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Statistical signatures of critical behavior in small systems
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The cluster distributions of three different systems are examined to search for signatures of a continuous
phase transition. In a system known to possess such a phase transition, both sensitive and insensitive signatures
are present; while in systems known not to possess such a phase transition, only insensitive signatures are
present. It is shown that nuclear multifragmentation results in cluster distributions belonging to the former
category, suggesting that the fragments are the result of a continuous phase transition.
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I. INTRODUCTION

Multifragmentation, the breakup of a system into seve
intermediate sized pieces, is of great interest in many a
of physics. Several recent works have been presented
variety of systems including fullerene’s@1–3# as well as the
fragmentation of collisions in solids@4#. This work examines
the breakup of excited nuclei, nuclear multifragmentation

Beginning in the 1970’s significant advances in the und
standing of nuclear multifragmentation were made poss
with the advent of high statistics inclusive experimen
Typically, only one intermediate mass fragment (3<Zf

<30) was detected per event. From these inclusive stu
came the first evidence that intermediate mass fragm
~IMFs! were associated with a simultaneous multibo
breakup of a system which had undergone expansion
study of the fragment mass yield distribution obtained in
inclusive gas jet experiment conducted at Fermilab contai
the first indication that nuclear multifragmentation might
related to critical phenomena normally observed in mac
scopic systems@5#. The Purdue Group was the first to ma
the suggestion that the observed power law in the fragm
yield distribution might result from a system whose exci
tion energy was comparable to its total binding energy@6#.
The exponent of the power law was 2<t<3, within the
range expected for a system near its critical point.

The presence of the power law and the value of the ex
nent, coupled with the strong similarity of the nuclear a
van der Waals potentials, led the Purdue group to sug
that multifragmentation of nuclei might be analogous to
fluid undergoing a continuous phase transition from a liq
to a gas. Furthermore, the Fisher droplet model~FMD!
0556-2813/2000/62~6!/064603~33!/$15.00 62 0646
l
as

a

r-
le
.

es
ts

A
n
d

-

nt
-

o-

st

d

@7–10#, used to describe condensation in a fluid system n
its critical point, after modification for nuclear physics e
fects, was capable of describing the isotopic yields of
fragments with one set of parameters@6,11#. The temperature
of the system was determined to be about 5 MeV@6#, a
reasonable value considering that the average binding en
per nucleon in a nucleus is approximately 8 MeV. The s
cess of this approach reinforced the notion that multifra
mentation was both a thermal process and that it was rel
to critical phenomena.

With the advent of exclusive experiments capable of
tecting all of the charged reaction products, the possibility
studying multifragmentation on an event-by-event basis
came a reality. High statistics exclusive experiments
which the fragmenting system is characterized according
its nucleon number and excitation energy permit both
correlation of dynamical and statistical information and t
study of fluctuations in experimental observables. Fluct
tions are central to all critical phenomena, and indeed, s
fluctuations are apparent in exclusive multifragmentat
data. In this paper, the focus will be on the statistical sign
of multifragmentation data observed in the EOS experim
@12–14#. Comparisons will be made with two other system
one of which exhibits critical behavior and one of whic
does not.

Much of the pioneering work in understanding the stat
tical aspects of multifragmentation was performed by Cam
@15–22# and Mekjian @23–29#. Both compared multifrag-
mentation data to model systems in order to gain some
sight into the nuclear breakup process. In this paper, man
the ideas suggested by these authors are followed and
plied to the EOS data and the model systems in orde
©2000 The American Physical Society03-1
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demonstrate which signals are most useful in the identifi
tion of critical behavior. Several methods proposed for
tecting signals of critical phenomena in multifragmentati
are reviewed in this paper.

It is tempting to compare the experimental data to d
namical models that attempt to describe nuclear multifr
mentation. However, the task of modeling multifragmen
tion from the initial collision phase of the reaction to freez
out has proven to be a daunting task. Models that adequa
describe the initial stage of the reaction@30–35# do not sat-
isfactorily describe the fragment formation stage, in eith
statistical or dynamical aspects. Likewise, the most succ
ful models in describing the statistical properties of nucl
multifragmentation@36–41#, assume thermodynamic equilib
rium, yet fail to adequately match the dynamical features
the data.

Molecular dynamical approaches, which have enjoy
considerable success in describing critical behavior in c
sical systems@42–46#, have not been conclusive in descri
ing nuclear multifragmentation and at times have yield
contradictory results. Later studies suggested flaws in
application of molecular dynamical models to nuclear mu
fragmentation, therefore calling into question the conclusi
drawn from the earlier studies@47#.

The most striking of the early theoretical efforts cam
from Campi’s analysis of a few hundred completely reco
structed emulsion multifragmentation events@48# and the
comparison of these data to clusters generated from a pe
lation calculation@15,16#. In this series of papers it wa
shown that the fragment distributions from multifragmen
tion bore a striking similarity to the cluster distributions fro
percolation lattices. This analysis provided strong evide
that multifragmentation was a statistical process which
peared to be related to critical phenomena. In that anal
another estimate of the exponentt was made which agree
with the first measurements from the Purdue Group and
eral later analyses of various fragment distributions.

In the early 1990’s the ALADIN Group from GSI per
formed several multifragmentation experiments@49–51#. Of
particular importance was the ‘‘rise and fall’’ of multifrag
mentation. In one analysis the ALADIN group plotted th
‘‘rise and fall’’ curve of the production of IMFs versus a
observable related to the excitation energy of the reaction
several multifragmenting systems. With the appropriate s
ing the data collapsed to a single curve suggesting that
multifragmenting systems retained no memory of the re
tion entrance channel. This is expected for an equilibra
system.

However, other statistical analyses of multifragmentat
data yielded results that could be interpreted to suggest
multifragmentation is a sequential decay@52–54# in contrast
to the phase transition picture. The same sort of statist
analysis has also been applied to explicitly simultane
models@47# and produced results that were similar to tho
of multifragmentation data. Thus those signals could be
terpreted as evidence for either sequential or simultane
multifragmentation@54#.

This last effort puts into focus the main question in th
work: what type of analysis of the statistical aspects o
06460
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cluster distribution can provide the most insight into the n
ture of the mechanism which created the clusters? Spe
cally, can those systems which contain critical behavior
distinguished from those which do not? It will be argued th
this question has two answers. Analysis of theinsensitive
features of the cluster distribution cannot make the abo
mentioned distinction@55#. However, an analysis of thesen-
sitive features of the cluster distribution will be shown
provide deeper insight into the cluster production mec
nism. A similar type of analysis has been previously repor
for clusters resulting from nuclear multifragmentation@12–
14# and have been performed on models@56,57#. Note that
the more generic term ‘‘cluster’’ will be used to refer to an
composite of constituents, whether these be molecules
fluid, nuclear fragments or percolation clusters.

The method employed to address the above question
follows. The same analysis is performed on the cluster d
tributions produced by three different systems. In one ca
clusters are generated by randomly partitioning an integ
Such one-dimensional partitioning does not posses crit
behavior indicative of a continuous phase transition. In
second case, three-dimensional bond building percolatio
used to produce clusters. Percolation is well-known ma
ematical construct that possesses a continuous phase tr
tion, i.e., a critical point. Finally, the cluster distribution
resulting from the multifragmentation of gold nuclei are an
lyzed. Although it is not known,a priori, whether the
nuclear multifragmentation bears any relation to critical ph
nomena, it will be seen that the analysis presented in
work yields suggestive results.

This paper is organized as follows. In Sec. II a brief d
scription of each system is presented. In Sec. III the Fis
droplet model is reviewed; this section may be omitted
readers already familiar with the model. In Sec. IV A th
insensitive signatures of the cluster distributions for all s
tems are examined. In Sec. IV B the sensitive signatures
examined. Sections V and VI present possible correction
the analysis of the multifragmentation data. Finally, Sec. V
discusses the conclusions reached upon the completion o
analyses in Secs. IV and V. Throughout this paper the te
‘‘continuous phase transition’’ will be used instead of ‘‘se
ond order phase transition,’’ the latter from the outdat
Ehrenfest theory of phase transitions@58#.

II. DESCRIPTION OF SYSTEMS UNDER STUDY

A. 1.0A GeV Au ¿ C multifragmentation

Approximately 40 000 fully reconstructed events (7
<Zobserved<82) were collected with the EOS experiment
apparatus discussed in Ref.@12#. In the collision of the pro-
jectile gold nucleus~197, 79! and the target carbon nucleu
so-called prompt nucleons are knocked out of the g
nucleus by quasielastic and inelastic collisions between p
jectile and target nucleons@59#. Immediately following the
collision, the gold projectile remnant is in an excited sta
with fewer than 197 nucleons. The excited remnant co
and expands and may evolve to the neighborhood of
3-2
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STATISTICAL SIGNATURES OF CRITICAL BEHAVIOR . . . PHYSICAL REVIEW C 62 064603
critical point in the temperature-density plane@60#, where
clusters condense from a high temperature low density va
of nucleons.

The charge and mass of the projectile remnant,Z0 andA0,
were determined for each event by subtracting the cha
and mass of the prompt particles from the charge and m
of the gold nucleus@60#. Prompt particles haveZf50, 1, and
2 and were removed from the cluster distributions analy
in this work. Only clusters created from the excited go
projectile were considered in the ensuing analysis. For ev
with the lowest total charged particle multiplicitiesm, the
remnant had Z0;76, A0;194, and E* /A0
;2 MeV/nucleon, while for events with the highest mul
plicities the remnant hadZ0;39, A0;92, and E* /A0
;16 MeV/nucleon@60#.

Clusters of a given chargeZf were counted on an event b
event basis to determine the cluster charge distributionNZf

.
In this analysis, although the mass number of the clus
was of interest, a cluster’s charge was used as an index. M
numbers for clusters of charge 1 and 2 were measured in
EOS time projection chamber. Clusters withZf>3 were as-
signed a mass numberAf by multiplying the cluster charge
by the mass to charge ratio of the excited gold projec
remnant; for lowm eventsA0 /Z0;2.55 and for highm
eventsA0 /Z0;2.36. This procedure provided an estimate
a cluster’s mass number prior to any secondary decay effe
It was assumed that on averageNAf

5NZf
. The normalized

cluster distributionnAf
5NAf

/A0(m) was used in the analy
sis presented in this paper.

B. Percolation

Bond building percolation calculations were performed
three-dimensional simple cubic lattices of 216 sites. Clus
distributions for 100 000 lattice realizations were genera
in the standard fashion by forming bonds between si
Bonds were either active~on! or inactive~off! according to
the following algorithm.

The control parameter~e.g., temperature in thermody
namic systems! for percolation is the lattice probabilitypl .
A single value ofpl was chosen for the entire lattice. A
probabilities were between 0 and 1. Next, a bond probab
pbi

was randomly chosen from a uniform distribution o

~0,1! for the i th bond. If pbi
was less thanpl , then thei th

bond was active and two sites were joined into a cluster. T
process was performed for each bond in the lattice.

At low values ofpl , few bonds were formed resulting i
a high multiplicity m of small clusters, a distribution analo
gous to the gaseous phase of a fluid. At high values ofpl ,
many bonds were formed resulting in a low multiplicity
mostly large clusters, analogous to the liquid phase of a fl
In an infinite lattice the phase transition occurs at a uniq
value of the lattice probability,pc , when the probability of
forming a percolating cluster changes from zero to un
@61–63#.

To examine the behavior of the average cluster distri
tion, the number of clusters of sizeAf per lattice site was
calculated by histogramming the 100 000 lattice realizati
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into 100 bins from 0 to 1. The use ofm as a control param-
eter and the ensuing effects on signatures of continu
phase transition were investigated by calculating the aver
number of clusters of sizeAf with the 100 000 lattice real-
izations histogrammed in units ofm.

C. Random partitions

Random partitions were generated from 79 total syst
constituents, chosen to approximate the number of charge
the gold multifragmentation system. The algorithm is as f
lows. First a random choice ofm was made from a uniform
distribution on~1,79!. Next the maximum size of a cluste
Amax

1 for an event withm was determined; this depended o
the constraints of the system sizeA0579 and the choice of
m. The size of the first clusterA1 was then randomly chose
from a uniform distribution on (1,Amax

1 ). There were then
m21 clusters to be generated from 792A1 constituents. The
maximum size of a cluster for anm21 event from a 79
21 constituent system was determined:Amax

2 . The size of
the second clusterA2 was then randomly chosen form a un
form distribution on (1,Amax

2 ). This process was repeated u
til all constituents belonged to a cluster. 100 000 partitio
were generated in this manner. This particular weighting
sults in a power law cluster distribution@26#.

