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Mathematical description of
Laser Pulses and some basic
concepts in Ultrafast Optics



𝐸 = 𝐸 𝑥, 𝑦, 𝑧, 𝑡 ො𝑥 

𝐵 = 𝐵 𝑥, 𝑦, 𝑧, 𝑡 ො𝑦 ≈ 0
Propagation direction in Ƹ𝑧

Description of EM waves and Laser fields
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Unless explicitly stated otherwise we assume…
𝐸 𝑥, 𝑦, 𝑧, 𝑡 = 𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑥, 𝑦, 𝑧 𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑡

Spatial part: Gaussian beam
→ See A. Siegman, Lasers, (University 
Science Books, 1986)

From now on we use 𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑡 = 𝐸(𝑡)
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Typical ultrashort laser pulse

𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑡 = 𝐸(𝑡)

Example: 30 fs pulse, at λ = 800 nm



Frequency domain representation of laser field 𝐸(𝑡):

෨𝐸 𝜔 = න
−∞

∞

𝐸(𝑡)𝑒−𝑖𝜔𝑡𝑑𝜔 = ෨𝐸 𝜔 𝑒𝑖𝜑(𝜔)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)

Time and frequency representations
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∞

෨𝐸(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 =
1
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න

−∞

∞
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Frequency domain representation of laser field 𝐸(𝑡)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)
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෨𝐸 𝜔 =  ෨𝐸+ 𝜔 + ෨𝐸− 𝜔

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)

Time and frequency representations



෨𝐸 𝜔 =  ෨𝐸+ 𝜔 + ෨𝐸− 𝜔

| ෨𝐸+ 𝜔 |2 = S ω      pulse spectrum 
(what we measure with spectrometer)

Alternative description using only positive frequencies

෨𝐸+ 𝜔 = ቐ

෨𝐸 𝜔 ,  𝑓𝑜𝑟 𝜔 ≥ 0
 

0,  𝑓𝑜𝑟 𝜔 < 0

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)

Time and frequency representations
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∞

෨𝐸+(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 ෨𝐸+ 𝜔 = න
−∞

∞

෨𝐸+(𝑡)𝑒−𝑖𝜔𝑡𝑑𝜔

complex
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real



| ෨𝐸+ 𝜔 |2 = S ω      pulse spectrum

Time and frequency representations



Introduce  l as the carrier frequency of the laser pulse

𝐸+ 𝑡 =
1

2
𝜀 𝑡 𝑒𝑖𝜑 𝑡 𝑒𝑖𝜔𝑙𝑡 =

1

2
ǁ𝜀 𝑡 𝑒𝑖𝜔𝑙𝑡

(t) time-dependent phase
𝜀 𝑡 , ǁ𝜀 𝑡 real and complex field envelope

Time and frequency representations
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𝜀 𝑡
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𝐸+ 𝑡 =
1

2
𝜀 𝑡 𝑒𝑖𝜑 𝑡 𝑒𝑖𝜔𝑙𝑡 =

1

2
ǁ𝜀 𝑡 𝑒𝑖𝜔𝑙𝑡

𝑅𝑒[𝐸+ 𝑡 ] 

(t) time-dependent phase
𝜀 𝑡 , ǁ𝜀 𝑡 real and complex field envelope

Optical cycle: 𝑇 =
2𝜋

𝜔𝑙
=

2𝜋𝜆

𝑐
≅ 2.67 𝑓𝑠

Carrier and envelope

𝜀 𝑡



𝐸+ 𝑡 =
1

2
𝜀 𝑡 𝑒𝑖𝜑 𝑡 𝑒𝑖𝜑𝐶𝐸𝑃𝑒𝑖𝜔𝑙𝑡

Offset between max. of envelope and closest
peak of carrier

𝝋𝑪𝑬𝑷 = 𝟎

Carrier-envelope phase



𝐸+ 𝑡 =
1

2
𝜀 𝑡 𝑒𝑖𝜑 𝑡 𝑒𝑖𝜑𝐶𝐸𝑃𝑒𝑖𝜔𝑙𝑡

Carrier-envelope phase

Offset between max. of envelope and closest
peak of carrier
𝝋𝑪𝑬𝑷 = 𝝅/𝟐



Pulse duration? 
Laser Pulse Shape →𝐼(𝑡) ∝ |𝜀 𝑡 |2 (intensity profile)
Pulse duration(τFWHM): Full Width at Half Maximum of 𝐼(𝑡)

Pulse shape and duration



Pulse duration? 
Laser Pulse Shape →𝐼(𝑡) ∝ |𝜀 𝑡 |2 (intensity profile)
Pulse duration(τFWHM): Full Width at Half Maximum of 𝐼(𝑡)

τFWHM  = 30 fs

Pulse shape and duration



J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)

p=FWHM

The spectral width and shape determine the shortest laser pulse 
duration

Bandwidth and pulse duration



Fourier-limited pulse durations

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic Press, 2006)

∆𝜔𝑝𝜏𝑝 = 2𝜋∆𝑣𝑝𝜏𝑝 ≥ 2𝜋𝑐𝐵

Bandwidth and pulse duration



What is the minimum pulse duration that a 40 nm FWHM bandwidth
Gaussian spectrum centered around 800 nm can support?

