(
ρ

ρ0
)γ . (12)
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where p0 and ρ0 are constant reference values for pressure and mass density.
For a newtonian �uid, the expresion of the viscous tensor σvisc (see Eqn. (11))
is

σvisc
ij = −µ(∂iuj + ∂jui − 2

3
δij∇ · u)− ξδij∇ · u (13)

where µ and ξ are viscosity coe�cients which depend on the thermodynamic
properties of the gas.

The polytropic relation can describe physically meaningful scenarios for par-
ticular values of the parameter γ. For instance, the adiabatic case of monoatomic
gases corresponds to γ = 5/3 and the isothermal case is described by γ = 1. The
incompressible case is described by the limit γ → ∞, which according to Eqn.
(12) implies that changes in pressure will not be accompanied by changes in mass
density. For an initially homogeneous mass distribution, the continuity equation
(Eqn. (10)) in the incompressible case reduces to

∇ · u = 0 . (14)

In more realistic cases, the polytropic equation (Eqn. (12)) is replaced by a
thermodynamic equation to describe the evolution of temperature. It might in-
clude heating and cooling e�ects caused by viscosity, radiation and heat transfer
e�ects such as thermal conductivity.

3.2. MHD equations
Magnetohydrodynamics is the natural extension of hydrodynamics for plasmas,
i.e. gases made of electrically charged particles.

For a hydrogen plasma, �uid elements are now composed of as many elec-
trons as protons, and therefore all �uid elements satisfy charge quasi-neutrality,
i.e.

n(r, t) = ne = np (15)
However, in general there is a net current density

j(r, t) = enpup − eneue (16)
which is preferentially carried by the (much lighter) electrons. The current

density induces magnetic �elds as described by Maxwell's equations, which in
turn react back on the �uid.

The electric force on each �uid element will be negligible since

fE = e(np − ne)E = 0 (17)
while the magnetic force is

fB =
e

c
(npup − neue)×B =

1
c
j×B (18)

These equations are supplemented by Ohm's law
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E∗ = E +
1
c
u×B =

1
σ
j (19)

where E∗ is the electric �eld in the reference frame of the �uid and σ is the
electric conductivity of the plasma.

In summary, the Navier-Stokes equation (Eqn. (11)) for a plasma is

ρ
∂u
∂t

= −ρ(u · ∇)u−∇p +
1
c
j×B− fext −∇ · σvisc , (20)

The magnetic �eld is generated by the plasma �ow and satis�es the so called
induction equation

∂B
∂t

= ∇×(u×B) + η∇2B (21)

where η = 4πc2/σ is the electric resistivity of the plasma. Equation (21) is
a consequence of Ohm's law (Eqn (19)), as well as Maxwell's equations

∇ ·E = 4πe(np − ne) ≈ 0 (22)

∇ ·B = 0 (23)

∇×E = −1
c

∂B
∂t

(24)

∇×B =
4π

c
j (25)

We have neglected the displacement current in Ampere's equation (Eqn
(25)), which is a reasonable assumption for non-relativistic �ows, i.e. for |u| ¿ c.

4. Spherical accretion

Let us assume a spherical and stationary accretion process onto a point mass M ,
such that the velocity vector �eld points radially inward. Although the spherical
and stationary assumptions constitute oversimpli�cations of the accretion prob-
lem, they allow a straightforward integration of the equations, which allows to
gain some insight.