III. REVIEW OF THE FISHER DROPLET MODEL

The focus of most studies of phase transitions is on s
dard thermodynamical variables such as a system’s temp
ture, density, compressibility, etc. These quantities are d
cult or impossible to measure directly in present nucl
multifragmentation experiments. Thus a theory which a
dresses quantities accessible to MF experiments is nee
To that end Fisher’s gas-to-liquid phase transition mod
based on Mayer’s condensation theory, is followed@7,9,61#.

Fisher begins his model, called the Fisher droplet mo
~FDM! hereafter, by writing the free energy for the formatio
of clusters of sizeAf as

DGAf
52kbTAf ln@g~m,T!#2kbT ln@ f ~Af ,T!#

1kbTt ln~Af !1•••, ~1!

where kb is the Boltzmann constant and theg term is the
bulk formation energy, or volume term and

g~m,T!5exp@~m2mcoex!/kbT#, ~2!

wherem is the chemical potential andmcoex is the chemical
potential along the coexistence curve.

The f term is related to the surface free energy of clus
formation. It is a form given by Fisher

f ~Af ,T!5exp@a0vAf
seTc /kbT#, ~3!

wheres is a critical exponent and is related to the ratio
the dimensionality of the surface to the dimensionality of t
volume,a0 is a constant of proportionality relating the ave
age surface area of a droplet to its number of constitue
3-3
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and v is the surface entropy density;e is a measure of the
distance from the critical point. For usual thermodynam
systems e5(Tc2T)/Tc , in the percolation treatmente
5(pl2pc)/pc and for multifragmentatione5(mc2m)/mc
will be used. All formulations ofe are such thate.0 (e
,0) corresponds to the liquid~gas! region. This form of the
surface free energy is applicable on only one side of
critical point, the single phase side. A more general fo
suggested by efforts from percolation theory@63–66# that
can be applied on both sides of the critical point and lead
a power law which describes the behavior of the order
rameter is

f ~z!5A exp@2~z2B!2/C#, ~4!

where the scaling variablez is

z5Af
se. ~5!

The physical interpretation of the parametersA, B, andC is
an open question.

Finally t is another critical exponent depending princ
pally on the dimensionality of the system and has its orig
in considerations of a three dimensional random walk o
surface closing on itself, thus for three dimensions 2<t<3
@67#. In Eq. ~1!, q0 is a normalization constant which will b
shown to depend solely on the value oft @68#.

From the free energy of cluster formation the avera
cluster distribution normalized to the size of the system i

nAf
~e!5exp~2DGAf

/kbT!5q0Af
2t f ~z!g~m,T!Af . ~6!

At the critical point e50 both f and g are unity and the
cluster distribution is given by a pure power law

nAf
~e!5q0Af

2t . ~7!

If the first moment of the normalized cluster distribution
considered at the critical point then@68#

M1~e50!5( Af
nAf

~e!Af5q0( Af
Af

12t51.0 ~8!

when the sum runs over all clusters. From Eq.~8! it is obvi-
ous that the value of the overall cluster distribution norm
ization constant,q0, is dependent ont via a Riemannz
function

q051.0/( Af
Af

12t . ~9!

The above is true only if the scaling assumptions in the FD
apply to all clusters. For finite size systems even at the c
cal point this is only approximately true. However, it will b
seen that Eq.~9! holds reasonably well at the critical poin
for systems with a continuous phase transition over so
range in cluster size.

In the FDM it is assumed that all clusters of sizeAf can
be treated as an ideal gas, so that the total pressure o
entire cluster distribution can be determined by summing
of the partial pressures:
06460
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P/~kbT!5( Af
nAf

~e!5q0( Af
Af

2t f ~z!g~m,T!Af

5M0~e!. ~10!

It is clear from Eq.~10! that the pressure of the system
related to the zeroth moment of the cluster distribution.

The density is then

r5
]P

]m
5q0( Af

Af
12t f ~z!g~m,T!Af

5( Af
nAf

~e!Af5M1~e!. ~11!

The density is given by the first moment of the cluster d
tribution.

It is now a simple matter to derive the power law whic
describes the divergence of the isothermal compressib
kT . By definition:

kT52
1

V S ]V

]PD
T

5
1

r S ]r

]PD
T

. ~12!

Noting thatkbTr5g(m,T)@]P/]g(m,T)#, Eq. ~12! can be
rewritten as

kT5
21

r2 S g~m,T!
]P

]g~m,T!
1g~m,T!2

]2P

]g~m,T!2D
T

,

~13!

which leads to

kT5~rkbT!211~r2kbT!21( Af
nAf

~e!Af
2

5~rkbT!211~r2kbT!21M2~e!. ~14!

The sum in the second term illustrates the relation of
second moment of the cluster distributionM2(e) to the iso-
thermal compressibility. The sums in Eqs.~10!, ~11!, and
~14! run over all clusters in the gas and exclude the b
liquid drop. In percolation and multifragmentation the large
cluster on the liquid side of the critical point will be consid
ered as the liquid drop and will thus be excluded from t
sum. On the gas side of the critical point, the sum runs o
all clusters as there is no longer a liquid drop.

In the thermodynamic limit, largeAf dominate the sum so
that it may be treated as an integral giving

kT5~rkbT!211~r2kbT!21E
0

`

nAf
~e!Af

2dAf . ~15!

Working along the liquid-gas coexistence curve so t
g(m,T)51 Eq. ~15! reduces to

kT5~rkbT!211~r2kbT!21E
0

`

Af
22t f ~z!dAf . ~16!
3-4
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A change of variables fromAf to z shows that near the criti
cal point

kT;~r2kbT!21Uq0

s E
0

6`

dz f~z!Uzu(32t2s)/suueu(t23)/s

5~r2kbT!21G6ueu2g. ~17!

This is the so-calledg-power law which describes the dive
gence of the isothermal compressibility and the second
ment of the cluster distribution near the critical point. T
scaling relation between the exponentsg, s, andt is

g5
32t

s
. ~18!

The absolute normalization constants of theM2(e) power
law depend on the scaling functionf (z) the exponents and
the overall normalization of the cluster distributionq0 which
in turn depends on the exponentt

G65Uq0

s E
0

6`

dz f~z!uzu(32t2s)/sU. ~19!

The second moment is related to the isothermal compr
ibility by the temperature and density of the system.

The derivation of theg-power law demonstrates one wa
to arrive at the scaling relations between the critical ex
nents. In addition it illustrates the existence of only two
dependent exponents and shows the relation of the mom
of the cluster distribution to familiar thermodynamic quan
ties. Fisher’s framework here illustrated and tempered
percolation theory will be used in the analysis of the clus
distributions of the three systems discussed above. It wil
seen that in the case of systems which exhibit a continu
phase transition, the framework of Fisher is well followe
while for systems with no such phase transition, the fram
work fails, as it should.

IV. PHASE TRANSITION SIGNATURES
IN CLUSTER DISTRIBUTIONS

A. Insensitive signatures

In this section the insensitive features of the cluster d
tribution for each system are examined. It will be demo
strated that on the level of analysis presented here, each
tem exhibits behaviors that are consistent with syste
which undergo a continuous phase transition. The conclu
is inescapable that this sort of analysis can yield necess
but not sufficient, signals. A deeper analysis will be nec
sary to distinguish those systems which undergo suc
phase transition from those which do not.

1. Fluctuations

One of the most striking characteristics of systems und
going continuous phase transitions is the occurrence of fl
tuations that exist on all length scales in a small range of
control parameter. In fluid systems this was observed as c
cal opalescence, first noted by Andrews in the latter hal
06460
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the 19th century@58,69#. Fluctuations in cluster size and th
density of the system arise because of the disappearanc
the latent heat at the critical point. This is illustrated in t
FDM when the isothermal compressibility diverges at t
critical point and small changes in pressure gives rise to g
changes in the density. In the FDM as the volume and s
face contribution to the free energy of cluster formation va
ishes the power law dominates and clusters of all len
scales are observed@7#.

In a cluster distribution the most readily observed fluctu
tions are those in the size of the largest cluster. For e
system the root mean square~rms! fluctuations in the size of
the largest cluster normalized to the size of the syst
D(Amax/A0), have been calculated as a function of the s
tem’s control parameter. This measure of the fluctuations
the cluster distribution was first studied by Campi for go
multifragmentation and percolation@16#. Those results are
replicated here for those two systems.

Figure 1~a! showsD(Amax/A0), as a function ofpl for
percolation. As expected for a system known to exhibi
continuous phase transition, the rms fluctuations peak ov
narrow range in the control parameter. The location of t
peak provides a first estimate of the critical point;pc50.33
60.01, see Table I.

Next the percolation lattice is examined using the mu
plicity of clustersm as an estimate of the control paramet
This is done because in the case of nuclear multifragme
tion m is experimentally measurable. Figure 1~b! shows
much the same qualitative behavior as Fig. 1~a!. The fluctua-
tions peak over some narrow range ofm and suggest the
value of the multiplicity at the critical point, thecritical mul-
tiplicity, to bemc55565.

For random partitions a peaking behavior in the fluctu
tions of the size of the largest cluster as a function ofm was
observed, see Fig. 1~c!. These fluctuations can be understo
as follows. Atm51 there can be no fluctuations in the si
of the largest cluster because of the dual constraints of e
cluster multiplicity and the fixed number of constituents. A
the multiplicity increases from unity, the constraints ease a
fluctuations in the size of the largest cluster grow. At t
maximum possible multiplicity, i.e., whenm is equal to the
total number of constituents, the size of the largest cluste
constrained to be equal to unity and the fluctuations van
Thus, the fluctuations show a peak, but for reasons that h
nothing to do with a continuous phase transition. Therefor
must be concluded that the observation of a maximum in
fluctuations of the size of the largest cluster is not suffici
to distinguish systems with and without critical behavior. O
the other hand, the absence of a peak in the fluctuat
would indicate that the clusters of the system were not p
duced near a critical point. If the system’s phase space
been fully explored, then the stronger statement that the
tem does not possess a critical point could be made. At
level of analysis the critical multiplicity of this system can b
estimated to bemc5562.

Finally, Fig. 1~d! shows the Au1 C multifragmentation
data with the cluster distribution normalized to the size of
systemA0(m). The fluctuations in the mass of the large
cluster exhibit a peak when plotted as a function of the ev
3-5
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FIG. 1. Fluctuations in the normalized size o
the largest cluster for.~a! percolation (A05216)
as a function ofpl , ~b! percolation as a function
of m, ~c! random partitions as a function ofm,
and~d! Au 1 C multifragmentation as a function
of m. Solid vertical lines indicate the guess fo
the critical point.
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total charged particle multiplicitym. This behavior is consis
tent with what is expected for a critical phenomenon. Ho
ever, as illustrated above, it is inconclusive. At this level
analysis the estimate for the critical multiplicity ismc531
66.

It is also possible to study the fluctuations in the avera
size of a cluster. From the example of critical opalescenc
is clear that the greatest fluctuations in cluster size sho
occur at the critical point. To that end the quantity known
g2 is constructed, again following the work of Campi@16–
21#. The variance in the mean cluster size^Af& is defined as

s25 lim
N→`

S 1

N( Af
2D2^Af&

2. ~20!

The average cluster size is given by the ratio of the fi
moment to the zeroth moment

^Af&5( nAf
Af /( nAf

5M1 /M0 . ~21!
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The first term in Eq.~20! is just the ratio of the second
moment to the zeroth moment. Therefore, the variance in
average cluster size can be written in terms of thekth mo-
ments:

s25
M2

M0
2S M1

M0
D 2

. ~22!

This quantity is directly related to Campi’sg2 via

g25
s2

^A&2
115

M2M0

M1
2

, ~23!

which is easily measured and was coined by Campi as
reduced variance@16#.

In a later paper@20# Campi discussed the differences
methods to measureg2. Specifically, the manner in which
the kth moments are computed from the observed clus
distribution. One method is to measure thekth-moments on
an event by event basis and then compute an average b
on the control parameter, e.g.,
TABLE I. Critical point determination.

