Lecture Series Buenos Aires 18-3-2024 until 22-3-2024

Lecture M5 – Attosecond atomic physics - 1

Marc Vrakking

marc.vrakking@mbi-berlin.de

Max-Born-Institut

Configuring attosecond pump-probe experiments - 1

F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

Configuring attosecond pump-probe experiments - 3

Attosecond atomic

Single electron removal

- \triangleright continuum electron dynamics following XUV photoionization (streaking)
- \triangleright time delays between photoionization from different initial orbitals
- \triangleright coherent electron (hole) motion following excitation of multiple orbitals or ionization from multiple orbitals

Direct Measurement of Light Waves

The outcome of a streaking measurement depends on

- a. The properties of the XUV field
- b. The properties of the NIR field
- c. Atomic/molecular properties

If a. and c. are known, we can learn about b., i.e. the shape of the NIR field

Goulielmakis et al., Science 305, 1267 (2004)

Direct Measurement of Light Waves

In an attosecond streaking measurement, the photoelectron acquires a momentum-shift that is proportional to the NIR vector potential at the time of ionization

$$
\Delta p = -A(t_{ionization})
$$

Goulielmakis et al., Science 305, 1267 (2004)

Direct Measurement of Light Waves

Goulielmakis et al., Science 305, 1267 (2004)

Attosecond electron wave packet interferometry

Extension of streaking spectroscopy to attosecond pulse trains (or: RABBITT with non-perturbative fields)

Red line: A(t)

Remetter et al., Nature Physics 2, 323 (2006)

Attosecond electron wave packet interferometry

Remetter et al., Nature Physics 2, 323 (2006)

Attosecond electron wave packet interferometry

Remetter et al., Nature Physics 2, 323 (2006)

Delay in photoemission

Questions: do two electrons that originate from different orbitals ionize at the same time or is there a delay between the two?

Two experimental approaches:

 \triangleright Ionization by an isolated attosecond pulse (IAP) in combination with a streaking measurement

Schultze et al, Science 328, 1658 (2010)

 \triangleright Ionization by a train of attosecond pulse (APT) in combination with a RABBITT measurement

Kluender et al, Phys. Rev. Lett. 106, 143002 (2012)

Schultze et al, Science 328, 1658 (2010)

Delay in photoemission

$$
S(\tau) = \alpha + \beta \cos[2\omega(\tau - \tau_A - \tau_I)],
$$

 τ_A = group delay of the attosecond pulses τ_1 = atomic delay two-color ionization

Kluender et al, Phys. Rev. Lett. 106, 143002 (2012)

Real-time observation of valence electron motion

Ionization produces the ion in a superposition of two states that are probed by the XUV

- \triangleright Can observe stepsize formation of different ionic states
- \triangleright Can observe coherence between different ionic states
- \triangleright First example of Attosecond Transient Absorption (ATAS)

Goulielmakis et al., Nature 466, 739 (2010)

Goulielmakis et al., Nature 466, 739 (2010) > stepsize formation of different ionic states

Observation of electronic coherence

After ionization the Kr⁺ ion is in a $4p_{1/2}$ or $4p_{3/2}$ state Both configuration can be excited to a $3d_{3/2}$ state of the ion \rightarrow interference

Goulielmakis et al., Nature 466, 739 (2010)

Observation of electronic coherence

Goulielmakis et al., Nature 466, 739 (2010)

All-attosecond pump-probe spectroscopy

- Post-compressed kHz Ti:Sa laser (3.8 fs, 1 mJ)
- Tight focusing to $\approx 6x10^{15}$ W/cm²
- *Out of focus* HHG in a high density gas jet producing divergent XUV with a few-µm virtual source size
- 5-10 fold demagnification to waist radius γ 1µm

Optica 8, 960 (2021) Science Advances 10, eadk9605 (2024)

First-ever all-attosecond transient absorption (MBI, 2/2024)

data 3 adjacent averaging 25 Ω 5 10 15 20 30 time delay (fs)

- Ionization of Kr with a (near-)isolated *pump* attosecond pulse
- Probing of electronic coherence in Kr⁺ by measuring the absorption of a (near) isolated *probe* attosecond pulse
- Observation of spin-orbit wavepacket in Kr⁺ (coherent superposition of ${}^{2}P_{1/2}$ and ${}^{2}P_{1/2}$ spin-orbit states

Holographic observation of electronic coherence

Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)

Near-threshold Electron Wavepackets

HHG in Xenon, polarization gated 100 nm Al filter

Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)

VMIS image

Near-threshold Electron Wavepackets

Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)

First-ever observation of bound electron dynamics using attosecond lasers!!!

In (E,E) plot the beats of individual states against the continuum and beats among the states can be observed \rightarrow access to energy, amplitude and phase!!!

Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)

Final charge state

Photoionization of Kr at 95 eV leads to both the removal of valence electrons and that of 3d core M-shell electrons (purple)

The removal of a core electron may be followed by an MNN Auger decay (green), allowing a measurement of the liftetime of the core hole

M. Drescher et al., Nature 419, 803 (2002)

M. Drescher et al., Nature 419, 803 (2002)

