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In this chapter we shall consider several increasingly complex examples
of chemical kinetics� Among the goals of our discussion are these�

�a� to enable the reader to write the governing di�erential equations of
biochemical kinetics�

�b� to present several principles that can be used to simplify these equa�
tions�

�c� to demonstrate the utility of the simpli�cations given in �b�� especially
in view of the fact that computers typically can solve the unsimpli�ed
equations with relative ease�

In the course of our discussion we will deal with several fundamental bi�
ological situations where kinetic models are essential to understanding 	
including conformational shifts of channel and receptor molecules� as well
as Michaelean and cooperative interactions of substrates with enzymes and
ligands with receptors�

� Interchange between two states of a molecule� mole�

cular level

The bicon�gurational molecule We begin the discussion with two simple ex�

amples of the types of phenomena to be investigated� shifts in conformation
of protein molecules� Ion channels are responsible for the electric conduc�
tance of membranes� The channel molecules typically shift spontaneously
between open and closed states� with shift rates that are dependent on the
local electric �eld� �Channel ligation also induces shifts� but here we do not
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mention this possibility further�� Voltage dependent channel modi�cations
are responsible for such key actions as the passage of electric signals down
axons �long �wires
 that extend from the cell body� and for bringing about
neurotransmitter release� Another example of the shift in conformation be�
tween two major states of a large protein molecule occurs in receptors� One
of numerous examples is the cyclic�AMP receptor of the cellular slime mold
Dictyostelium discoideum� The shift between active and densensitized states
plays a major role in the adaptation phenomena that are a prominent as�
pect of the behavior of this �model
 organism �Goldbeter �
���� In many
other biological contexts� theory and experiment� beginning with Katz and
Thesle� ����� support the importance of conformation shifts in adaptation�
The conventional description of the shifting of a molecule between two states
A and B �e�g� open and closed� is summed up in the kinetic scheme

A
k�����
k��

B � �
�
�

We shall use the same letters� A� and B in this case� to denote the concen�
trations �number per unit volume� of the two molecular con�gurations� as
well as to denote their states� The meaning of the rate coe�cients k� and
k�� will be explained shortly� Note the assumption that the protein can be
described by just two major conformations� This often seems reasonable as a
�rst approximation� but in many circumstances there is evidence for several
conformations� for example in channels there are often several closed states
�Colquhoun and Hawkes ����� In yet other circumstances it is possible that
the whole idea of identi�able discrete �conformations
 may not be appropri�
ate �Liebovitch et al� ������ Formulation of mathematical model We de�ne

the rate constant k� in �
�
� as follows� Consider a time interval of duration
�t� for which the molecule is in state A at the beginning of the interval� Take
�t to be so small that during an interval of length �t the only behavior that
is likely to be observed is that either �i� the molecule remains in state A or
�ii� the molecule shifts to state B and stays in state B� We de�ne k��t to
be the probability that �ii� occurs� To be more precise� the smaller is �t�
the better an approximation is k��t to the probability that a molecule that
is initially in state A shifts to state B� Let us denote the fractional error in
this approximation by E��t�� As �t approaches zero� we expect that E will
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also approach zero� We thus write

Probability that during an interval of duration �t a
molecule that is initially in state A will shift to state B

� k��t �
 � E��t��
�
���

where
lim
�t��

E��t� � � � �
���

Similarly� if �t is su�ciently small then k���t is a good approximation to the
probability that a molecule that is initially in state B changes to state A and
remains in state A� How small should �t be in order that this approximation
be a good one� It must be that the probability �k��t��k��t� that B�A�B
is much less than the probability k��t that B�A� for the former event has
been assumed to be unlikely� thus we require that k��t� 
� i�e� �t� 
�k��
Similarly we require �t � 
�k��� De�ning k� and k�� in ����� as we did

committed us to certain assumptions concerning the shift of a molecule between

two con�gurations� These assumptions go under the name ofMarkov properties�

�Models based on Markov properties are often called Markov processes��

�M
� Transitions between states are random�

�M�� The probability that a transition occurs during some time interval does
not depend on the history of events preceding the time in question� For
example� the probability that a receptor that was active at t � � ms
will become desensitized during the time interval ��� ���
� ms does not
depend on how long the receptor was active prior to t � � ms�

�M�� If environmental conditions are �xed then the overall characteristics of
the transitions that occur in some time interval do not depend on the
time at which the observations are made� Note that assumption M�
was used implicitly in arriving at �
���� since we assumed that there
was no in�uence of previous events on behavior during the time interval
�t� Also� by assumption M�� the rate coe�cients k� and k�� do not
depend explicitly on time� There could be an implicit dependence on
time� for example� if the temperature is changing�
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� Interchange between two states of a molecule� pop�

ulation level

We are now ready to derive di�erential equations for the change in time
of concentrations A and B of molecules whose behavior is consonant with
kinetic scheme �
�
��
If there are A molecules per unit volume� according to �
��� the expected
decrease in the number of these molecules during a short time �t is given by

decrease in A molecules � total number of A molecules� fraction

that become B

� A�k��t� �

���
�

Upon changing their conformation� A molecules become B� B molecules� on
the other hand� change to A with a probability per unit time of k��� Thus
the following equation describes the expected change in the number of A
molecules during the time interval t� t��t�

A�t��t�� A�t� � �A�t� � �k��t� �B�t� � �k���t� � �����

Upon dividing by �t and taking the limit as �t�� we obtain �employing
the de�nition of the derivative dA�dt�

dA�dt � �k�A� k��B � �����

In exactly the same way we obtain the corresponding equation for B

dB�dt � k�A� k��B � �����

The mathematical translation of the kinetic scheme �
�
� is completed by
prescribing the initial state of the system� at time t � ��

A��� � A� � B��� � B� � ����a� b�

One can think of A� and B� as measured concentrations at the start of the
experiment�
Our equations can be simpli�ed� as is very often the case� by taking advantage
of a conservation law� For ����� and ������ the conservation law is

A�t� �B�t� � M � �����
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Here M is a constant� the total number of A and B molecules per unit vol�
ume �M for total Material�� Indeed� given the kinetic scheme �
�
�� molecules
merely shift between two conformations� so that their total number is con�
served �does not change�� Of course �real
 molecules degrade� but if this
process were to be taken into account then the kinetic description �
�
� would
have to be modi�ed� �See Exercise 
�� Degradation is often relatively slow�
and may therefore be neglected if the process under investigation is being
observed for a suitably short time�
The conservation law ����� can be derived mathematically� By adding equa�
tions ����� and ����� we obtain

dA�dt� dB�dt � � � �����

Since �the derivative of the sum is the sum of the derivatives
� ����� implies

d�A�B��dt � � � �����

Equation ����� then follows� since only a constant has a zero derivative� Note
that at time t � � the total number of molecules per unit volume is A��B��
by ������ Thus

M � A� �B� � �����

It is convenient to use the conservation law ����� to express B in terms
of A�

B�t� � M � A�t� � ���
��

Upon introducing ���
�� into ������ we �eliminate B
 and obtain an equation
involving A�t� only�

dA�dt � �k�A � k���M � A� ���

�

or� rearranging�
dA�dt � ��k� � k���A� k��M � ���
�a�

The initial condition for ���
�a� is that of ����a��

A��� � A� � ���
�b�

After problem ���
�� forA is solved� B�t� can be found from ���
��� Mathematical

remark� The system �����a�� �����b�� ������ is mathematically equivalent to

������ ���	� and ���
�� but the latter should be employed for numerical integration�
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In general� use of conservation laws avoids di�culties of ill�conditioning �excessive

sensitivity to inevitable small numerical errors�� Solution and interpretation

From Appendix �� Example 
� the general solution to ���
�a� is

A � C exp���k� � k���t� � k��M��k� � k��� ���
��

for an arbitrary constant C� Imposing initial condition ���
�b� we obtain

A� � C � k��M��k� � k��� � or C � A� � k��M��k� � k��� � ���
�a� b�

Together� ���
�� and ���
�b� give the solution for A�t�� To determine B�t�
we employ ���
���

B�t� � �C exp���k� � k���t� � k�M��k� � k��� � ���
��

Let us graph the solutions that we have obtained� To this end we note
that at t � �� since exp��� � 
� ���
�� and ���
�b� indeed yield the correct
initial condition A��� � A�� As time passes the exponential term in ���
��
decays toward zero� This is written

A�t��k��M��k� � k��� as t�� � ���
��

Similarly� upon employing ������ it is easily seen �as the reader should verify�
that

B��� � B� � B�t��k�M��k� � k��� as t�� � ���
�a� b�

Typical graphs of the solutions are provided in Fig� ��
� Steady states of A
and B� occur when concentrations are constant� At steady state� dA�dt � �
and dB�dt � �� Here the rate of conversion of A to B should exactly balance
that rate of conversion of B to A�

k�A � k��B � ���
��

Together with the conservation law ������ ���
�� determines the ultimate
steady states of ���
�� and ���
�b� �as the reader should verify � Exercise
��a��� Note that the steady state equation ���
�� can be formally obtained
by setting the time derivatives equal to zero in ����� or ������ How fast are the
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 ���
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Figure ��
� Graph of ������ and ����
� when k� 
 � msec��� k�� 
 � msec���

A� 
 ��� mM� B� 
 	�	 mM� Depicted is the predicted time scale for signi�cant

variation of A�t� and B�t�� namely �k� � k���
�� 
 ��� msec� ��g��lb��

steady states of A and B approached� To answer this� consider the following
little table�

t exp��kt�
� 



�k exp��
� � e�� � �����

��k exp���� � e�� � ��
��

���
��

The table allows the inference that 
�k gives the time scale of the function
exp��kt�� in that a major change in the magnitude of the function takes place
in a time interval whose duration is of the magnitude of the time scale� In
the case of A�t� and B�t� it follows from ���
�� and ���
�� that the functions
progress toward their ultimate steady states in a time scale �k� � k���

��� It

could be argued that ��k� not ��k� is the time required for a �major change� in

exp��kt�� But it is orders of magnitudes that interest us� Is the time scale seconds�

minutes� or weeks� A factor of � is not important for such considerations� Thus�

for simplicity we take ��k as the time scale� The irreversibility approximation
There are a number of situations wherein the back reaction in the kinetic
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Figure ���� Hemoglobin structure �two � subunits and two � subunits�� From

����� Permission to be obtained� ��g��lb��

scheme ���
� is �weak
� i�e�
k�� � k� � ���
�

Under these circumstances� we would expect to �nd an adequate approxima�
tion to the solution by replacing the kinetic scheme ���
� by the irreversibil�
ity approximation

A
k��� B � �����

The equation for A�t� that corresponds to ����� is

dA�dt � �k�A � ����a�

with initial condition
A��� � A� � ����b�
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The solution to problem ����� is

A�t� � A� exp��k�t� � �����

From ���
��
B�t� � M � A� exp��k�t� � �����

Comparison of ����� and ����� with the corresponding exact ex�
pressions ���
�� and ���
�� con�rms that the irreversibility approxi�
mation is indeed a good one when the back reaction rate is relatively
small� as assumed in ���
�� Example� In the kinetic scheme ������

regard the concentration of A as �xed at some value A� Find B and inter�
pret your answer� �The result will be employed in Section 	�� Solution�

If we set A equal to a constant value A in ���	� we obtain

dB

dt

 k�A� k��B � �����

By Example � of Appendix 	� this equation has the general solution

B 
 Qe�k��t �
k�A

k��
�����

where Q is an arbitrary constant� The value of Q is set by the initial
condition B��� 
 B�� yielding

B� 
 Q�
k�A

k��
�����

and hence

Q 
 B� �
k�A

k��
� �����

Thus the solution to the di�erential equation ����� and the initial condition
is

B 


�
B� �

k�A

k��

�
e�k��t �

k�A

k��
� ������

We infer that if A is a constant A in the kinetic scheme ���	�� then B approaches

a steady state value of k�A�k�� in a time of order ��k��� Exercise
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� The purpose of this exercise is to experience the stochastic nature of
����� when k� and k�� are treated as probabilities� Suppose �rst that
these are equal� so that �chance
 can be modelled by throwing an or�
dinary �non loaded
 coin� �a� Start with A � � and B � 
� so that
A � B � 
�� Let there be a transition from A to B if your coin gives
heads and from B to A if the coin gives tails� Plot the results of a
number of tosses�
�b� In the long run� A and B should be equal� on average� How long
does the �long run
 take� according to your experimental evidence�
How reliable do you think your results are�
�c� If you are su�ciently knowledgable with a computer� or even with
some hand calculators� you can use �random numbers
 to do the ex�
periments� Suppose that the probability of A changing to B is ����
Given the ability to choose random decimal numbers between � and 
�
how could this probability be implemented�
�d� Use a computer to run simulations when A �ips to B with prob�
ability ��� and B �ips to A with probability ���� What is the long
term result� How long do your simulations indicate that it will take for
the long term result to be reasonably accurate� �Observations of Coin
tossing and observations of the statistics of two�state molecules �such
as open or closed channels� amount to the same thing� See Feller ���
for remarkable results concerning coin tossing��

� Discussion

Comparison with experiment At this point we can begin to appreciate the use�
fulness of our mathematical modeling� We �rst note that comparison with
experiment may show that the form of the curves is not correct� in which case
the simple model must be revised� Such a failure of our simple model would
be very interesting� for it would show that something was de�nitely amiss
with our �common sense
 basic assumptions� If the theory is basically sound�
one can compare the theoretical predictions of equations ���
�� and ���
��
with experimental results and thereby ascertain the coe�cients k� and k��
and hence the time scales 
�k� and 
�k�� of the conformational shifts �Eigen
and Johnson ����� Thus theory permits us to extract information concern�
ing molecular events �probability of conformation changes� from observations
of macroscopic variables �concentrations�� Steady state attractors The more
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one contemplates the basic modeling assumptions that we have made� the
more one is impressed� We now know that a giant protein molecule is an
enormously complicated dynamic structure �see Fig� ���� which only hints at
the full structural complexity�� Faced with this complexity� it is natural to
despair of any simple approach� Indeed the situation can serve as a metaphor
for theoretical biology as a whole� Many claim that biology is such a com�
plicated subject that no simple�minded modeling can be of any use� That
this is not always a correct view is illustrated by our example� For conforma�
tional transformations in particular and for biology in general� a great deal
remains to be done� but simple models have enabled important theoretical
and conceptual progress� Solutions ���
�� and ���
�� suggest the following
important generalization� after a certain transient period� it is often the case
that solutions often approach a steady state� Remarks� �i� One would not
expect a steady state to be attained if conditions were continually changing�
and indeed ���
�� and ���
�� were obtained for equations whose coe�cients
were constants� �ii� Steady states were approached after transients in many
models studied in Chapters � and �� �iii� Given experience with models in
Chapters � and �� one would expect that under some circumstances the long
term �attractors
 of solutions to di�erential equations might sometimes be
oscillatory states� not steady states� This will indeed prove to be the case�
A basic assumption of our model is a probabilistic transition between the
two states �Markov property M
�� Appreciation of the daring of this model�
ing approach is enhanced if one realizes that the physical processes involved
seem deterministic� By suitable application of Newton�s laws and the laws
of electricity to the various molecules� one should be able to derive a deter�
ministic problem whose solution describes the gross motion of the molecule�
�This leaves aside quantum e�ects�� Indeed models of this kind have been
developed and form the basis for extensive numerical simulations that� with
the aid of enormous amounts of computer time� are beginning to give in�
formation about the dynamics of large molecules���� Probabilistic modeling
Keep in mind that the probabilistic approach is a model� A model need not
be �correct
� it has to be useful� The classical case of a probabilistic model
involves the tossing of a coin and the assumption that there is a certain con�
stant probability that it will land either heads or tails� Here too the problem
is deterministic� If one could state exactly how the coin was tossed and
could formulate with precision the nature of the material on which it landed�
one should be able to calculate all details of the motion including of course
whether or not the coin landed heads� One reason that a simple probabilistic
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B

���

t

A

�

Figure ���� Typical graph of the number of molecules in the A con�guration

when one �top� or ��� �bottom� molecules are being observed� In the bottom

graph� and certainly in cases where order of ���� molecules are being monitored

�as is frequent�� the �jumpy� results can be approximated by a smooth graph�

which has derivatives that change smoothly� so that ����� can be approximated by

������ ��g��lb��
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model is appropriate is that the dynamics are so complicated that solving
the relevant equations of an �exact
 model is a forbidding task� More impor�
tantly� the probabilistic model is appropriate because a slight change in the
conditions of the problem is likely to interchange the heads tails conforma�
tions in a coin� or the A�B conformations in a molecule �Keller and Diaconis
��
��� Model ����� describes probabilistic assumptions for the change in the
expected or average number of A molecules� �Patch clamp
 techniques �for
which E� Neher and B� Sakmann received the Nobel prize in 
��
� have now
made it possible to observe the opening and closing of individual channels�
The experimental �ndings are similar to the top graph of Fig� ���� Model
����� remains relevant for such situations if A and B are interpreted as the
probability that a single channel is respectively open and closed� In con�
trast with the case where the integrated e�ect of a large number of channels
is ascertained by means of current measurements� single channel recordings
yield information not only on mean values of A�t� and B�t� but also on stan�
dard deviations and other statistical measures� Direct probabilistic analysis
of equations like ������ without limiting consideration to approximations like
������ can permit exploitation of the more detailed experimental results to
obtain a re�ned picture of channel operations� In particular� from probabilis�
tic models it can be deduced that channel molecules often have more than
one type of closed state� See Colquhoun and Hawkes ���� Here is a way to

perform a computer simulation of a stochastic shift between the A and B states�

Suppose that at some time t� a molecule is in the A state� Pick a value of k�
and of �t� By assumption ������ during the brief time interval �t� t � �t�� there

is a probability k��t that there will be a shift to the B state� One can instruct

a computer to select a random number between � and �� If that number is be�

tween � and k��t then the simulation shifts the con�guration to B� otherwise the

con�guration remains A� By repeating this type of calculation� one can obtain a

simulated history of the states� A and B� of a single molecule during some time

interval� Repetition of such a simulation yields a history of the stochastic behavior

of a number of molecules� One can compare various aspects of this simulated data

with experiments� Alternatively� there are analytical methods that will allow con�

clusions to be drawn if one retains the stochastic character of ������ If a simple two

state assumption does not �t the data� more states can be postulated� Note from
Fig� ��� that if only a single channel is under observation then the derivative
of A�t� is either zero or in�nite� so that passage from ����� to ����� seems
clearly inappropriate� This characterization of the derivative remains true no
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matter how many channels are being observed� the number of open channels
always changes by integer jumps� Nonetheless� if many channels are being
observed� the jumps become less noticeable �Fig� ���� bottom graph� and the
true jumpy curve can be well approximated by a smooth curve� This smooth
curve will have a well�behaved derivative� and it is this curve that we seek
when we solve for A�t� in our di�erential equation formulation of kinetics�

� A sequence of irreversible transitions� the rate lim�

iting step

Formulation To continue our discussion of kinetics� it is natural to generalize

the kinetic scheme of ���
� to a scheme that contains not two but three
di�erent conformations�

A
k�����
k��

B
k�����
k��

C �

Such schemes �nd numerous application in biology� For example� as we have
mentioned� many channel molecules are believed to have several con�gu�
rations� To give another example the key element in the �calcium�voltage
hypothesis
 for neurotransmitter release is a voltage sensitive molecule with
two inactive conformations �A and B� and one active conformation �C� �Par�
nas et al� ������ Transitions between conformations are governed by voltage�
dependent rate constants� Here we shall consider a special case of the above
scheme wherein the transitions are approximated as irreversible�

A
k��� B

k��� C � ���
�

�This situation can� for example� serve as a core model for depolarization�
induced release activation in the calcium�voltage hypothesis�� For A�t� and
B�t� the appropriate kinetic equations are

dA�dt � �k�A � A��� � A� � ����a�b�

dB�dt � k�A� k�B � B��� � B� � ����a�b�

dC�dt � k�B � C��� � C� � ����a�b�

Instead of employing ����a�b� we can also determine C�t� from the conserva�
tion relation

C�t� � M � A�t�� B�t� � where M � A� �B� � C� � ����c� d�
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We shall �nd exact formulas for the solution to the mathematical problem
posed by ������������ We shall then examine the solution for several param�
eter ranges in an e�ort to gain further intuition about chemical kinetics� In
so doing we shall be led to the important concept of �rate limiting step

and the corresponding simpli�cation procedure of �lumping
� We shall see
instances of important concepts� the �quasi�steady state
 and the �principle
of robustness
� Solution The solution to ����� is