Method/system Percolation (pl) Percolation~m! Random partitions Au1 C

D(Amax/A0) 0.3360.01 5565 562 3166
M2 peak 0.2860.03 6262 562 3562
Fishert-power law 0.3160.05 5763 5961 2261
Scaling function 0.3460.03 5766 1062 2262
g-matching 0.3360.02 4961 961 2162
3-6
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FIG. 2. Fluctuations as measured byg2 for ~a!
percolation as a function ofpl , ~b! percolation as
a function ofm, ~c! random partitions as a func
tion of m, and~d! Au 1 C multifragmentation as

a function ofm ~at low m ḡ2 is affected by fission
events not completely filtered!. Open circles

show^g2&, while filled circles showḡ2 ~see text
for details!. Solid vertical lines indicate the gues
for the critical point. A dotted horizontal line
shows the value ofg252.
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1

N (
i 51

N

Mk
i ~e!5

1

N (
i 51

N S (
Af

nAf

i ~e!Af
kD ,

~24!

whereN is the number of events at a control parameter va
of e, andi denotes thei th event. This method of calculatio
of the kth moments will be termedaveraging the sumsand
will yield ^g2&.

The alternate method involves calculating an aver
cluster distribution at each value of the control parameter
then calculating thekth moments from the resulting averag
cluster distribution

M̄ k5( ^nAf
~e!&Af

k5(
Af

S 1

N (
i 51

N

nAf

i ~e!DAf
k . ~25!

This method of calculation will be termed ‘‘summing th
averages’’ and will giveḡ2.

For quantities linear innAf
there is no difference in the

two methods so that̂Mk(e)&5M̄ k(e). However, due to the
dependence ofg2 on the square of the first moment, the
will be a difference in the two methods of calculation. R
sults for both methods for each system are shown in Fig

Of primary significance is the presence of a peak in b
measurements ofg2 for all systems. For an infinite system
exhibiting critical phenomena, the location of the peak ing2
will coincide with the location of the critical point. For th
percolation system Figs. 2~a! and 2~b! show that both the
location and magnitude of the peak ing2 is dependent on the
choice of calculation method. Solid lines indicate this me
sure of the critical point. For the random partitions, Fig. 2~c!,
06460
e

e
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h

-

the location of the peak ing2 shows little dependence on th
method of calculation while the magnitude of the peak do
The gold multifragmentation data exhibit a dependence
the method of calculation both in the magnitude and locat
of a peak ing2.

Having noted the peaking behavior ofg2, the significance
of the amplitude of the peak is now addressed. It has b
suggested that the height of the peak can be used to di
entiate between the presence of a power law and that o
exponential: for a power lawg2.2 while for an exponential
g2,2. This alone is not definitive proof of the existence o
continuous phase transition as other systems show po
laws in the absence of such a phase transition. All of
percolation figures show peaks above two, as do the m
fragmentation data plots and the random partitions. Ho
ever, the value ofg2 depends on the size of the system
question@20#. For a percolation system with 64 sites, pea
in g2 under two are observed, see Figs. 3~a! and 3~c!. There-
fore, the lone criteriong2.2 is not sufficient to discriminate
between those finite systems which do and those which
not posses a power law cluster distribution.

Finally the question of the difference between the alter
tive methods of calculatingg2 is examined viaDg25ḡ2
2^g2&. It has been suggested that a peak in the differe
could indicate critical phenomena and the location of
critical point @20#. Unfortunately, the cause of this peak
not well understood and vanishes at the limits of the sys
size: (0,̀ ). Figures 4~a! and 4~b! do show peaks inDg2 at
some intermediate value of the control parameter for t
percolation lattice of 216 sites. However, as the size of
percolation lattice increases this signal vanishes@20#. For a
percolation lattice with 64 sites Figs. 3~c! and 3~d!, respec-
3-7
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FIG. 3. Fluctuations as measured byg2 ~see
text for details! for a percolation lattice of 64

sites:~a! open circleŝ g2&, filled circles ḡ2 as a
function of pl , ~b! Dg2 as a function ofpl , ~c!

open circleŝ g2&, filled circles ḡ2 as a function
of m, and~d! Dg2 as a function ofm. Solid ver-
tical lines indicate the guess for the critical poin
A dotted horizontal line shows the value ofg2

52.
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tively, look similar to a cross between the percolationL
56, m) results, Figs. 2~b! and 4~b!, and the random partition
results shown in Figs. 2~c! and 4~c!. This is believed to be
due to the twin constraints of the multiplicity and the co
servation of constituents imposed upon the system at
extremes in cluster multiplicity. Similar behavior is observ
06460
e

in the gold multifragmentation data in Figs. 2~d! and 4~d!.
Neither theg2 measure of fluctuations nor the observati

of fluctuations in the size of the largest cluster provide d
finitive insight into the nature of the cluster producin
mechanism. For a large enough system both random p
tions and percolationg2 peaks at nearly the same value
-

FIG. 4. The quantityDg2 for ~a! percolation
(A05216) as a function ofpl , ~b! percolation as
a function ofm, ~c! random partitions as a func
tion of m, and~d! Au 1 C multifragmentation as
a function ofm. Solid vertical lines indicate the
guess for the critical point.
3-8



f

t.

STATISTICAL SIGNATURES OF CRITICAL BEHAVIOR . . . PHYSICAL REVIEW C 62 064603
FIG. 5. The second momentM2 of the cluster
distributions for~a! percolation as a function o
pl , ~b! percolation as a function ofm, ~c! random
partitions as a function ofm, and ~d! Au 1 C
multifragmentation as a function ofm. Solid ver-
tical lines indicate the guess for the critical poin
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the control parameter regardless of the method of avera
used. For the percolation system the value ofpl at the peak
in g2 is close to the value ofpl where D(Amax/A0) is a
maximum. This coincidence does not hold for random pa
tions; compare Figs. 1~c! and 4~c!. For both percolation~m!
and multifragmentation, there is better agreement on
critical point from fluctuations and than fromg2 was com-
puted via Eq.~24!.

2. Divergences

Another signature used previously to infer the existen
of a continuous phase transition from cluster distributions
the observance of a peak in the second moment@15,70#.
However, it has been pointed out that models with no ph
transition can exhibit a peaking behavior in the second m
ment @55#. Figure 5 shows the behavior of the second m
ment for each of the systems examined in this work. In t
figure, for the sake of illustration, the largest cluster has b
excluded from the sum at all values of the control parame
Each system shows a peak at some intermediate value o
control parameter. Table I lists the location of the seco
moment peaks. It is clear from the peak observed for
random partitions that it is possible to observe a peak in
second moment for a noncritical cluster distribution. Th
this behavior alone cannot be used to distinguish betw
critical and noncritical systems.

An issue with the use of the second moment’s peak
behavior is the exclusion of the largest cluster from the s
in Eq. ~14!. Again, in the FDM formalism the sum runs ove
all clusters in thegas. On theliquid side of the critical point
a gas exists in addition to a liquid drop. Thus, the larg
06460
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cluster represents the bulk liquid. On thegas side of the
critical point there is no liquid drop and the largest cluster
merely the largest gas particle. With this understanding i
clear that the largest cluster should be omitted from the s
mation in the second moment only in theliquid region,
whereas the summation should run over all clusters in
gasregion. For a proper construction of the second mome
knowledge of the location of the critical point is required.
the thermodynamic limit of infinite system size, exclusion
the largest cluster makes little difference. However in sm
systems the proper construction of the second momen
crucial if critical behavior is to be observed in Ref.@71#.

3. Campi plots

Plots of the natural log of the normalized size of the la
est cluster ln(Amax/A0) versus the natural log of the secon
moment ln(M2) were first presented by Campi in a compa
son of gold multifragmentation and percolation@15#. Figure
6 shows the resulting plots for each of the systems discus
in this paper. In each plot there is a liquid leg for the larg
Amax and small M2 and a gas leg for smallerAmax and
midrange values ofM2. That similar behavior is observed fo
all systems isan indication that this is a necessary, but n
sufficient observation for critical behavior. Quantitative i
formation extracted from such plots may indeed be con
tent with known ratios of critical exponents. This has be
done recently for peripheral collisions between gold nucle
35A MeV @72#.

4. Rise and fall of intermediate mass fragments

In many nuclear multifragmentation studies the term ‘‘i
termediate mass fragment’’~IMF! has been defined as a clu
3-9
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FIG. 6. Campi plots of the cluster distribu
tions for: ~a! percolation as a function ofpl , ~b!
percolation as a function ofm, ~c! random parti-
tions as a function ofm, and~d! Au 1 C multi-
fragmentation as a function ofm.
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ter which has a charge between 3<Zf<30. For the percola-
tion system presented here acharge has been assigned t
each cluster by multiplying the number of constituents in
cluster by the charge to mass ratio of a gold nucleus. For
random partitions the number of constituents is used as
charge. Since the definition of an IMF is arbitrary, the pr
cise boundaries of the range in cluster size used makes
qualitative difference.

Aside from the equilibrium arguments made by t
ALIDIN group @49–51#, little insight towards the presence o
absence of a continuous phase transition is gained fro
plot of the average number of IMF’ŝM IMF& versus the con-
trol parameter. Figure 7 shows the results for the syste
discussed in this work. Each system shows a peak in^M IMF&
at some intermediate value of the control parameter. C
paring the peak position in Fig. 7 to the values listed in Ta
I shows that there is little correspondence between the v
ous proposed methods for locating the critical point. T
arbitrary nature of the definition of an IMF makes it unlike
that the peak in̂M IMF& occurs precisely at the critical poin
To some degree the rise and fall feature is due to the c
straint of a fixed number of constituents. It it obvious tha
the extreme values of the control parameter, the numbe
IMFs must diminish, while at intermediate values, it must
at least as great. Thus, the occurrence of a peak at s
intermediate value of the control parameter is expected.

5. teff minimum

With the first observation of a power law in the nucle
multifragmentation yield distribution@5,11# it became a
common analysis tool to fit cluster distributions to a pow
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laws and extract exponent values. In an effort to make th
more quantitative analysis the value of the extracted ex
nentteff was examined as a function of some control para
eter that was experimentally or numerically accessible
was assumed that at the critical point the value ofteff should
attain a lower value than fits which were performed aw
from the critical point@73–78#. The logic of this assumption
was based upon the idea that at lowtemperaturesa system
has few small clusters, so the power law should be ste
leading to a highteff value. At high temperatures there a
many small clusters and little else, which is reflected in
high value ofteff and a steep power law. At the critical poin
clusters on all length scales appear and the power law
shallow with a lower value ofteff . In this analysis the larges
cluster was omitted from the fitting procedure and both
constant of proportionality andteff were allowed to vary in-
dependently. Many investigations of nuclear multifragme
tation, both theoretical and experimental, employed t
method of analysis@73–78#.

One flaw in this analysis method is the use of a two p
rameter fit for the power law. Allowing both the overall no
malization of the power law and the exponent to vary ind
pendently is in conflict with the scaling assumptio
underlying the FDM as shown in Eqs.~8! and~9!. A proper
fit for a power law within the context of the FDM should b
based on single parameter; as such, the cluster distribu
must be normalized to the size of the system as was outl
in Sec. III.

Leaving aside for a moment that the execution of t
teff -minimum analysis violates the scaling assumptions
the FDM, the signal of a minimum in the cluster yield pow
3-10
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FIG. 7. Average number of intermediate ma
clusters^M IMF& for ~a! percolation as a function
of pl , ~b! percolation as a function ofm, ~c! ran-
dom partitions as a function ofm, and ~d! Au
1 C multifragmentation as a function ofm.
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law will be examined. A two parameter fit forteff searches
for the minimum in an effective exponent which is defined
@79–81#:

teff52
] ln nAf

~e!

] ln Af
. ~26!

Assuming that the system under study follows a power
in the cluster yield at the critical point, and away from t
critical point the cluster yield is affected by a scaling fun
tion such as in Eq.~7!, then

teff5t2Af

] ln f

] Af
. ~27!

The minimum in teff can be found by differentiating Eq
~27!:

dteff

de
52Af

]

]e

] ln f

]Af
50. ~28!

The location of the minimum inteff is dependent on the form
of the scaling functionf. Assuming the scaling function ha
the form of Eq.~4! then the minimum inteff will be at e
5B/2Af

s , not at the critical pointec50.
Despite the flaws in theteff -minimum analysis it is of

interest to examine the results for the systems discusse
this paper. Figures 8–11 show the results for a two param
fit to the cluster distribution for percolation~probability and
multiplicity!, random partitions and gold multifragmentatio
06460
s

in
ter

respectively. For all systems, the cluster distributions were
at each value of the control parameter. Only clusters w
;0.02<(Af /A0)<;0.22 were included in the fits. The firs
three systems weightedxn

2 with errors associated withnAf
(e)

while thexn
2 for the gold multifragmentation cluster distribu

tions were weighted with errors on bothnAf
(e) andAf .