Step 1: calculate p

Some representative numbers
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What is the minimum photon energy needed to support a 200 as
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What is the minimum pulse duration that a 40 nm FWHM bandwidth
Gaussian spectrum centered around 800 nm can support?

Step 2: calculate p 𝜏𝑝 = 2𝜋𝑐𝐵/∆𝜔𝑝 = 23.48 fs

Step 1: calculate p

What is the minimum photon energy needed to support a 200 as
FWHM pulse?

p = 0.2 fs; p   13.85 fs-1 

i.e. p   13.85 fs-1 
~ 136 nm, i.e. in the vacuum-ultraviolet

So attosecond science is VUV/XUV/X-ray science!
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What is the minimum pulse duration that a 40 nm FWHM bandwidth
Gaussian spectrum centered around 800 nm can support?

Step 2: calculate p 𝜏𝑝 = 2𝜋𝑐𝐵/∆𝜔𝑝 = 23.48 fs

Step 1: calculate p

What is the minimum photon energy needed to support a 200 as
FWHM pulse?

p = 0.2 fs; p   13.85 fs-1 

i.e. p   13.85 fs-1 
~ 136 nm, i.e. in the vacuum-ultraviolet

So attosecond science is VUV/XUV/X-ray science!
An alternative way to make an estimation of p???

780 = 2c/ = 2 * (3x108 m/s) / (780x10-9 m) = 2.417x1015 s-1

=2.417 fs-1

820 = =2.299 fs-1

p = 0.118 fs-1

Some representative numbers



From the following discussion… Does the spectrum determines the
pulse shape and duration???

| ෨𝐸+ 𝜔 |2 = S ω      pulse spectrum

Bandwidth and pulse duration
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Why is the spectral phase important?
Laser pulse traveling through material with index of refraction 𝑛(𝜔)

𝐿

𝐸(𝜔) 𝐸(𝜔)𝑒𝑖𝜔𝑛 𝜔 𝐿/𝑐

Linear propagation: the spectral phase



Why is the spectral phase important?
Laser pulse traveling through material with index of refraction 𝑛(𝜔)

𝐿

𝐸(𝜔) 𝐸(𝜔)𝑒𝑖𝜔𝑛 𝜔 𝐿/𝑐

Phase is function of index of 
refraction, index of refraction 
is not constant over the 
frequency spectrum

https://refractiveindex.info/

Fused silica glass

Linear propagation: the spectral phase



The phase accumulated by passing through a medium of length L:

Linear propagation: the spectral phase

𝜑 𝜔 = 𝜔𝑛 𝜔 𝐿/𝑐 = 𝑘 𝜔 𝐿

= 𝑘 𝜔0 𝐿 + 𝑘´ 𝜔0 𝜔 − 𝜔0 𝐿 +
1

2
𝑘"(𝜔0)[𝜔 − 𝜔0]2𝐿 + ⋯
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BUT, the pulse as a whole moves at the group velocity
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The phase accumulated by passing through a medium of length L:

𝑘 𝜔0 =
𝜔0

𝑣𝑝ℎ𝑎𝑠𝑒(𝜔0)

𝑘′ 𝜔0 =
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1

𝑣𝑔𝑟𝑜𝑢𝑝 𝜔
𝜔=𝜔0

= 𝐺𝑉𝐷

Group velocity dispersion (GVD) implies that parts of the pulse 
move at different velocities, and changes the pulse duration

𝑣𝑝ℎ𝑎𝑠𝑒=
𝑐

𝑛(𝜔)
=  =



2𝜋
=



𝑘
laser frequency
laser wavevector

𝑣𝑔𝑟𝑜𝑢𝑝 =
𝜕𝜔

𝜕𝑘
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The phase accumulated by passing through a medium of length L:
𝜑 𝜔 = 𝜔𝑛 𝜔 𝐿/𝑐 = 𝑘 𝜔 𝐿

= 𝑘 𝜔0 𝐿 + 𝑘´ 𝜔0 𝜔 − 𝜔0 𝐿 +
1

2
𝑘"(𝜔0)[𝜔 − 𝜔0]2𝐿 + ⋯

𝑘 𝜔0 =
𝜔0

𝑣𝑝ℎ𝑎𝑠𝑒(𝜔0)

𝑘′ 𝜔0 =
1

𝑣𝑔𝑟𝑜𝑢𝑝(𝜔0)

𝑘′′ 𝜔0 =
𝑑

𝑑𝜔

1

𝑣𝑔𝑟𝑜𝑢𝑝 𝜔
𝜔=𝜔0

= 𝐺𝑉𝐷

Linear propagation: the spectral phase

e.g. GVD of fused silica (at 800 nm): 35 fs2/mm



The phase accumulated by passing through a medium of length L:
𝜑 𝜔 = 𝜔𝑛 𝜔 𝐿/𝑐 = 𝑘 𝜔 𝐿

