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Systematic monitoring of proteome dynamics would require simul-
taneous measurement of protein turnover and subcellular trafficking 
at the single-cell and population scales. The importance of protein 
turnover was introduced in 1942 by Schönheimer, who noted that “all 
constituents of living matter, whether functional or structural, of simple 
or of complex constitution, are in a steady state of rapid flux”1. Protein 
homeostasis is now understood as a balance between protein synthe-
sis, through transcription and translation, and protein degradation, 
through processes such as proteasomal and lysosomal degradation, 
tuned in response to intrinsic and extrinsic inputs. Alterations in pro-
tein turnover are observed in aging organisms and underlie various 
diseases. Deregulated degradation of cell cycle control proteins such as 
the p53 tumor suppressor plays a critical role in many forms of human 
cancers2. Abnormal trafficking and degradation of a mutant form of a 
chloride ion channel causes cystic fibrosis3. Moreover, accumulation 
of specific proteins is linked to neurodegenerative disorders such as 
Alzheimer’s, Parkinson’s and Huntington’s diseases4. Therefore, under-
standing protein turnover and mobility could provide new strategies 
for targeted clinical interference to treat such diseases5.

Although there are many ways to measure protein abundance in 
living cells, few techniques exist for systematically measuring pro-
tein turnover and trafficking down to subcellular resolution. Protein 
turnover is typically analyzed with pulse-chase metabolic labeling 
followed by immunoprecipitation, which measures the amount of a 
specific protein remaining after a short period of labeling. Metabolic 
labeling can be combined with mass spectrometry to determine the 
degradation kinetics of multiple proteins in parallel6. However, this 

technique does not allow monitoring of protein turnover in living 
cells. The rate of protein turnover in living cells can be measured 
by pulse-labeling fluorescent-protein fusion proteins through photo-
activation or photobleaching and then measuring the change of fluo-
rescent signal over time7,8. Turnover rates can also be determined with 
single time-point measurements by normalizing the abundance of  
fluorescent-protein fusions to a reference fluorescent protein expressed 
from the same mRNA, using global protein stability profiling9 or a 
similar method10. This approach was applied to identify E3 ubiquitin-
protein ligase substrates11, but the use of a soluble reference hinders 
studies of subcellular protein dynamics. The most common method 
of studying subcellular trafficking is to selectively label fluorescent-
protein fusion proteins with photoactivation or photobleaching and 
to follow them over time12,13. Biochemical approaches, such as cell 
fractionation followed by Western blot analysis, have also been used, 
but they are not applicable to living cells.

So-called ‘fluorescent timer’ proteins have the potential to report 
on both protein turnover and subcellular trafficking in living cells.  
A conventional fluorescent timer is a fluorescent protein that switches 
color over time as its fluorophore undergoes successive chemical reac-
tions14. The ratio of fluorescence intensities of the second and first 
fluorescent states, or intensity ratio, provides a measure of protein age 
(Fig. 1a), which should enable the use of fluorescent protein timers to 
follow protein turnover and mobility. However, widespread applica-
tion of fluorescent timers has so far been hampered either by their 
tendency to form oligomers14–16, which can perturb the behavior of 
tagged proteins, or by their low brightness.
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Here we describe tandem fluorescent protein timers (tFTs) that 
overcome these limitations. The timers can be designed to measure 
time spans ranging from ~10 min to many hours. To demonstrate the 
versatility of this approach, we used tFTs to study subcellular traffick-
ing of nuclear pore complexes and to identify regulators of protein 
degradation with high-throughput screens using data collected at a 
single time point.

RESULTS
Tandem fluorescent protein timers
We designed tFTs by fusing pairs of single-color fluorescent proteins 
having well-separated emission spectra (Fig. 1b). After translation,  
each protein becomes fluorescent with characteristic kinetics as 
it matures. A tandem fluorescent protein fusion can function as a 
fluorescent timer if the two fluorophores mature with different  
kinetics, whereby the ratio of fluorescence intensities from the two 
fluorescent protein domains is an indicator of the age of a pool 
of proteins (Fig. 1b). The broad range of readily available single-
color fluorescent proteins may be exploited to quickly generate new  
fluorescent timers with properties distinct from conventional  
fluorescent timers (Supplementary Note 1). In particular, the matura-
tion kinetics of the more slowly maturing fluorescent protein largely 
defines the useful time range of a tFT (Supplementary Fig. 1).

