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Nonlinear Pulse 
Post-compression



A state-of-the-art laser system for
attosecond science: an alternative

A. Baltuska et al., Nature 421, 611 (2003)



Limitations to spectral range

Limitations of Ti:Sapphire CPAs

e.g. we want longer 
wavelength for cut-off 
extension during HHG



gain narrowing

Limitations to pulse durationLimitations to spectral range

Limitations of Ti:Sapphire CPAs

Nonlinear pulse post-
compression necessary to 
reach few-cycle pulse 
durations



gain narrowing

Limitations to pulse durationLimitations to spectral range

Limitations to power scaling

Limitations of Ti:Sapphire CPAs

Fraction of pump 
that turns into 

heat 1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝

𝑃𝑎𝑣𝑔 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑙𝑠𝑒 ∗ 𝑓𝑟𝑒𝑝. 𝑟𝑎𝑡𝑒



gain narrowing

Limitations to pulse durationLimitations to spectral range

Limitations to power scaling

Limitations of Ti:Sapphire CPAs

Fraction of pump 
that turns into 

heat 1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝𝑃𝑝𝑢𝑚𝑝(𝑥, 𝑦) ∝ 𝑒−2(𝑥2+𝑦2)/𝑤2

Heat source profile: may originate
• Thermal lensing (dn/dT)
• Thermal induced birefringence
• Damage of material

𝑃𝑎𝑣𝑔 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑙𝑠𝑒 ∗ 𝑓𝑟𝑒𝑝. 𝑟𝑎𝑡𝑒



A laser material for high average power

▪ Absorption band at InGaAs wavelengths
 High power laser diodes are commercially available

▪ Low quantum defect (1 −
ℏ𝜔𝑙𝑎𝑠𝑒𝑟

ℏ𝜔𝑝𝑢𝑚𝑝
< 0.1 )

 Potential for high average power operation

▪ Long upper level lifetime (~1 msec)
 Efficiently store energy from low peak power pump

▪ High quality (large) crystals
 Crystalline or ceramic form

▪ BUT narrow gain bandwidth: post-compression, OPCPAs

2F5/2

2F7/2

941 nm 1030 nm

Yb-doped Yttrium 
Aluminum Garnet
Yb:YAG



Alternatives using Yb systems

Yb-doped → high energy, high average power
Nonlinear pulse compression with large compression 
factors to reach sub-50 fs and even sub-10 fs pulses

Ti:Sapphire → ultrashort pulses
Yb-doped → high energy, high average power

Energy transfer in Optical Parametric Amplifier



Nonlinear pulse compression

CPA or OPCPA
Spectral 

Broadening
Spectral phase 
management

• Spectral broadening of laser pulses during nonlinear interaction 
of intense light pulses with a material

• Spectral phase “flattening” (dispersion compensation): usually 
with dispersive mirrors

Third order nonlinear process 𝑃 ∝ 𝜒(3) 𝐸 3



The polarization vector models the electronic response of the medium 
to the electric field of the laser. Can be written as a linear and a 
nonlinear part: P = P(1) and P(NL). 

More details on Couairon et al., “Practitioner’s guide to laser pulse 
propagation models and simulations,” Eur. Phys. Journal 199, 5-76 
(2011).

𝜖 𝜔 = 𝑛(𝜔)2 Permittivity.
Susceptibility 𝜒 is a tensor. 

Propagation equations



With P = P(NL). We now move to the frequency domain

We include J en P(NL) identifying: 

Propagation equations

Field oscillates perpendicular to k // z
Reasonable if not tightly focused (low numerical apertures)

As before, we assume 𝐸 = 𝐸 ො𝑥



Next step is to factorize the first term and separate forward and 
backward propagation

Ignoring diffraction and NL response ...

