INTRODUCTION TO THE CELL

Chemical foundations

CHEMISTRY OF LIFE: four key concepts

(a) Molecular complementarity

(c) Chemical equilibrium

(b) Chemical building blocks

WATER

Water is essential for all living organisms.

1. Nearly all biological molecules assume their shape (functions) in response to the physical and chemical properties of the surrounding water
2. The medium for the majority of biochemical reactions is water
3. Water itself participates in many chemical reactions that support life

The colorless, odorless, and tasteless nature of water belies its fundamental importance to living organisms.

1- Physical properties of Water: structure of the water, water as a solvent, the hydrophobic effect, osmosis and diffusion

2- Chemical properties of Water: ionization of water, acid-base chemistry, buffers

1.1. Structure of Water

A water molecule consists of two hydrogen atoms bonded to an oxygen atom

Water molecules form hydrogen bonds

The angular geometry of the water molecule has enormous implications for living systems. Water is a polar molecule. Neighboring water molecules tend to orient themselves. The resulting directional intermolecular association is known as hydrogen bond.

Water-water

Ice is a crystal of hydrogenbounded water molecules

Water molecules in ice are arranged in an unusually open structure. Each water molecule is tetrahedrally surrounded by four nearest neighbors to which it is hydrogen bonded.

The structure of liquid water is irregular

Liquid water consists of a rapidly fluctuating, 3-D network of hydrogenbonded water molecules.

The figure shows models based on theoretical predictions and spectroscopic data.

The cohesive nature of water is responsible for its unusual properties such as high surface tension, specific heat, and heat of vaporization..

Hydrogen bonds and other weak interactions in biological molecules

The weak electrostatic forces includes ionic interactions, hydrogen bonds, and van der Waals forces. The strength of association of ionic groups of opposite charge depends on the chemical nature of the ions, the distance between them, and the polarity of the medium. The noncovalent associations between neutral molecules (van der Waals) arise from electrostatic interactions among permanent or induced dipoles.

Dipole-dipole interaction

Molecular complementarity mediated via noncovalent interactions permits tight, highly specific binding of biomolecules

A molecular complementarity is a lock-key fit between molecules whose shapes, charges, and other physical properties are complementary. Multiple noncovalent interactions can form between complementary molecules, causing them to bind tightly.

The high degree of binding specificity is one of the features that underlies intermolecular interactions and thus is essential for many processes critical to life.

1.2. Water as a solvent

The polar character of water makes it an excellent solvent for polar and ionic materials, which are said to be hydrophilic. On the other hand, nonpolar substances are virtually insoluble in water and are described as hydrophobic. Nonpolar substances, however, are soluble in nonpolar solvents as CCl_{4} and hexane.
Why do salts such as NaCl dissolve in water? Water weaken the attractive forces between oppositely charged ions and can therefore hold the ions apart. The ion is surrounded by one or more concentric shells of oriented solvent molecules (solvated, hydrated).

When a substance dissolves in a liquid, the mixture is termed a solution (solute + solvent)

The solubilities of polar and ionic substances are enhanced when they carry functional groups, such as hydroxyl (OH), carbonyl ($\mathrm{C}=\mathrm{O}$), carboxylate (COO), or ammonium (NH^{+}) groups that can form hydrogen bonds. Indeed, watersoluble biomolecules, such as proteins, nucleic acids and carbohydrates bristle with just such groups.
(a)

(b)

(c)

(d)

Nonpolar substances as hydrocarbons, in contrast, lack hydrogen-bonding donor and acceptor groups and are generally insoluble in water.

(a)
(b)

Water-water

Amine-water

Peptide group-water

Ester group-water

1.3. The hydrophobic effect

When a nonpolar substance is added to an aqueous solution, it does not dissolve but instead is exclude by the water. The tendency of water to minimize its contacts with hydrophobic molecules is termed the hydrophobic effect.