= 𝑘 𝜔0 𝐿 + 𝑘´ 𝜔0 𝜔 − 𝜔0 𝐿 +
1

2
𝑘"(𝜔0)[𝜔 − 𝜔0]2𝐿 + ⋯

𝑘 𝜔0 =
𝜔0

𝑣𝑝ℎ𝑎𝑠𝑒(𝜔0)

𝑘′ 𝜔0 =
1

𝑣𝑔𝑟𝑜𝑢𝑝(𝜔0)

𝑘′′ 𝜔0 =
𝑑

𝑑𝜔

1

𝑣𝑔𝑟𝑜𝑢𝑝 𝜔
𝜔=𝜔0

= 𝐺𝑉𝐷

Linear propagation: the spectral phase

group delay (GD) group delay dispersion (GDD)

𝜑  = 𝜑0 +
𝜕𝜑(𝜔)

𝜕𝜔 𝜔=𝜔0

 − 0 +
1

2

𝜕2𝜑(𝜔)

𝜕𝜔2
𝜔=𝜔0

𝜔 − 𝜔0
2 +

1

6

𝜕3𝜑(𝜔)

𝜕𝜔3
𝜔=𝜔0

𝜔 − 𝜔0
3 + ⋯

N.B. positive GDD; red before blue

Third Order Dispersion (TOD)



group delay group delay dispersion (GDD)

𝜑  = 𝜑0 +
𝜕𝜑(𝜔)

𝜕𝜔 𝜔=𝜔0

 − 0 +
1

2

𝜕2𝜑(𝜔)

𝜕𝜔2
𝜔=𝜔0

𝜔 − 𝜔0
2 +

1

6

𝜕3𝜑(𝜔)

𝜕𝜔3
𝜔=𝜔0

𝜔 − 𝜔0
3 + ⋯

N.B. positive GDD; red before blue

carrier envelope
phase

Phase in time and frequency domains

Simulations of the effects of each term…



group delay group delay dispersion (GDD)

𝜑  = 𝜑0 +
𝜕𝜑(𝜔)

𝜕𝜔 𝜔=𝜔0

 − 0 +
1

2

𝜕2𝜑(𝜔)

𝜕𝜔2
𝜔=𝜔0

𝜔 − 𝜔0
2 +

1

6

𝜕3𝜑(𝜔)

𝜕𝜔3
𝜔=𝜔0

𝜔 − 𝜔0
3 + ⋯

N.B. positive GDD; red before blue

carrier envelope
phase

Phase in time and frequency domains

Simulations of the effects of each term…
Wigner:

𝑾 𝒕, 𝝎 = න
−∞

+∞

𝑬+ 𝒕 +
𝒔

𝟐
𝑬+∗ 𝒕 −

𝒔

𝟐
𝒆−𝒊𝝎𝒔𝒅𝒔 =

න
−∞

+∞

෩𝑬+ 𝝎 +
𝒔

𝟐
෩𝑬+∗ 𝝎 −

𝒔

𝟐
𝒆𝒊𝒕𝒔𝒅𝒔 =

Temporal location of spectral components      



𝜑 𝑡 = 𝜑0 +
𝜕𝜑(𝑡)

𝜕𝑡 𝑡=𝑡0

𝑡 − 𝑡0 +
1

2

𝜕2𝜑(𝑡)

𝜕𝑡2
𝑡=𝑡0

𝑡 − 𝑡0
2 +

1

6

𝜕3𝜑(𝑡)

𝜕𝑡3
𝑡=𝑡0

𝑡 − 𝑡0
3 + ⋯

instantaneous frequency linear chirp

carrier envelope
phase

group delay group delay dispersion (GDD)

𝜑  = 𝜑0 +
𝜕𝜑(𝜔)

𝜕𝜔 𝜔=𝜔0

 − 0 +
1

2

𝜕2𝜑(𝜔)

𝜕𝜔2
𝜔=𝜔0

𝜔 − 𝜔0
2 +

1

6

𝜕3𝜑(𝜔)

𝜕𝜔3
𝜔=𝜔0

𝜔 − 𝜔0
3 + ⋯

N.B. positive GDD; red before blue

N.B. positive chirp
means d/dt > 0

carrier envelope
phase

𝐸+ 𝑡 =
1

2
𝜀 𝑡 𝑒𝑖𝜑 𝑡 𝑒𝑖𝜔0𝑡 =

1

2
ǁ𝜀 𝑡 𝑒𝑖𝜔0𝑡

Phase in time and frequency domains



The laser electric field E(t) is
described as the product of a 
real envelope function 𝜀 𝑡
and an oscillatory term 
depending on the time-
dependent phase (t) and the 
carrier frequency l

Pulse envelope and carrier: chirped pulse



The laser electric field E(t) is
described as the product of a 
real envelope function 𝜀 𝑡
and an oscillatory term 
depending on the time-
dependent phase (t) and the 
carrier frequency l

The laser chirp is determined
by the time-dependent phase
(t)

Pulse envelope and carrier: chirped pulse



Suggested literature

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 
(Academic Press, 2006) 

A. Siegman, Lasers, (University Science Books 1986)

U. Keller, Ultrafast Lasers, (Springer 2021)
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