To demonstrate this approach, we combined the monomeric red 
fluorescent protein mCherry, which matures with a half-time of  
~40 min17, with a monomeric variant of the superfolder green fluo-
rescent protein sfGFP, which becomes fluorescent within minutes of 
synthesis18. A pool of mCherry-sfGFP molecules should be mostly 
green-fluorescent shortly after synthesis and gradually acquire red 
fluorescence over time, such that the ratio of red to green fluorescence 
is a function of the age of the protein pool (Fig. 1b).

Dynamics of cellular components 
To demonstrate the usefulness of tFTs, we fused mCherry-sfGFP to 
proteins with age-dependent subcellular localization in the budding 
yeast S. cerevisiae (Online Methods and Supplementary Table 1). 
First, we examined the inheritance of spindle pole bodies (SPBs). 
SPBs are the yeast equivalent of the centrosome and duplicate in a 
conservative manner. During mitosis the preexisting (old) SPB is seg-
regated into the daughter cell (bud), whereas the new SPB is retained 

in the mother cell19. Accordingly, cells expressing the SPB marker 
Spc42-mCherry-sfGFP displayed a higher mCherry/sfGFP intensity 
ratio at the SPB in the bud (Rb) than at the SPB in the mother (Rm) 
(Fig. 2a–c). The Rb/Rm ratio decreased as the relative age difference 
between the two SPBs decreased with cell cycle progression (Fig. 2b). 
Deletion of the KAR9 gene, which encodes a factor that mediates 
interactions between cytoplasmic microtubules and the bud cortex, 
impairs SPB inheritance such that the new SPB is segregated into the 
bud in ~40% of the cells19. Consistently, a corresponding fraction of 
kar9∆ cells showed Rb/Rm ratios below one (Fig. 2c).

In contrast to SPBs, preexisting pools of the integral plasma 
membrane proteins Hxt1 and Pma1 are retained in the mother 
 compartment, whereas the bud receives newly synthesized polypep-
tides20,21. Accordingly, the mCherry/sfGFP intensity ratio R was 
higher at the plasma membrane in the mother cell than in the bud 
for both proteins tagged with mCherry-sfGFP (Fig. 2d, Rb/Rm ratio 
of 0.43 ± 0.07 and 0.37 ± 0.09 for Hxt1 and Pma1, respectively;  
mean ± s.d., n = 40).

Finally, we examined structures marked with Rax2. Rax2 appears 
at the cortex of emerging buds and relocalizes to the site of cell divi-
sion (bud neck), where it forms stable rings associated with bud scars, 
which mark sites of previous cell divisions22 (Fig. 2e). The mCherry/
sfGFP intensity ratio of Rax2-mCherry-sfGFP correlated positively 
with the age of labeled structures (Fig. 2f). The intensity ratio was 
lower at emerging buds or bud necks than at bud scars. When mea-
sured at birth scars, the sites of the first cell division, the intensity ratio 
increased as cells progressed through successive cell cycles. Structures 
of four generations could be distinguished by their intensity ratio 
values in cells dividing for the third time (Fig. 2f). Together, these 
experiments demonstrate that the tandem mCherry-sfGFP fusion 
functions as a timer. Comparative measurements with this timer are 
robust within single cells as the relative age of different structures 
was determined accurately in nearly every individual cell (Fig. 2). 
However, significant cell-to-cell variation in absolute mCherry/sfGFP 
intensity ratios of similar structures is apparent (Fig. 2f). The stochas-
tic nature of fluorescent protein maturation and distinct cell histories 
contribute to this variability (Supplementary Note 2).

Next, we applied the mCherry-sfGFP timer to analyze the mobility 
and inheritance of nuclear pore complex (NPC) components. Each 
NPC comprises ~30 different proteins, called nucleoporins, that form 
pores in the nuclear envelope and control nucleocytoplasmic transport 
and nuclear organization23 (Fig. 3a). In organisms with open mito-
sis, NPCs disassemble when the nuclear envelope breaks down dur-
ing cell division but are stable in nondividing cells. Stable NPCs can 
accumulate damage over time, which disrupts the nucleocytoplasmic 
permeability barrier in aging cells24. In contrast, S. cerevisiae under-
goes closed mitosis, and its NPCs are also stable in dividing cells25,26. 
As cell division is inherently asymmetric in this organism27, we used 
a library of strains expressing nucleoporins tagged with mCherry-
sfGFP to investigate the possibility of age-dependent segregation of 
NPCs during yeast mitosis (Online Methods, Supplementary Fig. 2  
and Supplementary Table 1). Several nucleoporins, in particular 
scaffold NPC components, exhibited substantially higher mCherry/
sfGFP intensity ratios at the nuclear envelope than in the cytoplasm 
(Fig. 3b and Supplementary Fig. 3). This result is consistent with 
the notion that the core of the NPC is stable and its nucleoporins are 
not exchanged with the cytoplasm (Supplementary Note 3), and it 
indicates that tFTs can inform on intracellular protein mobility.

