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Mathematical description of
Laser Pulses and some basic
concepts in Ultrafast Optics
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Typical ultrashort laser pulse

Etemporal(t) = E(t)
Example: 30 fs pulse, at A = 800 nm
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Time and frequency representations

Frequency domain representation of laser field E(t):

E(w) =f E(t)e dw = |E(w)|e@

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)
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Time and frequency representations

Frequency domain representation of laser field E (t)
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Time and frequency representations

IEY(w)|? = S(w) pulse spectrum
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Time and frequency representations

Introduce w, as the carrier frequency of the laser pulse

1 . . 1 .
E*(t) = Ee(t)e“p(t)e“"lt = Eé(t)e“"lt

¢@(t) time-dependent phase
g(t), &(t) real and complex field envelope



Normalized field amplitude
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Carrier-envelope phase

E* (t) = % g(t)eifp(t)eiprEPeiwlt

Offset between max. of envelope and closest
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Carrier-envelope phase
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Pulse shape and duration

Pulse duration?
Laser Pulse Shape >1(t) o« |e(t)|? (intensity profile)
Pulse duration(tz,,): Full Width at Half Maximum of I(t)



Pulse shape and duration

Pulse duration?
Laser Pulse Shape >1(t) o« |e(t)|? (intensity profile)
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Bandwidth and pulse duration

The spectral width and shape determine the shortest laser pulse

duration 12
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—— Asymm. sech pulse E(t) x lexp(t/Tp) + exp(—3t/ rp)]_1

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)



Bandwidth and pulse duration

Fourier-limited pulse durations
Aw,T, = 2nAv, T, = 2TCp
Examples of standard pulse profiles. The spectral values given are for unmodulated

pulses. Note that the Gaussian is the shape with the minimum product of mean
square deviation of the intensity and spectral intensity.

Shape Intensity p Spectral Aawy CR (Tp) (AL2))

profile 7(r) FWHM profile S(€2) FWHM MSQ

" / . 2 7(9.{6 )2
Gauss e 2TG) 1.177G e\ 2 2355/t 0.441 0.5
Sech sech?(1/7y) 1763ty sech?Z2L 11227y 0315 0.525
Lorentz [1+ (t/7)*] 2 1.28717 eIl 0.693/t;  0.142 0.7
—2

Asym. [ef/ Ta e—f‘f/fa} 1.043t,  sech™a 1.677/ta  0.278
sech
Square | for |t/7]| < 1, T, sincz(_Qr,--) 2.78/t, 0.443 3.27

O elsewhere

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)
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What is the minimum pulse duration that a 40 nm FWHM bandwidth
Gaussian spectrum centered around 800 nm can support?

Step 1: calculate Aw,
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i.e. w, >13.85 fs1 ~ 136 nm, i.e. in the vacuum-ultraviolet

So attosecond science is VUV/XUV/X-ray science!



Some representative numbers

What is the minimum pulse duration that a 40 nm FWHM bandwidth
Gaussian spectrum centered around 800 nm can support?

Step 1: calculate Aw,
g0 = 27C/A = 27 « (3x10% m/s) / (780x10° m) = 2.417x10%> s

=2.417 fs!
g0 = =2.299 fs'
Ao, =0.118 fs™
Step 2: calculate 1, T, = 2mcg/Aw, = 23.48 fs

What is the minimum photon energy needed to support a 200 as
FWHM pulse?

1,=0.2fs; Aw, >13.85fs™
i.e. w, >13.85 fs1 ~ 136 nm, i.e. in the vacuum-ultraviolet

So attosecond science is VUV/XUV/X-ray science!
An alternative way to make an estimation of @,???



Bandwidth and pulse duration

From the following discussion... Does the spectrum determines the
pulse shape and duration???