Aggregation of nonpolar molecules in water minimizes the surface area of the cavity and maximizes the entropy of the system

Amphiphiles from micelles and bilayers. Most biomolecules have both polar and nonpolar segments and are therefore simultaneously hydrophilic and hydrophobic (amphiphilic or amphipathic).

In both micelles and bilayers, the aggregate is stabilized by the hydrophobic effect

1.4. Water Moves by Osmosis and Solutes Move by Diffusion

The fluid inside de cells and surrounding cells in multicellular organisms is full of dissolved substances ranging from small inorganic ions to huge molecular aggregates. The concentration of these solutes affect water's colligative properties.

Punto congelamiento (disminuye), punto de ebullicion del agua (aumenta); presion de vapor y presion osmotica.

Osmosis is the movement of solvent from a region of high concentration to a region of relatively low concentration.

1 M solution, the osmotic pressure is 22.4 atm

1.4. Water Moves by Osmosis and Solutes Move by Diffusion

The fluid inside de cells and surrounding cells in multicellular organisms is full of dissolved substances ranging from small inorganic ions to huge molecular aggregates. The concentration of these solutes affect water's colligative properties.

Diffusion is the random movement of solutes from an area of high concentration to an area of low concentration. The molecules diffuse the equilibrium is established.
(a) At start of dialysis

CHEMISTRY OF LIFE: four key concepts

(a) Molecular complementarity

(c) Chemical equilibrium

(b) Chemical building blocks

Molecular complementarity mediated via noncovalent interactions permits tight, highly specific binding of biomolecules

A molecular complementarity is a lock-key fit between molecules whose shapes, charges, and other physical properties are complementary. Multiple noncovalent interactions can form between complementary molecules, causing them to bind tightly.

The high degree of binding specificity is one of the features that underlies intermolecular interactions and thus is essential for many processes critical to life.

Chemical equilibrium: equilibrium constants reflect the extent of a chemical reaction

A chemical reaction is at equilibrium when the rate of the forward reaction is equal to the rate of the reverse reaction.

For the general reaction with two reactants and two products,

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{yY}+\mathrm{zZ} \\
& K_{\mathrm{eq}}=\frac{[\mathrm{Y}]^{y}[\mathrm{Z}]^{\mathrm{a}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}=\frac{k_{\mathrm{f}}}{k_{\mathrm{r}}}
\end{aligned}
$$

The equilibrium constant $K_{\text {eq }}$ of a reaction is a measure of the extent of the reaction and the relative stabilities of the reactants and products. The $K_{\text {eq }}$ depends on the temperature, pressure, and chemical properties of the reactants and products but it is independent of the reaction rate and of the initial concentrations of reactants and products.

Chemical reactions in cells are a steady state

(a) Test tube equilibrium concentrations

(b) Intracellular steady-state concentrations

Within cells, the linked reactions in metabolic pathways generally are at steady state, not equilibrium, at which rate of formation of the intermediates equals their rate of consumption and thus the concentrations of the intermediates are not changing.

Dissociation constants of binding reactions reflect the affinity of interacting molecules.

$$
\begin{aligned}
& \mathrm{P}+\mathrm{D} \rightleftarrows \mathrm{PD} \\
& K_{\mathrm{d}}=\frac{[\mathrm{P}][\mathrm{D}]}{[\mathrm{PD}]}=1 / K_{\mathrm{eq}}
\end{aligned}
$$

The K_{d} is a measure of the stability of the complex formed between the molecules.

$$
K_{d \sim} 10^{-9} \mathrm{M} \text { tight }
$$

$\sim 10^{-6} \mathrm{M}$ modestly tight
$\sim 10^{-3} \mathrm{M}$ weak

2. 1. Ionization of water

Water is a neutral molecule with a very slight tendency to ionize

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Proton jumping is also responsible for the observation that acid-base reactions are among the fastest reactions that take place in aqueous solution.