A�t� � A� exp��k�t� � �����

Upon substitution into ����a� we obtain

dB�dt � k�A� exp��k�t�� k�B � �����

Example � of Appendix � shows that �if k� �� k�� the general solution to �����
is

B�t� � K exp��k�t� � k�A�

k� � k�
exp��k�t� � �����

where K is an arbitrary constant� This constant is determined by the initial
condition ����b��

B� � K �
k�A�

k� � k�
� i�e� K � B� � k�A�

k� � k�
� ����a� b�

Equations ����b� and ����� yield �if k� �� k��

B�t� � B� exp��k�t�� k�A�

k� � k�
�exp��k�t�� exp��k�t�� � �����

What behavior does our intuition lead us to expect from ���
�� The reader
is invited to ponder this question before proceeding� and to sketch some
graphs that describe the type of solution that he or she expects� If intuition
fails� one can proceed to graph the solution �given by ������ ����� and ����c� for
A�t�� B�t� and C�t� respectively� for several di�erent parameter values� This
will provide a background for formulating an appropriate intuitive view of
the kinetics described by ���
�� Such a graphing procedure is often required�
especially for more complex problems� Indeed� the molding of intuition via
graphs of solutions to selected particular examples� is an important reason
for formulating and solving mathematical models� Special case� fast �rst
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transition Another aid to intuition is to consider extreme cases� For example

let us consider the reaction sequence ���
� under conditions wherein

k� 	 k� � ���
��

After some thought many will see what to expect� �Others will need the
mathematics to guide them to results that are �obvious
 once they have
been derived�� A will rapidly transform into B� before B has had a chance to
decrease� During this fast transient the level of B will approach closely to the
value A��B�� Then B will transform into C� relatively slowly� proportionally
to exp��k�t�� �More precisely� the �rapid
 changes are on the time scale 
�k��
which by ���
�� is short compared to the time scale 
�k� for the decay of B��
Our intuition is borne out by inspecting ������ Under the conditions ���
��
we may make the approximation

B�t� 
 B� exp��k�t� � A��exp��k�t�� exp��k�t�� � ���

�

When t � � we recover the initial condition B��� � B�� But since k� is rel�
atively large the term exp��k�t� will rapidly become negligible� yielding the
following approximation for the behavior of B after the initial fast transient �

B�t� 
 �A� �B�� exp��k�t� � ���
��

�We have used the fact that e�k�t � 
 when t is � or � times 
�k��� See
Fig� ���� Fast second transition and the quasi�steady state Suppose that

conditions are opposite to those of ���
���

k� 	 k� � ���
��

What now� Before proceeding� the reader is again invited to try to discern
the qualitative behavior without the aid of mathematics� If k� is relatively
large� then almost as soon as a molecule of B is formed it will be transformed
into a molecule of C� We thus expect the kinetics to be dominated by the
relatively slow decay of A� which is proportional toexp��k�t�� To check
our intuition� we again turn to equation ����� for B�t�� �Remember that
according to ������ for all parameter ranges the behavior of A�t� is the same�
exponential decay�� We see that after a relatively short time� of magnitude

�k�� exp��k�t� is negligible so that we may approximate ����� by

B�t� 
 �k�A��k�� exp��k�t� �after the initial fast transient� � ���
��
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t

C�t�

A� �B� � C�

C�

t

B�t�A� �B�

B�

��k�

A�

t

��k�

A�t�

Figure ���� Behavior of concentrations A� B� and C according to the kinetic

scheme ���	� when k� � k�� The widely separated time scales ��k� and ��k� are

depicted� ��g�	lb��
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As we anticipated� for most of the time the decay of B� like the decay of A�
is proportional to exp��k�t�� The �initial
 concentration of B after the fast
transient i�e�� after a time of order k��� � is given by the value of B in ���
��
when t 
 ��

Bpost transient
initial 
 k�A��k� � ���
�a�

Equation ���
�a� is certainly correct �since it is a deduction from the exact
solution� but why is it true� To answer this� we observe that B decreases
very rapidly during the fast transient� The rapid decrease in B will continue
until dB�dt becomes small� but from ����a� this will occur when

k�B 
 k�A � ���
�b�

Since A hardly alters during the initial fast change of B� A�t� 
 A�� and
���
�b� implies �and therefore explains� ���
�a�� What turns out to be a
very important consequence of our analytic approximation ���
�� for B�t�
together with the �exact� expression ����� for A�t� is the following relation�
which follows directly from ���
�� and ������

B�t� 
 �k��k��A�t� � after the initial transient � ���
�a�

We stress that ���
�� holds for the entire period after the initial tran�
sient� See Fig� ���� A key observation is that ���
�� would be obtained
from Eq� ����a� for dB�dt if we assumed that B was in a steady state
in the sense that dB�dt could be set equal to zero� As it is� we say
that after a fast transient B is in a quasi�steady state with respect
to A� A way to rationalize �	���a� is this� If A were a constant �A 
 A�
then �as in ������� but with k� replacing k���� �	��� becomes

dB

dt

 k� 
 A� k�B�B��� 
 B�

with solution

B 
 �B� �
k� 
 A

k�
�ek�t �

k� 
 A

k�
� �	���b�

Hence� after a transient of time scale ��k�� B would approach a true steady state�

which is given exactly by �	��
b� or �	���a� with A 
 A� If A changes only

slightly during the time scale of the transient� then �	���a� should still provide

a good approximation to solution behavior after the transient� From ���	� the

time scale for change in A is k��� � A will indeed change only slightly during the

transient �whose duration is of magnitude k��� � when k��� � k��� � i�e� when our
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B

time

time

B�

B�

B�t�

k�A�
k�

��k� inset

A�t�

A�

A�

time

�
k�

Figure ���� Graphs of ������ and ����
� when k� � k�� In B the dashed line is

the quasi�steady state approximation �	����� This �gure is plotted for k� 
 �
�k��

Although the ratio k��k� is not all that large� still the recommended approximation

gives quite good results� The extent of agreement is seen more clearly in the

�blown�up� graph displayed as an inset of part B� C� Graphs of k�B�k� when

scheme �	��� holds and k� � k�� Left� When A 
 A 
 constant� Right� When

A varies� ��g�
lb�� C� Graphs of k�B�k� when scheme �	��� holds and k� �� k��

Left� When A 
 Abar 
 constant� Right� When A varies�
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fundamental assumption �	���� holds� When A 
 A there is a true steady state

wherein B is a constant whose relation to the constant A 
 A is determined by

�	���� with A 
 A� When A varies� B�t� is not in a true steady state� rather B

is in �quasi�steady�state� whose relation to the relatively slowly varying A�t� is

still determined by �	����� Let us summarize� Suppose that the time scale for
variation of A �namely 
�k�� is long compared to the time scale �
�k�� that
it would take B to approach a steady state if A were constant� Then� we can
regard A as �slowly varying
 compared to B� Consequently� after a transient
of duration 
�k�� B will be in a quasi�steady state with respect to A� as in
���
��� To obtain ���
��� set dB�dt � � in di�erential equation ����a� for
B� See Fig� ������� What of C� which we can think of the �product
 of the
reaction scheme ���
�� starting from the �substrate
 A� From Eq� ����a� for
dC�dt� upon employing ���
�� we �nd that

dC�dt � k�A after the initial transient� ���
�a�

This is an approximate equation for the velocity of the reaction �rate of prod�
uct formation� in terms of the substrate concentration� Upon substitution
of formula ����� for A� ���
�a� becomes an approximate di�erential equation
for C�t��

dC�dt � k�A� exp��k�t� after the initial transient� ���
�b�

The appropriate �initial condition
 for ���
�b� states the concentration of C
at the beginning of the period during which ���
�b� is valid� From ���� c�d��
using our assumption that k� 	 k�� we �nd that to �rst approximation

C���
� � B� � C� � ���
�c�

We have used quotation marks around the �initial time
 in ���
�c�
because this time is not the genuine initial time t � � but rather a
short time �of order k��� � therafter� Solution of ���
�b� and ���
�c�
gives the anticipated behavior of C�t� �Exercise ��d��� The remark�
ably useful �quasi�steady state approximation
 will be considered
further in Section �� Rate limiting steps Let us reconsider the two

extreme cases k� 	 k� and k� 	 k� respectively� In the �rst case we
see that the time scale of the A�B�C transition is the time scale

�k� of its second step� B�C� compared to which the time scale 
�k�
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of the A�B transition is negligible� We say that the B�C transi�
tion is the rate�limiting step� The B�C transition is the slowest
process� the duration of this process characterizes the overall kinet�
ics� Similarly� when k� 	 k� we say that the relatively slow A�B
transition is the rate�limiting step� One cannot blindly apply the gen�

eralization �the slowest step is rate limiting�� An example is found in the
so�called calcium�voltage theory for neurotransmitter release �Parnas et

al� ��
��� According to this theory� the way an electrical signal �depolar�
ization� triggers the release from vesicles of neurotransmitter is by doing
two things� elevating intracellular calcium concentration and switching a
certain molecule from an inactive state I to an active state A� Reversing
the electrical signal �repolarization� is known to terminate release� The
action of the electrical signal can be represented schematically as follows
where depolarization increases k� and k� while repolarization increases
k�� and k���

Calo
k�����
k��

Cahi � I
k�����
k��

A �

The simultaneous presence of Cahi and A is assumed to be necessary and su�cient

for release� Experimental observations show that Ca does not control release kinet�

ics� The theory accounts for these observations by postulating that it is the I�A

transitions that control release� In the presence of depolarization� k� is assumed

to be small compared to k�� Consequently� the Ca concentration rapidly rises� but

release does not start until the slower rise in A takes place �the slow step is rate

limiting�� In the presence of repolarization k�� is assumed to be large compared to

k��� Thus� upon repolarization the concentration of A rapidly drops� terminating

release even though the Ca concentration remains high for some time� The fast

step is rate�limiting� The method of exponential peeling We now brie�y con�

sider the question of how to compare with experiment the exact theoretical
solution ����� and ������ In doing so� we shall make use of an important prin�
cipal� if possible� transform theoretical predictions so that their graph is a
straight line� �For another application of this principal� see Section � below�
especially the Lineweaver�Burk plot of Fig� ���B�� In the case of ����� this is
easily done� since

lnA � lnA� � k�t � ���
��

Presumably A� is known� The unknown parameter k� can be estimated from
the slope ��k�� of the anticipated straight�line graph of ���
��� Of course
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if the experimental graph is not a straight line� we must construct a better
theory� When two exponentials are present� as in ������ we proceed similarly
but in two stages� Consider the case k� � k�� As exp��k�t� approaches zero
faster than exp��k�t�� we expect that for su�ciently large t�

lnB�t� 
 ln

�
k�A�

k� � k�

�
� k�t � ���
��

By comparing the predicted straight line of ���
�� with the experimental re�
sults� we can estimate k�A���k��k�� and k�� Since the initial concentrations
A� and B� are presumed known� if the data is su�ciently precise then es�
timating the slope k� and the vertical intercept ln

�
k�A���k� � k��

�
should

permit evaluation of the parameters k� and k�� We can then �peel o�
 the
known portion of B�t�� and form the �remainder
 R�t��

R�t� � B�t�� k�A�

k� � k�
exp��k�t� � �����a�

By ������ R�t� � K exp��k�t�� Hence�

lnR�t� � lnK � k�t � where K � B� � k�A�

k� � k�
� �����b�

yielding another straight line� In principle� the theoretical results can
be tested by seeing whether �tting experimental results for �non�
large
 t match the slope and vertical intercept of the straight line
for lnR�t� that are predicted with the calculated values of k� and
k�� Alternatively� the e�ects of inevitable experimental error can be
diminished by simultaneously taking into account all four observa�
tions �two slopes and two vertical intercepts� that relate to the two
unknown parameters k� and k�� These parameters can be chosen by
the �least squares method
 to minimize the sum of the squared devi�
ations between the experiments and the two straight line portions of
the logarithmic plot of B�t�� If k� � k�� the procedure is modi�ed in
an obvious way� Furthermore� the procedure is easily extended to an
arbitrary number of exponentials� Using logarithms to base ��� which

we write �log�� is often more convenient than using natural logarithms
�ln� �log to the base e�� Recall that conversion requires the formula

lnx 
 �log x��ln e� 
 ��	�	 log x �
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Suppose we plot the log of some concentration C as a function of time� As the

diagram below indicates� exactly the same graph can be interpreted as a graph of

C provided that the vertical axis is relabelled� The above approach is called the

method of exponential peeling � One would anticipate that this method will
not work well if k� and k� are close in value� for then it will be di�cult to
distinguish between exp�k�t� and exp�k�t�� In general� studies show that the
method should be used with considerable caution for the results may be very
sensitive to small errors in measurement �Lanczos ������ The useful �ction

of equal transition rates We have examined with some care the two extreme

cases k� 	 k� and k� � k�� What about the intermediate case k� � k��
This is interesting from a mathematical point of view� because our solution
formula ����� is not de�ned in this case� �The denominator in the second
term of ����� �blows up
�� To examine the situation more carefully� let us
imagine that k� and k� are close� We write

k� � k� � � ����
�

where
j�j � 
 � ������

If we employ ����
� to substitute for k� in ����� we obtain

B�t� � B� exp���k� � ��t�� k�A�

�
exp��k�t��exp���t�� 
� � ������

As long as
j�tj � 
 ������

we may approximate exp���t� by means of a Taylor approximation �Ap�
pendix ���

exp���t� 
 
� �t � ������

With this



�
�exp���t�� 
� 
 t � ������

Thus� in the limit as ��� we may replace ������ by

B�t� � B� exp��k�t� � k�A�t exp��k�t� � when k� � k� � ������

Remarks� �i� The solution ����� was de�nitely not valid when k� � k��
yet we obtained formula ������ by taking the limit k��k� in ������ This is
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permitted� for the de�nition of the limit k��k� in no way involves the situ�
ation when k� � k�� �Consult any calculus book�� �ii� Suppose that in spite
of what has been said in �i� the reader does not believe that the limiting
process is legitimate� No matter� Any method� however shaky� may be used
to �guess
 the solution to a di�erential equation� Once a guess is obtained�
it can be checked by direct substitution� The reader will indeed �nd that
������ is a solution of the di�erential equation ����� and the initial condition
����b�� �Exercise ��� �iii� Note the behavior of the solution ������ when
t� k��� � For this range of t the exponential factors hardly vary� so that B�t�
increases linearly� Later B decays slightly slower than exponentially� This is
an opportune moment to revisit what may be termed the principle of ro�
bustness in theoretical work �also see section ��� This principle asserts that
if theoretical results are to be trustworthy� they must retain their qualitative
and semi�quantitative nature when the underlying model is slightly altered�
The principle of robustness would thus lead one to view results with grave
suspicion if they depend upon some parameter having exactly a certain value�
The proportionality to t in ������ is just such a result� for this proportionality
requires that the kinetic constant k� is exactly equal to the kinetic constant
k�� Otherwise the solution is the weighted sum of two exponentials� as in
������ No biochemical measurements will ever be able to distinguish between
the alternatives that k� is exactly equal to k�� when ������ is appropriate� or
rather is very nearly equal to k�� when ����� is appropriate� In spite of what
has been said in the previous paragraph� the solution ������ has more than
mere academic value� To see this� turn back to approximation ������� which
was the key step in the derivation of ������� This approximation is valid
when j�tj � 
� as has been noted in ������� In other words approximation
������ is a good one as long as

� � t � j�j�� � ������

If the di�erence between k� and k� is very small� the interval ������ may
be very long� Indeed� if � is small enough then ������ may cease to be a
good approximation only when B�t� has almost vanished and therefore is
�usually� no longer of interest� In such a case we could say that ������ is a
good approximation �for all time
� The time scale for the disappearance of
B�t� is 
�k�� Thus ������ can be regarded as a good approximation �for all
time
 when

j�j�� 	 


k�
i�e� �by ����
��

k�
jk� � k�j 	 
 � ������
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Until now we have not considered the other approximation that converts
������ into ������� namely

exp���k� � ��t� 
 exp��k�t� � ������

Approximation ������ will hold when j�j � k� 	 but this is precisely con�
dition ������� so that no new condition is required� Conclusion� The two

rate constants of ���
� can be regarded as �close
 if

jk� � k�j � k� or equivalently if jk� � k�j � k� � ����
a� b�

If the rate constants are �close
 then a good approximation �for all time

is obtained by assuming that the rate constants are equal� i�e� by employing
������� We stress our persistent e�orts to approximate and simplify the
analytic formulae� These e�orts led us to an increased understanding of the
nature of the kinetic processes under consideration� �After the fact
 many
of the conclusions might seem fairly obvious� but it is doubtful whether they
could have been arrived at 	 and or held with con�dence in their validity
	 without preliminary analytic work�

Exercises


� Consider the kinetic scheme

A
k��� B

k��� C
k��� D � ������

�a� Write down the di�erential equations corresponding to ������� In�
stead of the di�erential equation for D�t�� write down the conservation
law�
�b� The equations for A and B are the same as ����a� and ����b�� so
that the solutions are given by ������ ����� and ������ Find the solution
for C�t��
�Hint� For the particular solution try

� exp��k�t� � � exp��k�t� �
where � and � are constants that you should determine� Also use the
fact that �usually
 if for some constants Ci

C�f��t� � C�f��t� � � � �� C
N
f
N
�t� � � for all t ������
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then C� � C� � � � � � C
N
� �� But see Exercise 

��

�c� Write a brief essay discussing how the idea of �rate�limiting step

applies when k� 	 k�� k� 	 k��

�� �a� According to ������ if t � k��� and t � k��� � then B�t� 
 B��
But according to ������� if t� k��� then B�t� increases linearly with t�
Explain why this di�erence is �to be expected
�
�b� Sketch graphs of A�t�� B�t� and C�t� when ���
�� holds� clearly
representing the qualitative features of the solution�
�c� When t � �� ���
�� yields B � A� � B�� But this is at variance
with the initial condition ����b�� Resolve the contradiction�
�d� Solve ���
�b� and ���
�c�� Discuss the behavior of the solution�

�� Verify by direct substitution that ������ is a solution of ����� and ����b�
when k� � k��

�� �a� Calculate the next term in �������
�b� It is a reasonable guess �and usually� but not always� a correct
guess 	 see Chapter � of Lin and Segel ���� that an approximation is
valid if the �rst term neglected is small compared to the term or terms
retained� Use this criterion to justify �������

�� Show that ����
a� implies ����
b�� and conversely�

�� Show that the relative error of the approximation �������

exp���k� � ��t�� exp��k�t�
exp��k�t� �

is small as long as �t� 
� Comment on this result in connection with
the conclusion of Section ��

�� �a� Construct the counterpart of Fig� ��� for A�t� and B�t� when ���
��
holds for the cases �i� A� � k�B��k�� �ii� A� � k�B��B�� In case
�i�� but not in case �ii�� B initially increases even though the B�C
transition is very rapid� Explain why such behavior is to be expected
for su�ciently large values of A��
�b� Obtain approximate expressions for C�t� in two ways� �i� Employ
the conservation law� using the approximations found for A�t� andB�t��
�ii� Solve ���
�b� with the approximate initial condition ���
�c�� Use
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the �presumably identical� results of �i� and �ii� to sketch a graph of
C�t��
�c� Show that if B� 	 k�A��k� then the time it takes for ���
�� to
be valid is approximately k��� ln�k�B��k�A��� Discuss how this result
modi�es the sentence that includes ���
���

�� Graph the qualitative behavior of A�t�� B�t� and C�t� when ������ and
����
� hold� for � � �� 
� The graphs should indicate� schematically�
behavior on both the time scales 
�k� and 
���

�� Show that ������ is a correct �rst approximation to the exact solution
������ �Hint� To demonstrate the correctness of ������ one must �rst
rewrite ����� using ����
���


�� �This exercise pursues a mathematical matter that arose in Exercise 
��
Show that there are non�zero values of C�� C�� and C� such that

C�f��t� � C�f��t� � C�f��t� � � for all t ������

if
f��t� � sin� t � f��t� � cos� t � f��t� � � �

To understand why this example is �special
� consult any calculus book
for its treatment of the �Wronskian
�



