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Chirped Pulse Amplification



A state-of-the-art laser system for
attosecond science

A. Baltuska et al., Nature 421, 611 (2003)
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Chirped pulse amplification (CPA)
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Saturation fluence: 𝐽𝑠𝑎𝑡 =
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Amplification: single pass

Stored pump
fluence (J/cm2)

Saturation fluence: 𝐽𝑠𝑎𝑡 =
ℏ𝜔

𝜎

Energy per unit area that leads to 
significant depletion of the upper 
laser level, such that than gain 
reduces to 1/e (≈37%) of the 
initial value
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𝐽𝑜𝑢𝑡 = 𝐽𝑠𝑎𝑡 ln 1 + 𝐺 exp
𝐽𝑖𝑛

𝐽𝑠𝑎𝑡
− 1

𝐺 = 𝑒𝑥𝑝 𝐽𝑝/𝐽𝑠𝑎𝑡 Gain, where 𝑔𝑜𝐿 = 𝐽𝑝/𝐽𝑠𝑎𝑡

Integrate differential equation and we get the Frantz-Nodvick 
equation (output of saturated amplifier):

Output fluence (J/cm2) Input fluence (J/cm2)



Amplification: single pass

𝐽𝑜𝑢𝑡 = 𝐽𝑠𝑎𝑡 ln 1 + 𝐺 exp
𝐽𝑖𝑛

𝐽𝑠𝑎𝑡
− 1

𝐺 = 𝑒𝑥𝑝 𝐽𝑝/𝐽𝑠𝑎𝑡

From https://www.fuw.edu.pl/~zopt/photonics/UFO_PW/UFO_04_Amplifiers.pdf

Frantz-Nodvick tells us 
it is possible to get 
either high gain and low 
extraction efficiency, or 
high extraction 
efficiency and low gain

Output fluence (J/cm2) Input fluence (J/cm2)
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• This equation assumes single frequency, no time dependence.
• In CPA we amplify pulses that have different frequencies 

appearing at different times (chirp), and saturation fluence is 
frequency dependent
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𝐽𝑜𝑢𝑡 = 𝐽𝑠𝑎𝑡 ln 1 + 𝐺 exp
𝐽𝑖𝑛

𝐽𝑠𝑎𝑡
− 1

Output fluence (J/cm2) Input fluence (J/cm2)

• This equation assumes single frequency, no time dependence.
• In CPA we amplify pulses that have different frequencies 

appearing at different times (chirp), and saturation fluence is 
frequency dependent

Wavelength (nm)

Emission cross-
section (cm2)

Saturation fluence (J/cm2)

𝐺 = 𝑒𝑥𝑝 𝐽𝑝/𝐽𝑠𝑎𝑡

𝐽𝑠𝑎𝑡 =
ℎ𝜔

2𝜋𝜎(𝜔)

Gain

Saturation fluence

Stored pump fluence (J/cm2)



𝜔 = 𝐾𝑡 In CPA, the frequency that is amplified becomes a 
function of time

C. Le Blanc et al., Optics Communications 131, 391 (1996)
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exp
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Output intensity
(W/cm2)

Input intensity (J/cm2)

𝐺 𝑡 = 𝑒𝑥𝑝
𝐽𝑠0 − (𝐽𝑜𝑢𝑡 𝑡 − 𝐽𝑖𝑛 𝑡 )

𝐽𝑠𝑎𝑡

extracted fluence (J/cm2)
And take into account 
gain depletion during 
amplification
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Numerical example
We start at low energy, gain is high, but low extraction efficiency so 
we need several passes to extract the stored energy
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Numerical example
Bandwidth decreases as pulse energy grows: Bad for stretched AND 
compressed pulses!



Multipass amplifier

Image from J. Jeong et al., Appl. Sci. 9, 2396 (2019) 

Amplifier architecture

Pumped with ns pulses at 532 nm (second harmonic of Nd:YAG)
Upper level lifetime ≈ 3 µsec



Regenerative amplifier: pulses oscillate in the cavity 
until all the stored energy is extracted 

Image from https://www.rp-photonics.com/regenerative_amplifiers.html

Amplifier architecture



Regenerative amplifier: pulses oscillate in the cavity 
until all the stored energy is extracted 

Image from https://www.rp-photonics.com/regenerative_amplifiers.html

Amplifier architecture

Photodiode looking at leak 
from the mirror



Regenerative amplifier

Image from https://www.rp-photonics.com/regenerative_amplifiers.html

Typically regenerative amplifiers are high gain amplifiers 
and multipass amplifiers are booster amplifiers

Amplifier architecture



Limitations to spectral range

Limitations of Ti:Sapphire CPAs
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Fraction of pump 
that turns into 

heat 1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝
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gain narrowing

Limitations to pulse durationLimitations to spectral range

Limitations to power scaling

Limitations of Ti:Sapphire CPAs

Fraction of pump 
that turns into 

heat 1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝𝑃𝑝𝑢𝑚𝑝(𝑥, 𝑦) ∝ 𝑒−2(𝑥2+𝑦2)/𝑤2

Heat source profile: may originate
• Thermal lensing (dn/dT)
• Thermal induced birefringence
• Damage of material