$$
K_{\text {eq }}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

Since in the cell $\left[\mathrm{H}_{2} \mathrm{O}\right] \sim 55 \mathrm{M}$ and ionization is very weak, then $\left[\mathrm{H}_{2} \mathrm{O}\right] \sim$ constant, so we can define,

$$
K_{\mathrm{w}}=(55.5 \mathrm{M})\left(K_{\text {eq }}\right)=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \text {"the ionic product of water" }
$$

$K_{\text {eq }}$, determined by electrical-conductivity measurements of pure water, is $1.8 \times 10^{-16} \mathrm{M}$

$$
\left(K_{\mathrm{w}}\right)^{1 / 2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}
$$

The overall acidity of the medium greatly affects many biochemical reactions, because most biological components can function either as bases or acids.

The values of $\left[\mathrm{H}^{+}\right]$for most solutions are small and thus impractical to compare. A more practical quantity is known as the pH (Sørenson).
pH is a measure of effective concentration of hydrogen ions in a solution.

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=\log 1 /\left[\mathrm{H}^{+}\right]
$$

The pH of pure water is 7.0 , whereas acidic solutions have $\mathrm{pH}<7.0$ and basic solutions have $\mathrm{pH}>7.0$.

Substance	pH
1 M NaOH	14
Household ammonia	12
Seawater	8
Blood	7.4
Milk	7
Saliva	6.6
Tomato juice	4.4
Vinegar	3
Gastric juice	1.5
1 M HCl	0

1. The concentration of hydrogen ion in a solution is $2.5 \times 10^{-5} \mathrm{M}$. What is the solution's pH ?
2. The pH of a solution is 3.75 . What is the $\left[\mathrm{H}^{+}\right]$in the solution?
3. A solution has a pH of 4.5 . What is the solution's pOH ?

$$
\mathrm{pOH}=14-\mathrm{pH}=-\log \left[\mathrm{OH}^{-}\right]
$$

4. 10^{-4} moles of H^{+}(as HCl) are added to 1 L of water. Calculate the final pH of the solution.

$$
\begin{aligned}
& 1-\mathrm{pH}=4.6 ; \\
& 2-1,8 \times 10^{-4} \mathrm{M} ; \\
& 3-9.5 ; \\
& \text { 4- } \mathrm{pH}=4 ;
\end{aligned}
$$

2. 2. Acid-Base chemistry: hydrogen ions are released by acids and taken up by bases

Biomolecules have numerous functional groups that act as acids or bases and influence the pH of the medium, and their structures and reactivities are in turn influenced by the ambient pH .

An acid can donate a proton. An acid is a substance that can donate a H^{+}, and a base is a substance that can accept a proton (Bronsted-Lowry definition).

The strength of an acid is specified by its dissociation constant.

$$
K_{e q}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{HA}]}
$$

In dilute solutions, the water concentration is essentially constant, $\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5 \mathrm{M}$, and can be combined with K, which then takes the form

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \text { Acid dissociation constant }
$$

FOR BREVETY, HOWEVER, WE OMIT THE SUBSCRIPT "a"

A measure of K_{a} for a weak acid is given by its $\mathrm{p} K_{\mathrm{a}}$, which is equivalent to the negative log of Ka:

$$
\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}
$$

The pH of a solution is determined by the relative concentrations of acids and bases. The relationship between pH of a solution and the concentrations of an acid an its conjugate base is easily derived and is known as the HendersonHasselbalch equation.
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right]$
[AH]