� �Requires knowledge of dimensionless variables�� �Adaptation
 is a
common phenomenon in biology� At �rst a biological entity responds
to a �xed signal� but later the response becomes negligible� For ex�
ample� at �rst people sense a new smell but later they don�t notice it�
This problem concerns a very simple model of adaptation that appears
in a review by Othmer and Schaap ������
The model assumes that response is proportional to the concentration
of a chemical U � and that U is inactivated by an enzyme V �working
in the saturated range� so that the rate of U inactivation is propor�
tional to V and does not depend on U�� It is further assumed that
the concentrations of U and V are e�ectively zero in the absence of
signal� Suppose that at time t � � a signal of magnitude S is turned
on and kept on� and that the synthesis of U and V occurs at a rate
proportional to S� with the constant of proportionality taken as unity



Aspects of biochemical kinetics ��

in both cases� for simplicity� The following equations are postulated�

dU

dt
� S � aU � bV �

dV

dt
� S � bV � U��� � � � V ��� � � �

�����a� d�
In ������� S� a and b are positive constants� �In part �f� below there is
discussion of the �coincidence
 that the same letter b appears in �����a�
and �����b���
Let the following dimensionless variables be introduced�

u �
U

S�a
� v �

V

S�b
� 	 �

t

b��
� ������

�a� Show that the equations become

du

d	
� ��
� u� v� �

dv

d	
� 
� v � u��� � �� v��� � � � � � a

b
�

�����a� e�
�b� Verify that � is dimensionless�
�c� Find the solution to �����b� and the initial condition v��� � ��
�d� Show that when the solution of �����b� is substituted into �����a�
then the resulting equation can be solved� giving

u �
�

�� 

�e�� � e��� � � � �� 
 � ������

�e� Sketch the graph of the solution for � 	 
� This should not be
done by substituting a few values of 	 � but rather by using properties
of the exponential functions�
�f� Describe in one or two sentences how the solution for u �and hence
U� represents response and adaptation� In particular� give order of
magnitude estimates for the dimensional response time and adapta�
tion time�
�Note� To give exact adaptation� the simple model we presented re�
quires that the coe�cient b of V in �����a� be exactly the same as
the coe�cient of V in �����b�� i�e� that the number of U molecules de�
stroyed by one V molecule per unit time is exactly equal to the fraction
of V molecules per unit time that disappear �because of the �nite half
life of V �� This ��ne tuning
 is a property of several other adaptation
models that have been proposed� A way to avoid �ne tuning and thus
to obtain �robust
 exact adaptation is the subject of a paper by Barkai
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and Leibler �
���
�g� Using a computer� experiment with changing the coe�cient b in
�����b� to c� How �inexact
 is the adaptation� Does the answer de�
pend on other parameters� Can you handle the modi�ed problem an�
alytically�

� Application of nondimensionalization and scaling

Using one of the kinetics problems that we have considered� this section be�
gins with an example of how employing dimensionless variables can advanta�
geously transform a mathematical model� �Appendix � provides a di�erent
example� in a partially overlapping treatment of nondimensionalization�� It
is seen that dimensionless variables can be selected in a variety of ways all
of which posess this same advantage� The principle goal of this section is to
introduce to the more mathematically inclined the concept of scaled dimen�
sionless variables� a particular way of selecting such variables� Application
of this somewhat subtle concept is very useful in obtaining approximate so�
lutions to a large variety of problems that arise in mathematical models
in biology and other areas� Example of the various ways of choosing di�

mensionless variables We begin by illustrating the fact that introduction of

dimensionless variables reduces the number of parameters that characterize a
problem� and that the same parameter reduction is attained regardless of how
the nondimensional variables are de�ned � Consider for example ���
�a��

dA�dt � ��k� � k���A� k��M �

Both rate constants k� and k�� have dimensions of 
 time� for they are de�
�ned as the average number of A�B and B�A transitions per unit time�
�We can con�rm this statement concerning k� and k�� by noting that as
they must� both dA�dt and �k� � k���A have the same dimensions� con�
centration time�� We can choose the reciprocal of either k� or k�� as our
time scale� or we might choose �k�k���

����� For de�niteness let us de�ne a
dimensionless time 	 by

	 �
t


�k��
� i�e� 	 � k��t � ���
a�
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The natural way to nondimensionalize A is via its initial concentration� Thus
we de�ne a dimensionless concentration

a � A

A�
� ���
b�

Employing chain rule� we note that upon adopting ���
a� and ���
b� we
obtain

dA

dt
�

d�A�a�

dt
� A�

da

dt
� A�

da

d	

d	

dt
� k��A�

da

d	
� ����a�

The same result is obtained more easily by a formal substitution process�

dA

dt
�

d�A�a�

d�	�k���
� k��A�

da

d	
� ����b�

It is approach ����b� that we recommend for future use� Employing ������
we �nd that problem ���
�� for A�t� is transformed into

da

d	
� �


�
a� 
 � a � a��� � 
 � �����

In ����� we have employed the dimensionless parameters

� � k��
k�

� 
 � M

A�
� A� �B�

A�
� �����

Another possibility is to de�ne the dimensionless time by

T �
t


�k�
� �����

in which case ���
�� becomes

da

dT
� �a � ��
 � a�� a��� � 
 � �����

Still another possibility is to employ the concentration T as the concentration
unit� If we continue to employ ����� to de�ne the dimensionless time� instead
of ����� we obtain

d!a

dT
� �!a � ��
� !a� � !a��� � 
�� � where !a � A�T � �����
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All of the di�erent dimensionless versions of ���
��� namely ������ ������
and ������ contain the two dimensionless parameters � and 
� This is to be
contrasted with the four dimensional parameters of the original problem� A��
M � k� and k��� We have illustrated the fact that typically there are many
ways to choose dimensionless variables� and that all ways lead to the same
decrease in the number of parameters that determine the solution of a mathe�
matical model� Moreoever� from the present example and that of Appendix �
the reader can quickly become pro�cient at introducing dimensionless vari�
ables� which is a straightfoward technical matter� Scaled dimensionless vari�

ablesWe now illustrate some of the subtleties that a�ect advantageous choice

of dimensionless variables� When approximate solutions are being sought� it
is wise to choice scales for dependent variables �such as concentrations� that
estimate their magnitude� Independent variables such as the time should
be scaled by �time scales
 of the type that we have already discussed� The
process of choosing such special dimensionless variables is called scaling� In
contrast with �standard
 nondimensionalization� scaling is a subtle matter�
The reader should thus regard the presentation here as a �rst introduction to
an �art
 whose mastery can take years of experience� In the process of scal�
ing one attempts to select dimensionless variables so that each term in the
dimensional equations transforms into the product of a dimensionless factor�
which estimates the approximate size of the term� and the dimensionless term
itself� which has an approximate magnitude of unity � For example� consider
the term k�B in ����a�� Since B will remain close to its initial magnitude at
least for a certain period of time� a suitable scaled dimensionless variable is
de�ned by b � B�B�� with which the term k�B becomes k�B�b� Indeed k�B�

gives the magnitude of the term and b is of magnitude unity� After some
time� B may change appreciably from its initial value B� and our scaling is
no longer appropriate� This illustrates an important point concerning scal�
ing� that di�erent scales may be required in di�erent ranges of the time �or
other independent variables�s��� In general� a dependent variable is scaled by
a parameter or combination of parameters that provide a typical value of the
variable during the time interval of interest � Let us now consider the question
of how to scale the independent variable� choosing as an example the term
dB�dt in ������ Our task is to select a constant bT to de�ne a dimensionless
time variable

	 � t�bT � �����
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If a typical value bB is the scale for B� so that the dimensionless concentration
b is de�ned by

b � B� bB �����

then
dB

dt
�

bBbT
db

d	
� ���
��

According to the above characterization of the process of scaling� we should
choose bT so that bB�bT provides an estimate of the magnitude of dB�dt� If
this is successfully done then� as is seen in ���
��� the magnitude of db�d	

will be unity� We have advocated that bT be chosen so that

bBbT �

�
dB

dt

�
typical

� ���

a�

If this is done then bT �
Btypical

�dB�dt�typical
� ���

b�

Figure ���A shows that if bT is selected according to ���

� then in a time

interval of duration bT � starting at t � �� the functionB undergoes appreciable
change� Thus bT estimates the time scale for the change in B� Note that
according to ���

b� bT is the time it takes for B to increase from zero to
Btypical� given that B changes at the rate �dB�dt�typical� There are no hard
and fast rules for choosing scales� A variant of the procedure suggested above
is to choose bB as an estimate of the maximum of jB�t�j �in the time interval

under consideration� and to choose bT so that

bBbT �

����dBdt
����
max

� i�e� bT �
jBjmax

jdB�dtjmax
� ���
�a� b�

Depending on whether ���

� or ���
�� is employed� the dimensionless deriva�
tive db�d	 should be of magnitude unity� or of magnitude less than or equal
to unity� As shown in Fig� ���B� ���
�� like ���

� implies that B�t� undergoes

signi�cant change in an interval of duration bT � Observe that bT has a simple
interpretation according to ���
�b�� namely the time it would take to reduce
B from its maximum value to zero� when B decreases at a maximal rate� �If
Bmin� the minimum value of B� is comparable to Bmax then accurate scal�
ing may require replacing the numerator of ���
�b� by Bmax � Bmin�� Thus�
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B

tbT

bB � Btypical

A�

B

tbT

B�

bB � jBjmax

B 
 B�t�

B 
 B�t�

slope when jdB�dtj is maximum

slope 
 typical dB�dt

Figure ���� Estimating the time scale bT for a function B 
 B�t� according A� to

�
����� and B� to �
����� ��g��lb��
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given the de�nition of time scale �under ���
��� it follows from both ���

�
and ���
�� that when scaling a function of time� time should be nondimen�
sionalized with an estimate of the time scale� �In space�dependent problems
there are length scales that play a role that is exactly analogous to the role
of the time scales that we have been considering here�� Let us illustrate the
process of scaling on the equations ����� when assumption ���
�� is made� We
shall choose scales for the period after the fast transient� During this period�
A� is a good estimate for the magnitude of A� but B has already dropped
markedly below its initial value B� to the value Bpost transient

initial of ���
��� Thus
appropriate scaled dimensionless concentrations are

a �
A

A�
� b �

B

k�A��k�
� ���
��

As we have seen� after the fast transient the solutions decay with a time scale
of k��� � Thus the appropriate dimensionless time is

T �
t

k���

i�e� T � k�t � ���
��

With ���
�� and ���
��� on being scaled for the post transient region the
governing equations ����� and ����� become

da

dT
� �a � �

db

dT
� a� b where � � k�

k�
� ���
�a� b� c�

Our basic assumption is that k� � k�� i�e� that

�� 
 � ���
��

Given ���
��� one would immediately think of neglecting the term �db�dT
in ���
��� yielding

b 
 a � ���
��

But ���
�� is precisely the quasi�steady state result ���
��� written in terms
of our new scaled dimensionless variables� Had we not chosen these variables
in a special way� we would justi�ably have been worried about neglecting the
term �db�dT � True� � is very small compared to unity� but db�dT could be
large� And a and b could be small compared to unity� However� our choice
of scaled variables assures us that a� b and db�dT are in fact neither small
nor large but are of magnitude unity� During the fast transient� we must
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change our scaling� Now B must be scaled with its initial value B� while the
time must be scaled with respect to k��� � the time scale for the fast transient�
Employing Greek letters for our variables in the fast transient layer� we thus
introduce

� �
A

A�
� � �

B

B�
� 	 �

t

k���

� ���
��

in terms of which the governing equations ����� become

d�

d	
� ��� � ���� � 
 �

d�

d	
� ���� � � ���� � 
 � � � A�

B�
� ���
��

If we neglect the terms proportional to � we obtain

� � 
 � � � e�� � �����a� b�

�Note that the neglect of the term ��� would not be justi�ed� even if �� 
�
if � 	 
� Indeed� our scaling has automatically indicated an important
point� If �	 
� i�e� if A� 	 B�� then the term k�A in ����� is not negligible
compared to k�B� even if k� 	 k��� Approximation ������ in the transient
layer must smoothly match with the approximation after the transient� This
matching is beyond our scope here �see for example Lin and Segel ����� Sec�
tions ��� and 
����� Nonetheless the spirit of matching can be indicated by
considering equation ���
�a�� What initial condition should be employed for
this equation� We need to know the value of a just after the transient� for
the equations ���
�� have been derived for the post�transient period� But
�����a� states that � 
 
 throughout the transient 	 i�e�

A 
 A� � so a 
 
 �

Hence the initial condition for ���
�a� is a � 
� the appropriate solution is

a � e�T � ����
�

For this simple example the exact solution is known� One can therefore
check that ����
� and ���
�� give the correct �rst approximations in the
transient region� while ������ gives the corresponding approximations after
the transient �Exercise ��� By assuming series expansion such as

a�T� �� � a��T � � �a��T � � ��a��T � � � � � ������

one can improve on the �rst approximations� Such matters are treated in
fuller discussions of scaling� for example that of Lin and Segel ����� Section
����
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Exercises


� �a� Derive ����� from ���
�a� both by chain rule and by the quicker
method of formally substituting for the dimensional variables in terms
of the dimensionless variables de�ned by ����� and ������
�b� Similarly� derive ������

�� �For the more mathematically experienced reader��
�a� Write ��	� � ���	�� ����	�� � � � � ��	� � ���	�� ����	�� � � � and
determine ��� ��� �� and �� from ���
���
�Answer� �� � 
� �� � ��t� �� � e�� � �� � �p�
� e�� ���
�b� Write a�T � � a��T � � �a��T � � � � � � Find a� and a�� determining
the unknown constants of integration by requiring that for small T � a
matches � as closely as possible �a� � e�T � a� � ���
�c� Using �b� and ���
�b� �nd a two�term approximation to b� �b� � e�T �
b� � �e�T ��
�d� Extend your results to calculate the complete power series in � for
all variables� Once again check by expanding ����� and ������
�e� Check your answers to �a�� �b� and �c� by comparing with the exact
solution of ����� and ������



Aspects of biochemical kinetics ��

Libuk��	 � December ��� ����

� Enzyme�substrate�complex and the quasi�steady

state approximation

Formulation The reaction scheme symbolized by the block diagram of

Fig� ��� is central to the study of biochemistry� The corresponding kinetic
scheme is

E � S
k�����
k��

C
k��� E � P � ���
�

substrate
S

enzyme
E

product
P

k��
complex

C

k�

k�

Figure ���� A block diagram for an enzyme�substrate�complex reaction� ��g��lb��

Here E is the concentration of an enzyme that catalyzes the transformation
of a molecule called the substrate of the reaction �denoted by S� into a dif�
ferent molecule called the product �concentration P �� This is accomplished
by means of an intermediate enzyme�substrate complex �concentration C�
wherein enzyme and complex are bound together� Two remarks on notation�

�i� Frequently the concentration of unbound or free enzyme E is denoted by �E�

and the complex concentration� of bound enzime� by �ES�� The precision of this

notation is often useful �see � below�� but use of a single letter such as C instead

of �ES� makes it easier to write out the somewhat lengthy expressions that are

often required in theoretical manipulations� �ii� The notation kcat is often used

instead of k� ��cat� stands for �catalysis��� For reasons that we will explain at
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once� according to the theory of chemical kinetics the di�erential equations
corresponding to the scheme ���
� are

dE�dt � �k�ES � k��C � k�C � dS�dt � �k�ES � k��C � ����a�b�

dC�dt � k�ES � k��C � k�C � dP�dt � k�C � ����c�d�

The initial conditions are usually taken to describe a situation where a given
amount of enzyme and substrate begin interacting at t � �� at which time
neither complex nor product are present�

E��� � E� � S��� � S� � C��� � � � P ��� � � � ����a� b� c� d�

One can think of preparing a solution of enzyme at concentration E��
and instantly elevating substrate concentration to S� at time t � ��
The terms proportional to k�� and k� in ����� can be regarded as de�
scribing changes in the conformation of a molecule �C� and therefore
these terms are analogous to expressions derived in Section ���� Here
the new �conformation
 of C is not another connected molecule� as in
Section ���� but rather two disjoint submolecules� New assumptions
are required to obtain the terms k�ES and �k�ES in ������ Indeed�

the bimolecular reaction E�S
k��� C is postulated by the law of

mass action to occur at a rate that is proportional to ES� To ob�
tain this �law
 we assume that the reacting molecules are far enough
apart� i�e� their concentration is low enough� so that each molecule
can be regarded as moving independently of all the others� If this
is the case� then doubling or tripling �say� either the free enzyme
concentration E or the substrate concentration S should double or
triple the probability of a collision between E and S� The coe�cient
k� quantitates the probability that a given collision is �successful
�
i�e� that it results in the union of E and S to form an E�S complex�
The meaning of the parameter k� can be clari�ed by considering� for
example� the term k�ES in Eq� ����c� for dC�dt� Consider a one
micromolar ��M � 
���M� solution of enzyme and suppose that the
substrate concentration S is �xed at 
��M � Let k� � 
�� M��s��

which is the magnitude of k� for complex formation between the sub�
strate acetylcholine and the enzyme acetylcholine esterase �Land et
al� ������ Then the rate of complex formation is 
���M per second�
Of course� when complex and product begin to form then S does
not remain �xed� It is preferable to say that if substrate concen�
tration is initially 
��M then 
�M of enzyme will produce complex
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at an initial rate of 
���M per second� Alternatively� at the given
initial concentrations of E and S� it takes an individual substrate
molecule about ��
 sec to bind to an enzyme molecule� Formally� our

quantitative interpretation of k� can be obtained as follows

k�ES 
 ��� M��s������� M������ M� 
 ���� Ms�� 
 ���mMs�� 
 ��� �Ms�� �

From the governing di�erential equations ����� and initial conditions ����� it

is readily deduced �Exercise �
a�� that the total amount of enzyme� whether
in the free form E or the bound �to substrate� form C� remains constant�

E�t� � C�t� � E� � �����

In other words� Eq� ����� expresses the fact that the total amount of enzyme
is conserved� according to the assumed scheme ���
�� With the substitution
E � E� � C� ����b� and ����c� become two equations in two unknowns�

dS�dt � �k��E� � C�S � k��C �

dC�dt � k��E� � C�S � �k�� � k��C �
����a� b�

Once ����a� and ����b� are solved �subject to initial conditions ����b� and
����c�� then E can be found from ������ and P from ����d� or from the
substrate�product conservation equation �Exercise �
a��

S�t� � C�t� � P �t� � S� � ����c�

The quasi�steady state approximation �QSSA� No formulas that give solu�

tions to the pair of di�erential equations ����a� and ����b� are known� But
in an extensive class of �steady state
 situations� the equations can be sim�
pli�ed and important formulas can thereby be derived� All biochemistry
texts discuss the important consequences of assuming a �steady state
 for
the complex C� Often� no justi�cation is given for this assumption �Fersht
���� Stryer ������ Other sources may mention that the assumption is justi�ed
under conditions� which are readily arranged in the laboratory� wherein the
experiment begins with a large excess of substrate� i�e� S� is large� One can
indeed argue that if there is a great deal of substrate then S 
 S� for a
considerable period of time� During this time it seems reasonable to consider
the approximate equation obtained by setting S � S� in ����b�� This gives

dC

dt
� k�E�S� � �k�S� � k�� � k��C � ����d�
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The initial condition is C��� � �� By Exercise �
b� the solution is

C � C�
� e��t� ����e�

where

C � E�S�

Km � S�

� 
 � k��S� �Km� � Km � k�� � k�
k�

� ����f� g� h�

Thus C approaches a steady state C for large time� By de�nition� a de�
pendent variable �such as C� is in a steady state when that variable does
not change with time� �Here� indeed� ����f� is the solution of ����d� when
dC�dt � ��� At steady state there is a balance between processes that produce
C �E � S�C at rate k�ES� � k��E� � C�S� and processes that �destroy�
C �C�E�S� C�P �� at rates �k��C and k�C respectively� Before C passes
from its initial value C � � to a value close to its steady state C� there is a
transient period where C varies� As can be seen from ����e� this period has
duration of magnitude 
��� During this transient period� C increases from
its initial value of � and approaches C� C increases because the production
terms dominate the destruction terms� The reason for this dominance is as
follows� C is initially zero� and C will remain small for a while� When C is
small� production is relatively large� since almost all the enzyme is free� by
contrast destruction is minimal� since there is little C that can break apart
into enzyme and either substrate or product� The decrease in the amount
of free enzyme E and the concomitant increase of C will lead to a balance
between production and destruction� This perfect balance is expressed by
dC�dt � �� indeed the condition for a steady state� However large S is�
eventually the irreversible conversion of complex to product will cause S to
diminish signi�cantly below its initial value S�� Thus the approximation
C � C� which is valid after the transient �which is also called the induc�
tion period�� will cease to be accurate� But since S is changing slowly�
the post�transient balance between production and destruction of C should
continue to hold� to a good approximation� That is� we expect that as S
slowly decreases� a good approximation will be obtained if dC�dt is taken to
be zero� If dC�dt is set equal to zero in ����b�� but without �xing S at its
initial value S�� there results a generalization of ����f��

C �
E�S

Km � S
� �����



Aspects of biochemical kinetics �


As the reader should check� the above approximation ����� is obtained by
setting dC�dt � � in ����c�� Note however that C is not in a true steady
state� for dC�dt is only �approximately zero
� In fact C slowly decreases in
parallel with the decrease in S� Thus theorists prefer to speak of the quasi�
steady state approximation �QSSA� �or sometimes the �pseudo�steady
state approximation
�� We have already discussed a simple example of the
QSSA in Section �� Let us now examine the consequences concerning S and
P of the quasi�steady state result ����� for C� Upon substituting ����a� into
����b� and ����d�� we obtain

dS

dt
� � k�E�S

Km � S
� ����a�

and
dP

dt
�

k�E�S

Km � S
� ����b�

To solve ����a� for S we require an initial condition� Since the initial amount
of substrate is very large� it is reasonable to assume that very little substrate
disappears during the initial transient induction period� Thus we can assume
as an approximate initial condition

S��� � S� � �����

The �initial time
 in ����� is approximated by t � � but in fact the ini�
tial conditions are relevant at a time just after the fast transient� for only
then does ����a� become a suitable approximation� If the transient is brief
compared to the time that S changes signi�cantly according to ����a� then
indeed ����� can be said to give conditions at a time that is �almost
 at the
beginning of the period during which substrate is transformed into product�
We repeat for emphasis that operationally the QSSA consists of two approxi�
mations� �i� After the fast transient induction period one can set dC�dt 
 ��
which yields the di�erential equation ����a� for S�t�� �ii� One can employ
����� to describe the �initial condition
 of S� just after the induction period�
Important inferences from the QSSA It is customary to de�ne the velocity

of a reaction� denoted by V � as the rate of product formation�

V � dP

dt
� ����a�
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With this� and the de�nition

Vmax � k�E� ����b�

����b� becomes

V �
VmaxS

Km � S
� ���
�a�

As depicted in Fig� ���A� Vmax is the maximum possible reaction velocity�
which is approached when the substrate concentration is very large� more pre�
cisely� we see from ���
�� that V 
 Vmax when S 	 Km� Km� the Michaelis
constant de�ned in ����h�� provides the substrate concentration at which
the reaction proceeds at half its maximum rate� There are two regimes of
behavior that follow from ���
��� In the linear regime� when S � Km�
V is proportional to S � V 
 �Vmax�Km�S� In the saturated regime�
when S 	 Km� the value of V is approximately constant� independent of the
amount of substrate �V 
 Vmax� Simplifying assumptions of linearity or sat�
uration for the conversion to product of a given substrate are often made as
part of mathematical models of complex biochemical processes� Comparison
of ���
�a� with experiment can provide estimates of Vmax and Km� In ���
��
we gave an example of manipulating a formula so that its graph is a straight
line� thereby rendering easier the comparison of theory and experiment� An�
other example is obtained by writing ���
�a� in the form




V
�

Km

Vmax

�



S

�
�




Vmax

� ���
�b�

This Lineweaver�Burk plot of 
�V as a function of 
�S is a straight line
�Fig� ���B� which enables ready estimation of the slope Km�Vmax and in�
tercept 
�Vmax� and hence of Vmax and Km� Especially interesting are situ�

ations where measurements do not conform to the expected straight line of the

Lineweaver�Burk plot �����b�� Then a more elaborate theory must be sought� See

Section �� In principle� the Lineweaver�Burk plot ���
�b� can be compared

with experiment by measuring the amount of product and the amount of
substrate at several di�erent times in a single experiment� From a practical
point of view� it is often easier to take data right after the start of several
di�erent experiments at di�erent initial substrate levels� in each of which the
substrate concentration is assumed to be the various known values of S� at
the start of the experiment� But �right after the start
 of an experiment
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A�

V

Vmax

S

�
�Vmax

Km

B�

�
Vmax

Slope 
 Km
Vmax

�
V

�
Km

�
S

Figure ���� A� Graph of Eq� �����a�� the velocity of the reaction ����� as a function

of the substrate concentration� according to the QSSA� The graph illustrates the

biochemical interpretations of the Michaelis constantKm and the maximal velocity�

Vmax� B� Plotting the same data in the form �����b�� so that the graph is a straight

line �Lineweaver�Burk plot�� ��g��lb��
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must be after the induction period� otherwise the QSSA is not valid� Could
it be that during the induction period so much substrate has turned into
product that S� is not the �initial concentration
 as is usually assumed in
experiments� This question will be dealt with shortly� In this connection�
aside from practicality there is another reason why data to compare with the
Lineweaver�Burk plot are taken at the start of several experiments� Once
product has accumulated� the neglect in ���
� of the back reaction between
E and P becomes problematical� Of course� it could be that the back reac�
tion rate k�� is so small that this is not a problem� �The term corresponding
to the back�reaction� k��EP � is zero initially� when P � �� and is expected to
remain small for some time after the start of the reaction�� It is worth noting
that� unless the back reaction rate is very large the conditions that we will
now derive for the validity of the QSSA remain valid when the back reaction
is taken into account �Segel ������ Statement of conditions for the validity of

the QSSA With the background provided here� especially with the concept

of �time scale
� we can reach a clearer understanding of the QSSA� We will
shortly demonstrate the following� �i� The time scale t

C
for the duration of

the transient period before the QSSA is valid can be estimated in terms of
the parameters of the governing equations ����� and ����� as

t
C
�




k��S� �Km�
� ���

a�

�ii� The time scale t
S
for substrate change in the period during which the

QSSA is expected to describe the formation of product is estimated by

t
S
�

Km � S�

k�E�
� ���

b�

�iii� A necessary condition for the validity of the QSSA equations ������
����� and ���
�� is that there is a fast transient� i�e� that t

C
� t

S
� Employ�

ing the estimates ���

a�b� for tC and tS� one �nds that this condition takes
the form

k�E�

k��S� �Km��
� 
 � ���

c�

�iv� The approximate initial condition ����� is valid providing

�� 
 where � � E�

S� �Km
� ���

d�
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It turns out that �� 
 implies ���

c�� Consequently the condition �� 
 is
expected to be su�cient to assure the validity of both the equations and the
initial conditions of the QSSA� A rough quantitative guess for the interpre�
tation of �� 
 might be �take � to be at least an order of magnitude smaller
than unity
� i�e� � � ��
� Simulations of the QSSA Before turning to the tech�

nical problem of demonstrating claims �i���iv�� we will consider the QSSA
further in light of these claims� First of all� let us examine some computer
simulations that have been carried out to check these claims� Such simula�
tions �computer�generated approximate solutions of the relevant di�erential
equations� provide an excellent way to test our reasoning� The results of a
typical computer �experiment
 are shown in Fig� ���� Plotted in this �gure
are the ratio of substrate concentration S to its initial concentration S�� the
ratio of product concentration P to S� �which is the �nal product concen�
tration� since all substrate is transformed into product by the irreversible
process ���
��� and the ratio of complex concentration C to the complex con�
centration C that is de�ned in ����f�� �We expect C to be an approximation
to the maximal complex concentration� which should occur at the end of the
fast transient�� It is commonly believed that for the QSSA to be valid that
the initial substrate concentration S� must be much larger than the initial
enzyme concentration E�� In Fig� ���� these two concentrations are taken to
be equal� However � � ��
� Even though S� is not large compared to E��
nonetheless 	 as predicted here 	 the QSSA is valid after a fast transient
induction period� It is seen that the time scale for the induction period is in�
deed t

C
� �See Exercise ��c��� Moreover� Fig� ��� con�rms that the purported

time scale t
S
is indeed appropriate for major post�transient changes in the de�

pendent variables� for the substrate concentration has changed signi�cantly
when T � t�t

S

 
� i�e� when t 
 t

S
� Note in Fig ��� the fast transient

during which the substrate concentration S decreases below its initial value�
During this same transient� the complex concentration C increases from zero
to a value close to the value predicted by the QSSA� It is convenient also to
graph the course of S and C during the reaction by plotting the point �C� S�
as time varies� Accordingly� the quasi�steady state equation ����a� is plotted
as a dashed line in Fig� ��
�� It is seen that when � is small then indeed
equation ����a� is an excellent approximation� after a fast transient� �As the
�gure shows� the transition from S�S� � 
 to the heavy QSSA curve is rapid�
The arrows on the �gure show that the time scales t

C
and t

S
play their pre�

dicted roles�� Case �iii� of Fig� ��
� veri�es that if ���

c� holds but ���

d�
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�

S�S�

C�C

�

P�S�

� �

�
�

�
�

Dimensionless time T
t�ts

quasi�steady state approximation

exact solution

Figure ���� Dimensionless numerical solutions of the unapproximated equations

���
a�b� and ����d� �solid lines� and of the quasi�steady state approximations ����a��

����� and ����b� �dashed lines�� C and t
S
� the scales for complex concentration and

time �T 
 t�t
S
�� are de�ned in ���
f� and �����b�� E� 
 S� but � 
 ���� where

� � E���S� �Km�� �Examination of ����
� shows that the dimensionless solutions

depicted in the �gure depend only on the dimensionless parameters �� 	 � k���k�
and 
 � S��Km� Here 	 
 ��� 
 
 ����� Redrawn from Segel ����� ��g���lb��
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does not� then there is still a fast transient� after which ����a� is an excellent
approximation� However S decreases appreciably during the transient� so
that ����� is not a suitable initial condition� �The appropriate initial condi�
tion can be calculated� See Exercise ��� Veri�cation of conditions for validity

of QSSA We now begin our demonstration of conditions �i���iv� above� As a

prerequisite to our discussion� let us �rst estimate the duration of the tran�
sient induction period after which the QSSA is expected to be valid� We
denote this �transient time scale
 by t

C
� To estimate t

C
� the time for rapid

increase of complex concentration� we observe that during the brief transient
we do not anticipate a marked decrease in substrate concentration� Since we
seek only a rough estimate of t

C
� during the transient we can approximate S

by its initial value S� even if S� were to decrease rather substantially� say to
half of its initial value� Hence� during the transient ����b� can be replaced
by the approximate equation ����d� that we have already considered� We see
from ����e� that C approaches a steady state C with a time scale t

C
� 
���

Formula ���

a� of Condition �i� follows from de�nition ����g� of 
�

t
C
�




k��S� �Km�
� ���

�

It will prove useful to generalize our argument slightly� Until now we
have thought of the transient as due to a sudden increase in substrate con�
centration from a value S � � �with the corresponding complex concentration
C � �� to the value S � S�� Consider a more general situation in which the
substrate concentration has been held for a long time at some �xed value
S � Sf � Then the complex will be at a steady state value Cf � Suitably
altering ����f�� we �nd �Exercise 
�b�� that

Cf �
E�Sf

Km � Sf
� ���
��

If at time t � � the substrate concentration is now suddenly switched to a
�xed value S � S�� then the complex concentration obeys ����d� but with
the initial condition

C��� � Cf � ���
��

The solution is �Exercise 
�b��

C � C � �Cf � C�e��t � ���
��



Aspects of biochemical kinetics ��

S�S�

�iii�
C�C

���

��	

���

���

���

�ii�

�i�

� ��� ��	 ��� ��� ���

�
�

�
����

�
���

Figure ��
�� Numerical solutions for dimensionless complex and substrate con�

centrations in the C�S plane �phase plane� for three values of �� of the unapprox�

imated equations ���
a�b�� Starting from the initial state S 
 S�� C 
 � �lower

right corner� the point �S�C� moves rapidly upwards and somewhat leftwards un�

til it turns sharply left and thereafter follows the dimensionless version of curve

����a� of the QSSA� The times t 
 t
C
� t 
 �t

C
� t 
 t

S
� and t 
 �t

S
are successively

indicated on each curve by an arrow head� �See Exercise ��c� for the simple calcu�

lations required to translate these times to the dimensionless time T 
 t�t
S
that

was used here and in Fig� ����� Parameters� 
 
 �� 	 
 �� in �i� and �ii�� 	 
 ���

in �iii�� ��g���lb��
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C

���

t

C���e��t�

C��Cf�C�e��t

Figure ��

� Solid line� graph of the formula ���
e�� the time course of the complex

when the substrate concentration S is instantaneously switched from S 
 � to

S 
 S�� Dashed line� graph of formula ����	�� the counterpart of ���
e� when S is

switched from S 
 Sf to S�� The time scale t
C

 ��� is seen to be independent of

the initial substrate values� Graphs show the particular case S� 
 Km� Sf 
 �S��

��g���lb��

It follows that t
C
� 
�� is not only the time scale for the initial transient

after which the QSSA is expected to be valid� as in ���

a� but t
C
is also� as

in ���
��� the time scale for the complex C to reach a steady state after any
�instantaneous� change in the substrate concentration to a new �xed value�
See Fig� ��

� Given the more general characterization of t

C
� one would

expect that the complex C will remain close to a steady state with respect
to changing values of the substrate S provided that t

C
is small compared to

the time scale t
S
for a signi�cant change in S� For if t

C
� t

S
� C can �keep

up
 with the changes in S� Under these conditions it is legitimate to replace
the true steady state equation ����f�� for �xed S�� by ����� the approximate
counterpart of this equation for slowly varying S� This yields the quasi�steady
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state of C with respect to the slowly varying concentration of S� Many �nd the

requirement t
C
� t

S
for the validity of the QSSA not easy to accept at �rst� Let us

therefore approach this condition in a slightly di�erent way� Recall our discussion

of why C approaches a steady state in equation ���
d� for the complex C when

the substrate S is taken to be a constant S� � because production and destruction

come into balance� Now let the substrate decrease according to the original kinetic

scheme ������ This decrease provides an additional slowing of the production term

k�ES� so that the time scale t
C
for attainment of steady state when S is �xed will

tend to be a mis�estimate� There are two reasons for the error� One reason is direct�

the true production rate k�ES is over�estimated by k�ES�� The second reason is

indirect� since complex production is over�estimated the complex concentration is

over�estimated and consequently the complex destruction rate is over�estimated�

It is conceivable that both the true growth of the complex destruction and the true

decrease in complex formation are so slow that it takes a very long time before any

semblance of a steady�state is approached� But if S changes only slightly during

the time t
C

then indeed the essence of the matter is expected to be the same as

when S is �xed� there should be a steady state for C� appropriate not to S� but

to the present value S of the substrate concentration� ���
f� can be replaced by

������ When will S change only slightly during the time t
C
� When the time scale

t
S
for a signi�cant change in S is long compared to t

C
� Our next task� then� is

to estimate t
S
� For this we employ the following characterization of a time

scale �which was also introduced in Libuk�� Section ���

t
S
� time scale for signi�cant change in S 
 magnitude of a signi	cant change in S

typical magnitude of dS�dt
�

���
�a�
�Here is an analogy to ���
�a�� The time scale for journey of 
�� kilometers
with a speed that varies from zero to �� kilometers is 
�� kilometers ���
kilometers per hour� � � hours� With good luck� on a fast road� the journey
could take not much more than an hour� with bad luck� maybe three hours�
But �a couple of hours
 is the right order of magnitude�� It is the long term
decay of S whose time scale is given by t

S
� We are therefore concerned with

events after the transient� so that the QSSA equation ����a� provides the
appropriate expression for dS�dt in ���
�a�� For the value of S in ����a� we
substitute a typical magnitude of S� namely S�� It might be thought more
appropriate to employ S���� the average of the initial and �nal values of
S� but such numerical factors are inappropriate for order of magnitude esti�
mates� �
 mM and ��� mM are both of magnitude �millimolar
�� Similarly
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the magnitude of a signi�cant change in S is also taken to be S�� Hence
���
�a� yields

t
S

 S�

k�E�S���Km � S��
�

Km � S�

k�E�
� ���
�b�

We can now express our necessary condition for the validity of aspect �i� of
the quasi�steady state assumption� that the duration of the fast transient� t

C
�

is small compared to t
S
� From ���

� and ���
�b�� we see that the condition

t
C
� t

S
is

k�E�

k��S� �Km��
� 
 � ���
�c�

Part �ii� of the QSSA requires� as was assumed in ������ that the change
in the substrate concentration during the fast transient is small compared to
the initial substrate concentration S�� We denote this change by �S� We
can �nd an estimate of �S by multiplying the maximal rate of decrease of
S by the approximate duration t

C
of the transient� The maximal value of

jdS�dtj will occur at the very beginning of the reaction� From ����b� with
the initial conditions C � � and S � S�� we see that this maximum is k�ES��
Thus� from ���

������SS�

���� 
 


S�

����dSdt
����
max

� t
C
�
k�E�S�

S�
� 


k��S� �Km�
�

E�

S� �Km
� ���
��

Consequently a second necessary condition for the validity of the quasi�steady
state assumption is

�� 
 where � � E�

S� �Km
� ���
�a� b�

It is readily shown �Exercise 
�c�� that

k�E�

k��S� �Km��
�

E�

S�� �Km

i�e� that � � E���S� � Km� exceeds the left side of ���
�c�� Accordingly�
if ���
�a� holds then certainly ���
�c� holds� Thus ���
�� emerges as the
necessary condition for the validity of the QSSA� To summarize our results�
suppose that relatively little substrate disappears during the fast transient�
which is assured by ���
��� Then the time scale of complex adjustment to
substrate changes is much shorter than the time scale of these changes �com�
plex adjustment is fast compared to substrate change� i�e� t

C
� t

S
� which
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is assured by ���
�c�� and the QSSA should be fully valid� Our analysis
predicts that if parameters are such that ���
�� is false but ���
�c� is true
then substrate concentration will diminish noticeably during the fast tran�
sient induction period� Nonetheless� although the standard QSSA initial
condition ����� is not a valid approximation in this case� the assumed valid�
ity of ���
�c� implies that the fundamental QSSA di�erential equations �����
and ����� should hold after the transient� Further comments on the QSSA

When condition ���
�� holds we see from ���
�� that after the transient the

complex concentration is just a small fraction of the substrate concentration�
This certainly guarantees a relatively small decrease of substrate concentra�
tion during the transient� Indeed �undetectable complex
 is a rule of thumb
sometimes used by kineticists to signal the appropriateness of the QSSA�
For references� see Tur"anyi et al� ����� p� 
��� At this point the reader is
recommended to reread the discussion in Section � where the �rst example
of a QSSA was presented� This involved the slow irreversible change of a
�substrate
 A into a �product
 C via a slow irreversible transition to an
intermediate state B� together with a fast irreversible transition to C�

A
k��� B

k��� C � k� � k� �

There is much in common between the two uses of the QSSA� And
in the example of Section �� all approximations are transparently
correct� for they were derived from an exact solution to the problem�
Note that in the example of Section �� when A is �xed then the time
scale of B is 
�k�� which is fast compared to the time scale 
�k� for
the change of A� But after the initial fast transient �during which
A can indeed be well approximated by a constant� then the time
scale for the change of B is 
�k� 	 since the quasi�state variable B
tracks changes in the slower variable A during the period of validity of
the QSSA� The analogy is tight with the enzyme�substrate example�
There the quasi�steady state variable C has a time scale t

C
when S

is �xed� but then varies with a time scale t
S
when� during the QSSA�

C tracks S� Two more things worth noting are these� The various
time scales depend on the parameter values� For di�erent sets of
parameters� behaviors can be entirely di�erent �for example when
k� 	 k� in the example of Section ��� Note also that a given variable
has di�erent scalings for di�erent values of the dependent variables�
This latter fact is the heart of singular perturbation approaches to
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the solution of mathematical problems ����� The condition validating

the QSSA formula ����a� is

t
C
� t

S
where t

S

 S���dS�dt�qssa
 max � i�e� t

C
� S���dS�dt�qssa
 max �

�����a� b�
Estimate �����b� was provided earlier in ����
a�� We have written the
lengthy subscript �qssa�max� to indicate the fact that in the denominator
of �����b� we need the maximal value of dS�dt during the period after the
fast transient� The second part of the qssa is the assumption that little
substrate disappears during the transient� As in ������ the justi�cation
for this step requires

t
C
� S���dS�dt�max � �����c�

In the denominator of �����c� we need the �genuine� maximum of dS�dt�
This maximum is expected at t 
 � �when t 
 � substrate concentration is
maximal since none has been bound in complex nor turned into product��
Thus �

dS

dt

�
max

�

�
dS

dt

�
qssa
max

�����d�

and if �����c� holds then certainly �����a� holds� That is� if condition
�����c� for negligible substrate loss during the fast transient holds then
the classical QSSA formulas are valid� This provides a general justi�cation
for the kineticists �rule of thumb�� mentioned above� that undetectable
complex justi�es a QSSA� �Keep in mind that if �����c� does not hold
but if �����a� does hold then the QSSA formula for the reaction velocity
is valid after the fast transient even though considerable substrate disap�
pears during the transient�� Worked example� Construct an analogy

between the quasi�steady state approximation and the possibility that a
helicopter H can retain a �xed position with respect to an airplane S de�
spite its evasive movements� Solution� Let the �xed position of H be