IEY(w)|? = S(w) pulse spectrum
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Bandwidth and pulse duration
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Linear propagation: the spectral phase

Why is the spectral phase important?
Laser pulse traveling through material with index of refraction n(w)

E(a)) E(w)eiam(a))L/c




Linear propagation: the spectral phase

Why is the spectral phase important?
Laser pulse traveling through material with index of refraction n(w)

Phase is function of index of

refraction, index of refraction
E(w) E(a))elw"(w)L/C is not constant over the
frequency spectrum

1.6

1.5

1.4

1.3

Fused silica glass
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Wavelength, pm

https://refractiveindex.info/



Linear propagation: the spectral phase

The phase accumulated by passing through a medium of length L:
o(w) =wn(w)L/c = k(w)L

= k(wg)L + k'(wg)|w — wy]L + %k"(wo)[w — wo]?L + -+
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_ 0
Vgroup = ok



Linear propagation: the spectral phase

The phase accumulated by passing through a medium of length L:
o(w) =wn(w)L/c = k(w)L

= k(wg)L + k'(wg)|w — wy]L + %k"((uo)[w — wo]?L + -+

k(wo) - Upha(:e()(wO) k”(wO) B dci) (Ugroqu(w)> = -
k'(wy) = ! o
Vgroup (wo)
C A® O |aser frequency

v = =AYV = — = —
phase n(w) 2m  k  laser wavevector

BUT, the pulse as a whole moves at the group velocity

_ 0
Vgroup = ok

Group velocity dispersion (GVD) implies that parts of the pulse
move at different velocities, and changes the pulse duration



Linear propagation: the spectral phase

The phase accumulated by passing through a medium of length L:
o(w) = wn(w)L/c = k(w)L
1
— k((l)o)L + k,((,()o)[(,() - wo]L + Ek"((l)o)[(,l) - (1)0]2L +
W

k(wy) = 1(wo) — d 1 —
Uphase(wo) k dow vgroup(w) o GVD

e.g. GVD of fused silica (at 800 nm): 35 fs?/mm



Linear propagation: the spectral phase

The phase accumulated by passing through a medium of length L:
o(w) = wn(w)L/c = k(w)L

= k(wg)L + k'(wg)|w — wy]L + %k"(a)o)[a) — wo]?L + -+

Wy d 1
k(wo) — k”(wO) — = GVD
Vphase (Wo) dw Vgroup (w) ww

k'(wg) =

vgroup (wo)

group delay (GD)

0
@ =00 (52) (00 +
—%Wo

1(2¢(w) — )3+ .
6( 9w3 )wzwo ((U (1)0) +

Third Order Dispersion (TOD)



Phase in time and frequency domains

carrier envelope  group delay

phase
0
0(@) = o+ (757) (0w + +
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6( 9 w3 )wzwo (CU (1)0) +

Simulations of the effects of each term...



Phase in time and frequency domains

carrier envelope  group delay

phase
0
0(@) = o+ (757) (0w + +
—%o

1[0 w3 4
6( 9 w3 )wzwo ((U (1)0) +

Simulations of the effects of each term...
Wigner:

oo S s\ .
Wt w) =f E* (t+§> E** (t—E)e lwSs =

o S\ ~ S\ .
f_oo E* (w +E) E** (w _E) e'Sds =

Temporal location of spectral components



Phase in time and frequency domains

carrier envelope  group delay

phase
d
0@ =9+ (7)) (0w + +
=Wo

1(2%¢(w) IR R
6( 9 w3 )wzwo ((U (1)0) -+

1 . . 1 .
E*(t) = Ee(t)e“p(t)e‘wot = — &(t)e'wot

2
carrier envelope N.B. positive chirp
phase  instantaneous frequency linear chirp means do/dt >0
dp(t) 1 (3%¢(t) 2
p® =0, +(2D) -t +3(5A2) (-t
t=ty t=tg

1(3%p®) )3 4.
6( 373 )t=t0 (t—to)® +



Pulse envelope and carrier: chirped pulse

Electric field
P \/IE(t)I = &(1)
d M . The laser electric field E(t) is
/ H N\ E(f) =L E(e Vet described as the product of a
"f\/f )ﬂﬂ real envelope function &(t)
--u-;-_..‘-gf?_:V \fw__ and an QSC|IIatory tc.erm
™ depending on the time-
N\ w dependent phase ¢(t) and the
\\u U/ carrier frequency o,



Pulse envelope and carrier: chirped pulse

Electric field
_ €(1)] = €1)
// \/ . . .
s ﬂ M \ The laser electric field E(t) is
/H ﬁ \ E=LEne*ventsc described as the product of a
) /'f )ﬂﬂ real envelope function &(t)
-u-;-_:gfyl\ \fw__ and an oscillatory term
N & depending on the time-
\\! u/ dependent phase ¢(t) and the
\y‘ u ﬁ “/ carrier frequency o,
B %
ot r Pulse chirp
The laser chirp is determined
o J by the time-dependent phase
¢ () =oy+ S () olt)
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