Acid	K	$\mathrm{p} K$
Oxalic acid	5.37×10^{-2}	1.27 (pK1)
$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.08×10^{-3}	2.15 (pK1)
Formic acid	1.78×10^{-4}	3.75
Succinic acid	6.17×10^{-5}	$4.21\left(\mathrm{p} K_{1}\right)$
Oxalate ${ }^{-}$	5.37×10^{-5}	$4.27\left(\mathrm{p} K_{2}\right)$
Acetic acid	1.74×10^{-5}	4.76
Succinate ${ }^{-}$	2.29×10^{-6}	5.64 (p K_{2})
2-(N -Morpholino)ethanesulfonic acid (MES)	8.13×10^{-7}	6.09
$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.47×10^{-7}	$6.35\left(\mathrm{p} K_{1}\right)^{a}$
Piperazine- N, N^{\prime}-bis(2-ethanesulfonic acid) (PIPES)	1.74×10^{-7}	6.76
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	1.51×10^{-7}	$6.82\left(\mathrm{p} K_{2}\right)$
3-(N -Morpholino)propanesulfonic acid (MOPS)	7.08×10^{-8}	7.15
N-2-Hydroxyethylpiperazine- N^{\prime}-2-ethanesulfonic acid (HEPES)	3.39×10^{-8}	7.47
Tris(hydroxymethyl)aminomethane (Tris)	8.32×10^{-9}	8.08
NH_{4}^{+}	5.62×10^{-10}	9.25
Glycine (amino group)	1.66×10^{-10}	9.78
HCO_{3}^{-}	4.68×10^{-11}	$10.33\left(\mathrm{p} K_{2}\right)$
Piperidine	7.58×10^{-12}	11.12
HPO_{4}^{2-}	4.17×10^{-13}	$12.38\left(\mathrm{p} K_{3}\right)$

Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), pp. 424-425, Oxford Science Publications (1986); and Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, R.M.M., Biochemistry 5, 467 (1966). ${ }^{a}$ The pK for the overall reaction $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$; see Box 2-2.

$$
\mathrm{pH}=\mathrm{p}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{AH}]}
$$

Table 2-4 Dissociation Constants and pK Values at $25^{\circ} \mathrm{C}$ of Some Acids

Acid	K	$\mathrm{p} K$
Oxalic acid	5.37×10^{-2})
$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.08×10^{-3}	2.15 (pK K_{1})
Formic acid	1.78×10^{-4}	3.75
Succinic acid	6.17×10^{-5}	4.21 (p K_{1})
Oxalate ${ }^{-}$	5.37×10^{-5}	$4.27\left(\mathrm{p} K_{2}\right)$
Acetic acid	1.74×10^{-5}	4.76
Succinate ${ }^{-}$	2.29×10^{-6}	5.64 (p K_{2})
2-(N -Morpholino)ethanesulfonic acid (MES)	8.13×10^{-7}	6.09
$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.47×10^{-7}	$6.35\left(\mathrm{p} K_{1}\right)^{a}$
Piperazine- N, N^{-}-bis(2-ethanesulionic acid) (PIPES)	1.14×10	$6 . / 6$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	1.51×10^{-7}	$6.82\left(\mathrm{p} K_{2}\right)$
3-(N -Morpholino)propanesulfonic acid (MOPS)	7.08×10^{-8}	7.15
N-2-Hydroxyethylpiperazine- N^{\prime}-2-ethanesulfonic acid (HEPES)	3.39×10^{-8}	7.47
Tris(hydroxymethyl)aminomethane (Tris)	8.32×10^{-9}	8.08
NH_{4}^{+}	5.62×10^{-10}	9.25
Glycine (amino group)	1.66×10^{-10}	978
HCO_{3}^{-}	4.68×10^{-11}	$10.33\left(\mathrm{p} K_{2}\right)$
Piperidine	7.58×10	11.12
HPO_{4}^{2-}	4.17×10^{-13}	$12.38\left(\mathrm{p} K_{3}\right)$
Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), pp. 424-425, Oxford Science Publications (1986); and Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, R.M.M., Biochemistry 5, 467 (1966). ${ }^{\text {a }}$ The pK for the overall reaction $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$; see Box 2-2.		

 dissociation of an acid

2. 3. Buffers: maintain the pH of intracellular and extracellular fluids

Cells have a reservoir of weak bases and weak acids, called buffers, which ensure that the cell's pH remains relatively constant despite small fluctuations in the amounts of H^{+}or OH^{-}being generated by metabolism of by the uptake or secretion of molecules and ions by the cell.