Notably, the mCherry/sfGFP intensity ratio was higher at the 
nuclear envelope in the bud than in the mother for most  nucleoporins 
(Fig. 3c; the Rb/Rm ratio varied with nucleoporin stability as expected; 
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Figure 1 Tandem fluorescent protein fusions as fluorescent timers.  
(a) Illustration of a conventional fluorescent timer (FT) with maturation 
rate constants (m, n) of the fluorescent timer ‘fast-FT’15. (b) Behavior 
of a tandem fusion of mCherry (black, red) and sfGFP (gray, green) 
with the maturation rate constants (m1, m2) determined in this study 
(Supplementary Methods). For simplicity, a one-step process represents 
mCherry maturation. Fluorescence intensity curves are normalized to the 
brightness of sfGFP. Ratios are normalized to the maximum in each plot.
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Supplementary Fig. 4). This indicates that NPCs are on average older 
in the bud than in the mother. Two mechanisms can account for the 
asymmetric distribution of NPC age: preferential assembly of new 
NPCs in the mother cell or biased segregation of old NPCs into the 
bud. We sought to distinguish between these two possibilities. As 
assembly of new NPCs is limited during anaphase28,29, we directly 
examined the segregation of old NPCs using the nucleoporin Nup2 
tagged with the red fluorescent protein DsRed1. DsRed1 undergoes 
extremely slow maturation, with a half-time of ~10 h30, and thus 
Nup2-DsRed1 labels only the oldest NPCs (Supplementary Fig. 5).

Time-lapse imaging revealed Nup2-DsRed1 dots moving into the 
bud together with the nucleus, as the nuclear envelope was traversing 
the bud neck in early anaphase (Fig. 3d and Supplementary Movie 1). 
Individual Nup2-DsRed1 dots also moved from the mother to the bud 
in late anaphase when the two nuclei were connected by a thin tubule 
of nuclear envelope (Fig. 3d and Supplementary Movie 2), raising 
the possibility that old NPCs are actively transported into the bud. At 
the end of nuclear division, 50 ± 20% of Nup2-DsRed1 dots (mean ± 
s.d., n = 83 cells) were found in the bud. This result was independently 
confirmed with recombination-induced tag exchange31 for differen-
tial labeling of old and new NPCs (Supplementary Fig. 6a,b). Taking 
into account that the bud receives only ~38% of all NPCs29, equal 
partitioning of old NPCs between mother and bud nuclei results in a 
1.53 ± 0.13 fold higher density of old NPCs in the bud (the difference 
between mother and bud NPC densities is statistically significant with 
P < 10−6 in a paired t-test) (Supplementary Fig. 6c).

We conclude that asymmetric distribution of NPC age is achieved 
by age-dependent partitioning of existing NPCs between mother 
and bud nuclei. Preferential physical interaction between chromo-
somes and older or more mature NPCs could contribute to equal 
 partitioning of such NPCs in the context of an overall asymmetric 

nuclear division. Because yeast mitosis leads to rejuvenation of the 
bud in terms of replicative life span27, our results imply that old NPCs 
are not synonymous with damage, although a potential role of NPCs 
in yeast aging has been discussed32. Instead, age-dependent segrega-
tion of NPCs could ensure that the bud receives enough mature NPCs 
for competent nucleocytoplasmic transport and nuclear organization. 
Analysis of changes in NPC functionality over time will be required 
to test this hypothesis in the future. Taken together, our experiments 
show that tFTs can be used to study the relative age, segregation, 
mobility and inheritance of cellular components.

Snapshot analysis of protein stability
Because tFTs provide a readout of the average age of a protein, which 
is determined by its rate of turnover, tFTs also facilitate the study 
of the kinetics of protein turnover. Briefly, owing to the slow matu-
ration of mCherry relative to sfGFP, the mCherry/sfGFP intensity 
ratio in steady state should decrease with the increasing degradation 
rate of mCherry-sfGFP fusions, independently of the rate of protein 
production (Supplementary Note 4 and Supplementary Theory). 
Thus, it should be possible to infer degradation kinetics from a single 
time-point snapshot of fluorescence measurements. To demonstrate 
this, we engineered a series of constructs with different stabili-
ties by varying the N-terminal residue of a degradation signal, the  
N-degron, fused to the N-terminus of mCherry-sfGFP. Each construct 
encoded a different pro-N-degron (the N-degron with a ubiquitin 
(Ubi) moiety at the N terminus) followed by mCherry-sfGFP (Fig. 4a 
and Supplementary Table 2). Upon translation, the N-terminal ubi-
quitin is removed, thereby exposing the N-degron. Constructs with 
destabilizing N-terminal residues are marked for degradation by the 
E3 ubiquitin-protein ligase Ubr1 as part of the N-end rule pathway 
of protein degradation33.