�on the tail� of S� say one kilometer behind and two kilometers above�
If such a position can be maintained� then H is in a quasi�steady state�
For in following S� H can be continually exercising all sorts of complex
maneuvers� so that H certainly isn�t in a true steady state� But it is in
a steady state with respect to the changing position of S� Let time t

S
be

the time scale for signi�cant changes in the position of S� Let t
C

be the
time scale for H to achieve similar changes in its own position� If t

C
� t

S

then� after a time of magnitude t
C
� H should be able to reach and retain

its desired position with respect to S� See Fig� ����� The condition
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Figure ��
�� A helicopter H that can keep a �xed position with respect to a

�small� airplane S� At �rst the two aircraft are in a steady state �H�� S�� with

the airplane parked on the ground and the helicopter hovering far above� After

a time� S takes o� and then dives� The helicopter tries to retain a �xed position

close to and above S� As they move to the right� the minute by minute positions

of the two aircraft are denoted by dots and crosses respectively� When a QSSA is

attained� the positions of the two aircraft are joined by a solid line� a dashed line

denotes the relative positions of the aircraft during the transient period before the

QSSA is attained� ��g���lb��

E� � S� �Km of ���
�� renders precise the intuitive feeling that the
QSSA should be appropriate if the initial substrate concentration S�

is large enough� It is particularly important that large S� is su�cient
but not necessary� If Km 	 E� then S� need not be large com�
pared with the initial enzyme concentration E�� and there are many
in vivo situations where S� and E� are comparable �Sols and Marco
������ Even when E� is relatively large� a QSSA may be enabled by
a change of variables �Borghans et al� ����� Our whole discussion is
also relevant �suitably modi�ed� to the binding of a ligand� such as
a hormone� to a receptor� For this situation� E corresponds to re�
ceptor concentration and S to ligand concentration� �See Exercise
��� It is frequently the case in vivo that ligand concentration is com�
parable to or smaller than receptor concentration� Nonetheless the
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quasi�steady state approximation is often valid in these situations�
because of the presence of Km in ���
��� An example is the binding
of the ligand acetylcholine to its post�synaptic receptor �Parnas et al�
������ Typical biological models involve rather a large number of ki�
netic equations for the various important interacting chemicals� The
quasi�steady�state assumption o�ers a most important tool for sim�
plifying these models� Examples abound� See Goldbeter �
�� or �

�
for the use of the quasi�steady state assumption in rendering tractable
models for oscillations in glycolysis and in cyclic AMP secretion in
the cellular slime mold� Or consult work by Segel and Perelson ����
and by Fishman and Perelson ��� that exploits the fact that in im�
munology chemical reactions occur on time scales of milliseconds to
seconds that are far shorter than the time scales of days or weeks that
characterize changes in the immune system� Also see Segel and Gold�
beter�s ��
� QSSA treatment of the �relaxation oscillations
 that can
occur in a model for glycolysis and many other biological contexts� It
turns out that justifying a QSSA by estimating time scales as we have
done here is not a simple matter and generally requires considerable
experience� Nonetheless researchers can make good progress in test�
ing a conjectured quasi�steady state assumption by comparing the
results with computer simulations �for example as in Perelson and
Brendel ������ In the case just cited� later analytical investigation
conformed the earlier semi�empirical approach �Segel and Perelson
������ A recent study carefully examines� by a combination of nu�
merical and analytical methods� the question of which variables in a
complex kinetic scheme can pro�tably be approximated by a QSSA
�Tur"anyi et al� ������ The alert reader may have noticed that there is

an element of circularity in our reasoning� To calculate the decrease in
substrate concentration during the fast transient� we have assumed that
there is a fast transient preceding the period when the QSSA is valid� we
have assumed the existence of the very QSSA whose validity we are trying
to establish� Similarly� in estimating the maximum magnitude of dS�dt
for use in the estimate ����
a� we employed the QSSA equation ����a� for
dS�dt� In fact� what is being attempted is establishment of conditions
under which the QSSA is a consistent approximation� We advocate
using the QSSA and the resulting Lineweaver�Burk plot to estimate Km�
which in turn should be employed to verify condition E� � S� � Km

for the validity of the QSSA� This establishes the consistency of the ap�
proximation� Of course� often E� � S�� in which case the consistency of
the QSSA is established a priori� A simple example illustrates the di�er�
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ence between consistent and inconsistent approximations� Consider the
quadratic equation

x� � ����x � 	 
 � �

Suppose that for some reason it is decided that the term ����x is negligible
compared to 	� Neglecting the supposedly negligible term� and regarding
x��	 
 � as an approximate equation� one obtains the approximate roots
x 
 � and x 
 ��� For both these roots� indeed j����xj � 	� The approx�
imation is thus consistent and our faith in the approximation is strength�
ened� �Note the �circular reasoning� that was used to establish consis�
tency� we assumed that a certain term was neglibible� we simpli�ed the
mathematical problem in question by neglecting that term� we found what
we hope is an approximate solution by solving the simpli�ed problem� and
then we evaluated the size of the neglected term using that approximate
solution�� Suppose on the other hand that someone feels that 	 is negligi�
ble compared to ����x� The approximate equation x�� ���x 
 � gives the
two roots x 
 � and x 
 ����� for neither of which is 	 � j����xj� Thus
this �approximation� is inconsistent� so that one can put no faith in it�
See Lin and Segel ���� for further discussion of consistency in approxima�
tions� There it is shown that on relatively rare occasions� when a problem
is �ill conditioned�� consistency is not enough to assure the suitability of
an approximation� This is unusual but it is not unheard of� �Tur�anyi et al�
�	�� discuss this matter in some detail�� Usually consistent approximations
are accurate� while inconsistent approximations can be accurate only by
improbable luck� Two types of motivation for making a quasi�steady

state assumption have been illustrated by our discussion� rendering
calculations simpler and rendering theoretical results more biolog�
ically meaningful� In the immunological example just cited �Segel
and Perelson ������ the largest computers envisioned could not solve
moderately inclusive models of the immune system since chemical ac�
curacy requires sub�millisecond resolution but the necessity to model
various signi�cant immunological phenomena implies that the nu�
merical integrations must track weeks or months of system kinetics�
The quasi�steady state assumption does away with the necessity to
compute the fast chemical kinetics� the great disparity in time scales
generally means that the assumption will yield accurate results� By
contrast� the classical use of the quasi�steady state assumption to
simplify the basic enzyme�substrate�complex equations ����� is not
primarily justi�ed by reasons of computational e�ciency� With ap�
propriate numerical methods �for �sti�
 equations 	 see Gear ���� as
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well as Tur"anyi et al� ����� the original equations ����a� and ����b�
can be solved almost as rapidly as the simpli�ed equations ����a�
and ����b�� In the present case the decisive role of the quasi�steady�
state approach lies in the biophysical meaningfulness of ����b� and
the ease with which Vmax and Km can be obtained from experiment
with the aid of the Lineweaver�Burk plot �Fig� ���B�� Mathematical

development of the QSSA via scaled variables Our developments can

be used as another illustration of the use of scaled variables �see Libuk��
Section 
�� Consider the initial transient period� During this period its
initial concentration S� is a good scale for S� C should be scaled by its
concentration C� an estimate for the maximum value of C� To scale t the
appropriate time scale� t

C
� should be employed� Hence we introduce the

variables
s � S�S� � c � C�C � � � t�t

C
� ������

with which ���
a� and ���
b� become �Exercise ��a��

ds

d�

 �

�
�s�





 � �
cs�

	�	� ����


 � �
c

�
�

dc

d�

 s�





 � �
cs�

�


 � �
c � �����a� b�

with initial conditions

s��� 
 � � c��� 
 � � �����a� b�

where the dimensionless parameter � is given in �����b�� The other two
dimensionless parameters are


 � S��Km � 	 � k���k� � �����c� d�

Since variables are scaled� when � � � �����a� can be approximated by
ds�d� 
 �� From �����a�� s � �� Substitution of s � � into �����b� gives

dc

d�

 �� c � ������

With �����b�� ������ implies

c 
 �� e�� � ������

Thus we �automatically� obtain� in dimensionless form� the initial layer
approximation S � S� and equation ���
d� for C� Better approximations
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can be obtained by series expansions� in powers of �� After the fast tran�
sient� t

S
is the time scale� The scales for S and C remain appropriate�

Upon introducing
T � t�t

S
� ����	�

we obtain the following scaled dimensionless equations �Exercise ��b���

ds

dT

 �	� ���
 � ��

�
�s�





 � �
cs�

	�	 � ����


 � �
c

�
�

�
dc

dT

 �	� ���
 � ��

�
s�





 � �
cs�

�


 � �
c

�
�

����
a� b�

As a �rst approximation we set � 
 � in ����
b�� obtaining

c 

�
 � ��s


s� �
� ������

This is the dimensionless version of ������ On substituting ������ into
����
a� we obtain an equation for s� thereby �automatically� obtaining the
dimensionless version of the central quasi�steady state equation ����a�� A
procedure exists for establishing appropriate initial conditions for ����
��
and therewith systematically obtaining more accurate approximations for
s bymatching the transient and post transient solutions in their �overlap
region� of common validity� Once several terms in the power series �in
�� for s have been determined� the corresponding approximation for b
is readily obtained by expanding ����
b�� The spirit of the calculations
is similar to those required in Exercise 
��� For a detailed account� see
Lin and Segel ����� The central idea is that concentrations at the end
of the transient region must match those at the beginning of the post
transient region� Since s � � throughout the transient region� to �rst
approximation� it is natural to take s��� 
 � as the �rst approximation
to the initial condition for ����
a�� From ������� we see that c approaches
unity toward the end of the transient �when � is large�� Thus c��� 
 � is
the �rst approximation to the initial condition for ����
b�� The conditions
c��� 
 s��� 
 � are indeed consistent with ������� Our scaled equations
can be used to generate further understanding of Fig� ����� Note �rst
that the equations of ������� which are appropriate during the induction
period� have the form

ds

d�

 �f�s� c� �

dc

d�

 g�s� c� � ������

Because � is small� we anticipate that ds�d� will be small compared to
dc�d� � Consequently� when examining Fig� ���� when � 
 ���� we are not
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surprised that s hardly changes� yielding a solution trajectory that moves
almost vertically throughout the brief duration of the induction period�
Nor is it surprising that the induction period comes to a close when the
solution trajectory nears the curve g�s� c� 
 � �which is equivalent to the
curve ������ of the QSSA�� The reason is that if g is nearly zero then both
ds�d� and dc�d� are small� Both c and s now change at the same rate� so
that the solution trajectory will no longer rise vertically� Moreover� since
both c and s now change slowly� a new time scale is appropriate� This
brings us to ����
�� which has the form

ds

dT

 K f�s� c� � �

dc

dT

 K g�s� c� � ������

where K is a constant� Now the smallness of � suggests� and Fig� ���� con�rms�

that the solution trajectory will remain very close to the QSSA curve g�s� c� 
 ��

As will be illustrated elsewhere in this book� equations of the form ������ are found

in several areas of theoretical biology� and indeed in many other scienti�c subjects�

Our example illustrates typical features of solution behavior� rapid vertical transit

to g�s� c� 
 �� followed by slow motion along this curve� �The rapid transit is

vertical since the slowly changing variable is measured along the horizontal axis��

In the present instance� this motion terminates in the point S 
 �� C 
 �� corre�

sponding to complete consumption of substrate� In other examples� more exotic

behavior is found� but the solution still consists of rapid vertical motion together

with slow motion along g�s� c� 
 �� See for example Segel and Goldbeter�s �	��

study of �relaxation oscillations� in cAMP concentration�

Exercises


� �a� Derive ����� from ����� and ������ Similarly derive ����c��
�b� Verify ����e�� ���
�� and ���
���
�c� Show that if ���
�a� holds then ���
�c� holds�
�Hint� Show that tc�ts � �F where F � 
��
�d� Why is formula ����b� for Vmax intuitively reasonable�
�e� Show mathematically that ���
�a� implies that Vmax is the maximum
value of V �

�� �a� By calculating dV�dS from ���
��� show� using ����a�� that for
S � S�� V �S� is maximal when S � S��
�b� From ����� we see that a consequence of the QSSA is that dS�dt is



Aspects of biochemical kinetics ��

the negative of dP�dt� Show this directly from an appropriate conser�
vation law�

�� �a� As practice in employing dimensionless variables� verify �������
�b� Similarly� verify �������
�c� Show that the time t � t

C
mentioned in the caption of Fig� ��



corresponds to T � ��
�
�
 � ���
 � ��

�
� where T is the dimensionless

time t�t
S
� Thus verify that in Fig� ��

 t

C
indeed gives a good estimate

of the duration of the fast transient�

�� Receptor molecules �concentration R� reversibly bind with ligand �con�
centration L� to give bound ligand �concentration B�� Free �unbound�
ligand irreversibly decays� The mathematical model includes the fol�
lowing equations�

dL

dt
� �k�RL � k��B � kL �

dB

dt
� k�RL� k��B � �����a� b�

L��� � L� � B��� � � � R��� � R� � ������

�a� What is the kinetic scheme for this situation�
�b� Write the equation for dR�dt and prove that R �B � R��
�c� Show that if a quasi�steady state assumption is made on B� then

dL�dt � �kL � ����
�

�d� Demonstrate that after the fast initial transient� if L��� 
 L� is
appropriate just after this transient� then

B �
R�L�e

�kt

�k���k�� � L�e�kt
� ������

Sketch a graph of this function� Is the behavior of B in accord with
intuition� Explain�
�Hint� do not solve any di�erential equations� Instead use the quasi�
steady state equation for B together with the fact that R � R� � B��
�e� If R � R� � B is substituted into the equation for dB�dt� one
obtains

dB�dt � k��R� � B�L� k��B � ������

Why is the time scale during the initial fast increase of B given by

��k�L� � k����
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�f� Why is the following a necessary condition for the quasi�steady state
assumption�

k

k�L� � k��
� 
 � ������

�g� Show that L��� � L� is an appropriate initial condition for ����
�
if

�k�R� � k� � 


k�L� � k��
� 
 � ������

Does condition �f� imply condition �g� or vice�versa� Why is your
answer intuitively reasonable�

�� Show that if ���
�c� holds but ���
�a� does not then the right hand sides
of �����a� and �����b� are approximately proportional� so that dc�ds 

���� By consulting Fig� ��
�� deduce the appropriate replacement for
the initial conditions ������ �If you get stuck� see Segel and Slemrod
������

�� Give intuititive reasons for the following mathematical results�
�a� When the quasi�steady state assumption is valid� then �but not
otherwise� the rate of product formation is approximately equal to the
rate at which the substrate concentration increases 	 as shown by
������
�b� The maximum reaction velocity is proportional to the initial enzyme
concentration� with the constant of proportionality as given in ����b��
�c� If ���
�a� holds then ���
�c� holds�

�� Consider the following kinetic scheme for the reaction of an enzyme E
with a substrate S� and an inhibitor I� �P � product� C and D are
complexes��

E � S
k�����
k��

C � C
k��� E � P � E � I

k�����
k��

D � ������

The following are the equations for S� C� D and I�

dS

dt
� �k�ES � k��C �

dC

dt
� k�ES � �k�� � k��C �

dD

dt
� k�EI � k��D �

dI

dt
� �k�EI � k��D �

������
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Initial conditions are E��� � E�� S��� � S�� C��� � D��� � �� I��� �
I��
�a� Write the di�erential equation for dE�dt�
�b� In one or two sentences� explain why we expect that

E�t� � C�t� �D�t� � E� � ������

�c� Show that ������ implies ������� �This provides a check on �a���
�d� If we make a quasi�steady state assumption dD�dt 
 � and dC�dt 

� we obtain � equations for C and D in terms of S and I� Show that
solving these equations gives

C �
E�S

S �Km�
 �
I
K�

�
������

where Km � �k���k���k�� K� � k���k�� Since dP�dt � k�C� this gives
an expression for the reaction velocity V �� rate of product formation
dP�dt�� Let Vmax � k�E�� On a single pair of axes� draw graphs of V
as a function of S for two �xed values of I� and use these graphs to
show that indeed I inhibits the reaction�

�� This problem concerns another approach to the quasi�steady state as�
sumption� The idea of the new approach �Borghans et al�� Bulletin
Math Biology � 
��� ���� is to consider the total substrate concentra�
tion S� instead of the free substrate concentration S� where

S � S � C � ������

�a� Show that in terms of S� the equations ����a�b� become

dS

dt
� �k�C �

dC

dt
� k���E� � C��S � C��KmC� � �����a� b�

with initial conditions

S��� � S� � C��� � � � ����
a� b�

Take for granted �but see part �f� of this problem� that for all param�
eter values it is quite a good approximation to neglect the C� term in
�����b�� which gives

dC

dt
� k����E� �Km � S�C � E�S� � ������
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Thus from now on consider ��a� and ��� as the basic equations for S and
C� In particular� the QSSA is found by setting dC�dt � �� obtaining

C �
E�S

E� �Km � S
�����a�

and
dS

dt
�

�k�E�S

E� �Km � S
� �����b�

�b� Explain why the time scale tC for the fast change in C is given in
������� where during a time of order tC � C approaches C�

tC �



k��E� � S� �Km�
� C �

E�S�

E� �Km � S�
� �����a� b�

�c� Justify the following estimate for the time scale of substrate change�

after the fast transient�

tS �
E� � S� �Km

k�E�
� ������

Show that the condition tC � tS can be written

k��E� � S� �Km�
�

k�E�
	 
 � i�e�

�

 �

E� � S�

k��k�
�
k��
k�

��

 �

S� �Km

E�

�
	 
 �

�����a� b�
�d� Find the condition that justi�es using S��� � S� as the initial
condition for �����b�� �Use the estimate k�C for jdS�dtj during the
transient� but justify this approximation�� You should �nd that this
condition turns out to be the same as �����a�� �e� Why does condition

�����b� show that using S instead of S gives a QSSA that is valid for a
wider parameter range than the standard QSSA� �f� This part of the

problem concerns a partial justi�cation of neglecting the C� term in
�����b�� We will consider only the quasi�steady state situation� where
dC�dt � �� Show that it is consistent to neglect the quadratic term in
the resulting equation for C� as follows� The quadratic term is small
compared to the linear term if

C � E� �Km � S � ������
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With the quadratic term neglected� C is given in �����a�� With this
value of C� show that ������ can be written


�
�

 �

S

E�
�
Km

E�

��

 �

E�

S
�
Km

S

�
� ������

Condition ������ is valid if S is either large or small compared to E��
What about when S � E��
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libuk��� � December ��� ����

	 Multiple subunit enzymes and proteins�

cooperativity

Often data on reaction velocity does not yield the straight line predicted by
the Lineweaver�Burk plot that was discussed in Section �� Since the simple
theory does not work� more complex assumptions must be made in an e�ort
to understand the mechanism of enzyme action� Illustrative steps toward a
more comprehensive theory will be taken in this section� Dimer for which

binding induces concerted conformational change� Formulation Enzymes typ�

ically consist of multiple subunits� Several of the principles that we wish
to illustrate can be illustrated by considering the model for a two subunit
dimeric enzyme that is diagrammed� in two equivalent ways� in Fig� ��
��
The appropriate kinetic scheme is