4.1. Spherical stationary equations
From the continuity equation (Eqn (10))we obtain, in the stationary (i.e. ∂t = 0)
and spherical (∂θ = 0 = ∂φ) case

4πr2ρu = −Ṁ (26)

where the constant Ṁ is the accretion rate. Bernoulli's theorem, arises from
the stationary equation of motion when viscosity is neglected (see. Eqn (11))
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1
2
u2 +

γ

γ − 1
p

ρ
− GM

r
=

γ

γ − 1
p∞
ρ∞

(27)

since we assume boundary values at r →∞ equal to p∞, ρ∞ and u∞ = 0.
We de�ne the speed of sound as c2 = dp/dρ = γp/ρ. To get rid of dimen-

sions, we use the constants p∞, ρ∞, c∞ and a typical radius GM/(2c2∞). The
above equations in dimensionless variables become

ṁ = r2ρu (28)

c2 = ργ−1 (29)

u2

2
+

c2

γ − 1
− 2

r
=

1
γ − 1

(30)

We di�erentiate these equations with respect to the radial coordinate (the
prime indicates radial derivative) and obtain

r

2
u′

u
= − c2 − 1

r

c2 − u2
(31)

r

γ − 1
c′

c
=

u2 − 1
r

c2 − u2
(32)

This set of ODE's becomes singular at every point r∗ such that u(r∗) = c(r∗),
which are therefore called sonic points. This type of singularities can be avoided
if we also have u(r∗) = c(r∗) = r

−1/2
∗ . Among the solutions of equations (31)-

(32), those corresponding to accretion should satisfy that u(r) < 0 and u′(r) > 0.
The existence of this kind of solutions can be assured, since the numerator and
denominator in Eqn. (31) are both positive, and both simultaneously change
sign at the sonic point.

4.2. Bondi model
A particularly interesting case is for the isothermal case, i.e. γ = 1, for which we
have c=1. The �rst equation can be integrated to have all the possible velocity
pro�les:

u2

2
− ln(ur2)− 2

r
= E (33)

Each solution (plotted in Figure 2) corresponds to a particular value of the
integration constant E. There are only two transonic solutions, plotted in black
trace. The decreasing black curve corresponds to the accretion problem (Bondi
1952). The in�owing gas reaches the sound speed at the Bondi radius

rB =
GM

2c2∞
(34)
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Figure 2. Radial velocity vs. radius for spherical, isothermal and
stationary accretion. Black curves are separatrices. Blue curves are
multivalued and considered unphysical. Red curves correspond to fully
supersonic or fully subsonic solutions. The Bondi solution for accretion
is the black separatrix that goes to zero at r → ∞, while the Parker
solution for the solar wind is the separatrix going to in�nity for r →∞.

The other transonic branch, for which the velocity increases with radial
distance, corresponds to Parker's wind solution (Parker 1958).

The blue solutions have to be discarded, since they are multivalued. There
are two classes of red curves, those that are either fully subsonic and those
fully supersonic. The subsonic solutions correspond to ine�cient accretion (or
wind), while the supersonic ones display unrealistic boundary conditions either
at r →∞ or at r → 0.

The Bondi branch corresponds to the maximum stationary accretion rate,
which is

Ṁ = 4πe3/2ρ∞c∞r2
B (35)

5. Thin disks

In the so called accretion disks an important energy conversion mechanism takes
place, transforming gravitational energy into kinetic energy. Kinetic energy in
turn transforms into heat and radiation, or it can also power intense jets. A
reliable theoretical modelling of the dynamics of accretion disks is relevant for
systems ranging from X-ray binaries to AGNs.

A particularly interesting theoretical problem, is the outward transport of
angular momentum, as mass �ows invard. This transport is controlled by the
viscosity of the �uid, as shown below. In this section, we will concentrate on a
hydrodynamic description of the dynamics of accretion disks.
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However, magnetic �elds are expected to play an important role in the dy-
namics of disks, in at least two very di�erent levels. First, at a microscopic level,
it seems apparent that magnetic �elds cause the so called magneto-rotational in-
stability. This microinstability in turn produces an enhancement of the e�ective
viscosity of the �ow, thus appreciably increasing the radial transport of angular
momentum. At a macroscopic level, in many cases a fraction of the accreted
mass gives rise to intense bipolar jets along the rotation axis. Although there is
consensus in that magnetic �elds advected by the disk are responsible for the col-
limation of these jets, there is still no satisfactory explanation for their formation
and high degree of collimation.