Figure 2 Analysis of differential inheritance 
of cellular structures with the mCherry-sfGFP 
timer. (a–c) mCherry/sfGFP intensity ratios  
of Spc42-mCherry-sfGFP at SPBs retained  
in the mother (Rm) and at SPBs directed 
toward or in the bud (Rb). (a) Ratiometric 
images (bottom panel) are color-coded 
according to sfGFP intensity (Int) and 
intensity ratio R, as indicated. Scale bar, 
3 µm. (b) Rb/Rm ratios in cells from a 
followed with time-lapse microscopy. Each 
point corresponds to a single cell analyzed 
in metaphase (t = 0 min) and at the end 
of anaphase (t = 30 min). (c) Rb/Rm ratios 
in wild type and kar9∆ cells at the end of 
anaphase. (d) mCherry/sfGFP intensity  
ratios of Hxt1 and Pma1 fusions at the  
plasma membrane (p), vacuoles (v) and 
secretory compartments (s) in mother (m) 
and bud (b) cells. Ratiometric mCherry/sfGFP 
images are color-coded as indicated.  
Scale bar, 5 µm. (e,f) mCherry/sfGFP  
intensity ratios of structures marked 
with Rax2-mCherry-sfGFP. (e) Images of 
representative diploid cells ordered  
according to cell age and cell cycle stage. 
Different structures are marked with 
arrowheads according to origin (red, birth; 
orange, first cell cycle; green, second cell 
cycle; cyan, third cell cycle). Ratiometric 
mCherry/sfGFP images are color-coded as indicated. Scale bar, 5 µm. (f) Quantification of e. mCherry/sfGFP intensity ratios measured at the 
structures indicated in the cartoons are plotted for individual cells, grouped and ordered according to the age of the mother cell.
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Single time-point fluorescence measurements with flow cyto-
metry showed that the mCherry/sfGFP intensity ratios of yeast  
strains expressing different constructs increased as a function of 
construct stability (Fig. 4b). Inhibition of degradation by deletion 
of UBR1 led to similar intensity ratios for all constructs, whereas 
overexpression of UBR1 decreased the intensity ratio of unstable 
constructs (Fig. 4b). Moreover, the intensity ratio was independent 
of the protein production rate, as demonstrated with single-cell ana-
lysis of a strain with heterogeneous protein expression levels caused 

by plasmid copy number variations (Fig. 4c) or by using promoters 
of different strengths (Fig. 4d). These results demonstrate that the 
mCherry/sfGFP intensity ratio provides a direct readout of protein 
degradation kinetics in steady state, in agreement with the math-
ematical description of mCherry-sfGFP turnover (Supplementary  
Note 4 and Supplementary Theory). Ratiometric measurements of 
constructs with the 20 possible N-terminal residues demonstrate the 
sensitivity of this approach (Supplementary Fig. 7).

According to our experimental estimates of mCherry and sfGFP 
maturation kinetics (Supplementary Methods and Supplementary 
Fig. 8a), the mCherry-sfGFP timer should be suitable to study the 
degradation of proteins with half-lives between ~10 min and ~8 h 
(Supplementary Fig. 8b,c). As the S. cerevisiae proteome has an aver-
age half-life of ~43 min34, the majority of proteins could be systemati-
cally investigated with this tFT. However, potential artifacts caused 
by tagging should be considered (Supplementary Note 5). In human 
cells, proteins appear to be more stable, with an average half-life of 
~10 h7. tFTs with red fluorescent proteins that mature more slowly 
than mCherry, with a time range shifted toward reduced turnover 
(Supplementary Figs. 1 and 9), should be more appropriate for such 
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cases. Nevertheless, the time range of mCherry-sfGFP was sufficient 
to evaluate the turnover of different fusions expressed in HeLa cells 
(Supplementary Fig. 10).