The ability of a buffer to minimize changes in pH , its buffering capacity, depends on the concentration of the buffer and the relationship between its $\mathrm{p} K_{\mathrm{a}}$ value and the pH .
Titration curves can be constructed from experimental observation or by using the Henderson-Hasselbalch equation.

1. the curves have similar shape but are shifted vertically along the pH axis
2. The pH at the midpoint of each titration is equivalent to the $\mathrm{p} K_{\mathrm{a}}$ value of its corresponding acid
3. The slope if each titration curve is much lower near its midpoint than near its wings.

Two especially important biological buffers are the phosphate and bicarbonate systems. The phosphate buffer system, which acts in the cytoplasm of all cells, consists of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$as proton donor and $\mathrm{HPO}_{4}{ }^{2-}$ as proton acceptor:

It is therefore an effective buffer in biological fluids; in mammals, for example, extracellular fluids and most cytoplasmic compartments have a pH in the range of 6.9 to 7.4.

Principio de Le Chatelier

Existe una regla general que ayuda a predecir en qué dirección se desplazará una reacción en equilibrio cuando hay un cambio de concentración, presión, volumen o temperatura. Esta regla, conocida como el principio de Le Chlitelier, establece que si se aplica una tensión externa a un sistema en equilibrio, el sistema se ajusta de tal manera que se cancela parcialmente dicha tensión en la medida que el sistema alcanza una nueva posición de equilibrio.

El término "tensión" significa aquí un cambio de concentración, presión, volumen o temperatura que altera el estado de equilibrio de un sistema.

La Química en acción La vida a grandes alturas y la producción de hemoglobina
En el cuerpo humano es necesario mantener innumerables equilibrios químicos para asegurar su bienestar fisiológico. Si las condiciones ambientales cambian, el cuerpo se debe adaptar para mantener un funcionamiento adecuado.

$$
\begin{gathered}
\mathrm{Hb}(\mathrm{ac})+\mathrm{O}_{2}(\mathrm{ac}) \Longrightarrow \mathrm{HbO}_{2}(\mathrm{ac}) \\
K_{c}=\frac{\left[\mathrm{HbO}_{2}\right]}{[\mathrm{Hb}]\left[\mathrm{O}_{2}\right]}
\end{gathered}
$$

A una altitud de 3 km , la presión parcial del oxígeno es de sólo 0.14 atm , comparada con 0.2 atm a nivel del mar.

Este cambio reduce el aporte de oxihemoglobina los tejidos y provoca hipoxia.

La Química en acción: antiácidos y el balance del pH en el estómago

Los iones H+ provienen del ácido carbónico (Los iones H+ provienen del ácido carbónico (H2C03) que se forma como resultado de la hidratación del CO 2 , un producto final del metabolismo:

La Química en acción: antiácidos y el balance del pH en el estómago

Some Common Commercial Antacid Preparations

Commercial Name	Active Ingredients
Alka-2	Calcium carbonate Alka-Seltzer Aspirin, sodium bicarbonate, citric acid
Bufferin	Aspirin, magnesium carbonate, aluminum glycinate
Milk of magnesia	Aspirin, magnesium carbonate, aluminum hydroxide-glycine Rolaids
Tums	Magnesium hydroxide Dihydroxy aluminum sodium carbonate
Calcium carbonate	

Mantenimiento del pH de la sangre

Los eritrocitos contienen moléculas de hemoglobina, así como la enzima anhidrasa carbónica, la cual cataliza tanto la formación de ácido carbónico (H2C03) como su descomposición:

$$
\begin{gathered}
\mathrm{CO}_{2}(a c)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a c) \\
\mathrm{H}_{2} \mathrm{CO}_{3}(a c) \rightleftharpoons \mathrm{H}^{+}(a c)+\mathrm{HCO}_{3}^{-}(a c)
\end{gathered}
$$

Química en acción: manteniendo el pH de la sangre

16.3

Blood, Lungs, and Buffer: The Bicarbonate Buffer System

Bicarbonate is the most significant buffer compound in human blood. The buffering capacity of blood depends primarily on two equilibria:

1. between gaseous CO_{2} dissolved in the blood and carbonic acid formed by the reaction

2. between carbonic acid and bicarbonate formed by the dissociation of H^{+}

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+} \Longleftrightarrow \mathrm{CO}_{3}^{-} \uparrow \mathrm{pKa}=6.35
$$

pH of the blood falls due to metabolic production of $\mathrm{H}^{+} \uparrow \mathrm{CO}_{2}$
pH of the blood rises $\uparrow \mathrm{HCO}_{3}{ }^{-}$
Thus the pH of a bicarbonate buffer exposed to a gas phase is ultimately determined by the concentration of HCO_{3}^{-}in the aqueous phase and the partial pressure of CO_{2} in the gas phase

Disturbances in the blood buffer system can lead to conditions known as acidosis ($\mathrm{pH}=7.1$) or alkalosis ($\mathrm{pH}=7.6$). Acid-base imbalances are best alleviated by correcting the underlying physiological problem.

SUMMARY

$>$ Water is essential for all living organisms
$>$ Water molecules can from hydrogen bonds with other molecules because they have two H atoms that can be donated and two unshared electron pairs that can act as acceptors
$>$ Liquid water is an irregular network of water molecules that each form up to four hydrogen bonds with neighboring water molecules
$>$ Hydrophilic substances such as ionic and polar molecules dissolve readily in water
$>$ The hydrophobic effect is the tendency of water to minimize its contacts with nonpolar substances
$>$ Water molecules move from regions of high concentrations to regions of low concentration by osmosis; solutes move from regions of high concentration to regions of low concentration by diffusion
$>$ Water ionizes to H^{+}(which represents the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$) and OH^{-}
$>$ The concentration of H^{+}in solution is expressed as a pH value: in acidic solutions $\mathrm{pH}<7$, in basic colustions $\mathrm{pH}>7$, and in neurtral solutions $\mathrm{pH}=7$
$>$ Acids can donate protons and bases can accept protons. The strength of an acid is expressed as its $\mathrm{p} K_{\mathrm{a}}$.
$>$ The Henderson-Hasselbalch equation relates the pH of a solution to the $\mathrm{p} K_{\mathrm{a}}$ and concentrations of an acid and its conjugate base.
$>$ Buffered solutions resist changes in pH within about one pH unit of the $\mathrm{p} K_{\mathrm{a}}$

Chemical building block of cells

Proteins and nucleic acids are informational macromolecules: each protein and each nucleic acid has a characteristic information-rich subunit sequence.

Biomolecules Are Compounds of Carbon with a Variety of Functional Groups

Hydrogen, oxygen, carbon, nitrogen, phosphorus, and sulfur are the most abundant elements in biological molecules. All the biological building blocks are organized around the carbon atom, which normally forms four covalent bonds with three or four other atoms.

(a) Formaldehyde

(b) Methane

Chemical structure

Ball-and-stick model

Geometry of bonds when carbon is covalently linked to three or four other atoms

Covalently linked carbon atoms in biomolecules can form linear chains, branched chains, and cyclic structures. To these carbon skeletons are added groups of other atoms, called functional groups, which confer specific chemical properties on the molecule.

FUNCTIONAL GROUPS

| -OH |
| :---: | :---: | :---: | :---: |
| Hydroxyl |
| (alcohol) |

3-D Structure Is Described by Configuration and Conformation

Molecular Configuration is conferred by the presence of either, double bond or chiral centers. The identifying characteristic of configurational isomers is that they cannot be interconverted without temporarily breaking one or more covalent bonds.

Maleic acid (cis)

Configurations of geometric isomers

Alltrasc:Retinal

A carbon atom bonded to four dissimilar atoms or groups in a nonplanar configuration is said to be asymmetric. The tetrahedral orientation of bonds formed by an asymmetric carbon atom can be arranged in 3-D in two different ways, producing molecules that are mirror images each other, a property called chirality. Such molecules are called optical isomers, or stereoisomers.