For the percolation (pl) a minimum inteff was observed
at pl50.3 with xn

252.3, q050.21460.005 andt52.19
60.01; shown in Figs. 8~a!, 8~b!, and 8~c! by the dotted
lines. However, at pl50.33 the xn

251.02, q050.181
60.003, andt52.2760.01; shown in Figs. 8~a!–8~c! with
the dashed lines. Based on a goodness of fit comparison
latter value ofpl is a better choice for the critical point. Thi
result is in agreement with the analytic discussion ofteff
above, namely, that a minimum inteff is a poor indicator of
the critical point. If the results forpl50.33 are compared to
the center of theteff , pl;0.28, the differences in thexn

2 and
q0 results are even more striking.

Similar results were seen for percolation (m), see Fig. 9.
Here the minimum in theteff well yielded worse results for
both xn

2 and q0 than does the choice of the critical poin
based on a choice from thexn

2;1 region where there is goo
agreement between the fittedq0 and the value computed us
ing Eq. ~9! and the canonicalt value for three-dimensiona
percolation.

Significant differences between percolation and rand
partitions are observed in this analysis as seen in Fig. 10.
solid lines show theteff and q0 values for systems in the
three-dimensional Ising universality class, while the dash
line shows theteff andq0 for three-dimensional percolation
3-11
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FIG. 8. Results forteff minimum analysis on
percolation as a function ofpl : ~a! xn

2 , ~b! fitted
teff , and~c! q0. The vertical dotted lines show th
location of the minimum inteff . The vertical
dashed line shows one instance of a better
based onxn

2 . The horizontal solid lines show the
accepted values oft andq0 for percolation.
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The first noticeable difference is a lack of a valley shape
the plot ofteff versus control parameter, see Fig. 10~b!. The
value ofteff is below 2.2 for all butm.60. Next is the lack
of a region inm wherexn

2;1 ~other than atm52), see Fig.
10~a!. All fits yield largexn

2 values indicating poor fits to the
cluster distribution by a power law for the range of cluste
examined.
06460
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The gold multifragmentation data show results similar
those of percolation (m). Here the cluster size is measured
terms of the nucleon number and the cluster distribution
normalized to the mass of the gold projectile remnant. Fig
11~b! shows a valley inteff as a function ofm, albeit one
with a shallow and questionable upwards slope at highm.
Figure 11~c! shows fitted values ofq0 that coincide with
fit
FIG. 9. Results forteff-minimum analysis on
percolation as a function ofm: ~a! xn

2 , ~b! fitted
teff and ~c! q0. The vertical dotted line show the
location of the minimum inteff . The vertical
dashed line shows one instance of of a better
based onxn

2 . The horizontal solid lines show the
accepted values oft andq0 for percolation.
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FIG. 10. Results forteff -minimum analysis
on random partitions:~a! xn

2 , ~b! fitted teff , and
~c! q0. The horizontal solid~dashed! lines show
the accepted values oft and q0 for percolation
~3D Ising!.
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are
canonical values. Figure 11~a! shows a region of lowxn
2

values followed by steadily increasing values. If no know
edge of theq0 and t values is assumed, then this analy
shows no definitive signals. Theteff valley shows a broad
minimum in xn

2 thus no one value ofm can be selected fo
the critical point based on goodness of fit arguments. At b
06460
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st

one could argue for the neighborhood of the critical po
and a value ofq0 andt in some broad range.

6. Conclusion

The analyses presented above yield inconclusive res
All of the considered systems show similar signals which
FIG. 11. Results forteff -minimum analysis
on Au 1 C multifragmentation:~a! xn

2 , ~b! fitted
teff , and ~c! q0. The horizontal solid~dashed!
lines show the accepted values oft and q0 for
percolation~3D Ising!.
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FIG. 12. Results for the full Fishert-power
law analysis on percolation as a function ofpl :
~a! xn

2 , ~b! fitted t, and ~c! q0. The vertical
dashed line shows the estimate of the critic
point based on a best fit based onxn

2 . The hori-
zontal solid lines show the accepted values ot
andq0 for percolation.
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qualitative in nature and open to interpretation. It is theref
impossible, based solely on this level of analysis, to mak
definitive conclusion as to the presence of a continu
phase transition in any of these systems. What is neede
an analysis or set of analyses that more clearly differenti
between systems with and without critical behavior.

B. Sensitive signatures

1. The Fishert-power law and the critical point

In this section the cluster yields are fit to a power law in
manner consistent with the FDM formalism. As with the tw
parameter fits the yields for clusters with;0.02<(Af /A0)
<;0.22 were fit at each value of the control parame
However, only a single parameter, the value oft, was al-
lowed to vary to minimize thexn

2 of the fit. The value of the
normalizationq0 was determined via the Riemannz function
in Eq. ~9!. As suggested by Fisher@7#, the value oft was
constrained to be between 2 and 3 so that the sum in thz
function converges.

If the cluster distribution is well described by the FDM
then at the critical point the fit to a single parameter pow
law should show a minimum inxn

2 . Away from the critical
point the power law is modified by a scaling function with
form similar to that given in Eq.~4!. Therefore, fits to a
single parameter power law should become worse as
modification from the scaling function increases away fro
the critical point.

Figure 12 shows the results for the percolation syst
with pl as the control parameter. In Fig. 12~a!, a minimum in
xn

2 is observed for fits in the midpl range. This minimum
indicates the location inpl of the cluster yield distribution
06460
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which is best fit by a single parameter power law as s
gested by the FDM formalism. By this estimation the critic
point for this 216 site percolation lattice is atpc50.31
60.05 with t52.260.1, q050.2060.01, and axn

251.62.
The precise canonical values oft and q0 are not extracted
due in part to unavoidable finite size effects, and in part
the binning of cluster yields together over a range of 0.01
pl , which causes thetrue cluster distribution at the critica
point to be contaminated by distributions at other values
the control parameter. In spite of these difficulties, the s
nature of the critical behavior suggested by the FDM form
ism is evident. The location of the critical point determin
here is consistent, at the 10% level, with the insensitive s
natures presented in the previous section, see Table I. Fi
16~a! shows the best fit power law. For the percolation s
tem clusters consisting of a single site are excluded from
fitting procedure. It is accepted that those clusters reflect
effects of the finite size of the system to a higher degree t
larger clusters. Clusters withAf<53 were included in the fit.
The largest cluster from eacheventwas excluded from con-
sideration when generating the average cluster distributio
keeping with the FDM formalism. Figure 16~a! shows the
data for the entire cluster distribution in open circles. It
clear from this figure that the majority of the cluster dist
bution was used in the power law fit and further, that t
exclusion or inclusion of the larger clusters has almost
effect on the results of this procedure. The extracted par
eters, namely,t, q0, and pc , do not depend on the fi
range.

Figure 13 shows the results of the single parameter
analysis when applied to the same percolation system
with the cluster multiplicity used as a measure of the co
3-14
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FIG. 13. Results for the full Fishert-power
law analysis on percolation as a function ofm: ~a!
xn

2 , ~b! fitted t, and ~c! q0. The vertical dashed
line shows the estimate of the critical point bas
on a best fit based onxn

2 . The horizontal solid
lines show the accepted values oft and q0 for
percolation.
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trolparameter. Again there is a minimum in thexn
2 values at

some intermediate value of the control parameter which
dicates thatmc55763 with t52.260.1, q050.2060.01,
andxn

250.72. Note the consistency between these value
q0 andt and those obtained withpl following this method.
The location of the critical point determined here is cons
tent, at the 10% level, with the insensitive signatures p
sented in the previous section. The lowerxn

2 value is due to
the finer bins over which the cluster distributions we
grouped. Figure 16~b! shows the best fit power law. Her
only clusters of sizeA51 and sizeA5Amax were excluded
from the fitting procedure.

From Figs. 12 and 13 it could be argued, based on the
agreement between the fittedt and the accepted three dime
sional percolation value, that there are better choices for
critical point than those quoted above. However, those a
ments assume knowledge of the value oft as an input. The
use of the location of the best fit to a single parameter po
law as an indicator of the critical point makes no assumpt
regarding the value oft and is a test of the FDM formalism
in which only the range oft is suggested: 2,t,3. The
values of t and q0 are outputs rather than inputs of th
analysis. Much of the following analysis presented in t
paper follows the same philosophy. That is, the analysi
designed to test the cluster distribution in question for beh
ior consistent with the FDM formalism. The values of qua
tities, such as critical exponents, are results of the anal
method and are in no way selected for on the basis of t
particular values. Agreement between exponent values d
mined by this procedure and the canonical values in vari
universality classes is then significant because the value
the exponents are determined solely by the behavior of
cluster distributions so analyzed.
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The results of the single parameter power law fits for
random partitions are presented in Fig. 14. There is a m
mum in thexn

2 value atm559. Howeverxn
2510.83, which

is an order of magnitude above the percolation resu
should not be used as an indication of a good fit of the clu
distribution by a single parameter power law. The location
the xn

2 minimum is also in disagreement with the insensiti
signatures presented in the last section. Here only cluste
sizeAf51 and sizeAf5Amax were excluded from the fitting
procedure.

Figure 15 shows the results of this analysis applied to
gold multifragmentation data. As with the percolation r
sults, thexn

2 shows a minimum that drops nearly two orde
of magnitude from the peaks for high and lowm to the valley
at a midrange value ofm, see Fig. 15~a!. In the context of the
FDM analysis this result suggests that the critical point
located atmc52261 with t52.260.1 andq050.1860.01
andxn

252.70. The best fit power law is show in Fig. 16~d!.
An uncertainty of one unit of multiplicity is assigned tomc

to take into account the relatively low values ofxn
2 of the

neighboring fits.
For the above fits to the gold multifragmentation data

xn
2 is weighted by the errors in bothnAf

andAf . The fitting
procedure has also been performed with no error weigh
on xn

2 and with errors only innAf
for weighting. Both analy-

ses shows results that were not significantly different fr
those quoted here. As mentioned previously, clusters w
Zf52 are created in both the prompt first stage and in
multifragmenting of the gold nuclear remnant. The prom
Zf52 clusters have been excluded from the gold multifra
mentation analysis. As a further test of the single param
power law fit, only clusters with 3<Zf<16, i.e., clusters
3-15
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FIG. 14. Results for the full Fishert-power
law analysis on random partitions:~a! xn

2 , ~b! fit-
ted t, and ~c! q0. The horizontal solid~dashed!
lines show the accepted values oft and q0 for
percolation~3D Ising!.
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with no contamination from the prompt first stage, were
cluded in a repeat of this analysis. Again the results sh
practically the same behavior as those shown here. As
another test, clusters with 2<Zf,Zmax were included in the
fitting procedure, and again the results showed little diff
ence from those presented here. Finally clusters with 3<Zf
,Zmax were included in the fitting procedure, and again t
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results showed no difference from those presented here.
data consistently exhibited a deep valley in thexn

2 versusm
plot which indicated that the location of the critical point w
mc;22 and thatt;2.2, q0;0.18 and 1,xn

2,4. Thus the
value oft and the location ofmc are not sensitive to the fi
region. The behavior of the data show this clearly, see o
circles in Fig. 16~d!.
ed
FIG. 15. Results for the full Fishert-power
law analysis on Au1 C multifragmentation:~a!
xn

2 , ~b! fitted t, and ~c! q0. The vertical dashed
line shows the estimate of the critical point bas
on a best fit based onxn

2 . The horizontal solid
~dashed! lines show the accepted values oft and
q0 for percolation~3D Ising!.
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FIG. 16. Best fit Fishert-power laws for~a!
percolation (pl), ~b! percolation (m), ~c! random
partitions, and~d! Au 1 C multifragmentation.
Solid circles were included in the fits, ope
circles were excluded. Solid lines show the be
fit power law, dotted lines indicate error in th
power law based on errors in the fitted param
eters.
te
ic
al
ig

n

n
as
u
c
t,
th
m

al
o
t

th

ex
a
t
sis
a
th

e
y

the

s
that
aling

e

he

ent
e
n-
ize

e

-

The single parameter power law analysis of the clus
distributions of the various systems yielded a result wh
differentiated between systems that follow the FDM form
ism and systems that do not. The differences between F
12~a!, 13~a!, 15~a!, and 14~a! are clear. For both percolatio
and gold multifragmentation the behavior ofxn

2 was just as
predicted by the FDM formalism for continuous phase tra
sitions. Far from the critical point the cluster distribution w
fit poorly by a single parameter power law due to the infl
ence of a scaling function where volume and surface effe
overwhelm the underlying power law. At the critical poin
where the influence of the scaling function vanishes,
cluster distributions were well described by a single para
eter power law with an exponent valuet;2.2 and thusq0
;0.2, in keeping with what is expected for many univers
ity classes. This fitting procedure does not merely search
a cluster distribution which is well fit by a power law, bu
finds the cluster distribution which is well fit by the FDM
formalism. This is achieved via the coupling between
exponentt and the normalization factorq0, see Eq.~9!. The
random partitions fail to produce such signals. This is
pected as that system does not obey the FDM formalism
thus should not show the same signals as systems tha
known to follow the FDM such as percolation. This analy
of the cluster yield of gold multifragmentation yields a sign
that is suggestive of critical phenomenon in keeping with
FDM formalism.