High-throughput screening for regulators of protein turnover
Despite recent advances, identifying factors responsible for degra-
dation of specific proteins is challenging7–10. We developed a high-
throughput assay based on tFTs to screen for regulators of protein 
turnover in S. cerevisiae (Fig. 5a). We applied this approach to 
identify components of the N-end rule pathway of protein degrada-
tion. The mCherry-sfGFP timer was fused to five pro-N-degrons, 
each composed of Ubi followed by an N-degron with a destabilizing 
motif for a specific branch of the N-end rule pathway. Constructs 
with lysine, tryptophan, asparagine or glutamine as the N-terminal 
residue of the N-degron (Ubi-K/W/N/Q-mCherry-sfGFP) are 
marked for degradation by Ubr1 in combination with the E2 
enzyme Rad6. The construct with a cysteine-leucine dipeptide at the  

N terminus of the N-degron (Ubi-CL-mCherry-sfGFP) is targeted  
for degradation by the E3 ubiquitin-protein ligase Doa10 with the 
E2 enzymes Ubc6/Ubc7 (ref. 33) (Fig. 5b). The Ubi-P-mCherry-
sfGFP construct was included for comparison. Removal of  
N-terminal ubiquitin from Ubi-P-mCherry-sfGFP is inefficient 
and full-length Ubi-P-mCherry-sfGFP is not recognized by Ubr1 
or Doa1 but is rapidly degraded by the ubiquitin-fusion degrada-
tion (UFD) pathway33. A nondegradable mCherry-sfGFP fusion 
served as a control (Fig. 5b). Each construct was introduced into 
a genome-wide library of yeast gene deletion mutants35 using syn-
thetic genetic array (SGA) technology36 (Fig. 5a). Colonies of the 
obtained strains were imaged with a fluorescence plate reader, which 
provides robust, high-throughput measurements of whole-colony 
fluorescence intensities (Supplementary Fig. 11). Each screen was 
done in triplicate to control for experimental errors in the synthetic 
genetic array procedure and variability in colony size. To compensate  
for effects of gene deletions unrelated to protein turnover, we 
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Figure 5 Identification of components of the N-end rule pathway. (a) High-throughput pipeline for systematic identification of regulators of protein 
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 calculated the differences (∆-scores, Fig. 5a) between fluorescence 
measurements (the normalized sfGFP intensity and the mCherry/
sfGFP intensity ratio) for each colony and corresponding values from 
a control screen performed with the nondegradable mCherry-sfGFP 
fusion (Supplementary Fig. 12 and Supplementary Note 6). Strains 
with impaired degradation of a particular construct were identified 
by their high ∆-scores both for the mCherry/sfGFP intensity ratio, 
indicating increased stability, and for the sfGFP intensity, indicating 
increased abundance.

We reproducibly identified all known components of the UBR1 
branch in screens with Ubi-K/W/N/Q-mCherry-sfGFP constructs. For 
instance, the screens yielded the Nta1 amidase and the Ate1 arginyl-
tRNA-protein transferase specifically required for degradation of  
constructs with N-terminal asparagine or glutamine residues33 
(Fig. 5c,f, Supplementary Fig. 13, Supplementary Note 6 and 
Supplementary Table 3). The Ubi-CL-mCherry-sfGFP construct 
was stabilized in strains from which DOA10 or UBC7 were deleted, 
as expected37 (Fig. 5d,f and Supplementary Fig. 13), whereas the 
ubc6∆ strain was not present in the library (but subsequently validated 
for its stabilizing effect; Supplementary Fig. 14). In addition, this 
screen identified CUE1 as a new component of the DOA10 branch 
of the N-end rule pathway (Fig. 5d and Supplementary Fig. 14). 
Cue1 recruits Ubc7 to the endoplasmic reticulum and the nuclear 
envelope, where Doa10 resides38. Significant stabilization of Ubi-CL-
mCherry-sfGFP was reproducibly observed in deletion strains of vari-
ous ubiquitin-proteasome system components and confirmed with 
cycloheximide chase experiments (Fig. 5f, Supplementary Figs. 13 
and 14, Supplementary Note 6 and Supplementary Table 3).

Ubi-P-mCherry-sfGFP was stabilized in strains lacking com-
ponents of the UFD pathway, as expected (Fig. 5e). Deletions of  
several other ubiquitin-proteasome system components, including the  
ubiquitin-specific protease Ubp6, reproducibly stabilized Ubi-
P-mCherry-sfGFP (Fig. 5e,f, Supplementary Figs. 13 and 14, 
Supplementary Note 6 and Supplementary Table 3). Ubp6 removes 
ubiquitin chains from substrates at the proteasome and contributes 
to the regeneration of the free ubiquitin pool39. Accordingly, over-
expression of ubiquitin partially restored the degradation of Ubi-P-
mCherry-sfGFP in the ubp6∆ strain (Supplementary Fig. 15).