One of the standard theoretical models to describe accretion is the so called
thin disk approximation. It uses another standard model known in �uid theory
as shallow water, which we describe in the next subsection.

5.1. Shallow water equations
We consider a disk of radius Rdisk and half-thickness h rotating around a central
object of mass M∗ and radius R∗, as shown in Figure 3.

The disk is assumed to be axisymmetric (i.e. ∂φ = 0) and thin, in the
sense that h(r, t) ¿ r. We therefore use the shallow water approximation, which
assumes that the velocity �eld components on the disk plane (i.e. ur(r, t) and
uφ(r, t), see Fig. 3) are independent of z, while the component uz satis�es

uz(z) =
z

h

dh

dt
(36)

In the incompressible limit we have∇ · u = 0 and the mass density ρ remains
constant. Combining the divergence-free condition with Equation (36), we obtain

∂th +
1
r
∂r(rhur) = 0 (37)

We restrict our analysis to the incompressible limit for the sake of sim-
plicity, but the extension to compressible cases (assuming a polytropic law) is
straightforward. Consistent with the shallow water approximation, we neglect
the inertia terms in the ẑ-component of the Navier-Stokes equation, and derive
the following pressure pro�le

p(r, z) = p0 + GMρ

(
1√

r2 + z2
− 1√

r2 + h2

)
(38)

where p0 is the external gas pressure.
In cylindrical coordinates the r̂ and φ̂ dimensionless components (using Rdisk

and
√

GM∗/Rdisk as units of longitude and velocity) of the Navier-Stokes equa-
tion are:

∂tuφ = −ur∂ruφ − uruφ

r
+ ν

[
1
r
∂r(r∂ruφ)− uφ

r2

]
(39)

∂tur = −ur∂rur +
u2

φ

r
+ ∂r

(
1√

r2 + h2

)
+ ν

[
1
r
∂r(r∂rur)− ur

r2

]
(40)
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Figure 3. Cartoon of thin disk model.

where ν is the dimensionless kinematic viscosity (i.e. the inverse of the
Reynolds number Re). From equations (37)-(40) we can compute the global bal-
ance of (dimensionless) quantities such as the total mass M(t) = 2π

∫
dr rh(r, t)

∂tM = −2π [rhur]
Rdisk
Rmin

(41)

angular momentum Lz(t) = 2π
∫

dr r2uφ(r, t)h(r, t)

∂tLz = 2π

[
−hr2uruφ + νhr3∂r(

uφ

r
)
]Rdisk

Rmin

(42)

and mechanical energy E(t) = 2π
∫

dr

[
u2

r(r,t)+u2
φ(r,t)

2 − 1√
r2+h2(r,t)

]

∂tE = 2πrh

[
−ur

u2
r + u2

φ

2
+

r2ur

(r2 + h2)3/2
+ ν∂r(

u2
r + u2

φ

2
)

]Rdisk

Rmin

− ν

∫ Rdisk

Rmin

drD

(43)
In equation (43) D(r, t) is the energy dissipation function

D(r, t) = 2πh

[
r(∂rur)2 +

u2
r

r
+ r(∂ruφ)2 +

u2
φ

r
+ u2

φ

∂rh

h

]
(44)

Assuming that all the energy dissipated by viscous friction is converted into
radiation, the disk luminosity can be simply estimated as

L(r, t) = νD(r, t) (45)

5.2. Di�usion approximation
The equations for thin disks (i.e. h(r, t) ¿ r) described in the previous subsection
become considerably simpler if we further assume that ur ¿ uφ. In this limit,
from the radial equation of motion (Eqn (40)) we obtain

uφ(r, t) ≈ r−1/2 (46)



Accretion Power in Astrophysics 133

Figure 4. Disk thickness vs. radial distance for successive values of
τ = 12νt/r2

0 (labelled).

which corresponds to a stationary Keplerian �ow. Replacing this Keplerian
pro�le into the azimuthal equation of motion (Eqn (39)), we actually obtain an
expresion for ur

ur(r, t) ≈ −3ν
∂r(r1/2h)

r1/2h
(47)

As anticipated at the beginning of this section, we do not have radial �uid
motion (i.e. accretion) if we do not have viscosity.