2. The critical exponents

In Sec. III it was shown that in the context of the FDM th
surface of a cluster makes a contribution to the free energ
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cluster formation, via the scaling functionf (z), that depends
on the number of constituents of the cluster raised to
powers; see Eqs.~1!, ~4!, and~5!. Therefore, it is possible to
determine the value ofs by examining cluster production a
a function of the control parameter. To see this, consider
the behavior of the order parameter suggests that the sc
function f (z) has a maximum@61#. At the maximum of the
scaling functionf max(zmax), the production ofAf sized clus-
ters is greatest:

nAf

max~emax!5q0Af
2t f ~zmax!. ~29!

The argument off max is

zmax5Af
semax, ~30!

where the value ofzmax depends on the specific details of th
system in question@63#. Rearranging Eq.~30! yields

emax5zmaxAf
2s . ~31!

Thus emax, the value of the control parameter at which t
greatest number of clusters of sizeAf are produced, is related
to the cluster size through a simple power law with expon
s. The exponents can then be determined from knowledg
of the location of the critical point and the value of the co
trol parameter at the greatest production of clusters of s
Af .

The location of the critical point was determined in th
search for the Fishert-power law in Sec. IV B 1 and will be
used here to determine thes. The value of the control pa
rameter which yields the greatest production of eachAf clus-
3-17
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FIG. 17. Rise and fall in the production o
individual clusters for~a! percolation as a func-
tion of pl , ~b! percolation as a function ofm, ~c!
random partitions as a function ofm, and~d! Au
1 C multifragmentation as a function ofm. Sym-
bols ~d, j, m, .! indicate clusters of size
~charge! 3, 5, 7, and 10 for percolation and ran
dom partitions~multifragmentation!.
o
7.
ho
th

a

b
po
th

tim

e
e

a

er
o
o

p

rco-
-
rs

es

l
the
s

ch

ing
e

g-
rt-

of

re-

ional
ent

s
d
a
a-
y.
rts
ter size was determined from the peak location in a plot
nAf

(e) versus the system’s control parameter, see Fig. 1
For each system at each cluster size plots such as t

shown in Fig. 17 were used to determine the location of
peak of nAf

(e). For example, in percolation (pl), emax

5(pc2pmax)/pc , pairs of points@nAf
(e),pl # for a particular

Af were fed into aSPLINE routine@82#. Input pairs were then
smearedby assigningdnAf

(e) as the standard deviation of

Gaussian centered onnAf
(e). Output of theSPLINE routine

was used to interpolate the behavior of a smooth curve
tween the pairs of input points. Stepping along the inter
lations in increments much smaller than the separation of
input pl , a maximum ofnAf

(e) was determined andpmax

was recorded. This process was repeated thousands of
for each cluster size and lead to an estimate ofpmax
6dpmax as a function ofAf .

Using pmax(Af)6dpmax(Af) and the value ofpc6dpc ,
from the Fishert-power law determination process, th
value of the exponents was determined by taking the slop
of ln(emax) versus ln(Af). The value ofzmax was determined
by exponentiating the offset. The value ofpc was varied
uniformly throughout the range suggested bydpc and tens of
fits were made with varying starting and ending points inAf
of the fitting region. The final value ofs6ds and zmax
6dzmax are the average and RMS values resulting from
the fits.

Results of this analysis performed on percolation (pl) are
shown in Fig. 18~a!. Here the value of the control paramet
that coincides with the maximum in production of clusters
size Af ,emax, is plotted against the cluster size. Results
the average power law fits to Eq.~31! are plotted as a solid
line. The agreement between the values returned by the
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cedure discussed above,s50.5260.02 andzmax520.89
60.03, and the accepted values for three-dimensional pe
lation,s50.45 andzmax520.8 @63#, establishes the reliabil
ity of this exponent extraction method. The analysis diffe
in method from previous efforts on percolation lattic
@71,83# but not in result.

The next test of this analysis is to extract a value ofs
from percolation (m). In order for this procedure to be usefu
on multifragmentation data it must be demonstrated that
exponents can be determined using cluster multiplicity a
the control parameter. To that end the multiplicity at whi
the production of each cluster size is maximal,mmax was
determined via the procedure described previously. Us
the value of mc6dmc determined via searching for th
Fisher t-power law andmmax the exponents was deter-
mined by taking the slope of ln(emax) versus ln(Af). The
value ofmc was varied uniformly throughout the range su
gested bydmc and several fits were made with varying sta
ing and ending points inAf of the fitting region. The value of
zmax was determined by exponentiating the offset. Results
the average power law fits to Eq.~31! are plotted as a solid
line in Fig. 18~b!. The agreement between the values
turned by this procedure,s50.5260.02, the value fors
quoted above, and the accepted values for three-dimens
percolation again establishes the reliability of this expon
extraction method and shows that the use ofm as a control
parameter is acceptable.

The value ofzmax522.460.1 extracted for percolation a
a function of multiplicity is different from the value quote
above,zmax520.8960.03, for the percolation system as
function of probability. This is a result of changing the me
sure of the control parameter from probability to multiplicit
This difference was observed in previous percolation effo
3-18
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FIG. 18. Results of thes extraction procedure
for ~a! percolation as a function ofpl , ~b! perco-
lation as a function ofm, ~c! random partitions as
a function ofm, and ~d! Au 1 C multifragmen-
tation as a function ofm.
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@83# and explained therein. A plot ofe(pl) againste(m)
show thatzmax(pl) andzmax(m) map to each other. See Fig
9 of Ref. @83#.

Clusters from the random distribution were also subjec
to this analysis. Due to the failure of the search for the Fis
t-power law in the random partitions, the value ofmc deter-
mined in the analysis of the gold multifragmentation w
used,mc52261. The value of the cluster multiplicity fo
maximum production ofAf sized clusters was determined
the same manner as with the percolation system. The flat
of the nAf

(e) versusm curves, see Fig. 17~c!, makes finding

a unique value ofmmax impossible. This is reflected in th
large error bars onemax6demax seen when plotted againstAf
in Fig. 18~c!. The value ofmmax reported by the peak finding
procedure employed here reflects, approximately, the m
point of the multiplicity range ofnAf

(e) for a particularAf .

Coupling themc from the filtered gold multifragmentation
data with themmax and fitting ln(emax) versus ln(Af) gaves
50.460.2 andzmax522.060.8. However, it is clear when
comparing the resulting average fit for the random partitio
shown in Fig. 18~c! with either of the percolation result
shown in Fig. 18~a! that thes resulting for the random par
titions cluster distribution is meaningless. This is to be e
pected as the framework of the FDM, used in the extract
of the exponents, is meaningful only when applied to sys
tems which undergo a continuous phase transition. Thefail-
ure of this analysis on this system is expected based on
basis of thefailure of the analysis in the preceding sectio
that aimed to find the Fishert-power law and the critica
point.

Results for the extraction ofs from the gold multifrag-
mentation data have been published previously@13,14#. In
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those analyses the largest cluster was excluded from con
eration at every value of the control parameter. This is
odds with the formalism of the FDM where the sums e
cludes the largest cluster fore.0 and include the larges
cluster fore,0.

The previous analyses yielded values ofs50.6860.05
and 0.6560.06 for work with the un-normalized charge di
tribution and normalized mass distribution respective
When this analysis was redone using formalism of the FD
i.e., the largest cluster excluded on one side of the crit
point ~liquid! and included on the other side~gas!, the values
of s were reduced by approximately 50%:s50.3260.02.
In the case of percolation the difference introduced in
value ofs when following the FDM formalism~as was done
above! or not ~as was the case in Ref.@83#! is on the order of
a few percent.

One source of this differing behavior between multifra
mentation and percolation is the changing mass of the
tem. For gold multifragmentation, fromA0;194 at lowm to
A0;92 at highm @60#, while the system size is constant fo
percolation. For gold multifragmentation effects of the fin
size of the system are felt more at high multiplicities th
low. Since the percolation system size is constant, finite s
effects are felt more evenly.

It is the higher values ofm where cluster production peak
in multifragmentation. The finite size of the system limits t
size to which a cluster can grow. Thus the number of clus
of sizeAf ,nAf

, as a function ofm is contaminatedwhen the

largest clusterAmax is included in a plot ofnAf
versusAf

becauseAmax would like to be larger, but finite size effect
limit the sizeAmax can attain. Therefore, one method to a
count for this effect is to excludeAmax from the cluster dis-
3-19
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TABLE II. Critical exponents.

Exponent/system 3D percolation Percolation (pl) Percolation~m! Random partitions Au1 C 3D Ising

t 2.18 2.260.1 2.260.1 2.060.1 2.260.1 2.21
s 0.45 0.5260.02 0.5260.02 0.460.2 0.6460.05 0.64

g5
32t

s

1.82 1.560.2 1.560.2 2.561.2 1.360.2 1.23

g1 ~matching! 1.860.2 1.6460.04 0.460.1 1.460.3
g2 ~matching! 1.860.2 1.760.1 0.560.2 1.460.3
^g& ~matching! 1.860.2 1.6760.05 0.560.1 1.460.3
Dg ~matching! 0.060.3 0.0660.1 0.160.2 0.060.4
n ~hyperscaling! 0.87 0.7760.07 0.7760.07 0.6360.07 0.63
s
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tribution at largem values where these effects are large
This was done for the gold multifragmentation data.

The multiplicity at which the production of each clust
size is maximal,mmax was determined via the procedure d
scribed previously. The value ofmc determined in the Fishe
t-power law analysis was used,mc52261. The value ofmc
was varied uniformly throughout the range suggested bydmc
and several fits were made with varying starting and end
points inAf of the fitting region. The exponents was deter-
mined by taking the slope of ln(emax) versus ln(Af) and the
value of zmax was determined by exponentiating the offs
The results weres50.6460.05 andzmax526.060.8, see
Tables II and III. The average power law fits are shown
Fig. 18~d!.

3. The scaling function f„z…

With the critical point (pc or mc), t, q0, and s deter-
mined and assuming coexistence,g51, it is possible to find
the scaling function by rewriting Eq.~6! as

nAf
~e!/q0Af

2t5 f ~z!. ~32!
06460
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Doing this has the effect of appropriately scalingnAf
(e) and

collapsing the data onto a single curve. Figure 19 shows
results of this sort of scaling.

In Figs. 19~a!, 19~b!, and 19~d!, the data from percolation
(pl andm) and multifragmentation, respectively, show co
lapse onto a single curve for a wide range in cluster size
over nearly the full range in control parameter. Random p
titions shows no such collapse, see Fig. 19~c!.

As a demonstration of this type of collapse the same d
has been scaled in the same fashion, but with a differ
choice of the critical point. Figure 20 shows the syste
using a critical point with a value of half of the critical poin
determined via the Fishert-power law, while Fig. 21 shows
the same analysis with a value of twice the critical po
determined via the Fishert-power law. A visual inspection
of Figs. 19, 20, and 21 reveals the greatest data colla
occurs when the choice of the Fishert-power law critical
point is used, at least for the percolation (pl and m) and
multifragmentation systems. Random partitions show
such collapse. Using different values oft ands in this scal-
ing analysis of random partitions does not significantly al
TABLE III. Critical amplitudes.