Ubr1 was recently shown to cooperate with Ufd4, the E3 enzyme 
of the UFD pathway, in ubiquitination of UFD substrates in vitro, but 
this cooperation could not be detected in vivo40. Using fluorescence 
imaging of whole colonies, we observed more stabilization of Ubi-
P-mCherry-sfGFP in the ufd4∆ ubr1∆ strain compared to the ufd4∆ 
mutant (Supplementary Fig. 16). This demonstrates in vivo coop-
eration between Ubr1 and Ufd4 in the UFD pathway and suggests 
potential applications of tFTs to study cooperativity and redundancy 
of degradation pathways.

DISCUSSION
tFTs are versatile reporters that unify the study of protein turnover 
and trafficking in living cells from subcellular to population scales, 
thereby opening up new avenues for deciphering proteome homeo-
stasis with high-throughput approaches. The modular nature of tFTs 
provides an opportunity to exploit state-of-the-art, single-color fluo-
rescent proteins for sensitive measurements of intracellular dynamics. 
The bright mCherry-sfGFP timer allows measuring turnover, mobility 
and inheritance of endogenously expressed protein fusions in living  
cells on time scales from ~10 min to several hours. sfGFP can be fused 
with red fluorescent proteins with different maturation kinetics to 
generate a palette of tFTs suitable for studying processes on vastly 
different time scales, from a few minutes (e.g., transcriptional bursts) 

to several days (e.g., differentiation and morphogenesis). Established 
strategies for fluorescent protein evolution41 can be used to broaden 
the spectrum of accessible time scales.

Notably, analysis of steady-state protein turnover with tFTs does not 
require time-course measurements. Using snapshot fluorescence imag-
ing and automated yeast genetics, factors involved in degradation of 
specific proteins or components of individual degradation pathways can 
be readily identified with tFTs. Genome-wide protein tagging with tFTs 
should enable systematic characterization of proteome homeostasis 
across environmental and genetic perturbations. Standard approaches 
for genome manipulation with homologous recombination can be used 
for endogenous protein tagging in yeast42. High-throughput gene 
targeting is possible in mouse embryonic stem cells43 and transcrip-
tion activator-like effector nucleases are a promising tool for targeted 
genome editing in other model systems44. We anticipate the application 
of such technologies for systematic studies of protein dynamics with 
tFTs in whole organisms, thus minimizing artifacts commonly caused 
by ectopic expression of protein fusions45.

Analysis of protein dynamics is key for understanding proteome 
homeostasis in health and disease. Many disorders, from infection 
to cancer, are associated with deficiencies in protein homeostasis2–5. 
tFTs should facilitate the investigation of cellular mechanisms of such 
diseases and allow the identification of clinically relevant compounds 
that modulate specific degradation pathways or affect the stability of 
critical proteins.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Strain construction and growth conditions. Yeast strains used in this study 
are listed in Supplementary Table 1. Chromosomal gene tagging and gene 
deletion were done using standard procedures based on PCR targeting, as 
described47. Cassettes for PCR targeting were amplified with Phusion DNA 
polymerase (Finnzymes). Gene deletion and gene tagging were validated by 
PCR. Expression of protein fusions was validated using immunoblotting and 
confirmed with fluorescence microscopy, when appropriate.

Yeast strains were grown at 30 °C in SC-glucose medium (synthetic complete  
medium with 2% w/v glucose), unless indicated otherwise. Strains express-
ing mCherry-sfGFP fusions under the control of the GAL1 promoter  
(Fig. 4d) were grown in SC medium with 3% w/v raffinose and 2% w/v  
galactose. For recombination-induced tag exchange (Supplementary Fig. 6),  
cells were grown in SC-glucose medium and incubated with 0.3 µg/ml  
β-estradiol (E8875, Sigma) for 3 h. To compare protein age between mother and 
bud compartments (Figs. 2d and 3c), strains were synchronized in G1 (~2.5 h  
incubation with 10 µg/ml α-factor) to unequivocally distinguish mothers (with 
a mating projection or shmoo) from buds. Imaging was started 60 min after 
release from G1 arrest, as cells entered anaphase.