Forward propagation:

Propagation equations



Forward Maxwell Equation

Valid equation for beams with low numerical aperture
Still very general equation: all the nonlinear interactions included in P



For practical purposes (i.e. numerical simulations) we change to a 
frame of reference moving with the pulse (at the group velocity) ulso

Dispersion Center of 
pulse at τ=0 Difraction

Nonlinear 
response

Moving frame of reference



Computationally less expensive

We assume that the source terms have a similar decomposition

And we get the genral equation in the frequency domain:

=

=

Envelope equation



Third-order effects
Assume centro-symmetric material and no ionization (𝐽 = 0, 𝜒(2) = 0)

Ignore third-harmonic (no phase matching)

Using the definitions of intensity and nonlinear index of refraction:
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Third-order effects

Dispersion Center of 
pulse at τ=0 Difraction

Nonlinear 
response (Fourier 
Transform of P)
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Inverse Fourier Transform to obtain equation in the temporal domain

෨𝒫 = න

−∞

+∞

𝒫(𝑡)𝑒𝑖Ω𝑡𝑑𝑡
𝒫 𝑡
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Using properties of Fourier Transform: 𝑖Ω𝐹𝑇 𝑓(𝑡) = 𝐹𝑇
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Kerr effect
Self-steepening

Third-order effects



𝜕𝜀

𝜕𝑧
= 𝑖

𝜔0𝑛2

𝑐
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Phase modulation in time, with instantaneous frequency generating 
an approximately linear chirp in the center of the pulse

𝜔 𝑡 =
𝑑𝜙(𝑡)
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= 𝜔0 −
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𝑐
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Kerr effect: self-phase modulation (SPM)

Adapted from M. Galbraith, doctoral thesis, FU-Berlin and MBI 2017



𝜀 = 𝑒𝑖
𝜔0𝑛2

𝑐 𝐼𝑧

Spectrally SPM 
induces spectral 
broadening and 
spectral modulation

Kerr effect: self-phase modulation (SPM)



Group velocity depends 
on pulse intensity 

𝑣𝑔 =
𝑐

𝑛 + 𝜔
𝑑𝑛
𝑑𝜔

𝑛 = 𝑛𝑜 + 𝑛2𝐼 

Peak of the pulse gets 
delayed and generates a 
pulse asymmetry and 
spectral blue-shift

The shorter the pulse, 
the more important self-
steepenging becomes

Self-steepening



• Leading edge of pulse contributes to 
new low frequencies, while the trailing 
edge creates new high frequencies

SPM + Self-steepening

T. Nagy et al., Advances in Physics: X 6, 1845795 (2020)
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• Leading edge of pulse contributes to 
new low frequencies, while the trailing 
edge creates new high frequencies

• Always two points in time along the 
pulse with same slope: spectral 
modulation

SPM + Self-steepening

T. Nagy et al., Advances in Physics: X 6, 1845795 (2020)



• Leading edge of pulse contributes to 
new low frequencies, while the trailing 
edge creates new high frequencies

• Always two points in time along the 
pulse with same slope: spectral 
modulation

• Around the peak and at the tails, the 
derivative is zero, so we have multiple 
contributions around the fundamental. 
Especially for pulses with several 
pedestals or satellites: fast oscillations 
around the fundamental

SPM + Self-steepening

T. Nagy et al., Advances in Physics: X 6, 1845795 (2020)
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𝑑𝐼 𝑡

𝑑𝑡



𝜀 = 𝑒𝑖
𝜔0𝑛2

𝑐
𝐼(𝑥,𝑦,𝑡)𝑧 , 𝐼(𝑥, 𝑦) ∝ 𝑒−2(𝑥2+𝑦2)/𝑤2

• Spatially-dependent phase 
acts as a lens

Kerr effect: Self-focusing
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• Spatially-dependent phase 
acts as a lens

• With Gausian beams and 
paraxial approximation: 
wavefront curvature due to 
diffraction AND self-focusing 
depend on 𝑟2

Kerr effect: Self-focusing
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• Spatially-dependent phase 
acts as a lens

• With Gausian beams and 
paraxial approximation: 
wavefront curvature due to 
diffraction AND self-focusing 
depend on 𝑟2

• 𝑃𝑐𝑟 =
3.72𝜆2

8𝜋𝑛0𝑛2
 depends on 

peak power, not intensity! 

Kerr effect: Self-focusing
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• Spatially-dependent phase 
acts as a lens

• With Gausian beams and 
paraxial approximation: 
wavefront curvature due to 
diffraction AND self-focusing 
depend on 𝑟2

• 𝑃𝑐𝑟 =
3.72𝜆2

8𝜋𝑛0𝑛2
 depends on 

peak power, not intensity! 