E � S
�k�����
k��

C�
kp�� E � P�

C� � S
k�����

�k��
C�

�kq�� C� � P �
���
a� b�

Here C� denotes the concentration of complexes of the dimeric enzyme mole�
cule E with a single substrate molecule S� C� denotes the concentration of
the complex of E with two substrate molecules� P denotes the concentra�
tion of product� The model assumes that binding of a substrate molecule
S to one subunit of the enzyme E changes the enzyme conformation in a
concerted fashion� i�e� both the subunits change in the same way� A second
binding produces another concerted conformational change� Such changes
alter the likelihoods of substrate binding and dissociation� The rate con�
stant k� concerns the probability of binding substrate S to a single site�
and is thus termed site speci�c� The statistical factor � that appears in
Fig� ��
� takes into account the fact that there are two sites at which S can
bind to the dimer E and thereby change E to C�� Other statistical factors
appear for analogous reasons� Thus� the di�erential equations corresponding
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E C�

S S S

S

E

S S

S

�k��k��

C�

� P � P

kp �kq

A�

B�

�k� k�

S S

k�S

�k��k��

�k�S
C�C�

S

� P � P

kp �kq

Figure ��
�� A� A simple possible model for product formation of a product

P from a substrate S catalyzed by a cooperative dimeric enzyme E� Di�erent

shapes denote di�erent conformations of subunits� B� An equivalent alternative

to the diagram of A� where the role of substrate S is more explicitly indicated�

��g��
lb��

to Fig� ��
� and Scheme ���
� are

dS

dt
� ��k�ES � k�C�S � k��C� � �k��C� �

dC�

dt
� �k�ES � �k�� � kp�C� � k�C�S � ��k�� � �kq�C� �

dC�

dt
� k�C�S � ��k�� � �kq�C� �

dP

dt
� kpC� � �kqC� �

����a� d�

E is determined from the conservation law

E � E� � C� � C� � �����
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We consider the following initial conditions�

S��� � S� � E��� � E� � C���� � C���� � P ��� � � � �����

Consequences of a quasi�steady state assumption �QSSA� In analogy with

the case of a monomeric enzyme� let us make quasi�steady state assumptions
on both complexes�

dC�

dt
� � �

dC�

dt
� � � �����

Given ������ Eqs� ����b� and ����c�� with E expressed by the conservation
equation ������ can be regarded as a pair of linear equations for C� and
C�� in terms of S� Solving these equations� one obtains� after some algebra
�Exercise 
�b���

C� �
C�S

�K �

m

� C� �
SE��Km


 � ��S�Km� � �S��KmK �

m�
� ����a�b�

where we have employed the Michaelis constants

Km �
k�� � kp

k�
� K �

m �
k�� � kq

k�
� ����a� b�

Let us introduce the maximal velocity Vq for product�formation from the
doubly�bound enzyme�

Vq � �kqE� � �����

Let us also introduce the dimensionless variable s and the dimensionless
parameters � and ��

s �
S

Km
� � �

kq
kp

� � �
K �

m

Km
� ����a� c�

With these� employing ����a� and ����b�� we obtain �Exercise 
�b�� from Eq�
����d�

V �s� �
���s�� � �s�

� � ��s� s�
� ���
��

where V is the dimensionless reaction velocity

V � �dP�dt��Vq � ���

�

Equation ���
�� �and its generalizations� is sometimes called the �Adair equa�
tion
� Clearly� a Linewearer�Burk plot of ���
�� does not in general yield a
straight line �Exercise 
�e���
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Protein binding We now show that virtually the same formulae that we have

derived so far for product formation by a dimeric enzyme can also be
applied to the case of a molecule S �usually called a ligand in this context�
binding to a dimeric molecule E� To adapt our calculations for binding
to a dimeric protein we have only to set to zero the product�formation rate
constants kp and kq in the scheme ���
� and the corresponding equations
������ The concentrations C� and C� of the singly and doubly bound dimer
are given by ����� as before� but with kp � kq � �� The modi�ed constants
Km and K �

m of ����� �with kp � kq � �� are termed dissociation constants�
Like Michaelis constants� dissociation constants have the dimension of con�
centration� The analog of the dimensionless reaction velocity V of ���

� is
the saturation function Y � de�ned as the fraction of sites that are bound
with ligand� Since C� contains two bound sites and since the total number
of sites on E� dimers is �E�

Y �
C� � �C�

�E�
� ���
��

From ������ with kp � kq � �� we �nd that

Y �s� �
s�� � s�

� � ��s� s�
� ���
��

Note that formula ���
�� is a special case of ���
��� with � � 
� This can be
regarded as a useful mathematical coincidence �but see Exercise 
�c��� since
our forthcoming mathematical analysis of expression ���
�� for the reaction
velocity V �s� will also serve for the analysis of formula ���
�� for the satura�
tion function Y �s�� We further note that when � � 
� i�e� Km � Km�� then
���
�� reduces to

Y �s� �
s�
 � s�


 � �s� s�
�
s�
 � s�

�
 � s��
�

s


 � s
� ���
��
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Analysis of Michaelean binding It will turn out to be helpful in later

discussions to digress here to perform an analysis of ���
��� To make our
intuitive discussions a little easier to understand� we rewrite ���
�� in dimen�
sional variables� remembering that now kp � kq � �� Since s � S�K� ���
��
becomes

Y �
S

S �K
� K �

k��
k�

� ���
�a� b�

We derived ���
�� as a limiting case of a dimeric enzyme E with two iden�
tical sites and no product formation� In the absence of product formation� E
is just a dimer that binds substrate S� The two sites of E are identical and
have the same value of K � k���k�� According to the law of mass action
the binding fraction Y will be the same whether pairs of sites happen to
be joined or each monomeric site moves independently of all other sites� In
other words� one expects that ���
�� will result from the kinetic scheme

F � S
k�����
k��

C � ���
��

where F is a free �unbound� monomer and Y is the quotient of the steady
state value of C and the total monomer concentration� This expectation
is easily veri�ed �Exercise 
�d��� Equation ���
�� for Y is said to represent
Michaelean binding� in analogy with the almost identical formula ���
�a�
for the velocity V of a Michaelean monomeric enzyme� As expected� as S
increases� the binding fraction Y asymptotically approaches its maximum
possible value Y � 
� Often the situation Y � 
 when all sites are bound
is referred to as a �fully� saturated state� The dissociation constant K
is the half�saturation concentration� for when S � K then Y � �

�
� Another

interpretation of K can be seen if ���
�� is simpli�ed for small values of S�
more precisely for values of S such that S � K� Then ���
�� reduces to

Y 
 S

K
or Y � K

A
S where K

A
� K�� � ���
��

Thus the reciprocal of K� which is often called the association constant
K
A
� is the slope of the straight line that approximates the graph of Y as a

function of S when S is small� In mathematical language� the line Y � S�K
or alternatively Y � K

A
S is tangent to Y �S� at the origin �see Fig� ��
�A��

Formally� the tangency of Y � S�K follows from ���
���

dY

dS
�

K

�S �K��
�

dY

dS S��

�



K
� ���
�a� b�
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Another helpful interpretation of K
A
� can be obtained by employing the

Taylor approximation �a version of Eq� ��� in Appendix �� of �
��� keeping
in mind that Y ��� � ��

Y ��S� 
 Y ��� �
dY

dS S��

�S �
�S

K
� ���
��

That is

Y ��S� 

�




K

�
�S or Y ��S� 
 K

A
�S ������

for small S� Equation ������ implies that if ligand concentration is increased
from zero to a small value �S then there is a proportional increase in the
fraction of sites bound� The constant of proportionality is the association
constant K

A
� The terms a�nity constant or simply a�nity are also used

for the proportionality factor K
A
� There is one more slightly di�erent inter�

pretation ofK
A
� as long as the tangent line Y � K

A
S is a good approximation

to Y �S�� In such circumstances

Y �S ��S�� Y �S� 
 K
A
� �S ��S��K

A
� S


 K
A
�S i�e� �Y 
 K

A
�S �

����
�

Thus� for low concentrations� when Y 
 K
A
S� we see that the a�nity is the

ratio between the increase in fractional binding�y caused by 	small
 increases
�s in the ligand concentration� �For example if K

A
� � mM�� then ����
�

implies that if the substrate concentration is increased by ���
 mM then Y is
increased by �#�� The larger the a�nity� the larger the increase in binding
for a given increase �S in the ligand concentration� Figure ��
�A shows that
Y �S� falls below the tangent line Y � K

A
S as S increases� Why should this

happen� This reason is this� True� each individual potential binding partner
F for substrate S remains unchanged in its a�nity �measured by K

A
� for

substrate� But for higher values of S� when �S new molecules are added
these molecules are confronted with fewer unbound sites F � The reason
is that at higher S� more sites are bound and thus fewer free sites F are
available for binding� saturation of the binding sites is occuring� Therefore�
the larger S is� the smaller is the increase in binding fraction �Y for a given
substrate increment �S� Since for arbitrary S Eq� ����
� generalizes to

�Y � Y �S ��S�� Y �S� 
 dY

dS
�S��S ������
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we thus expect that the derivative dY �S��dS decreases as S increases� More�
over� the derivative should approach zero when S 	 K� since for such large
values of S binding is almost saturated so that there are virtually no free
sites left� Indeed� we see from ���
�a� that

d�Y

dS�
�

d

dS

�
dY

dS

�
�

��K
�S �K��

� ������

Formula ������ con�rms that dY �S��dS decreases toward zero as S increases
�the second derivative is negative�� The rate of decrease� owing to saturation�
is quantitated by the second derivative� This rate continually decreases to
zero as S increases� starting from its maximum at S � �� where it has a
value of ���K�� Nature of graph for velocity dependence on substrate Let

us return from our digression concerning Y �S� and examine the behavior of
the graph of expression ���
�� for the dimensionless reaction velocity V � To
this end� as is always useful in examining graphs� we calculate the �rst and
second derivatives of V �

dV

ds
� ����

� � ��s� ���� 
�s�

�� � ��s� s���
� �����a�

d�V

ds�
� ���������� � �� � ��s� ��s� � ���� 
�s�

�� � ��s� s���
� �����b�

We see from �����a� that if �� � 
 then dV�ds � �� so that V continu�
ally increases with s� If �� � 
� when s is su�ciently small� dV�ds 
 ���

and thus is positive� but dV�ds is negative when s is su�ciently large 	
so that the term ��� � 
�s� dominates in the numerator of �����b�� That
is� when �� � 
 then V increases when s is small but V decreases for all
su�ciently large s� It may seem surprising that adding substrate can de�
crease the rate of product formation� but this latter result makes sense upon
further consideration� Since �� � �kq�kp� if �� � 
 then the maximum rate
of product formation from C� �kpE�� is larger than the maximum rate of
product formation from C� ��kqE��� the latter process is less e�cient than
the former� When substrate concentration grows su�ciently� the relatively
ine�cient process becomes more and more dominant� From �����b� we ob�
serve that d�V�ds� is positive for small s if and only if � � ��� This same
second derivative is negative for large s if and only if �� � 
� When both
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of these conditions on � hold then the graph of V shifts from concave up to
concave down as s increases� Under such circumstances the rising graph of
V �s� is said to be sigmoidal� Compare Fig� ��
�B� Results for binding

and their interpretation� cooperativity To translate our results con�

cerning expression ���
�� for V to the binding saturation curve ���
�� we set
� � 
� Here dY�ds is always positive� and hence� as expected� the extent of
binding Y is always an increasing function of the �dimensionless� substrate
concentration s� d�Y�ds� is positive for small s if and only if � � �

�
and is

always negative for large values of s� We now consider the concept of cooper�
ativity� For the moment� let us �x our attention on the case of protein�ligand
binding� In this case� Km and K �

m are dissociation constants� If K �

m � Km

�� � 
� then the a�nity of the second binding of ligand to protein is higher
than the a�nity of the �rst such binding� This situation is identi�ed with
positive binding cooperativity� Similarly K �

m � Km �� � 
� is identi�ed
with negative binding cooperativity� The intuitive idea is that posi�
tive binding cooperativity results when binding of a ligand to one site of a
dimer somehow causes binding to the second site to become easier� the sites
somehow �cooperate
 positively� for example via a conformational change� to
raise the a�nity of the second binding� If the �rst binding makes binding to
the second site less likely �lower a�nity� then the �cooperativity
 is deemed
negative� Let us try to give our intuitive idea more precision� using as an
example the dimensional version of Eqn����
���

Y �S� �
S��K � S�

K�� � ��KS � S�
� K �

k��
k�

� K� �
k��
k�

� � �
K�

K
� ������

Suppose that we are faced with some theoretically derived expression
Yth�S�� of which ������ is an example� for the fraction of sites bound� What
kind of cooperativity does Yth�S� express� To answer this question we assume
that Yth is proportional to S for small S�

Yth�S� 
 S

Kth

for S small � ������

for some constant Kth� This assumption holds for ������� since

Y �S� 
 �KS

K��
i�e� Y �S� 
 S

K
for S small � ������
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Michaelean curve

S

�Y 
 KA�S

tangent at origin

Y

Y 
 S
K�S 
 S

K��

A
�S


 KAS
��KAS

Y 
 S
K or Y 
 KAS

S

Michaelean

Vmax

sigmoidal

Y

Figure ��
�� BA� Michaelean binding for small values of the ligand concentration

S� Approximate calculations� using Taylor approximation� of increases ��Y � in the

fraction of sites bound Y � owing to increasing ligand concentration by �S� B� Plot

of sites bound Y according to ������ together with the Michaelean expression for

Y with the same initial slope� �Shows positive and neg cooperativity for di�erent

parameters��� ��g���lb��
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As suggested in ����� let us examine the di�erence Ydi� between Yth and
a Michaelean binding fraction whose initial slope is 
�Kth�

Ydi��S� � Yth�S�� S

Kth � S
� ������

For reasons that will be given immediately it make sense to characterize the
cooperativity of Yth
S� as follows�

Ydi��S� � � for small S� positive cooperativity �

Ydi��S� � � for small S� negative cooperativity �
������

This comparison method for determining cooperativity is sen�
sible because� for sites with a�nity 
�Kth� the Michaelean binding
fraction S��Kth�S� describes the slowing increase in binding fraction
as S increases� The kinetics that yield Yth also have an �e�ective�
a�nity 
�Kth when the substrate concentration is small� Given this�
if the increase of Yth is faster than that of S��Kth � S� then there is
some positive in�uence on binding that is partially overcoming the
e�ect of saturation �positive cooperativity�� If the increase of Yth is
slower than that of S��Kth � S� then there is a negative in�uence
on binding that augments saturation in decreasing �Y��S as S in�
creases �negative cooperativity�� Note that our characterization of
cooperativity applies to small values of S� There could in principle
be numerous shifts between positive and negative cooperativity as S
increases� but such relatively rare occurences will not be dealt with
here� As will now be shown� the comparison method of ������ and
������ yields a result for cooperativity that is in accord with our de��
nitions of positive and negative binding cooperativity� This is shown
in the following Example� Example� Use ������ and ������ to charac�

terize the cooperativity implied by ����
�� Solution� Since� from �������

Kth 
 K for ����
�

Ydi��S� � Yth�S��
S

Kth�S


 S
�K�S�
K�����KS�S�

� S
K�S


 KS�
����

K�S�
K�����KS�S��

�

Thus� in agreement with one�s intuitive expectation� when � 
 �� Ydiff �
� and the cooperativity implied by ����
� is positive� When � � � then
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Ydi� 
 � and the cooperativity implied by ����
� is negative� Let us con�

sider the relationship between positive cooperativity and sigmoidal�
ity� Example� Show that the comparison method of ������ and ������

implies that if the graph of Yth�S� is sigmoidal for small S then coopera�
tivity is positive� Solution� From the de�nition ������ and the facts that
Yth and S��Kth�S� are both zero at S 
 �� and that both have the same
derivative ���Kth� at S 
 �� it follows from the Taylor approximation
�Appendix �� that

Ydi��S� 	

�
d�Yth
dS�

jS�� �
�

Kth

S�

�

�
� �����a�

where we have used ������ when S 
 �� When �d�Yth�ds
�� � � for S 
 � then

Ydi� � � and cooperativity is positive� Note d�Ydi��dS
� � � when S is small�

and the graph of Y is concave upward for small S� �Here we use the theorem

that if a continuous function of S is positive at a point S� then it is positive

when S is su�ciently near S��� Thus sigmoidality implies positive cooperativity

in binding� but the converse is not true� That the converse need not be
true is illustrated by the example of ������ that we have been studying� Here
d�Y�dS� � � for Y � � if and only if � � ��� �and d�Y�dS� is always negative
for large S�� remember that the weaker condition � � 
 implies positive
cooperativity� Cooperativity in enzyme action The comparison method

of ������ and ������ is also suitable for examining enzyme cooperativity� Here�
instead of the binding fraction Y one considers the reaction velocity V � The
constant Kth of ������ is replaced by Km
th� the e�ective Michaelis constant
at low substrate levels� Thus for enzyme cooperativity one examines

Vdi��S� � Vth�S�� S

Km
th � S
�����b�

and makes the de�nitions

Vdi��S� � � for small S� positive cooperativity �

Vdi��S� � � for small S� negative cooperativity �
�����c�

If this method is applied to case ���
�� of enzyme�substrate interaction� it is
found �Exercise �� that cooperativity is positive �negative� if

� � ���� � �� � �����d�
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We have here a particular case of the rule that positive cooperativity
implies sigmoidality� The condition for the former� � � ��� indeed implies
�����d�� The MWC theory of cooperativity There are several theories

that can account for the appearance of cooperativity in binding and enzyme
activity� Perhaps the earliest� and still in intensive use� is the �MWC the�
ory
 of Monod� Wyman and Changeaux ����� The MWC approach o�ers an
alternative to the theory based on the scheme of ���
�� We now sketch the
MWC theory� with details left to Exercises� In the course of our analysis we
encounter a major pillar of kinetics� the principle of microscopic reversibil�
ity� As will be seen� the reason why the MWC theory works is somewhat
subtle� Once again� we restrict ourselves for simplicity to dimers� We will
consider the binding of a ligand S to a protein� and we will calculate the
fraction of sites that are bound at steady state� It will prove easy to general�
ize our results to the MWC theory of cooperativity for enzymes� According
to MWC� each monomer can exist in one of two con�gurations� These are
termed R �for �relaxed
� and T �for �tight
� in accord with the assumption
that binding to the R con�guration is of higher a�nity than binding to the T
con�guration� MWC postulate that spontaneous concerted transitions
characterize shifts between dimer conformations� in that either both states
are R or both are T � �In the model of Fig� ��
�� concerted transitions also
occur� but only when they are induced by substrate binding or dissociation��
Figure ��
� depicts the various states of the dimer� For example� Rj is an RR
dimer with j sites bound with S� The kinetic coe�cients are given� Note
the statistical coe�cients � when two sites are available for the transition
in question� For the moment we will assume that the dashed arrows can be
ignored � Assuming that these transitions are negligible greatly simpli�es the
calculations� Exercise � requests the reader to �ll in the omitted details of the
following derivation� We �rst write out the kinetic equations corresponding
to the scheme of Fig� ��
� 	 ignoring the dashed arrows� We will consider
only the steady state version of these equations� �Our derivation is also ap�
propriate for quasi�steady state situations where the substrate concentration
changes su�ciently slowly�� Setting the time rates of change equal to zero�
and introducing the dimensionless parameters

K � k�
k�

� M �
m�

m�

� L �
b

f
����
a� b� c�
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R�

SR� S T�

S SR�

R T

f

b

k�S �k�

�m�S m�

m�S �m�

b�

f�

f�

b�

�k�S k�

T�

T�S S

Figure ��
�� Diagram of the MWC model for binding to a dimer� There are

concerted transitions between situations where both subunits are in the �relaxed�

state R and situations where both subunits are in the �tense� state T � ��g���lb��

one obtains

R� �
SR�

�K
� R� �

�SR�

K
�

T� �
ST�
�M

� T� �
�ST�
M

� T� � R�L �

�����a� e�

For example �����a� comes from the steady state version of

dR�

dt
� ��k�R� � k�SR� �

It is important to obtain the equations in the order given in ������� for
then already determined steady state conditions provide simpli�cations for
succeeding steady state conditions� For example� given that dR��dt � �� the
condition for dR��dt � � is simply �k�SR� � k�R�� There is a conservation
law

R� �R� �R� � T� � T� � T� � P � ������
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where P is the total protein concentration� With this� one obtains from
������

R� �
P

�
 � s�� � L�
 � 
s��
� s �

S

K
� 
 �

K

M
� ������

Formulas for R�� R�� T�� T� and T� can now be obtained straighforwardly
from ������� Note that because R is of higher a�nity than T � 
 � 
� The
occupancy fraction is de�ned by