HeLa cells were cultured in DMEM medium with heat inactivated 10% 
FBS and 2 mM glutamine, in a humidified atmosphere with 5% CO2 at 37 °C.  
18 h before imaging, cells were transiently transfected with different mCherry-
sfGFP constructs in 4-well chambers using Lipofectamine 2000 as described 
by the manufacturer (Invitrogen).

Plasmids and tagging cassettes. Plasmids used in this study are listed in 
Supplementary Table 2. Yeast codon-optimized sequences of mCherry48 and 
sfGFP18 were obtained by full gene synthesis. The monomeric V206R muta-
tion49 was introduced into the sequence of sfGFP. Cassettes for endogenous 
gene tagging with mCherry-sfGFP and sfGFP-mCherry by PCR targeting were 
designed to contain S2/S3 primer annealing sites compatible with previously  
described cassettes47. All Ubi-X-mCherry-sfGFP fusions are based on  
previously described Ubi-X-β-galactosidase and Ubi-XZ-Ura3 fusions37,50.

A human codon-optimized mCherry-sfGFP sequence, generated by  
full-gene synthesis, was cloned into pCDNA5/FRT/TO (Invitrogen). This 
plasmid was used to construct Cyclin B-mCherry-sfGFP and CyclinBR42A-
mCherry-GFP expression vectors.

Flow cytometry. Yeast strains in the exponential growth phase were mixed 
with multi-spectral beads (3.0–3.4 µm Sphero Rainbow Calibration Particles 
(6 peaks), #556286, BD Biosciences) as an internal reference. Samples were 
measured in a Moflo cell sorter (Beckman Coulter). Argon and Krypton Sabre 
lasers (Coherent) were used for excitation of sfGFP (488 nm) and mCherry 
(568.2 nm), respectively. Fluorescence was detected with 512/15 and 630/40 
bandpass filters for sfGFP and mCherry, respectively. 488 nm and 568 nm 
Holographic Notch filters placed in the optical path prevented detection of 
scattered laser light. BD FACSFlow was used as sheath fluid.

Populations of cells and reference beads were defined in raw data tables of 
each sample. Subsequent data standardization, correction and statistical ana-
lysis were performed in MATLAB (MathWorks). The fluorescence intensities 
of six species of reference beads in each sample were used to standardize cell 
intensity levels according to manufacturer’s protocol, eliminating the influ-
ence of instrumental fluctuations on fluorescence intensity measurements. 
The standardized fluorescence intensities were background-corrected using 
autofluorescence of wild-type cells. mCherry/sfGFP intensity ratios of each 
sample were determined from median population intensities.

Fluorescence microscopy. Yeast strains were grown in SC-glucose medium 
at 30 °C and immobilized in glass bottom dishes (P35G-1.5-14-C, MatTek) 
or 8-well chambers (Lab-Tek 155409, Nunc) for 30 min before imaging. The 
dishes/chambers were coated for 5 min with 6% concanavalin A (C2010, 
Sigma) in water and excess concanavalin A was removed by washing with 
water. Imaging was done within 90 min after immobilization.

All images were recorded on a DeltaVision RT system (Applied Precision) 
consisting of an inverted epifluorescence microscope (IX70, Olympus) 
equipped with FITC and TRITC filters (Chroma Technology), a 100× NA 1.4 
oil immersion objective (PlanApo, Olympus), a CoolSNAP HQ CCD camera 

(Photometrics), a motorized stage (NanoMotion II Control, Applied Precision) 
and a temperature-controlled chamber. Single-plane images (Figs. 2d and 
3b,c and Supplementary Figs. 2–4 and 8) or stacks spanning 5–6 µm with a 
step size of 300–400 nm (Fig. 2a–c,e and Supplementary Figs. 5 and 6) were 
acquired. Images of an empty position of the chamber (medium background), 
of wild-type cells (cellular background), of a uniformly fluorescent microscope 
slide (for flat field correction) and without illumination were acquired in each 
imaging session. The time-dependent intensity level of the light source was 
recorded during image acquisition using a sensor in the DeltaVision system.

Images were processed with custom software written in MATLAB 
(MathWorks). All images were corrected for background and for lamp inten-
sity fluctuations. Wild-type cells were subjected to adaptive and iterative 
intensity thresholding to determine the levels of cellular autofluorescence. 
Cells expressing tagged nucleoporins were subjected to adaptive and itera-
tive intensity thresholding to identify nucleoporin signals of whole cells and, 
separately, of nuclear envelope and cytoplasmic regions. Flat field correction 
was applied to the intensity levels in each segmentation mask. All measure-
ments were subsequently corrected for cellular autofluorescence. The final 
intensity levels, their s.d., the resulting intensity ratio and the number of con-
tributing pixels were stored for each segmented object. For the analysis of 
time-lapse induction series generated to determine the maturation kinetics of 
mCherry and sfGFP (Supplementary Fig. 8a), a module written in MATLAB 
(MathWorks) was used for cell tracking followed by manual track curation. 
Further details on the characterization of mCherry-sfGFP are provided in 
Supplementary Methods.