Replacing this expresion for ur into the continuity equation (Eqn (37)), we
obtain

∂h

∂t
=

3ν

r
∂r

(
r1/2∂r(r1/2h)

)
(48)

which is a di�usion equation for the disk thickness.
Let us think of a very simple scenario, consisting of a binary system with

one star providing mass to the other through the L1 point, which gradually
reaches a circular keplerian orbit (because dissipative processes reduce energy
while conserving angular momentum) with radius r0. Therefore, considering as
initial condition an in�nitely narrow ring of radius r0 and total mass M , i.e.

h(r, t = 0) =
M

2πρ

δ(r − r0)
r0

(49)

the solution of Eqn. (48) is
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Figure 5. (a) Angular momentum density vs. radial distance for dif-
ferent values of τ (labelled); (b) Same as (a) for the radial �ux of angular
momentum.
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h(x, τ) =
M

πρr2
0

e−
1+x2

τ

τx1/4
I1/4(

2x

τ
) (50)

where x = r/r0, τ = 12νt/r2
0 and I1/4(.) is a modi�ed Bessel function. This

solution is displayed in Figure 4, showing di�erent pro�les h(r) corresponding
to di�erent times, labelled with the value of τ . We can see that the ring is
gradually shifting inwards (accretion) while at the same time it broadens in the
radial direction.

In Figure 5a we show the density of angular momentum at successive times.
According to the expresion for angular momentum (right below Eqn (41)), the
angular momentum contained in the interval [r, r + dr] is l(r, t) = 2πr2uφh.
We can see in Fig. 5a that viscous di�usion causes the radial distribution of
angular momentum to gradually shift outward while it also broadens. Figure
5b shows the radial �ux of angular momentum at di�erent times. From Eqn
(42) we can see that the radial �ux of angular momentum can be expressed as
Fl = 2πrh(ruruφ − νr2∂r(uφ/r)). Fig. 5b con�rms that a larger fraction of
angular momentum is transported outward (i.e. Fl > 0), while the inner part of
the ring carries a smaller part of the angular momentum inward.

5.3. Stationary models
From the stationary azimuthal equation (see Eqn (39)), we can easily obtain a
�rst integral

Ṁ

2πρ
r2Ω + νhr3Ω′ = const. (51)

which expresses the conservation of angular momentum. Using the Kepler
di�erential rotation pro�le, i.e. Ω = uφ/r = r−3/2

Ṁ

2πρ
− 3

2
νh =

const.

r1/2
(52)

The integration constant is �xed by assuming the disk thickness to vanish
at a point r = r∗. We therefore obtain the following stationary disk pro�le

h(r) = h∞(1−
√

r∗
r

) (53)

where h∞ = Ṁ/(3πρν). Since, −Ṁ = 2πρhur, we can also determine the
radial velocity pro�le

Figure 6a shows the thickness pro�le (see also Eqn (53)) vs. radial distance,
where the dotted vertical line corresponds to r = r∗. Figure 6b shows the
velocity components vs. radial distance for a stationary regime. The blue trace
corresponds to ur(r), while the red trace corresponds to uφ(r). Note that the
assumption ur ¿ uφ breaks down su�ciently close to r = r∗, which calls for a
more sophisticated theoretical description.