Amplitude/system Percolation (pl) Percolation~m! Random partitions Au1 C

q0 0.2060.01 0.2060.01 0.0760.01 0.1860.01
zmax 20.8960.03 22.460.1 22.060.8 211.062.0
zmax ~scaling fcn! 20.960.1 22.560.5 22.068.0 29.062.0
G1 ~scaling! 0.960.1 4.960.5 3.560.5 19.063.0
G2 ~scaling! 0.1760.05 0.360.1 1.060.2 0.2460.05
G1 /G2 ~scaling! 5.062.0 16.066.0 3.560.9 80.0620.0
G1 ~matching! 1.060.3 7.060.6 26.062.0 26.069.0
G2 ~matching! 0.0860.07 0.2860.04 3.760.4 0.2760.06
G1 /G2 ~matching! 13.0612.0 25.064.0 7.061.0 100.0640.0
G1 ~C.T.S. 3dP! 0.960.1 6.460.5 170.0620.0 30.065.0
G2 ~C.T.S. 3dP! 0.0660.01 0.3860.04 0.0860.01 0.0860.01
G1 /G2 ~C.T.S. 3dP! 15.063.0 17.062.0 2100.06400.0 380.0660.0
G1 ~C.T.S. 3dI! 140.0610.0 55.065.0
G2 ~C.T.S. 3dP! 0.160.01 0.2860.05
G1 /G2 ~C.T.S. 3dI! 1400.06200.0 200.0640.0
G1

scaled 22.063.0
G2

scaled 0.2160.05
G1

scaled/G2
scaled 100.0660.0
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FIG. 19. Results of the scaling function anal
sis with the critical point equal to the value a
determined from the Fishert-power law analysis
for ~a! percolation as a function ofz(pl), ~b! per-
colation as a function ofz(m), ~c! random parti-
tions as a function ofz(m), and ~d! Au 1 C
multifragmentation as a function ofz(m). Solid
curves show the fitted scaling function. See le
ends for definition of cluster sizes.
th
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21,
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the data collapse. In Figs. 19, 20, and 21 error bars on
data points are not shown for the sake of clarity. The size
the error bars reflect the scatter of the data and are large
larger negative values ofz since there were lower statistic
for higher multiplicity events@60#.
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Figure 22 shows a quantitative measure of the data
lapse from this scaling analysis. For a number of differe
choices of control parameter scaling plots, as in Figs. 19–
were made. Each plot was binned along the abscissa an
rms fluctuations for each bin were calculated. The rms fl
y-
e

.

FIG. 20. Results of the scaling function anal
sis with the critical point equal to half the valu
as determined from the Fishert-power law
analysis for~a! percolation as a function ofz(pl),
~b! percolation as a function ofz(m), ~c! random
partitions as a function ofz(m), and~d! Au 1 C
multifragmentation as a function ofz(m). See
legends in Fig. 19 for definition of cluster sizes
3-21
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FIG. 21. Results of the scaling function anal
sis with the critical point equal to twice the valu
as determined from the Fishert-power law
analysis for~a! percolation as a function ofz(pl),
~b! percolation as a function ofz(m), ~c! random
partitions as a function ofz(m), and~d! Au 1 C
multifragmentation as a function ofz(m). See
legends in Fig. 19 for definition of cluster sizes
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tuations in all bins were then summed and plotted as a fu
tion of the choice of critical point, see Fig. 22. In the perc
lation (pl and m) and multifragmentation systems the da
shows the most collapse in the neighborhood of the Fis
t-power law critical point. No such behavior is observed
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the random partition system. This analysis serves as ano
albeit crude, estimate of the location of the critical poi
Table I lists the results.

The scaled data were used to determine the functio
form of the scaling function by fitting the data with an em
l-
e

o

FIG. 22. A measure of the scatter in the sca
ing function analysis as a function of the choic
of the critical point for~a! percolation (pl), ~b!
percolation (m), ~c! random partitions, and~d!
Au 1 C multifragmentation. Lines are drawn t
guide the eye.
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FIG. 23. The scaling function analysis fo
cluster distribution from a percolation lattice o
A0564 as a function of~a! pl and ~b! m. Solid
curves show the fitted scaling function from th
A05216 lattice. See legend for definition of clus
ter sizes.
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. Fi-
pirical parameterization consisting of two Gaussians inst
of the single Gaussian in Eq.~4!:

f ~z!5a1expF2
1

2 S z2b1

c1
D 2G1a2expF2

1

2 S z2b2

c2
D 2G .

~33!

This was suggested by the asymmetry of the percolationpl)
data, Fig. 19~a!, and is consistent with a simplified version
corrections to scaling@79# as discussed in Sec. V. Figure 1
shows the resulting fits for all systems. Fit parameter val
can be found in Table IV. Errors on the parameters of
fits, e.g.,a1, etc., reflect the change in those parameters w
the range of clusters included was changed, e.g., clus
with Zf52 were included or excluded and so on, and
weighting on the fit was changed, e.g.,xn

2 is unweighted,
weighted with errors onnAf

(e)/q0Af
2t or with errors on

nAf
(e)/q0Af

2t ande.

The scaling function for percolation (pl and m) deter-
mined here isthe scaling function for percolation in thre
06460
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dimensions, i.e., it is universal for three-dimensional per

lation independent of size. The scaling functions forpl andm
determined above agree well with the scaled cluster distr
tions of different size lattices, see Fig. 23, and can be use
predict the behavior of the second moment for any size
tice @83#. In the same spirit, the scaling function determin
here for gold multifragmentation isthe scaling function for
charged nuclear matter which describes the cluster distr
tions produced in the multifragmentation of any nucleus,
just the excited gold remnant discussed in this work. W
the knowledge of the form of the scaling function vario
other quantities can be determined as illustrated in Sec
and shown below.

The cluster distributions for the random partitions is fi
by eye, with the same empirical parametrization as in
~33! see Fig. 19~c!. The random partitions cannot be d
scribed by Eq.~33!. The solid curve in Fig. 19~c! will be
used in the following section to demonstrate the failure
the scaling analysis, as is also seen here, when applied
system where a continuous phase transition is absent
TABLE IV. Scaling function parameters.

Parameter/system Percolation (pl) Percolation~m! Random partitions Au1 C Scaled Au1 C

a1 0.860.2 1.860.2 0.7560.5 5.960.1 2.060.2
b1 21.060.1 22.660.3 23.060.5 27.560.3 23.060.3
c1 0.560.2 1.860.2 4.060.5 3.260.1 2.160.2
a2 1.060.1 0.360.03 0.7560.5 0.860.2 6.360.7
b2 20.560.1 0.160.01 23.060.5 21.260.4 210.061.0
c2 0.860.2 1.160.1 4.060.5 1.560.2 3.360.4
3-23
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FIG. 24. Results of theg-power law deter-
mined from the scaling function for~a! percola-
tion (pl), ~b! percolation (m), ~c! random parti-
tions, and~d! Au 1 C multifragmentation. Solid
lines show theg-power law predicted from the
scaling functions andt. Filled circles show the
second moment as a function ofe. Open squares
in ~a! and ~b! show the second moment behavi
of a percolation lattice of sizeA05250,047.
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nally, a consistency check in this analysis is the agreem
between the location of the peak in the scaling functions
the values ofzmax determined in thes analysis, see Table III

4. g-power law from the scaling function

The behavior ofkT or M2 can bederivedfrom the func-
tional form of the scaling function and the critical paramet
via Eq.~17!. Performing the integration in Eq.~17! using the
functional form of the scaling function determined abo
yields a direct calculation of the critical amplitudesG6 via
Eq. ~19!. The critical exponentg is calculated from the val-
ues oft ands via a scaling relation in Eq.~18!. Combining
these two,G6 andg, it is possible to calculate theg-power
law that describes the behavior of the second moment. T
calculatedg-power law can then be compared to the beh
ior of M2 as measured from the cluster distribution. Figu
24~a!, 24~b!, and 24~d! shows the agreement between t
measuredM2 data ~largest cluster omitted in the liquid re
gion! and the calculatedg-power law curves for percolation
(pl and m) and gold multifragmentation, respectively, an
Tables II and III list the results.

The values ofg determined via the scaling relation in E
~18! for percolation (pl andm) show approximate agreeme
with the accepted value of 1.8. The high value ofs extracted
above leads to a low value ofg here. Figures 24~a! and 24~b!
also show the behavior of the second moment of a 250,
site lattice. The power law predicted using the scaling fu
tion determined with a 216 site lattice shows rough agr
ment with the measuredM2 of the larger lattice in both the
amplitude (G6) and exponent (g). There is approximate
agreement between the predicted power law and the m
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suredM2 of the smaller lattice over some region ine that is
neither too near to, nor too far from the critical point,e50.
It is this region that will be determined, independently, in t
following section.

For the percolation (pl andm) system, the disagreemen
between the measuredM2 data and the calculated curves
due to two well-known reasons: far from the critical poin
the assumptions of scaling are no longer valid and the a
lytic background overwhelms the singular behavior. Near
critical point finite size effects dominateM2, limiting the
sizes of the large clusters which make the most signific
contribution. In contrast, thet-power law was observed a
the critical point because it is determined by smaller clust
which suffer the least from the finite size effects.

Figure 24~c! shows the results when this analysis w
applied to random partitions. The power law predicted fro
the scaling function analysis applied to the cluster distrib
tion of the random partitions fails to reflect the behavior
the measured second moment. This is not surprising as
random partitions presented here are not the result of a
tem undergoing a continuous phase transition. The disag
ment observed in Fig. 24~c! then serves as an indication o
how this particular analysis probes for the presence of a c
tinuous phase transition. This figure shows the results of
analysis for a system with no phase transition, while Fi
24~a! and 24~b! show the results of this analysis on a syste
where such a phase transition is present.

The results of this analysis when applied to nuclear m
tifragmentation are shown in Fig. 24~d!. In this case, the
comparison to the predictedg-power law is neither as good
as that for percolation nor as poor as that for the rand
3-24
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partitions. It shall be shown in Sec. VI that some improv
ment can be achieved if account is taken of the chang
system sizeA0(m) and finite size scaling effects.

The approximate agreement between the predic
g-power law and the measuredM2 behavior is in keeping
with the behavior expected for small systems undergoin
continuous phase transition, e.g., the percolation system.
multifragmentation results are clearly different that then
sults of a system without a continuous phase transition, e
random partitions.

5. g matching

In the previous works the procedure for determining cr
cal exponent values and the location of the critical po
from the cluster distribution was based on a method
matching exponent values on both sides of the critical po
@12,71#. The idea was to find the region on either side of t
critical point where the power law behavior predicted by t
scaling function holds. As is seen in Fig. 24 there is so
intermediatee region where the second moment data
described by a power law, a region where theM2 behavior is
dominated by theg-power law and all other effects are sma
in comparison. In earlier percolation studies@71# general
guidelines based on the correlation length and size of
fluctuations were used to find the boundaries ine of the
regions to be fit. In nuclear multifragmentation analyses@12#
it was impossible to use such guidelines. Instead a met
was developed that searched for regions best fit by po
laws and determined the location of the critical point a
exponent values simultaneously. The values of the crit
exponents and the normalizations associated with po
laws were obtained from the best fit power laws in tho
regions. As with the previous analyses presented in this
per, this method of exponent matching does not select a
ticular value of a critical exponent or the critical point. In
stead the values found are the outcome of an unbia
procedure.

The method is as follows. A choice of the critical poin
pc or mc was made. From this choice plots such as th
shown in Fig. 24 were made. Then fitting boundaries ine
were chosen. The fitting range was defined bye6

far ande6
near.

For example, on the gas side of the critical point a fit
ln(M2) versus ln(ueu) was made for all data withue1

nearu<ueu
<ue1

faru. The slope of the resulting linear fit was recorded
g1 , the offset as ln(G1) and the goodness of fit asxn1

2 . The
same procedure was applied to the liquid side of the cho
critical point, recordingg2 , ln(G2), and xn2

2 . For each
choice of the critical point, several choices of fitting regio
e6

far and e6
near were made and results recorded. Five para

eters were chosen for each region examined:e6
far , e6

near, and
pc or mc .

The fit regions and critical point locations were evalua
by demanding that~1! they yield g1 and g2 values that
matched each other to within the error bars on those va
returned by the fitting routine and~2! that thexn

2 of the fits
were in the lowest quarter of the distribution resulting fro
all the fits which satisfy condition~1!. The results from the
power law fit regions that passed these two criteria were t
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histogrammed and average values for all quantities c
cerned were determined. The results are summarize
Tables I, II, and III and shown in Fig. 25.