HeLa cells were imaged at 37 °C with a 60× NA 1.4 oil immersion objective 
(PlanApo, Olympus). Flat field and background corrections were applied to 
all images and mean fluorescence intensities of single cells or groups of con-
tiguous cells were quantified using manual segmentation in ImageJ (National 
Institutes of Health, USA).

Constructs with mCherry-sfGFP fused to different degrons (Fig. 5b) were 
introduced into the SGA query strain Y8205 (ref. 36). Each resulting query 
strain was crossed in triplicate with a genome-wide library of diploid yeast 
strains with heterozygous gene deletions35. For replicates 2 and 3, strains with 
deletions of essentials genes were removed and the library was condensed to 
eliminate empty plate positions. The library was sporulated and the resulting 
spores were mated with the query strains using a RoToR pinning robot (Singer 
Instruments). All subsequent library manipulations—selection of diploids, 
sporulation, selection of haploids—were done using standard SGA proto-
cols36. The resulting haploid strains each carrying an mCherry-sfGFP fusion 
and a specific gene deletion were grown in 1,536-colony format for 24–48 h  
before imaging.

The plates were imaged with a wide field IS4000MM-Pro fluorescence 
imager (Kodak) equipped with a 4-megapixel CCD camera and filters for 
sfGFP and mCherry fluorescence imaging (replicate 1) or with a wide field 
Decon imaging station (Decon Science Tec, Germany) equipped with an LED-
based illumination system, a Retiga4000DC camera (QImaging) and filters 
for sfGFP (465/30 nm excitation, 520/35 nm emission) and mCherry (580/ 
23 nm excitation, 628/40 nm emission) imaging (replicates 2 and 3). Images 
of a uniformly fluorescent plate were acquired for flat field correction. All 
sample images were flat field–corrected, segmented and the mean mCherry 
and sfGFP fluorescence intensities of each colony were extracted using the 
EBImage Bioconductor package51. Further data normalization and analysis 
were performed with the cellHTS2 Bioconductor package52.

sfGFP fluorescence intensities and mCherry/sfGFP intensity ratios were 
corrected for plate edge effects with the B-score method53, which was applied 
independently to the sfGFP and mCherry/sfGFP measurements. For com-
parison between different plates/screens, the corrected measurements were 
normalized by dividing by the per-plate median absolute deviation (MAD) of 
corrected measurements, yielding a normalized B-score B̂ijp for each colony, 
where i, j and p reference the colony row, column and plate, respectively.

The normalized B-scores of all constructs were strongly affected in 
~250 strains lacking genes mostly related to mitochondrial functions 
(Supplementary Fig. 12). These strains were identified in an automated fash-
ion in the nondegradable control screen and omitted from the analysis.

A gene deletion was considered to stabilize an mCherry-sfGFP fusion in 
screen s if the respective colony showed increased sfGFP intensity and increased 
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mCherry/sfGFP intensity ratio, as compared to the corresponding colony in 
the control screen c (Fig. 5a). This comparison was quantified by the ∆-score 
(∆ijp

s
ijp
s

ijp
cB B= −ˆ ˆ ) calculated independently for the sfGFP and mCherry/sfGFP 

channels. Only gene deletions with ∆-score sfGFP > 0 (increased abundance) 
and ∆-score mCherry/sfGFP ratio > 0 (increased stability) were further exam-
ined (Fig. 5c–f). Gene deletions at a larger distance d = log(1 + M) from the 
center of the cloud of positive hits, where M is the Mahalanobis distance, 
were considered stronger hits. The natural logarithmic transformation was 
employed to obtain a reasonable spread in the scores for subsequent visualiza-
tion, and an offset of unity was added to avoid negative scores.

Each screen replicate was analyzed independently. Gene deletions with d ≥ 6  
in at least one screen replicate were included in Figure 5f. A final d of each 
gene deletion was obtained by taking the median across replicates. All gene 
deletions with positive ∆-score sfGFP and ∆-score mCherry/sfGFP ratio  
are listed in Supplementary Table 3, ranked by the median d of the three 
screen replicates.
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