We can for instance assume r∗ ≈ 0 for a really compact object. Another
usual assumption is to model the central object as a rigid rotator of radius R∗
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Figure 6. (a) Disk thickness vs. radial distance for a stationary
regime. (b) Velocity components vs. radial distance for a stationary
regime. Radial velocity ur(r) is indicated in blue, while the azimuthal
velocity uφ(r) is shown in red.

and angular velocity Ω∗. In this case the Kepler rotation pro�le needs to be
adapted to match Ω(r = R∗) = Ω∗. This condition will generate a boundary
layer of thickness δr, such that Ω′(R∗+δr) = 0. In the asymptotic limit δr ¿ R∗
we reobtain the previous pro�les for r∗ = R∗.

The energy balance equation for the portion of disk contained between R1

and R2 can be written as

dE

dt
= −∆FE − νDE (54)

where the energy is

E = 2πρ

∫ R2

R1

drrh(
u2

r + u2
φ

2
− 1√

r2 + h2
) (55)

The radial energy �ux FE is

FE(r) = 2πρrh

(
ur(

u2
r + u2

φ

2
)− r2ur

(r2 + h2)3/2
− ν∂r(

u2
r + u2

φ

2
)

)
(56)

and ∆FE = FE(R2) − FE(R1). The energy dissipation rate DE in this
portion of disk is

DE = 2πρ

∫ R2

R1

drh

(
r∂r(ur)2 + r∂r(uφ)2 +

u2
r + u2

φ

r
+ u2

φ

∂rh

h

)
(57)
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Figure 7. Temperature pro�le vs. radial distance for a stationary
regime.

With the approximations h ¿ r and ur ¿ uφ, the energy dissipation rate
per unit disk area Γ(r) reduces to

2πrdrΓ(r) ≈ 2πdrρνh(rΩ′)2 (58)
Replacing the thickness pro�le given in Eqn (53), we readily obtain

Γ(r) =
3GMṀ

4πr3
(1−

√
R∗
r

) (59)

The total energy dissipated in the disk is then

Ldisk = 2π

∫ ∞

R∗
drrΓ(r) =

1
2
Lacc (60)

where Lacc is the accretion luminosity (see Eqn (3)). According to this
result, only half of the gravitational energy (per unit time) being accreted is
actually dissipated in the disk. The other half can either dissipate in the narrow
boundary layer surrounding the solid object, or can be swallowed by the central
object, or else it can power intense jets.

To compute the emitted spectrum, let us assume the disk to be optically
thick, even though it is geometrically thin. As a result, energy dissipated per
unit area produces a blackbody �ux on each face, i.e. σT 4 = Γ/2. Therefore

T (r) =


3GMṀ

8πσr3
(1−

√
R∗
r

)




1/4

(61)

According to this result, temperature reaches a maximum value at Tmax =
0.29(GMṀ/σR3∗)1/4 at r = 1.36R∗, falling o� at larger distances like T ≈ r−3/4

as shown in Figure 7. For typical values of white dwarf stars, is Tmax ≈ 5 104K,
which corresponds to UV emission. On the other hand, if the compact object



138 D. Gómez

is a neutron star, the maximum temperature can be as high as Tmax ≈ 107K,
which is therefore an X-ray source.

A very important observable feature that can be derived from this very
simple theoretical model, is the spectrum emitted by the disk. The emitted
spectrum at radial distance r can be very crudely approximated by a blackbody
function, i.e.

Iν = Bν [T (r)] =
2hν3

c2

1

e
hν

kT (r) − 1
(62)

Since the accretion disk is not spatially resolved, to obtain the total emitted
�ux, we integrate Equation (62) in space. The emitted photon energy �ux to be
measured at a distance D from the source is

Fν =
2π

D2

∫ Rout

R∗
drrIν =

4πhν3

c2D2

∫ Rout

R∗
dr

r

e
hν

kT (r) − 1
(63)

which is shown in Figure (8) for disks of di�erent ratios Rout/R∗. Note
that the emitted spectrum is independent of the �uid viscosity, which is a direct
consequence of having assumed a stationary regime.