Kerr effect: Self-focusing

E = 0.5mJ, τ = 5fs, 800nm: P = 100GW
Pcr_air ≈ 2.2GW



• Self-focusing→colapse→ionization
• J becomes relevant
• Plasma defocusing
• Self-focusing+plasma defocusing = 

self-guiding (filament)

Filamentation

Images from https://laser-research.lbl.gov/research/remote/
and https://commons.wikimedia.org/wiki/File:Laser_filamentation



Examples

• Control/optimize spectral broadening with minimized self-
focusing and space-time couplings
➢ Hollow-fibers
➢ Thin-plates
➢ Multipass cells



input pulse

output focusing
collimation

dispersion 
compensation

output pulse

• Weak nonlinear interaction over long distances
• Mode confinement allows keeping high intensity 

beyond Rayleigh length
• Waveguiding ensures spatial mode quality
• Negligible space-time couplings 

Gas-filled hollow-core fibers

Nisoli et al.,  Opt. Lett.  22, 522-524 (1997)



Input puse:  up to 14mJ, 50fs (800nm)
Output pulse: 6.1mJ, 3.8fs (~1.5 cycles)
HCF: 560µm diameter, 3.75m, He. 

Gas-filled hollow-core fibers

Highest peak 
power



Input: 14mJ, 50fs (800nm) Ti:Sapp. CPA
output: 6.1mJ, 3.8fs (~1.5 cycles)
HCF: 560µm diameter, 3.75m, He. 

Gas-filled hollow-core fibers



In: 7fs, <190µJ, 800nm, 100kHz from OPCPA. Out: <3.6fs, 95µJ, 
HCF: 230µm core, 1m, Ne (2.5 bars)

Gas-filled hollow-core fibers

Furch et al., J. Phys. Photonics 4, 032001 (2022)



sub-4fs from Ti:Sapp. CPA 
con 0.2mJ, 1kHz, 25fs

Lu et al.,  Optica  1, 400 (2014)

Multi-plate supercontinuum



Lu et al., Opt. Exp. 26, 8941 (2018)

Multi-plate supercontinuum



Data from Lu et al., Opt. Exp. 26, 8941 (2018)

Multi-plate supercontinuum: sub-4 fs



Multipass cells



Multipass cells



Multipass cells

Image taken from Viotti et al., Optica  9, 197 (2022)

Mode matching Spectral broadening
Dispersion 
compensation

High-R mirrors → high efficiency (BUT not true for few-cycle pulses)



Post-compression: different methods

Image taken from Viotti et al., Optica  9, 197 (2022)



Multipass cells

Kaumanns et al., Opt. Lett. 43, 5877 (2018)



Multipass cells

Kaumanns et al., Opt. Lett. 43, 5877 (2018)

SHG-FROG measurement: 41 fs



In: 200fs, ~1mJ, 500kHz (500W), 1030nm
Out: 6.9fs, 0.776mJ (η≈77%).

Multipass cells



Comparison

• Control/optimize spectral broadening with minimized self-
focusing and space-time couplings
➢ Hollow-fibers: Excellent spatial and spatio-temporal 

properties. Easy to damage input of fiber.

➢ Thin-plates: Simple to implement, impervious to pointing 
instabilities. Space-time couplings. 

➢ Multipass cells: high efficiency, impervious to beam 
pointing. Complexity increases and efficiency drops when 
reaching few-cycles.



Useful materials for further reading:

Couairon et al., “Practitioner’s guide to laser pulse propagation 
models and simulations,” Eur. Phys. Journal 199, 5-76 (2011).

M. Hanna et al., “Nonlinear temporal compression in
multipass cells: theory, ” JOSA B 34, 1340 (2017)

Jan Schulte, et al., "Nonlinear pulse compression in a multi-pass 
cell," Opt. Lett. 41, 4511-4514 (2016)

Viotti et al., Optica 9, 197 (2022)

Lu et al.,  Optica 1, 400 (2014)

T. Nagy et al., Advances in Physics: X 6, 1845795 (2020)
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