Only one stereoisomer is biologically active.

D, L system based on the absolute configuration of a 3C sugar, a convention proposed by Emil Fisher (1891)

Molecular conformation is the spatial arrangement of substituent groups that, without breaking any bonds, are free to assume different positions in space because of the freedom of rotation about single bonds.

Two conformations are of special interest: the staggered, which is more stable than all others and thus predominates, and the eclipsed, which is least stable.

Interactions between Biomolecules Are Stereospecific

Stereospecificity, the ability to distinguish between stereoisomers, is a property of enzymes and other proteins and a characteristic feature of the molecular logic of living cells. One striking example of the ability to distinguish stereoisomers by taste in humans.

L-Aspartyl-L-phenylalanine methyl ester (aspartame) (sweet)

L-Aspartyl-D-phenylalanine methyl ester (bitter)

Stereoisomers distinguishable by taste in humans

Interactions between biological molecules are almost invariably stereospecific: they require a complementary match between the interacting molecules.

Amino Acids differing only in their side chains compose proteins

The monomeric building blocks of proteins are 20 amino acids (L isomer), which have a characteristic structure consisting of a central C_{α} bonded to four different chemical groups: an amino group, a carboxylic acid group, a hydrogen atom, and one variable group, called a side chain or R group.

Amino acids can be polymerized to form chains. The resulting CO-NH linkage, an amide linkage, is known as a peptide bond.

Amino acids can be classified into several broad categories based on the size, shape, charge, hydrophobicity, and chemical reactivity of the side chains. According to the most common classification scheme, by the polarities of their side chains, there are three major types of amino acids:

1. those with nonpolar R groups
2. those with uncharged polar R groups, and
3. those with charged polar R groups
4. The nonpolar amino acids side chains have a variety of shapes and sizes. Nine amino acids are classified as having nonpolar side chains: Gly, Ala, Val, Leu, Ile, Met, Pro, Phe, Trp.

SUMMARY

$>$ Three major biopolymers formed by polymerization reactions (net dehydration) of basic chemical blocks are present in cells: proteins, composed of amino acids linked by peptide bonds; nucleic acids, composed of nucleotides linked by phophodiester bonds; and polysaccharides, composed of monosaccharides linked by glycosidic bonds. Phospholipids, the fourth major chemical building block, assemble noncovalently into biomebranes.
$>$ Many molecules in cells contain at least one asymmetric carbon atom, which bonded to four dissimilar atoms. Such molecules can exist as optical isomers, designated D and L, which have different biological activities. In biological systems, nearly all sugars are D isomers, whereas nearly all amino acids are L isomers.
$>$ Differences in size, shape, charge, hydrophobicity, and reactivity of the side chains of the 20 common amino acids determine the chemical and structural properties of proteins.
$>$ The bases in the nucleotides composing DNA and RNA are carbon- and nitrogen-containing rings attached to a pentose sugar. They form two groups: the purines (Adenine, Guanine) and the pyrimidines (Cytosine, Thymine, and Uracil). A, G, T, and C are in DNA, and A, G, U, and C are in RNA.
$>$ Glucose and other hexoses can exist in three forms: an open-chain linear structure, a six-member ring, and a five-member ring. In biological systems, the pyranose form of D-glucose predominates.
$>$ Phospholipids are amphipathic molecules with a hydrophobic tail connected by a small organic molecule to a hydrophilic head. The long hydrocarbon chain of a fatty acid may contain no carbon-carbon double bond or one or more double bonds; a cis double bond bends the chain.

Five different nucleotides are used to build Nucleic Acids

Two types of chemically similar nucleic acids, DNA and RNA, are the principal genetic-information-carrying molecules of the cell. The monomeric building blocks are called nucleotides, all have a common structure: a phosphate group linked by a phosphoester bond to a pentose that in turn is linked to a nitrogen- and carbon-containing ring structure referred as a base.