Note that the log-log plot has the shape of a blackbody spectrum, stretched
in its central part and displaying a power-law behavior like

Fν ≈ ν1/3 (64)
which is considered characteristic of disks. At su�ciently small frequencies,

i.e. for hν ¿ kTout, the spectrum can be approximated by the Jeans limit and
therefore

Fν ≈ ν2 (65)
On the other end, at large frequencies such that hν À kTout, the spectrum

is well approximated by the Wien limit, which corresponds to an exponentially
decreasing behavior.

5.4. Dynamic solutions
We developed a Fortran code to integrate the dynamic equations in the thin disk
approximation (see Eqs. (37)-(40)). We used a centered �nite di�erences scheme
for the spatial derivatives and Runge-Kutta for the time integration (see Vigh
et al. 2005 for further details). For the inner boundary at R∗ we adopted open
boundary conditions, so that any �uctuation of the variables can escape freely
through that boundary. To perform relaxation simulations, we adopted open
boundary conditions in the outer boundary Rout as well. We also performed ex-
ternally driven simulations to allow for the injection of mass, angular momentum
and mechanical energy at r = Rout.

To check the quality of the code, we numerically computed the various
terms participating in equations (41)-(43), which describe the balance of global
quantities such as mass, angular momentum and mechanical energy. In Figure 9
we display a comparison between the left hand side of each of these balance
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Figure 8. Emitted spectra of optically thick and geometrically thin
accretion disks, for di�erent values of the ratio Rout/R∗ (labelled).
Adapted from Frank et al. 1985.

equations vs. time (dotted line) and the right hand side (full line). The left
panel corresponds to mass (i.e. equation (41)), the central panel displays the
balance of angular momentum (equation (42)), and the right panel corresponds to
mechanical energy (i.e. equation (43)). This particular simulation was performed
with a mass injection rate Ṁ = 5 · 10−5, a time step ∆t = 10−4, dimensionless
viscosity ν = 2 · 10−4, and Rout/R∗ = 10.

To study the di�usion of mass, angular momentum and mechanical energy,
we performed simulations starting with a relatively narrow ring of mass rotat-
ing with a Keplerian pro�le (i.e. uφ = r−1/2). The thickness of the ring has a
Gaussian radial pro�le and the radial velocity is initially zero. In Figure 10 we
display the disk thickness vs. radius at various times throughout the simulation
(left), the angular momentum density (middle) and also the expected luminosity

Figure 9. Balance of mass (left), angular momentum (center) and
mechanical energy (right) in arbitrary units.
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Figure 10. An initial ring of matter di�usses radially for ν = 0.04.
Left: disk thickness. Center: Angular momentum density. Right: Lu-
minosity density.

Figure 11. Externally driven run with ν = 4 · 10−3 and Ṁ = 1.5 · 10−4.

(right). For this particular simulation, viscosity is ν = 0.04 and the boundary
conditions are free in both R∗ and Rout. We can see that while the mass distri-
bution shifts inwards (accretion), the angular momentum di�usses outwards.

To evaluate the long-term dynamics of thin accretion disks, we performed
simulations with given values of the dynamic variables in the outer boundary:
h(Rout), ur(Rout) and uφ(Rout). These boundary conditions translate into sta-
tionary injection of mass, angular momentum and mechanical energy. Figure 11
shows disk thickness, angular momentum and luminosity as a function of radius
for various times. The propagation of gravity surface waves can be observed in
this simulation, as shown in Figure 12. We speculate that gravity waves might
play a role in the redistribution of angular momentum in accretion disks. Another
feature which emerges rather clearly in all the externally driven simulations that
we performed, is the relation toward a Keplerian rotation pro�le, i.e. uφ = r−1/2.
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Figure 12. Image of an externally driven disk displaying the propa-
gation of surface gravity waves.