𝑃𝑎𝑣𝑔 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑙𝑠𝑒 ∗ 𝑓𝑟𝑒𝑝. 𝑟𝑎𝑡𝑒



A laser material for high average power

▪ Absorption band at InGaAs wavelengths
 High power laser diodes are commercially available

▪ Low quantum defect (1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝
< 0.1 )

 Potential for high average power operation

▪ Long upper level lifetime (~1 msec)
 Efficiently store energy from low peak power pump

▪ High quality (large) crystals
 Crystalline or ceramic form

2F5/2

2F7/2

941 nm 1030 nm

Yb-doped Yttrium 
Aluminum Garnet
Yb:YAG



A laser material for high average power

▪ Absorption band at InGaAs wavelengths
 High power laser diodes are commercially available

▪ Low quantum defect (1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝
< 0.1 )

 Potential for high average power operation

▪ Long upper level lifetime (~1 msec)
 Efficiently store energy from low peak power pump

▪ High quality (large) crystals
 Crystalline or ceramic form

▪ BUT narrow gain bandwidth: post-compression, OPCPAs

2F5/2

2F7/2

941 nm 1030 nm

Yb-doped Yttrium 
Aluminum Garnet
Yb:YAG



Architectures for high power operation

Röser, et al., Opt. Lett. 32, 3495 (2007)

Fiber or rod-type amplifiers: 
• Heat distributed over large area (can deliver 100s of W)
• Excellent beam quality (when multi-mode operation is 

suppressed)
• Limited in pulse energy



Architectures for high power operation
Fiber or rod-type amplifiers: 
• Heat distributed over large area (can deliver 100s of W)
• Excellent beam quality (when multi-mode operation is 

suppressed)
• Limited in pulse energy

Thin-disk amplifiers (typically Yb:YAG): 
• Longitudinal heat flow (minimized thermal lensing)
• Compatible with higher pulse energy
• Longer pulses than Yb-doped fibers

Fattahi et al., Optica 1, 45 (2014)



Stretcher/Compressor

CPA idea was being exploited since 1960 in radar signals



Grating pair: lred > lblue

Stretcher/Compressor

In 1969 Treacy described how to exploit angular dispersion to 
introduce negative GDD using a pair of gratings

Treacy, IEEE JQE 5, 454 (1969)



Grating pair + telescope: lred < lblue

Stretcher/Compressor

In 1984 O. Martinez introduced 
the idea of adding a telescope 
and control the effective 
distance between the gratings
→control sign and magnitude 
of GDD

Martinez et al., JOSA 1, 1003 (1984)



Grating pair + telescope: lred < lblue

Stretcher/Compressor

Grating pair: lred > lblue

Degrees of freedom in 
amplifier dispersion
management:
- Incidence angles on 

gratings and separation
between gratings: GDD 
and TOD control



A state-of-the-art laser system for
attosecond science

A. Baltuska et al., Nature 421, 611 (2003)



How to measure/control the CEP

We measured and stabilized fceo. Can we use the same technique after 
the amplifers?

In the oscillator…
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𝑛𝑓𝑟𝑒𝑝 + 𝑓𝐶𝐸𝑂 2𝑛𝑓𝑟𝑒𝑝 + 𝑓𝐶𝐸𝑂

2(𝑛𝑓𝑟𝑒𝑝 + 𝑓𝐶𝐸𝑂) 𝑓𝐶𝐸𝑂

We measured and stabilized fceo. Can we use the same technique after 
the amplifers? NO. 𝒇𝑪𝑬𝑶 should be zero for the amplified pulses

f-2f interferometer 

Cube polarizer

1

2 2

2

2

2

n rep CEO

n rep CEO

n n CEO
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How to measure/control the CEP

f-2f interferometer 

Cube polarizer

Kakehata et al., Opt. Lett. 26, 1436 (2001)
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How to measure/control the CEP

f-2f interferometer 

Cube polarizer

Kakehata et al., Opt. Lett. 26, 1436 (2001)

(From our lab.) 



How to measure/control the CEP

f-2f interferometer 

Cube polarizer

Furch et al., Opt. Lett. 42, 2495 (2017)



Absolute measurement of CEP

W. Becker et al., Adv. At. Mol. Opt. Phys. 48, 35 (2002)
Paulus et al., Physica Scripta T110 (2004)
Wittmann et al., Nat. Phys. 5, 357 (2009) 
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W. Becker et al., Adv. At. Mol. Opt. Phys. 48, 35 (2002)
Paulus et al., Physica Scripta T110 (2004)
Wittmann et al., Nat. Phys. 5, 357 (2009) 



Absolute measurement of CEP

W. Becker et al., Adv. At. Mol. Opt. Phys. 48, 35 (2002)
Paulus et al., Physica Scripta T110 (2004)
Wittmann et al., Nat. Phys. 5, 357 (2009) 

Hoff et al., Opt. Lett. 43, 3850 (2018)



Useful materials for further reading:

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 
(Academic Press, 2006) 

W. Koechner, Solid State Laser Engineering (Springer Series in Optical 
Sciences volume 1, Springer New York)

A. Baltuska et al., Nature 421, 611 (2003)

U. Keller, Ultrafast Lasers (Springer 2021)

Wittmann et al., Nat. Phys. 5, 357 (2009) 

Kakehata et al., Opt. Lett. 26, 1436 (2001)
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