Y � R� � �R� � T� � �T�
�P

� ������

A little further calculation yields the result we seek

Y �s� �
s�
 � s� � L
s�
 � 
s�

�
 � s�� � L�
 � 
s��
� ������

Detailed balance�microscopic reversibility Before examining the consequences

of ������ let us consider the possibility that the dashed transitions in Fig� ��
��
heretofore ignored� are in fact present� For general values of the transition
rates� the problem of determining steady states would now be far more dif�
�cult� However from thermodynamic considerations there follows the ex�
tremely important principle of detailed balance� also known as the prin�
ciple of microscopic reversibility� �See Hill �
���� This principle requires
that for every closed loop in a kinetic scheme the product of rate constants
in the clockwise direction around the loop must equal the product of the rate
constants in the counterclockwise direction� For the top loop in Fig� ��
� this
gives

b�m�f��k�s� � f�k�b��m�s� � �����a�

From �����a� and the comparable result for the bottom loop one �nds for�
mulae for the equilibrium constants of the �extra
 transitions

b�
f�

�
KL

M
�

b�
f�

�
b�
f�

K

M
�
K�L

M�
� �����b� c�

�There is also a �big loop
� a circuit including R�� R�� R�� T�� T�� T��
This big loop is in a sense the �sum
 of the top loop and the bottom
loop� By Exercise ��d�� microscopic reversibility for the big loop is as�
sured by �������� Let us examine the principle of microscopic reversibility
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a little more closely� This thermodynamic principle asserts that at equil�
brium the transition between any two states occurs with equal frequency
in either direction� Thus� for example� at equilibrium the scheme

A
k�����
k��

B ������

implies
k�A 
 k��B � ������

But if in addition to ������ there are also the transitions

B
k�����
k��

C � C
k�����
k��

A � ���	�a� b�

as in the diagram
C

k�� 
� k� k� �
 k��

A
k�����
k��

B
���	��

then there is an additional indirect way for a molecule to shift from A to
B� via C� At equilibrium the rates of the indirect transitions

A
k��
�� C

k��
�� B and B

k��� C
k��� A ���	��

must also be in balance�

k��Ak��C 
 k�Bk�C � ���	��

Together� ���	�� and ������ imply

k��k��
k�k�



B

A



k�
k��

� i�e� k��k��k�� 
 k�k�k� � ���		a� b�

Equation ���		b� illustrates the consequences of microscopic reversibility� on the

closed �triangle� of transitions among states A� B� and C� We note that in

�far from equilibrium
 cases where energy is consumed� approximate reac�
tion schemes exist wherein the principle of detailed balance appears to be
violated �Segel et al� ������ although such schemes must be employed with
considerable care �Walz and Caplan ���� ����� Let us now reconsider the
steady state calculations for the scheme of Fig� ��
�� this time including the
�extra
 transitions indicated by the dashed arrows� In the equations for
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dR��dt and dT��dt� and dR��dt and dT��dt� there now appear the additional
terms� respectively

f�T� � b�R� and f�T� � b�R� � ������

However� as the reader can verify� if the steady state expressions for R�� T�
and R�� T� are employed then the microscopic reversibility conditions ������
imply that the additional terms in ������ in fact equal zero �Exercise ��c���
In general because of microscopic reversibility extra transitions such as the
dashed transitions in Fig� ��
� do not change the steady state results� On
the other hand� kinetic results are dependent on the additional forward and
backward rate constants� Thus the kinetics provide an opportunity to de�
termine these constants 	 whose ratio is �xed by �����b� and analogues of
�����b� for more complex kinetic schemes �see Hayashi and Sakamoto �
���
Chapter ��� Suitable versions of the results of the previous paragraph are
true in general� That is� for steady state calculations� pruning of complex
kinetic diagrams is permitted by the �loop relations
 of the principle of mi�
croscopic reversibility �which require the vanishing of terms such as those in
�������� As we have seen� for the case of Fig� ��
� the loop relations allow
the removal of the dashed arrows in the full diagram� Hence the equilibrium
relations ������ are valid in spite of the complexity of the full diagram in
Fig� ��
�� There is a mathematical subtlety connected with the proof that the

�extra� transitions do not change the steady state results� Consider the steady

state equations with the extra transitions� We have seen that one solution of these

equations is the solution obtained when the extra transitions are ignored� But we

expect that equations of chemical kinetics such as those encountered here have a

unique solution� If so� the one solution that we have obtained is the only solution�

Why do we expect a unique solution to the steady�state version of the kinetic equa�

tions for the transition between n states� Because for �xed S the n�� steady�state

rate equations plus a conservation law comprise a system of linear inhomogeneous

equations� �Generically� such equations have a unique solution� Problems arise

only when the determinant of the coe�cients is non�zero� Of course� this determi�

nant condition must be checked to obtain a rigorous result� MWC cooperativity

for enzymes We record here the counterpart of ������ for an n�mer�

Y �
s�
 � s�n�� � L
s�
 � 
s�n��

�
 � s�n � L�
 � 
s�n
� ������
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Next we point out that it is easy to generalize our MWC results so that they
apply to the velocity of an enzyme�catalyzed reaction� Providing that we
make quasi steady�state assumptions on all the various complexes� adding
steps for the production of product �at rate k

R
from R and k

T
from T �

merely generalizes the dissociation constants to the appropriate Michaelis
constants� The statistical factors in the numerator of formula ������ for
the occupancy fraction Y are precisely those needed to calculate the rate of
product formation when several sites on a complex are bound� Let us change
P � the total amount of protein� to E� the total amount of enzyme� As the
reader is requested to verify in Exercise ��a�� by appropriately altering ������
one thus obtains for the �dimensional� reaction velocity V

V �
�E

�
k
R
sm�
 � sm� � k

T

sm�
 � 
sm�

�
�
 � sm�� � L�
 � 
sm��

� ������

where

sm � S

Km
� Km � k� � k

R

k�
� Mm � m� � k

T

m�
� 
 � Km

Mm
�

�����a� d�
Discussion What is the nature of the cooperativity a�orded by the MWC

theory for binding� To use the �comparison method
� we note that for the
binding fraction Y de�ned in ������ we have

Y 
 s�
 � L
�


 � L
for small s � ������

We thus examine

Ydi� � s�
 � s�n�� � L
s�
 � 
s�n��

�
 � s�n � L�
 � 
s�n
� s

��L�
��L

� s
� ������

It turns out that Ydi� � � �Exercise ��b��� Thus the MWC theory can account
for positive cooperativity in binding but not negative cooperativity� Let us
now tackle the question of why the MWC model yields �positive� coopera�
tivity� In doing so it is especially instructive to consider the special case of
������ wherein 
 approaches zero� Small 
 means M 	 K� i�e� the a�nity
of binding to a T site is much less than the a�nity of binding to an R site�
In the limit 
�� there is no binding to the T site at all� or in other words
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R�

SR�

S SR�

f

b

k�S �k�

�k�S k�

T�

Figure ��
�� Diagram of the MWC model for binding to a dimer � for exclusive

binding to the R state� ��g���alb��

there is exclusive binding to the R state �Fig ��
��� In this situation ������
becomes

Y
R
�

s�
 � s�

L � �
 � s��
�

S�S �K�

K�L� �S �K��
� ����
�

Applying the comparison method to ����
� we �nd

Y di� �
S�S �K�

K�L� �S �K��
� S

K�L � 
� � S

i�e�

Y di� �
S�KL

�K�L� �S �K����K�L� 
� � S�
� � � ������

Cooperativity is thus positive� This is expected� ������ is a special case of
������� for which the comparison method always gives positive cooperativity�
But how can any form of positive cooperativity arise in a situation such as
this where all of the binding is to the R state� It is certainly not true here�
as it can be for the model of Fig� ��
�� that positive cooperativity arises
because bindings at higher substrate levels occur more frequently at high
a�nity sites� When L � 
� the second derivative of Y

R
is positive at S � �
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�and hence for su�ciently small positive S�� since �Exercise 
�a�

when S � ��
d�Y

R

dS�
�

��L� 
�K�

�L� 
��
� �����a� b�

Consequently� not only is there cooperativity for L � 
� but for small S there
is an increase in �Y��S 	 and hence sigmoidality� Let us attempt to discern
what the mechanism can be that can so strongly overcome the tendency of
saturation so as to increase �Y��S as S increases� The �rst point to bear
in mind is that adding substrate decreases the concentration of T�� To help
see this intuitively� note that as S�� all the sites will become bound� so
that R��P and all the other concentrations approach zero �Exercise 
�b��
In particular� T���� i�e� all T states become R states� Why will adding
substrate induce a T�R transition� since the rate constants that govern
transitions into and out of state T�� namely b and f � are independent of S�
The reason is that the addition of substrate will convert R� into R�� The
consequent decrease of R� decreases the transition rate bR� into T�� Hence�
at steady state� there must be a lower value of the balancing transition rate
fT� out of T�� i�e� T� must decrease� �Kineticists attribute the phenomenon
just described to a shift in equilbrium from R� toward R� that is caused
by the addition of substrate� This in turn shifts the T� � R

O
equilbrium

toward R��� The decrease in T� concentration contributes to an increase in
R� concentration� and every T��R� transition contributes two new possible
binding sites� But adding substrate not only adds possible binding sites by
means of the T��R� transition but also decreases binding sites by means of
the transitions R��R� and R��R�� Which e�ect dominates� To see� let us
examine the change as S increases in the total number of free sites available
for binding� This number is �R� � R�� We �nd from ������ and ������ that
�when 
 � ��

�R� �R� �
�PK�K � S�

K�L � �K � S��
� ������

and
d��R� �R��

dS
�

�PK�K�L� �K � S���

�K�L � �K � S����
� ������

Thus as S increases the number of available binding sites �R��R� increases
�sigmoidality� as long as �K � S�� � K�L� i�e� as long as S � K

p
L� 


�provided L � 
�� Now we see the source of sigmoidality� If L � 
 and if S is
su�ciently low� then adding more S can induce enough T��R� transitions
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to outweigh the transitions R��R� and R��R�� Adding substrate causes
a net creation of new binding sites when non�bindable T� molecules shift
conformation to T�� Sigmoidality implies positive cooperativity� so that the
above discussion accounts for positive cooperativity when L � 
� When L �

� adding substrate S �at low levels of S� does not lead to net creation of new
binding sites� Nonetheless� for all values of L the T��R� transition slows the
saturating e�ect of transitions R��R� and R��R�� thereby bringing about
positive cooperativity for all �positive� values of L� Let us summarize some
salient conclusions that can be gleaned from our study of two types of model
for positive cooperativity� If binding sites operate independently� increasing
the substrate concentration will decrease the number of sites available for
further binding �saturation�� until all sites are bound �Michaelaen binding��
We have identi�ed two ways to make this saturation process occur more
slowly than it does for Michaelean binding �positive cooperativity�� One
possibility� illustrated by the scheme in Fig� ��
�� is that binding to one
site of a multimer can induce a conformational change that increases the
a�nity of binding to the remaining unbound states of the multimer� Another
possibility� illustrated by the MWC model with exclusive binding to the R
state� is that binding can indirectly favor transitions that add to the number
of free binding sites� �The general MWC model combines both sources of
cooperativity�� Hill plots for estimating cooperativity Here is a rough

and ready way to arrive at a procedure often used by kineticists to represent�
estimate and compare cooperativities� Assume that the fraction of bound
sites is given by

Y �
Sn

Kn � Sn
� ������

As seen in Fig� ��
�� this Hill equation for Y exhibits saturation toward
Y � 
 �all sites bound� for large S� with half�saturation at S � K� What
about cooperativity� Figure ��
� shows that when n �� 
� the behavior of
������ for small S is completely di�erent from the Michaelean case n � 
�
Pursuing this matter analyticaly� one sees from ������ that when S � K�
Y 
 �S�K�n� As S � �� dY�dS � � if n � 
 and dY�dS � � for
n � 
� Hence we cannot use our previous characterization of cooperativity
that compares Y with the Michaelean curve that has the same slope for small
S� Nonetheless� it will be seen that binding according to the Hill equation can
be said to exhibit positive or negative cooperativity� depending on whether n
is greater or less than unity� Let us calculate the �rst and second derivatives
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as the initial step in understanding the behavior of ������� We �nd

dY

dS
�

nKnSn��

�Kn � Sn��
�

d�Y

dS�
�
nKn��n� 
�KnSn�� � �n� 
�S�n���

�Kn � Sn��
�

�����a� b�
There are signi�cant di�erences in behavior when n � 
 and when n � 
�
When n � 
 the second derivative changes sign from positive to negative as S
increases �Exercise 
�c�� Thus at smaller values of S the graph of Y is concave
upward 	 the slope increases as S increases� We consequently identify n � 

with sigmoidality and hence with positive cooperativity � for there is an increase
in e�ective binding a�nity as S increases that is strong enough to outweigh
the decrease in the number of binding sites� By contrast� when n � 
 we
see that the slope dY�dS is in�nite at S � �� there is a vertical tangent�
Moreover d�Y�dS�� �� as S��� compared to the �nite value ����K��
when n � 
� Thus for small S� when n � 
 the slope dY�dS decreases
much faster than in the Michaelean case� when the decrease in slope occurs
because of the decrease in available binding sites� This faster decrease must
be due to some sort of e�ect that makes successive bindings more di�cult�
Consequently n � 
 is identi�ed with negative cooperativity � Thus the simple
expression for Y in ������ not only saturates correctly �Y�
 as S��� but
it also exhibits behavior that one can identify with positive cooperativity
�n � 
� and negative cooperativity �n � 
�� We now go through the standard
exercise of trying to rearrange a formula so that its graph is a straight line�
Solving ������ for Sn� one obtains

Sn �
Y Kn


� Y
so that log

�
Y


� Y

�
� n logS � n logK � ������

From ������ it follows that logarithmic plot of log
�
Y��
�Y �

�
vs� logS should

yield a straight line with slope n� This is the Hill plot� The Hill number
is de�ned by

n
H
�
d log�Y��
� Y ��

d logS
� �����a�

Alternatively �Exercise 

� Appendix ��

n
H
�

S

Y �
� Y �

dY

dS
� �����b�

It is common practice to make a Hill plot of log�Y��
�Y �� vs logS when
confronted with new experimental results concerning Y �S�� The degree of
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cooperativity is typically identi�ed with the maximal slope� Of course if the
mechanism for cooperativity were known then parameters could be �t with
the appropriate model� The advantage of the Hill plot is that cooperativity
can be revealed without commitment to any particular model� Often mod�
elers �need
 to assume that some little understood process is cooperative in
order to produce an observed e�ect� We see examples of this in Chapters �
and � where some form of cooperativity is assumed in order that models
of physiological systems exhibit observed oscillating and or excitable behav�
ior� Here too� in the absence of knowledge concerning mechanism the simple
phenomenological form of the Hill equation is often used to represent the
required cooperativity� One more point needs to be made� Our investiga�
tions in this section can be regarded as exploring non�Michaelean molecular
stimulus�response curves� where the stimulus is the presence of some molecule
and the response is protein binding or product formation via enzyme catal�
ysis� We have seen how some form of cooperative binding of the stimulating
molecule can explain the observations� There are however� other molecu�
lar stimulus�response curves that exhibit a non�Michaelean character in the
absence of any cooperative binding� An example is binding of neurotrans�
mitter to post�synaptic receptors� These receptors are typically multimers
that function as ion channels� To take a speci�c case� the receptor of the
transmitter acetylcholine has two binding sites� When both sites bind trans�
mitter� then the receptor�channel switches to an open state� permitting the
in�ux of calcium� Binding is not cooperative� but the response curve exhibits
sigmoidality� �MORE� Characterizing cooperativity in �
�mer chaperones As

more experimental information becomes available about protein binding and
enzyme action� more sophisticated modeling becomes required� One good
example of strong interaction between detailed modeling and careful experi�
mental work concerns the GroEL�GroES system for facilitating protein fold�
ing in bacteria� �Similar �chaperone
 systems are present in higher organ�
isms�� GroEL contains 
� identical subunits that form a double�heptameric
�sandwich
� GroES� a heptamer of identical subunits� modulates the activity
of GroEL� Yifrach and Horovitz ���� developed a model for GroEL wherein
each heptameric ring follows the MWC model in an equilibrium between T
and R states� Between the rings there are more general transitions between
the TT � TR� and RR states� These transitions are assumed to occur via the
�KNF theory
 of Koshland� Nemethy and Filmer ����� a generalization of the
MWC theory� Theoretical and experimental work by Inbar and Horovitz �
��
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demonstrated how groES promotes the T to R transition in GroEL� Other
experiments have directly demonstrated the concerted transitions postulated
for the heptameric rings ����� Inbar and Horovitz �
�� illustrate an interest�
ing methodology� the characterization of a satisfactory �t between theory
and experiment by a random distribution about zero of the di�erences be�
tween the theory and and many measurements of the initial velocity of ATP
hydrolysis by GroEL as a function of ATP concentration� �Since there is no
bias in comparing theory and experiment� it is reasonable to assume that the
error is not due to a de�cient theory�� Note that this work is yet another
illustration of how theories for macroscopic concentration variables can give
information on microscopic events� i�e� on molecular mechanism� See White
et al� ��
� for characterization via electron cryo�microscopy of the di�erent
molecular states predicted by the macroscopic theory�

Exercises


� �a� Write down the substrate�product conservation law for scheme ���
�
and use this law to check whether the equations ����� have been written
correctly�
�Hint� Make sure that you don�t forget a factor of ��
 in one of the
terms in the conservation law��
�b� Verify ����� and ���
���
�c� Show that in fact it is not a �coincidence
 that ���
�� is a special
case of ���
�� for � � 
�
�d� Verify that the kinetic scheme ���
�� implies that the fraction of F
molecules bound at steady state is given by ���
���
�e� From ���
��� express 
�V as a function of 
�S �Lineweaver�Burk
plot�� Sketch the graph when � � 
�

�� �a� Show from ���
�� that there is at most one positive value of s at
which dY�ds vanishes� What is the geometric signi�cance of this result�
�b� Is it possible that the second derivative de�ned in ���
�� has three
sign changes� If so� sketch the corresponding graph of V �s��
�Hint� Use �Descartes� rule of signs
� See for example ���� Appendix ����

�� Discuss the true maximal velocity for scheme ���
� �maximum of dP�dt
as a function of S�� �a� when � � 
� �b� when � � 
�
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�� Take the following steps toward deriving conditions for the validity of
the QSSA ������ �This problem requires knowledge of how to solve a
pair of linear ordinary di�erential equations with constant coe�cients��
�a� Find t

S
by applying ���
�a�� Use the fact that dS�dt 
 �dP�dt

when the QSSA holds�
�b� Show that determination of t

C
requires study of a certain quadratic

equation�
�c� Study the quadratic equation for �su�ciently small
 K �

m� Use Ex�
ample � of Appendix � to �nd an explicit and relatively simple ex�
pression for t

C
� Thus obtain explicit expressions for the requirement

tc � ts�

�� �a� Verify ������� ������� and �������
�b� From ������ and ������� calculate steady state values for all the
states� Show that as S��� all concentrations approach zero except
R�� which approaches P �
�c� Verify that the microscopic reversibility conditions imply that the
expressions in ������ vanish at steady state�
�d� Verify the text�s assertion concerning the �big loop
 in Fig� ��
��

�� Construct the kinetic scheme� write the relevant equations� and thereby
verify ������ for n � ��

�� �a� Verify ������ by adapting the text�s calculations of ������ with an
enzyme in mind from the beginning� That is� start with a kinetic
scheme for enzyme�product formation� write the relevant equations�
etc�
�b� Show that Ydiff of ������ is positive and thereby verify that the
MWC model always yields positive cooperativiy�
�c� Project� Discuss conditions for the validity of the quasi�steady
state assumptions that are necessary to obtain �������

�� �a� Verify �������
�b� Verify �����a�b��
�c� Sketch graphs for �����a�b� for n � 
 and for n � 
�

�� Let B� be the concentration of a molecule B when it is free �not bound�
and let B� be the concentration of a complex of B and a ligand S� The
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kinetic scheme is

B� � S
k�����
k��

B� � ������

�a� Write the equation for dB��dt� Assuming the conservation law

B� �B� � T � ����
�

where T is a constant� show that at steady state

B�

T
�

S

K � S
where K �

k��
k�

� ������

Suppose that S also binds to a molecule C such that

C� � S
������
���

C� � C� � C� � T � ������

Then there is an analogous steady state result for C��

C�

T
�

S

L� S
where L �

���
��

� ������

If a solution contains an equal concentration T of B and of C� then the
fraction of B and C that are bound to S is