6. Microphysics

In the previous sections we concentrated on the large scale dynamics of accretion
disks. We have seen that the �uid viscosity plays a crucial role in the accretion
process, as well as in the outward transport of angular momentum. Viscosity
arises from the molecular di�usion that transports momentum between layers of
�ow. Spitzer's coe�cient is therefore of the order of

νmol ≈ λmfputh (66)

where λmfp is the mean free path of the molecules and uth is their thermal
speed. A crude estimate of νmol shows that it is far too small to be relevant
in accretion disks. Assuming a purely HD scenario, Shakura & Sunyaev (1973)
proposed that the relevant viscous stress component is simply proportional to
pressure, i.e.

σvisc
rφ = ρνeffrΩ′ ≈ αp (67)

where α is a dimensionless number. For an isothermal �uid is p = ρc2
s and we

now that the rotation pro�le is approximately kelplerian, i.e. |rΩ′| = 3Ω/2 ≈ Ω.
Therefore, the e�ective viscosity becomes

νeff = α
c2
s

Ω
= α

h

cs
(68)

since h/r = cs/(rΩ) ¿ 1 for thin disks.
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Figure 13. Cartoon model of MRI, consisting of two �uid elements
advected with the di�erential rotation �ow while undergoing an elastic
interaction exerted by the magnetic �eld.

Equation (68) is the Shakura and Sunyaev prescription (Shakura & Sunyaev
1973), which is simply a consecuence of a dimensional analysis. Our lack of
knowledge on the dissipation mechanism is now hidden in the dimensionless
parameter α. The physical interpretation might be that the radial speed of
momentum-carrying �uctuations can not exceed the sound speed, and that the
typical size of these �uctuations is the disk thickness h.

6.1. Magneto-rotational instability
Although it is still being debated, there does not seem to be purely HD insta-
bilities able to generate microturbulence. However, the posibility of enhancing
viscosity within the framework of hydrodynamics, can not be ruled out (see for
instance Umurham & Regev 2004 or Lesur & Longaretti 2005). The promis-
ing candidate seems to be the magneto-rotational instability (MRI, see Velikhov
1959; Chandrasekhar 1960; also Balbus & Hawley 1991).

A simple explanation for MRI is as follows. Because of the di�erential
rotation, two �uid elements with a small radial separation will separate further
away. However, it they are threaded by a magnetic �eld line, the role of the
magnetic force can be imitated by a spring. The e�ect of the spring interaction is
to slow down the inner ball mi (and reduce its angular momentum) and accelerate
the outer one mo (increasing its angular momentum). This will cause the inner
ball to fall further in, and the outer one to move radially out, as sketched in
Figure 13.

The mathematical version for this instability consists in perturbing the cir-
cular orbit of two particles in a central potential and adding a spring between
them. The equilibrium is

−Ω2
0r0 = −

(
dΦ
dr

)

r0

(69)

where iΦ(r) = Φ0(r/r0)2(1−a) and Ω(r) = Ω0(r/r0)−a. Let us linearly
perturb the equilibrium shown in Eqn (69), i.e. r = r0 + δr and φ = Ω0t + δφ.
To simulate the restoring force of the magnetic �eld we assume δF = −κδr. The
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equations of motion for the displacement are

δr̈ − 2Ω0r0δφ̇ = 2aΩ2
0δr − κδr (70)

r0δφ̈ + 2Ω0δṙ = −κr0δφ (71)
Assuming δr, δφ ≈ e−iωt leads to the following dispersion relation

ω4 − 2ω2
(
κ + (2− a)Ω2

0

)
+ κ(κ− 2aΩ2

0) = 0 (72)

Let us explore two di�erent asymptotic limits for this general expresion. In
the purely HD case, we do not have the spring (κ = 0) and therefore

ω2 = 2(2− a)Ω2
0 (73)

which is the so called epicyclic frequency, and describes stable oscillations
of a �uid element about its keplerian orbit.