The lines plotted in Fig. 25 do not result from any sing
fit, but display the average results forg6 andG6 that have
satisfied conditions~1! and~2!. The points in Fig. 25 are the
measured second moment for the particular cluster distr
tion in questions plotted againste, which depends on the
average value ofpc or mc that satisfies conditions~1! and
~2!. Therefore the lines in Fig. 25 should not be interpre
as a fit to the data points shown, but as the average re
from theg-matching procedure. Full circles in Fig. 25 sho
the average fitting regions that satisfy conditions~1! and~2!.

For percolationpl the value ofg determined in this man-
ner is within a few percent of the value determined in R
@71# and the infinite lattice value. The ratio ofG1 /G2 deter-
mined by this method, a ratio that depends on the univer
ity class of the system in question, is also in agreement w
the infinite lattice value and theG6 values predicted by the
scaling function, see Table III. The value ofpc determined
here is within 15% of the value determined in a previo
analysis of theL56 lattice @71# and the value determine
above in the Fishert-power law analysis, see Table II an
Fig. 25~a!.

The results for the analysis of percolation withm as a
measure of the control parameter are worse that the re
when the natural control parameterpl is used, the difference
in g1 and g2 was Dgm50.0660.1 compared toDgpl

50.060.3. This is to be expected because for each value
pl there is some spread in the resulting values ofm, so that
binning in m groups togethereventswith different values of
pl . There is also a nonlinear relation between the aver
values ofpl and m @83#. In spite of these two effects th
results of the analysis in Sec. IV B 4 suggests that vestige
the signature of a phase transition are still present even w
m is used as the control parameter. That is also the cas
the present analysis. Table II shows that theg value agrees,
within error bars, with the infinite lattice value. The values
the critical amplitudesG6 do not yield a ratio that agree
with the infinite lattice value. This is due to the non-line
mapping ofpl onto m and is discussed in Ref.@83#.

When theg-matching procedure was applied to the clu
ter distributions from random partitions a very limite
amount of trial fits passed the combined tests of~1! and~2!.
The results compared poorly to the percolation results.
best the values ofg1 and g2 match to within 20% of the
average value ofg, compared to perfect matching for perc
lation p and matching within 5% for percolationm. The
value of the critical pointmc returned from this analysis als
compared poorly to other outcome of previous analyses,
Table I. Finally, while fit regions for all systems were lim
ited, the fit regions are the smallest for the random partitio

The results of theg-matching analysis applied to multi
fragmentation data has been published in Ref.@12#. In that
work the data were contaminated by the inclusion of prom
nucleons; prompt nucleons are excluded from considera
in this work. In that work the second moment of the clus
distribution was determined based on the charge of a clu
rather than its mass as is done in this work. Previously,
3-25
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FIG. 25. Results of theg-matching analysis
for ~a! percolation (pl), ~b! percolation (m), ~c!
random partitions, and~d! Au 1 C multifrag-
mentation. Solid lines show the averageg-power
fit returned by the procedure. Open circles sho
the entire second moment behavior, filled circl
show the average fitted region returned by t
procedure. See text for details.
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second moment was generated from a cluster distribu
that was not normalized to the changing size of the system
is done here. Furthermore the prior analysis consisted of o
one quarter of the total number of events used in the pre
analysis. Thus the current analysis has higher statistics,
been freed of prompt nucleons, has a second moment
has been constructed with the masses from the cluster d
bution and a cluster distribution that has been normalize
the changing system size. The exclusion of prompt nucle
and normalization to the changing system size are an e
to address the criticisms raised in Ref.@84# and rebutted in
Ref. @85#. When theg-matching procedure was applied
the data presented in this paper essentially the same resu
presented in Ref.@12# were recovered. See Table II and Fi
25~d!. One difference observed is in the value of the critic
point returned,mc

9452661 reported in Ref.@12# and mc
99

52162 reported in this work. The difference is not as gre
as it appears to be. The origin of the published value ofmc

94

lies in picking the peak of the distribution ofmc values that
satisfied conditions~1! and ~2! as the location of the critica
point. The value was estimated based on the location of
maximum and the error based on the width of the distri
tion in mc . The mean and rms of themc distribution in Ref.
@12# suggest a value of the critical point ofmc

9452563. This
value agrees, to within error bars, with the value ofmc

99

presented here. The relatively small shift inmc can then be
understood to arise from the differences in the data s
Noting this it is clear that the presentg-matching analysis is
in agreement with the previous work.

The results of the present work are, again, in keeping w
the expected results of a small system undergoing a con
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ous phase transition. There is some region where matching
values can be obtained, some regions ine where theg-power
law overwhelms all other effects. The fits in Fig. 25~d! are of
higher quality than those for random partitions in Fig. 25~c!
and cover a greater range. When compared to the percola
m results the multifragmentation data compare favorably
terms of overall goodness of fits, width of fit region an
matching ofg6 , see Table II. The location of the critica
point returned by this analysis also compares well with
location from other analyses, see Table I.

V. CORRECTIONS TO SCALING

In the last section it was seen that theg-power law and
the data for the second moment in all systems agreed
only a limited area. To some degree this is to be expec
Near the critical point, assumptions valid for thermodynam
systems are invalid for the finite systems discussed in
work. For that reason, finite size effects dominate at the c
cal point and the second moment peaks instead of diverg
Far from the critical point other effects come into play. T
scaling assumptions inherent in the FDM are valid only
the neighborhood of the critical point. The size of this neig
borhood is somewhat ill defined and seems to depend
many factors, e.g., the quantity in question, the nature of
system, the size of the system and so on.

However, scaling behavior in physical systems can be
served over a wide range in temperatures and densities.
is most elegantly illustrated in the Guggenheim plot@86# of
scaled temperature (T/Tc) as function of scaled densit
(r/rc) for several different gases~Ne, Ar, Kr, Xe, N2, O2,
3-26
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CO, and CH4). In that plot the data collapse onto a cur
that is well described by a power law with an exponent
b51/3. The range in validity of this agreement between d
and power law is shown on the Guggenheim plot to be o
a range ofDT;0.5Tc and Dr;2.5rc . However, another
system, the combination of isobutyric acid and water, sho
the Guggenheim type of scaling only near the critical po
@87#. Already when the range considered isDT;0.04Tc and
Dr;0.01rc corrections to scaling can be observed. To t
end, higher order corrections to scaling are now examine
order to determine if fits such as those shown in previ
sections can be improved. However, improvement come
the expense of more fit parameters and assumptions.

To fully explore corrections to scaling in the context
the present systems where the cluster distributions serv
the main observable the FDM is revisited in a fashion e
ployed in Refs.@79,88#. Assuming coexistence Eq.~6! is
then rewritten as

nAf
~e!5q0Af

2t@ f 0~z!1Af
2V f 1~z!1•••#, ~34!

where f 1(z) is the correction-to-scaling function andV is
the correction-to-scaling exponent. The form of Eq.~34! an-
ticipates the presence of a second function ofz. In Sec. IV 3
it was found empirically that both the scaled percolation a
multifragmentation cluster distributions@nAf

(e)/q0Af
2t#

could be reasonably well described by the sum of two Ga
sians, Eq.~33!. In that treatment, the amplitude of eac
gaussian was a constant,a1 and a2. If Af is restricted to a
single value, the prescription give by Eq.~34! is equivalent
to that of Eq.~33!. Equation~34! predicts that there shoul
be an ordering to the scaled cluster distributions, i.e., sma
cluster sizes should lie above the larger clusters due to
correction term. This can be observed in Figs. 19~a! and
19~b! in the neighborhood of the maximum of the scaled d
for the percolation systems. In the tails of the distributio
either large or small cluster production is suppressed. In
case of multifragmentation data, Fig. 19~d!, the ordering is
generally observed where the statistics are adequate, nam
near z50. The ordering of the random partitions implie
that V,0.

From Eq.~34! it possible to derive thecorrectedisother-
mal compressibility~second moment! power law. Following
the method in Sec. III leads to

kT;~r2kbT!21S Uq0

s E
0

6`

dz f0~z!UzU (32t2s)/s

U1Uq0

s E
0

6`

dz f1~z!UzU (32t2s2V)/sUUeUV/sD ueut23/s

~35!

which is usually simplified and written as

kT;G6ueu2g~11a6ueuD!. ~36!

Now the overall amplitude,G6 is given by the first integral,
and the correction-to-scaling amplitude is given by the s
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ond integral divided by the first. The correction-to-scali
exponent isD5V/s.

Using Eq. ~36! to fit the second moment distributio
would lead to determining four fit parameters: two amp
tudes and two exponents. To explore the effects of corr
tions to scaling an assumption was made as to the unive
ity class of the system in question and thus the choice
exponent values. For the three-dimensional percolation
versality classD51.22@79,88# and for the three-dimensiona
Ising universality classD50.56 @89–91#. The amplitudes
were left as free parameters and the second moment o
cluster distributions were fit. The value of the critical poi
determined from theg-matching analysis of Sec. IV B 5 wa
used for each system. Figure 26 shows the results.

For the percolation system with the corrections-to-scal
a better fit to the second moment data was possible ov
range ine up to twice the range of the average fitted regi
in the g-matching analysis, see Figs. 26~a! and 26~b!. The
fits still failed to reproduce the behavior ofM2 near the
critical point where finite size effects dominate the syste
Table III lists the results for the critical amplitudesG6 . The
agreement in the critical amplitudes determined in this ana
sis and the amplitudes from theg matching analysis is due to
the agreement of the behavior of Eq.~36! and theg-power
law from theg-matching analysis over the region ine deter-
mined by g-matching. Thus theg-matching analysis finds
regions that are the least affected by higher-order correct
to scaling.

For the random partitions an improvement is only o
served for the high multiplicity region where a better fit ov
a larger range was obtained for both choices of universa
class, see Fig. 26~c!. The low multiplicity events showed no
such improvement partly due to the limited range ine avail-
able. Both the three-dimensional percolation and thr
dimensional Ising exponents were used in this analysis
the random partitions and the multifragmentation data. B
choices of universality classes showed similar results. T
lack of effect of corrections to scaling is to be expected in
system that does not follow FDM-like scaling laws.

The multifragmentation data also showed improvem
resulting in a better agreement between the fits and theM2
data points over a larger range ine, see Fig. 26~d!. The
improvement was observed for both choices of universa
classes thus indicating this analysis is insensitive to the
ferences@92,93#, though the goodness of fit was better f
the choice of the three-dimensional Ising exponents over
same fit regions~3D Ising:xn1

2 50.4 andxn2
2 50.7; 3D per-

colation:xn1
2 50.7 andxn2

2 51.1). At this level of analysis it
appears that corrections to scaling improves the fits for
g-power law. Whether this is due to the presence of a c
tinuous phase transition in nuclear multifragmentation,
merely extra terms in the fitting function remains an op
question.

VI. CHANGING SYSTEM SIZE AND FINITE
SIZE CORRECTIONS

It has been pointed out that the previous statistical an
sis of gold multifragmentation@12# ignored the changing size
of the system@84#. To first order this may have been a re
sonable procedure@85# as many statistical signatures of
3-27
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FIG. 26. Results of the correction-to-scalin
analysis for~a! percolation (pl), ~b! percolation
(m), ~c! random partitions, and~d! Au 1 C mul-
tifragmentation. Open circles show the entire se
ond moment behavior, filled circles show the fi
ted region used in this procedure. See text
details. Dotted lines show theg-matching power
law. Dashed ~solid! lines show the resulting
correction-to-scalingg-power law for the 3D per-
colation ~3D Ising! universality class.
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continuous phase transition have been observed both be
and after the scaling to account for the changing system
has been performed; e.g., theg power law shown here and i
previous works agree well. However, the data collapse
Fig. 19~d! is qualitatively not as great as that shown by t
percolation~m! system in Fig. 19~b! and the agreement be
tween the calculated and measuredM2 behavior in gold mul-
tifragmentation in Fig. 24~d! is qualitatively not as good a
that shown by percolation~m! in Fig. 24~b!. In this section,
the effect of the changing size of the system is explored
accounted for.

The size of the multifragmenting system is shown in F
27~a! after Ref. @60#. An approximately linear relation be
tween the system sizeA0 and m was found: A05199
21.6m, see Fig. 27~a!. The functional form ofA0(m) was
used in the following analysis to account for the chang
system size in an average way, i.e., not on an event-to-e
basis.

If the multifragmenting system is assumed to be a sys
undergoing a phase transition, then the theory of finite s
scaling of the critical point@94–97# suggests that the effec
tive critical temperatureTc(A0), changes as a function of th
system size. Coupling this with the changing size of the s
tem indicates that at each value ofm the value ofTc

eff(A0) is
different.