Y � B� � C�

�T
�




�

�
S

K � S
�

S

L� S

�
� ������

Let Q be de�ned by

Y 
 S

Q
for small S � ������

�b� Show that

Y � S

Q � S
�

��
�
�K � L��S�

�S �K��S � L��S � �LK
L�K

�
� ������

�c� Give an intuitive explanation for the result of ������ that �negative
cooperativity
 seems to occur when S is added to an equal mixture
of B and C� Why is it biochemically �obvious
 that the right side of
������ will be zero when K � L� Figure ��
� gives the kinetic scheme
for the binding of a ligand S to a protein molecule with two binding
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sites� Each site has a �xed binding a�nity� i�e�� the kinetic coe�cients
for a given site are the same whether or not the other site is bound�

k��

k�S
A��

A��

��S ���

k��

k�S
A��

A��

�����S

S

S

S S

Figure ��
��

�d� Write the equations for dA���dt and dA���dt� By adding these
equations� obtain a di�erential equation that involves B� and B� where

B� � A�� � A�� � B� � A�� � A�� � ������

If you did the calculations correctly� you will get the same equation for
dB��dt as you got in part �a�� Why is this result �obvious
� What
can you conclude about the type of cooperativity that will be seen for
binding of a ligand to a protein with two binding sites of di�erent �xed
a�nities�


�� What intuitive sense can be made of the relation between sigmoidality
and cooperativity for ���
���
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Libuk��
 � Feb� ��� ����


 Ultrasensitivity in covalent protein modi�cation

Introduction This section can be regarded as continuing the exploration of

cooperativity that was begun in Section �� The focus here is the regula�
tion of the activity of various proteins by covalent binding of a regulatory
group and subsequent alteration in the activity of the protein� Covalent
modi�cation has been shown to provide control in a variety of activities in�
cluding metabolism� sensory transduction� muscular contraction and protein
synthesis� The most widely occurring type of covalent modi�cation involves
binding or removal of a phosphate group� The resulting phosphorylation
and dephosphorylation are catalyzed by enzymes respectively called ki�
nases and phosphatases� In bacteria� regulation can be mediated by a
methyl group� Here the corresponding enzymes are methyltransferase and
methylesterase� Other groups can also be involved� but in most of our dis�
cussion we will refer to phosphorylation for de�niteness� It appears that in
many instances evolution has provided controls that are very precise in that
processes can be almost completely �turned on
 or �turned o�
 by small
changes in the concentration of some e�ector molecule� �As we shall see
later �REF�� such switch�like behavior can have far reaching consequences
in addition to a�ording precision of control�� Cooperativity of the type we
discussed in Section � can provide a fairly steep increase in enzyme activity
in response to a moderate increase in substrate level� As we saw� analogous
increases in activity are obtained when ligands bind to multi�subunit protein
e�ector molecules� We demonstrate here that covalent modi�cation can in
principle provide arbitrarily steep switching� This occurs when the kinases
and the phosphotases operate with �zero order kinetics
� By this is meant
that the velocity of the reaction is proportional to the zeroth�power of the
substrate 	 i�e� the reaction velocity is independent of the substrate con�
centration� �This occurs when the enzyme is saturated� See for example Eq�
���
�a� when S 	 Km�� Consequently� the phenomenon was termed zero
order ultra�sensitivity by its discoverers Goldbeter and Koshland �
�� 
���
Huang and Ferrell �
�� and Ferrell ��� have provided evidence that zero order
ultra�sensitivity indeed �nds application in biological control� The context
is the mitogen�activated protein �MAP� cascade� a controller that plays im�
portant roles in living systems ranging from protists to animals� Another
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reference reporting experimental con�rmation that zero order ultrasensitiv�
ity occurs in biological systems is that of LaPorte and Koshland ����� Here is
how one of the authors describes how the idea of zero order ultra�sensitivity
arose �A� Goldbeter� private communication�� Dan Koshland and I were work�

ing on a simple model of a bacterial chemoreceptor which undergoes methylation

and demethylation� The parameters were the amount of receptor� and the Km

and Vmax �including the total amount� of each of the two enzymes� We derived

the expression for the steady state amount of methylated receptor� and found by

numerical simulations� to our amazement� that this fraction could sometimes vary

from less than � per cent to more than �� per cent upon slightly varying the natu�

ral control parameter which is the ratio of maximum rates of methyltransferase to

methylesterase� We immediately realized that such a switch�like behavior� which

occured when the Km�s of the enzymes were lower than the total amount of re�

ceptor �i�e� the enzymes operated under saturated conditions� could be of general

signi�cance for regulation through covalent modi�cation of proteins� With this
motivation� let us examine Goldbeter and Koshland�s �
�� model for covalent
modi�cation� We shall follow their line of development with a few minor al�
terations and the addition of some interpretation and some analytical results�
Formulation Let W denote the concentration of the unmodi�ed protein� and

W � the concentration of the modi�ed form� The respective converter en�
zymes �e�g� kinase and phosphatase� will be denoted by E and F � with C
and C� denoting the concentrations of the corresponding complexes� This
gives the kinetic scheme

W � E
f����
b

C
k�� W � � E � ���
a�

W � � F
f�����
b�

C� k��� W � F � ���
b�

with the corresponding equations

dW�dt � �fWE � bC � k�C� � ����a�

dC�dt � fWE � �b� k�C � ����b�

dW ��dt � �f �W �F � b�C� � kC � ����c�

dC��dt � f �W �F � �b� � k��C� � ����d�
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Conservation laws for the enzymes are

E
T
� E � C � ����a�

F
T
� F � C� � ����b�

and for the protein
W

T
� W �W � � C � C� � ����a�

An important simpli�cation is the assumption that various other sub�
strates and products that are involved in the modi�cation�demodi�cation
process are not appreciably altered during this process and therefore can be
regarded as constants� These constants appear implicitly in the rate con�
stants of ������ The details of the kinase and phosphotase action are still being

worked out� It has long been known that the phosphate group for the phosphory�

lation comes from the energy�rich molecule ATP� It now appears that the molecule

to be phosphorylated can �rst form a complex with the kinase� to be joined later

by an ATP molecule or� alternatively� the �rst step to the ternary complex can

be the binding of ATP to the kinase �Shaltiel� PNAS� Jan ������ The scheme

����� of course does not capture such details� but the essence of the phenomenon

under investigation can be explored via this scheme� Another simpli�cation is

the assumption that the concentration of the total amount of protein� W
T
�

is large compared to the enzyme concentrations E
T
and F

T
� Since C � E

T
�

C� � F
T
�by ������ ����a� can be approximated by

W
T
� W �W � � ����b�

We now shall examine conditions at steady state� Consequently� until further
notice the left sides of equations ����a�d� will be regarded as zero�
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Steady�state solution By adding ����a� and ����b� �or ����b� and ����c�� we

obtain
k�C� � kC � �����

Employing ����� and ����b� we obtain from ����a� and ����b� respectively
�Exercise 
�

C

E
T

�

�m

K
E
� 
�m

� m �
�C

E
T

�m�K
F
� � ����a� b�

Here

m � W �

W
T

�����

denotes the fraction of modi�ed protein� the analysis of which is the goal of
our theory� �Keep in mind that m � 
� which is implied by ����a��� We have
employed the abreviations

K
E
� K

ME

W
T

� K
F
� K

MF

W
T

� K
ME
� b� k

f
� K

MF
� b� � k�

f �
� �����

Note that K
E
and K

F
are the ratios of the respective Michaelis constants for

the two enzymes to the total protein concentration W
T
� Another parameter

in ����� is the ratio � of the maximum velocities� V
E

and V
F
� of the two

enzymes�

� � V
E

V
F

� V
E
� kE

T
� V

F
� k�F

T
� ����a� b� c�

We will regard the fraction of modi�ed protein m as the quantity to be
controlled and the ratio � as the instrument of control� Modifying the ratio
E
T
�F

T
of phosphotase to kinase is a biologically straightforward way to alter

�� Normally there is a stimulus s that modi�es �� s might be a substrate
of some reaction� a hormone or a neurotransmitter� As we discuss further
below� the overall sensitivity of control is compounded of the sensitivity of
m to � and the sensitivity of � to s� If we now employ ����a� to replace
C�E

T
in ����b� we obtain the following equation relating � to the fraction

of modi�ed protein m�

� �
m�K

E
� 
�m�

�m �K
F
��
�m�

� ���
��
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Upon rearrangement ���
�� becomes �Exercise 
�

��� 
�m� �m

�

� � �K

F

	K
E

K
F

� �

�
�K

F
� � � � ���

�

The quadratic equation ���

� for m can be solved explicitly and the
results graphed for various values of the parameters K

E
� K

F
and �� �Exactly

one of the two roots satis�es the biological constraints � � m � 
� See
Exercise ��� This was done by Goldbeter and Koshland �
��� They found
that as a function of �� m increased monotonically from � to 
� When K

E

andK
F
were of order unity� the increase was gradual� When bothK

E
andK

F

were small �for example K
E
� K

F
� ���
� the increase was very sharp� and

con�ned entirely to the vicinity of � � 
 ��ultrasensitivity
�� See Fig� ��
��
From ����� we see that the assumed smallness of K

E
and K

F
means that

when W � and W are of magnitude W
T
� both �substrate
 concentrations W

and W � are large compared to the relevant Michaelis constants K
ME

and
K
MF

� Thus both enzymes are in the saturating range ��zero order
�� As
a quantitative measure of steepness in transition Goldbeter and Koshland
�
�� employed the ratio R of the value of � that gives m � ��� �protein ��#
modi�ed� to the value of � that gives m � ��
� From ���
��

R �
�
�K

E
� ��
��K

F
� ��
�

�K
E
� �����K

F
� ����

� ���
��

When K
E
and K

F
are both large compared to unity� R � �
� as in ordinary

Michaelean binding �Exercise ��� When K
E
and K

F
are both small compared

to ��
� however� R � 
� i�e� only a tiny change in the ratio V
E
�V

F
�turns

on
 the protein� Explaining the ultrasensitivity Having observed the striking

phenomenon of zero�order ultrasensitivity� the question obviously arises� How
can we explain it� In answering this question� it turns out to be useful to
return to the time�varying equations� and thereby to see how the solution
evolves to the step�like steady states shown in Fig� ��
� when K

E
and K

F
are

small compared to unity� We �rst observe that the assumption that the total
protein concentration W

T
is large compared to both enzyme concentrations

suggests that �after a transient� quasi�steady state conditions will obtain�
Provided that the �substrate
 concentrations W and W � are of magnitude
W

T
� this follows from the su�cient condition of Section � for quasi�steady
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state� �enzyme concentration � substrate concentration
� One or two lines
of algebra show that the resulting approximation

dC

dt

 � �

dC�

dt

 � ���
�a� b�

simpli�es ����a� and ����c� to

dW

dt
� k�C� � kC �

dW �

dt
� kC � k�C� � ���
�a� b�

Under saturating conditions� only a small fraction of the enzymes will be
free� most of E and F will be complexed with W or W �� respectively� Hence
it is to be expected from the conservation laws ����� that C � E

T
� C� � F

T

�see Exercise 
�b� for a more formal derivation of this approximation�� By
����b�c�� ���
�� is thus approximated by

dW

dt

 V

F
� V

E
�

dW �

dt

 V

E�
V
F
� ���
�a� b�

Note that the right hand sides in ���
�� are constants� The key equations
���
�� can be represented by the special kinetic diagram in Fig� ����A� The
unusually heavy arrows are employed to emphasize the fact that saturated
enzymes are responsible for the interchange �catalyzed by enzyme E� between
the substrate W and its product W �� and the reverse interchange �catalyzed
by enzyme F � between the substrate W � and the product W � The con�
sequences of ���
�a� are diagrammed in Fig� ����B�C� When V

F
� V

E
� W

increases �at a constant rate V
F
� V

E
�� When V

F
� V

E
� W decreases� No

valid conclusions can be drawn from the �saturated equation
 ���
�a� in the
shaded areas of the diagram� In these areas� W � W

T
� or W 
 W

T
so

that W � � W
T
� When W � W

T
� then enzyme E is not saturated and

when W � � W
T
� then enzyme F is not saturated� Ignoring the shaded ar�

eas where no conclusions can be drawn� we can conclude from Figs� ����B
and ����C that the steady state dependence of W�W

T
on V

E
�V

F
is as shown

in Fig� ����D 	 a jump from W�W
T

 
 to W�W

T
� 
 at V

E
�V

F

 
�

There is of course a corresponding result for W ��W
T
� Thus the essence of

zero�order ultra�sensitivity can be deduced from the �saturated equations

���
��� a rapid switch from W � � W

T
to W � 
 W

T
as V

E
�V

F
passes through

unity� The qualitative reasoning based on ���
�� is of course completely in
accord with the exact results that were obtained from ���

�� A shaded area
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of uncertainty appears in Fig� ����D when � 
 
� This is because ���
��
is not expected to be valid when V

E
� V

F
� for then the small right side of

���
�� is expected to be of the same magnitude as the small errors made in
our various aproximations� Analytic approximations As will now be shown�

it is rather easy to derive analytically the qualitative behavior that has been
observed� The approach can be used for more complex models when the
quadratic ���

� is replaced by equations that can not be solved explicitly�
For simplicity let us consider ���

� in the special case where

K
E
� K

F
� K � ���
��

Since rapid changes are expected near � � 
 we write

� � 
 � � � ���
��

With the notation of ���
�� and ���
��� the quadratic ���

� becomes

�m� �m
�
K�� � ��� �

��K�
 � �� � � � ���
��

Of most interest will be situations wherein � � 
� We now derive

analytic approximations for appropriate solutions m of ������� It is when
K � � that ultrasensitivity occurs� Let us therefore approximate ������
by setting K 
 �� We obtain

�m� � �m 
 � � i�e� m 
 � or m 
 � � ������

 From Fig� ���� we expect m 
 � to be an appropriate approximation for
certain ranges of � and m 
 � for others� There is as yet no clue of this
behavior� Let us therefore seek a better approximation� To do this� we
shall calculate dm�dK and use the Taylor approximation

m�K� 
 m��� �
dm

dK k��
K � � � � � ������

�Reference�� Using an approach that is often helpful� we calculate the

required derivative directly from the governing equation ������� We di�er�
entiate both sides with respect to K� The right side of ������ is zero� so
its derivative is zero� We thus obtain

��m
dm

dK
�
dm

dK

�
K�� � ��� �

�
�m�� � ��� �� � �� 
 � �����a�
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which yields
dm

dK K��



� � �� �� � ��m���

�
�
�m���� �

� � �����b�

Hence

when m��� 
 ��
dm

dK K��

 �

� � �

�
� �����a�

when m��� 
 ��
dm

dK K��

 �

�

�
� �����b�

 From the Taylor approximation ������� for small K we thus have

m 	
�� � �

�

�
K � � � � � m 	 ��

��
�

�
K � � � � � �����a� b�

If � � � in �����a� then m 
 �� which is inadmissible since m is the ratio of

concentrations� Similarly if � 
 � in �����b� then m � � � which is impossible by

the conservation law ���	b�� Thus �����a� holds for � 
 � and �����b� for � � ��

But however smallK is� neither formula can hold when � is very small� To be more

precise� for �xed small K the approximations ������ cease to satisfy the constraint

� 
 m 
 � when � is smaller than K� This already gives us the overall picture

of the function m� it must have a small value approximated by �����a� when �

is negative �V
E

 V

F
� and a value near unity approximated by �����b� when �

is positive �V
E
� V

F
�� There is a rapid increase from m 	 � to m 	 � near

� 
 � �V
E
	 V

F
�� To estimate the rapidity of the transition near � � 
 let us

consider small values of �� for arbitrary values of K� From ���
��

when � � � � m �



�
�

Since � � 
 � �� dm�d� � dm�d�� When � � 
� � � �� Thus to �nd
the steepness of the graph of m given implicitly in ���
��� we calculate the
derivative with respect to � from ���
�� and then set � � ��

�m�
dm

d�
�m� �

dm

d�

�
K�� � ��� �

�
�m�K � 
��K � � � �����a�

dm

d� ���
�
��

�
� �

�
�K � 
� �K

�K
�


 � �K

�K
� �����b�

Equivalently
dm

d� ���
�


 � �K

�K
� ������
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According to the present simple model� then� the sensitivity of the ratio m to
a change in parameter � �as measured by the derivative� can be arbitrarily
large if K is su�ciently small� If � itself is a function of a stimulus s then
the overall sensitivity is given by

dm

ds
�

dm

d�

d�

ds
� ������

The sensitivity factor d��ds can thus increase or decrease the overall
sensitivity dm�ds� See Goldbeter and Koshland �
�� or Exercise � for
examples of the role of d��ds� Example� Use ����	b� to provide a

check of the calculations that were used to obtain Fig� ����� compare the
computed slope at � 
 � forK

E

 K

F

 � with the calculated slope of the

�gure� Solution� In the original graph� the horizontal axis was labelled

at equal intervals with powers of ��� a logarithmic scale was employed�
This means that in fact m has been plotted as a function of log �� where
by �log� we mean log��� �log to the base ���� Di�erent labelling of the
horizontal axis is required when m is regarded as a function of log�� This
has been added to the graph� below the original labelling� A straight line
has been drawn by eye to be tangent to the curve for K

E

 K

F

 � at

� 
 �� The slope of this line is the ratio of the �rise� to the �run�� This
can be estimated from the right triangle of which the tangent line is the
hypotenuse� A ruler gives the ratio �rise!run� � but this is the wrong
ratio" A correction must be made to take account of the fact that di�erent
units are used for the vertical and horizontal axes� When this is done� a
value of approximately 
!� is obtained for the slope�

dm

d log � ���
	 ���� � ������

By chain rule

dm

d log �


dm

d�

d�

d log �


dm

d�

�d log �

d�
� ������

We now must recall that it is ln�� not log �� whose derivative is ����
Recalling further that

log�� � 
 loge �
log�� e

log�� ��
� i�e� log � 
 ln� log�� e � �����a� b�

d log �

d�



log�� e

�



��	�	

�
� �����c�
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we obtain
dm

d log � ���



�

��	�	

dm

d� ���

 ���� � ������

upon employing ����
� and ����	� with K 
 �� There is a satisfactory agreement

with ������� However� agreement with Fig� � of Ref ��	� is not satisfactory� and

indeed there are quantitative errors in that �gure� �This error has no e�ect on the

conclusions of Ref ��	��

Exercises


� �a� Verify ����� and ���

��
�b� Show that C � E

T
follows from the quasi�steady state assumption

���
�a� and the assumption K
E
� 
� provided that W is of magnitude

W
T
�

�� Consider the Hill equation ������ for the velocity of a maximally co�
operative enzymatic reaction� divided by Umax� Analogously to the
de�nition used in ���
��� the response coe�cient� R is de�ned as
the ratio of the values of S required to give� respectively� V � ��� and
V � ��
� Find a formula for R� In particular� show that R � �
 in the
non�cooperative Michaelean case where n � 
�

�� By di�erentiating ����
a� �nd a formula for d�m�dK� when K � ��
Thereby improve the approximations in �����b��

�� This problem concerns the solutionsm to the quadratic equation ���

��
We wish to know which of the pair of solutions of ���

� satisfy restric�
tions that make the roots biologically signi�cant� thatm is non�negative
and is less than or equal to 
�
To help in our algebraic manipulations we write ���

� in the abbrevi�
ated form

am� � bm� c � � ����
�

where c � � but a and b can be of either sign� Let m� and m� be the
two roots of ����
�� respectively taking the � and � signs preceding
the square root in the quadratic formula�
First let us consider the case a � ��
�a� Show� using the quadratic formula� that m� � � but m� � �� This
result is obvious when b � �� but you should also demonstrate this
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result when b � ��
�b� Show that m� � 
 if and only if

c � a� b � ������

�c� Show that ������ holds for Eq� ���

��
Consider a � ��
�d� Show that if a � � then b � ��
�e� Show that b���ac � � so that both roots of the quadratic are real�
�Hint� Express b in terms of a and c� together with an additional con�
stant��
�f� Show that both roots are positive but that only m� � 
�
In summary� precisely one of the two roots� m�� satis�es � � m � 
�
�Additional hints� It is not true that r � s implies r� � s� �consider
r � ��� s � ��� but it is true if r �and hence s� is positive� This fact
can be used to �get rid
 of the awkward square root in the various
conditions that you derive�
Also� remember that multiplying �or dividing� both sides of an in�
equality by some constant preserves the direction of the inequality if
the constant is positive but reverses the direction of the inequality if
the constant is negative��
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