The second asymptotic limit that we would like to address, corresponds to
a non-rotating disk, i.e. Ω0 = 0. In this particular case,

ω2 = κ2 = (k · vA)2 (74)
since the evolution should correspond to the propagation of Alfven waves

along the magnetic �eld (vA = B0/
√

4πρ is the Alfven velocity).
In summary, if we only have rotation or magnetic �eld, there is no instability.

However, if we consider the two e�ects combined, replacing Eqn (74) into Eqn
(72) leads to

ω2 = p +
1
2
±

√
(p +

1
2
)2 − p(p− 3) (75)

where p = (k · vA/Ω0)2. The two solutions of Eqn (75) are shown in Figure
(14). One of the branches is stable for all values of the parameter p, but the
other one shows instability for p < 2a. Therefore, the instability condition can
be expressed as

|k · vA| <
√

2aΩ0 (76)
indicating that for the instability to occur, the magnetic �eld has to be

non-zero but at the same time needs to be su�ciently weak.

6.2. Shearing box simulations
Although global numerical simulations of the dynamics of accretion disks are
currently being performed (see for instance Hawley et al. 2001), they are rather
prohibitive, since one lacks the spatial resolution to simulate microscale pro-
cesses. To compensate for this, one normally uses arti�cially enhanced viscosity
coe�cients.

On the other hand, for local simulations (i.e. for a small �uid parcel) it
is esential to use proper boundary conditions. At least for MRI, the shear �ow
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Figure 14. Dispersion relation of Eqn (74). The unstable case corre-
sponds to ω2 < 0.

corresponding to di�erential rotation (i.e. for a 6= 0) is a central ingredient in
driving the instability. The idea of shearing boxes was developed (see Hawley
et al. 1995 and references therein) to consistently include the role of di�erential
rotation. Locally, cartesian coordinates are used such that (r, φ, z) → (x, y, z),
whith boundary conditions

f(x, y, z) = f(x + Lx, y − aΩ0Lxt, z) , (77)
f(x, y, z) = f(x, y + Ly, z) , (78)
f(x, y, z) = f(x, y, z + Lz) , (79)

for every physical quantity f , which corresponds to a box gradually shearing
in the x-direction (i.e. the radial direction).

The HD equations (the extension to MHD is straightforward) in cartesian
coordinates including the e�ect of di�erential rotation are

Du
Dt

= −1
ρ
∇P −∇Φ− 2Ω0 × u + aΩ0uxŷ (80)

where the time derivate is de�ned as

D

Dt
=

∂

∂t
− aΩ0x

∂

∂y
+ (u · ∇) (81)

and

P

ρ
=

p

ρ
− 1

2
||Ω0 × r|2 (82)

As shown in Eqs. (80)-(82), the inertial forces are also considered. The
Coriolis force is explicitly written (see Eqn (80)), while the centrifugal potential
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has been added to the pressure term (Eqn (82)). Hawley et al. 1995 integrated
these equations numerically, using a �nite di�erence scheme to con�rm the de-
velopment of the MRI instability. More recently, these equations have also been
numerically integrated using spectral schemes, which are much more accurate
(Umurhan & Regev 2004; Lesur & Longaretti 2007).

7. Conclusions

• During this set of lectures, we tried to focus on the basic features of the
dynamics of accretion disks required to perform their theoretical modelling.
As a result, many of the new and exciting results on this �eld might not
have not been fully addressed.

• We have seen the relevance of angular momentum in the accretion disk,
both in providing the disk shape and their negative role in the accretion of
matter.

• We have seen the requirement for microscopic processes to provide en-
hanced viscosity. One of the promising candidates is MRI.

• We have seen that shearing box simulations are interesting tools to study
the ongoing microphysics in small �uid parcels.

• Large scale simulations do self-consistently show the development of MRI
and the corresponding enhancement in the accretion process.

• One of the big questions that still remains unsolved, is the powering of the
intense jets observed in association with microquasars and AGNs.
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