Adenosine 5'-monophosphate
(AMP)
(b)

2-Deoxyribose

Monosaccharides joined by glycosidic bonds from linear and branched polysaccharides

The building blocks of the polysaccharides are the simple sugar, or monosaccharides, which are aldehyde or ketone derivatives of straight-chain polyhydroxy alcohols containing at least three carbon atoms. They are classified according to the chemical nature of their carbonyl group and the number of their C atoms. Hexoses and pentoses are the most common monosaccharides.

Aldehyde

Keto

D-Glucose

The aldohexose D-Glucose has the formula $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, two of its six C atoms are chiral centers, so D-glucose is one of 16 possible stereoisomers. D-glucose is the principal external source of energy for most cells in higher organisms and can exist in three different forms: a linear structure and two different hemiacetal ring structures.

Configuration and conformation: alcohols react with the carbonyl groups of aldehydes and ketones to form hemiacetals and hemiketals.

Alcohol Aldehyde Hemiacetal

The hydroxyl and either the aldehyde or ketone functions of monosaccharides can likewise react intramolecularly to form cyclic hemiacetals and hemiketals. The configurations of the substituents of each C atom are represented by their Haworth projections. When a monosaccharide cyclizes, the carbonyl C, called the anomeric carbon, becomes a chiral center with two possible configurations (anomers).

[^0]
Lipids and biological membranes

Lipids are a diverse group of molecules that are soluble in organic solvents and, in contrast to other major types of biomolecules, do not form polymers. In general, lipids perform three biological functions:

1. lipid molecules in the form of lipid bilayers are essential components of biological membranes
2. lipids containing hydrocarbon chains serve as energy stores
3. many intra- and intercellular signaling events involvé lipid molecules

Lipids classification

fatty acids, triacylglycerols, glycerophospholipids, sphingolipids, and steroids

Lipid bilayers

why bilayers form, lipid mobility

SUMMARY

$>$ Three major biopolymers formed by polymerization reactions (net dehydration) of basic chemical blocks are present in cells: proteins, composed of amino acids linked by peptide bonds; nucleic acids, composed of nucleotides linked by phophodiester bonds; and polysaccharides, composed of monosaccharides linked by glycosidic bonds. Phospholipids, the fourth major chemical building block, assemble noncovalently into biomebranes.
$>$ Many molecules in cells contain at least one asymmetric carbon atom, which bonded to four dissimilar atoms. Such molecules can exist as optical isomers, designated D and L, which have different biological activities. In biological systems, nearly all sugars are D isomers, whereas nearly all amino acids are L isomers.
$>$ Differences in size, shape, charge, hydrophobicity, and reactivity of the side chains of the 20 common amino acids determine the chemical and structural properties of proteins.
$>$ The bases in the nucleotides composing DNA and RNA are carbon- and nitrogen-containing rings attached to a pentose sugar. They form two groups: the purines (Adenine, Guanine) and the pyrimidines (Cytosine, Thymine, and Uracil). A, G, T, and C are in DNA, and A, G, U, and C are in RNA.
$>$ Glucose and other hexoses can exist in three forms: an open-chain linear structure, a six-member ring, and a five-member ring. In biological systems, the pyranose form of D-glucose predominates.
$>$ Phospholipids are amphipathic molecules with a hydrophobic tail connected by a small organic molecule to a hydrophilic head. The long hydrocarbon chain of a fatty acid may contain no carbon-carbon double bond or one or more double bonds; a cis double bond bends the chain.

Metabolism, the overall process through which living systems acquire and use free energy to carry out their various functions, is divided into two parts:

1. catabolism or degradation
2. anabolism or biosynthesis

The processes by which biological molecules are broken down and resynthesized from a complex, yet highly regulated, network of interdependent enzymatic reactions that are collectively known as life.

Designed by Donald Nicholson

[^0]: α - OH of the anomeric C is on the opposite side of the sugar ring from the $\mathrm{CH}_{2} \mathbf{O H}$ group at the chiral center that designates the D configuration