The value ofTc
eff(A0) can be determined in the followin

manner. First a relation between the multifragmenting s
tem’s temperatureT andm must be determined. Again from
Ref. @60# a relation can be found, see Fig. 27~b!. Two esti-
mates ofT were made, one from a Fermi gas~uncorrected for
the effect of expansion energy! Ti and the other from an
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isotopic yield ratio thermometerTf @98#. These temperature
give an approximate indication of the initial and final tem
peratures of the system. Figure 27~b! shows thatTi is well fit
by a quadratic function, whileTf is well fit by a linear func-
tion. Another linear function reproduces the average ofTi
and Tf : T53.010.14m, this was used for the following
analysis. The critical temperature of infinite nuclear mat
was assumed to beTc

`522.9 MeV @99#.
From the Fishert-power law analysis the value of th

multiplicity at the critical point was determined to bem
5mc52261. The system size at that point is thenA0(m
522)516462 and the temperature isT5662 MeV. This
indicates that the critical temperature for a charged nuc
system with 164 nucleons,Tc

eff(A0), is approximately 662
MeV.

According to theory, to first order the critical point scal
with system size as

@Tc
eff~A0!2Tc

`#/Tc
`5bA0

21/dn , ~37!

whered is the Euclidean dimension of the system andn is
the so-called hyperscaling exponent. At the smallest of s
tem sizes higher order correction terms may play an imp
tant role in the scaling of the critical point@100#. This for-
malism is usually applied to neutral matter. Obviously t
excited nuclear system dealt with in this work is charged.
an attempt to account for the effects of the Coulomb fo
felt by the nuclear systemTc

eff@A0(m522)# was increased by
adding 0.2510.016A0(m), in keeping with the work of Ref.
@99# regarding the effects of the Coulomb energy on the cr
cal temperature. ForA0;164, Tc

eff;9 MeV.
3-28
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FIG. 27. ~a! Behavior of the size of the sys
tem,A0, with respect to the total charged partic
multiplicity, m. The solid line is a fit to the
changing system size.~b! measures of the tem
peratureT as a function ofm: h Ti from a Fermi
gas ands Tf from an isotope thermometer. Th
solid curve shows a fit toTi , dotted curve a fit to
Tf , and the dashed curve a fit tôT&5(Ti

1Tf)/2.
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If it is assumed that gold multifragmentation is the res
of a continuous phase transition and that transition occur
three dimensions,d53, then using the hyperscaling relatio
@61#

n5
t21

ds
, ~38!

with the extracted values ofs and t, givesn50.6360.07.
The coefficient b in Eq. ~37! can be determined usin
Tc

eff@A0(mc)#5962 MeV, Tc
` , d, and n; resulting in b

52962. Note that this value ofb suggests thatTc
eff(A0)

50 for A0560640. This is a result of the form of Eq.~37!
and the notion that the critical temperature lowers as the
of the system decreases. Presumably higher order effect
taken into account in Eq.~37! will affect the location in
system size,A0, where the effective critical temperature va
ishes. For the form of finite size scaling corrections shown
Eq. ~37!, only b521 yields an effective critical temperatur
that vanishes atA051.

Now Eq. ~37! can be used to solve forTc
eff@A0(m)#, this

measure of the effective critical temperature is for neu
material. To account for the effects of the Coulomb ene
present in a nuclear system this estimate is lowered by 0
10.016A0(m). The scaled control parameter is then

escaled5$Tc
eff@A0~m!#2T%/Tc

eff@A0~m!#. ~39!

The analysis to extract the exponents was performed
with this escaledby finding the peak inAf sized cluster pro-
duction as a function ofnAf

(escaled) versusescaled. Previously,
it was argued that the largest cluster should be excluded
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all values ofe to account for finite size effects in the analys
to extracts. The analysis in this section directly accounts f
finite size effects, thus the standard FDM formalism w
respect to the largest cluster is followed. This results in
value of s50.6560.07 and zmax

scaled521062, Fig. 28~a!
shows the resulting power law.

The scaling function for gold multifragmentation wa
then plotted using the above corrections for the chang
system size and finite size scaling, see Fig. 28~b!. The data
collapse is qualitatively better than in Fig. 19~d!. The two
gaussian parametrization off (zscaled) was fit to the scaled
scaling function and is shown in Fig. 28~b! with parameters
listed in Table IV.

Using the fitted parametrization of the scaling functi
and other quantities, theg-power law can be determined a
before. Figures 28~b! and 28~c! show the measuredM2 of
gold multifragmentation plotted as a function ofescaled. A
g-power law was plotted on, not fitted, Figs. 28~b! and 28~c!
with g51.360.2 @from t, s and Eq.~18!# and offsets de-
termined via the scaled scaling function. Thisg-power law
agrees moderately well with the measuredM2 the full escaled

range, the exception being nearescaled50 where finite size of
the system limits the maximum ofM2. The treatment of the
effects of the Coulomb energy in this analysis is model
pendent. However, if the Coulomb effects are complet
neglected, the results are unchnaged to within error bars

VII. DISCUSSION AND CONCLUSIONS

The focus in the present paper was on the behavio
cluster distributions and the types of analyses which can s
light on their creation mechanism. In particular, attem
were made to identify procedures that can distinguish th
3-29
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FIG. 28. Results of the system size / fini
size scaling analysis for Au1 C multifragmen-
tation. ~a! The scaleds power law.~b! The scal-
ing function, normalized cluster distribution ver
suszscaled. The solid curve shows the fitted scalin
function. See legend for definition of cluste
sizes.~c! and~d! show the resultingg-power law
as predicted from the scaling function,s and t.
Solid circles show the second moment plott
against the properly scaledescaledand solid lines
show the predictedg-power law.
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distributions which are related to critical behavior from tho
which are not. While this question is easily answered
systems containing large numbers of constituents, it is m
difficult to address the case of interest here, namely, syst
with at most only a few hundred particles. In order to answ
this question for small systems, two different computatio
models, bond building percolation and a random partitio
have been used. It is well known that in the macrosco
limit, the former system possesses a continuous phase
sition characterized by a unique scaling function and se
critical exponents while the latter system does not. In ad
tion, data arising from the multifragmentation of gold nuc
has been studied using the same procedures. For this sy
it is not known,a priori, whether a critical point is presen

Many cluster properties have been proposed as being
able measures of critical behavior. Among these are the fl
tuations in the size of largest fragment~Fig. 1!, peaking in
the quantityg2 ~Fig. 3!, peaking behavior inM2 ~Fig. 5!,
Campi plots~Fig. 6! and simple power law behavior in th
cluster mass distribution for a particular value of the app
priate control parameter. It was seen that none of these m
sures, taken alone or together, was sufficient to distinguis
system possessing critical behavior from one which does

The first procedure which produced different results
critical and noncritical systems was the single parame
power law fit to the cluster mass distribution~Figs. 12–15!.
For the percolation systems and for the multifragmentat
data, it was shown that the one parameter power law fit
scribes the data well only over a very limited range of t
control parameter. The value of the control parameter wh
the power law fit is best is very close to where the abo
06460
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mentioned peaks occur. For the random partitions, this
not the case.

If a system possesses a critical point, it is also expecte
possess a scaling function that describes its behavior a
from the critical point. Phase transition theory specifies h
the argument of this function depends on cluster mass
distance from the critical point. If such a function exists, t
theory permits the determination of the critical exponents.
This determination was done for the percolation syst
yielding satisfactory agreement with its known value. T
same procedure was applied to the random breakup m
and to the multifragmentation data. It was clear from th
analysis that percolation and multifragmentation were si
lar in many features, while the random system was differe
see Figs. 17 and 18.

Again, if a system possesses a critical point, it is expec
to possess a scaling function that describes its behavior a
from the critical point. Therefore, when the data is prope
scaled, it should collapse onto a single curve. Figure
shows the amount of data collapse for the systems discu
here. The quality of the data collapse~Figs. 19–21! rein-
forces the notion that the random breakup system is diffe
from the others. Although the precise form of the scali
function is not dictated by phase transition theory, both
percolation system and multifragmentation data were sa
factorily described by a sum of two Gaussians. The rand
breakup model was not.

The issue of finite size scaling was discussed. Unlike
other systems examined here, which had a fixed numbe
constituents, the nuclear multifragmentation data origina
from systems whose size varied monotonically with o
served charged particle multiplicity, see Fig. 27~a!. Phase
transition theory makes a prediction, Eq.~37!, as to how the
3-30
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value of the control parameter at the critical point change
a function of system size. Applying Eq.~37! produced an
improvement in the quality of the data collapse for the sc
ing function and yielded a better prediction for the behav
of M2, see Fig. 28.

Critical exponent values have been determined in an
biased manner for each system. For both sets of analyse
the percolation clusters, the standard percolation expon
were recovered to within error bars. For the random pa
tioning, exponents could be extracted, but none that fulfil
well known scaling laws. The exponent values determin
from the gold multifragmentation cluster distributions fulfi
the scaling laws, to within error bars, and fall near the th
dimensional Ising universality class.

The effect of secondary decays from hot initial fragme
on the critical exponents has not been explicitly conside
in this paper. In the SMM@36–39# such effects become sig
nificant aboveE* /A057 MeV/nucleon. Thust and g,
which are determined at lower excitation energies, will
unaffected in the SMM’s fragment distributions. The exp
nents is determined by the multiplicities at which individua
light fragment yields attain their peak values. As shown
Fig. 17~d!, the lightest fragments peak at large multiplicitie
corresponding to excitation energies for which secondary
cay are important in the SMM. An SMM calculation@103#
indicates that the value ofs from the SMM’s fragment dis-
tribution was increased by about 70% due to this effe
However, it is unclear from that calculation that the effe
of secondary decay are as great in the experimental da
they are in the SMM. The SMM calculation over predicts t
yield of light fragments which could indicate that the SM
estimates of secondary decay are too severe. Correctio
the model independent quantities determined in this pa
based on the SMM calculations are premature.

FIG. 29. Results of a scaling analysis performed on the clu
distribution of random partitions. The scaled cluster distribut
~nearly! collapses to unity over the entire multiplicity range.
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Although the multifragmentation data possess many
the gross and detailed characteristics that the percolation
tem does, it is not at all obvious why this should be the ca
After all, real nuclei obey quantum mechanics, have vary
binding energies per particle, and, most significantly,
charged. On the other hand, it is well known that nea
critical point the details of the interaction become unimp
tant and only the dimensionality of the system and the
mension of the order parameter are important. As noted
the Introduction, the attractive nuclear force bears a simi
ity to a van der Waals force. However, the Coulomb force
a long range force and imposes a natural limit to the size
stable nuclei. Thus, it is not clear to what extent a fin
charged system can exhibit critical behavior when the m
roscopic system cannot exist. The exact role of the Coulo
force in physical systems undergoing a change of phas
currently of great interest@101,102# and is, at this point, an
open question. The philosophy of this paper has been
make use of phase transition theory as it applies to
charged systems. What results for the analysis of the g
multifragmentation data bears great similarity to the resu
of the same procedures applied to a system known to pos
a critical point. It is tempting then to conclude that multifra
mentation is related to critical behavior occurring in a fin
nuclear system.
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FIG. 30. Results of the summation to determine the offsetq0 as

a function of the upper limit of the summation.
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APPENDIX A: DISCUSSION OF POWER LAW
IN RANDOM PARTITIONS

As a demonstration of the power of the sort of scali
analysis presented above it is shown that the random p
tions follow a simple power law ofNAf

;Af
21 . Figure 29

shows the scaled cluster distribution as a function ofm from
clusters withAf>3. The data nearly collapses to unity alon
the horizontal axis over the multiplicity range form.5. The
deviations are due to the constraints ofm and finite size.
With a simple scaling analysis the underlying power la
describing the cluster distribution becomes clear.
n

m

c-

v

06460
ti-

APPENDIX B: RIEMANN z FUNCTION SUMMATION

The value ofq0 used in this work based on thez function
was generated withVAX FORTRAN code using double preci
sion and letting the sum run from 1 to 106. The sum was
terminated at this point in order to keep computing tim
within reason. For a value oft52.18 summing to 106 gives
a value ofq0 that is within 10% of the value when the su
is terminated at 1010, see Fig. 30. Increasing the upper lim
of the summation in thez function causes no significan
changes in the analysis presented in this work.
tt.
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