Evaluating Kolmogorov's Distribution

George Marsaglia*
The Florida State University
Wai Wan Tsang ${ }^{\dagger}$
Jingbo Wang
The University of Hong Kong

Abstract

Kolmogorov's goodness-of-fit measure, D_{n}, for a sample CDF has consistently been set aside for methods such as the D_{n}^{+}or D_{n}^{-}of Smirnov, primarily, it seems, because of the difficulty of computing the distribution of D_{n}. As far as we know, no easy way to compute that distribution has ever been provided in the $70+$ years since Kolmogorov's fundamental paper. We provide one here, a C procedure that provides $\operatorname{Pr}\left(D_{n}<d\right)$ with $13-15$ digit accuracy for n ranging from 2 to at least 16000 . We assess the (rather slow) approach to limiting form, and because computing time can become excessive for probabilities $>.999$ with n 's of several thousand, we provide a quick approximation that gives accuracy to the 7 th digit for such cases.

1 Introduction

For an ordered set $x_{1}<\cdots<x_{n}$ of purported uniform [0,1) variates, Kolmogorov [5] suggested

$$
D_{n}=\max \left(x_{1}-\frac{0}{n}, x_{2}-\frac{1}{n}, \ldots, x_{n}-\frac{n-1}{n}, \frac{1}{n}-x_{1}, \frac{2}{n}-x_{2}, \ldots, \frac{n}{n}-x_{n}\right)
$$

as a goodness-of-fit measure. The distribution of D_{n} is difficult. It has been discussed extensively in the literature, but to date no easily-applied method has been made available. We offer one here. The alternatives proposed by Smirnov, either D_{n}^{+}, the maximum of the first half of the above list, or D_{n}^{-}, the maximum of the second half, have a common, easier, distribution. They are widely used, particularly in statistical computing, because of Knuth's recommended use of $K_{n}^{+}=\sqrt{n} D_{n}^{+}$and $K_{n}^{-}=\sqrt{n} D_{n}^{-}$on the grounds that they "seem most convenient for computer use", [4] p57.

Concerning the distribution of D_{n}, Drew, Glen and Leemis report in a recent article that after an extensive review, "There appears to be no source that produces exact distribution functions for any distribution where $n>3$ in the literature",[2] p3. They then undertake to provide such by extending Birnbaum's development [1] of $\operatorname{Pr}\left(D_{n}<d\right)$ as a spline function: polynomials of degree n between knots at $\frac{1}{2 n}, \frac{2}{2 n}, \ldots, 1$, using multiple integrals. They succeed in reducing the required successive integrations of Birnbaum's method-for example from 444540 to 800 when $n=10$-and provide the polynomials to $n=6$ with a comment that they had found all such polynomials up to $n=30$, available on request at www.math.wm.edu/~leemis. (Our request yielded "Access not authorized" and an email request went unanswered.)

We provide here a relatively small C procedure, $\mathrm{K}(\mathrm{n}, \mathrm{d})$, that will provide $\operatorname{Pr}\left(D_{n}<d\right)$ with far greater precision than is needed in practice. The method expresses d in the form $d=(k-h) / n$ with k a positive integer and $0 \leq h<1$. The C procedure $\mathrm{K}(\mathrm{n}, \mathrm{d})$ uses numerical values for h, but with just the symbol h, one can, for example in Maple or Mathematica, easily derive polynomials in h that, with the substitution $h=k-n d$, yield the polynomials that make up the CDF between knots $\frac{1}{2 n}, \frac{2}{2 n}, \ldots, 1$.

2 Evaluating $\operatorname{Pr}\left(D_{n}<d\right)$

The method we use is based on a succession of developments that started with Kolmogorov's viewing the steps of the sample CDF as a Poisson process and culminated in the masterful treatment by Durbin [3]. His monograph summarizes and extends the results of numerous authors who had made progress on the problem in the years 1933-73. The result is a method that expresses the required probability as a certain element in the nth power of an easily formed matrix. History of the development is available through the monograph's 136 references.

[^0]We want to evaluate $\operatorname{Pr}\left(D_{n}<d\right)$. Write

$$
d=\frac{k-h}{n} \text { with } k \text { a positive integer and } 0 \leq h<1 .
$$

Then

$$
\operatorname{Pr}\left(D_{n} \leq d\right)=\frac{n!}{n^{n}} t_{k k}, \text { where } t_{k k} \text { is the } k, k \text { element of the matrix } T=H^{n}
$$

and H is an $m \times m$ matrix, $m=2 k-1$, whose general form is easily inferred from this particular case when $m=6$ and $h \leq 1 / 2$:

$$
\left[\begin{array}{cccccc}
\left(1-h^{1}\right) / 1! & 1 & 0 & 0 & 0 & 0 \\
\left(1-h^{2}\right) / 2! & 1 / 1! & 1 & 0 & 0 & 0 \\
\left(1-h^{3}\right) / 3! & 1 / 2! & 1 / 1! & 1 & 0 & 0 \\
\left(1-h^{4}\right) / 4! & 1 / 3! & 1 / 2! & 1 / 1! & 1 & 0 \\
\left(1-h^{5}\right) / 5! & 1 / 4! & 1 / 3! & 1 / 2! & 1 / 1! & 1 \\
\left(1-2 h^{6}\right) / 6! & \left(1-h^{5}\right) / 5! & \left(1-h^{4}\right) / 4! & \left(1-h^{3}\right) / 3! & \left(1-h^{2}\right) / 2! & \left(1-h^{1}\right) / 1!
\end{array}\right]
$$

The above example is for $0 \leq h \leq 1 / 2$. For $1 / 2<h<1$ the bottom left element of the matrix should be $\left(1-2 h^{m}+(2 h-1)^{m}\right) / m!$, so that $\left(1-2 h^{m}+\max (0,2 h-1)^{m}\right) / m!$ is the general form of that corner element. The bottom row of the matrix reflects the first column in reverse order. Aside from the first column and last row, the i, j th element is $1 /(i-j+1)$! if $i-j+1 \geq 0$, else 0 .

Example: Suppose $n=10$ and we want $\operatorname{Pr}\left(D_{10} \leq .274\right)$. Express $d=.274$ as $.274=\frac{3-h}{10}$, so that $k=3, m=2 k-1=5$ and $h=.36$. Our 5×5 matrix H is

$$
\left[\begin{array}{ccccc}
(1-h) & 1 & 0 & 0 & 0 \\
\left(1-h^{2}\right) / 2 & 1 & 1 & 0 & 0 \\
\left(1-h^{3}\right) / 6 & 1 / 2 & 1 & 1 & 0 \\
\left(1-h^{4}\right) / 24 & 1 / 6 & 1 / 2 & 1 & 1 \\
\left(1-2 h^{5}\right) / 120 & \left(1-h^{4}\right) / 24 & \left(1-h^{3}\right) / 6 & \left(1-h^{2}\right) / 2 & (1-h)
\end{array}\right]
$$

If we express $h=.36$ as a floating point number, then the 3,3 element of $\frac{10!}{10^{10}} H^{10}$ yields, (using the C proc below):

$$
\operatorname{Pr}\left(D_{10} \leq .274\right)=.6284796154565043
$$

On the otherhand, expressing $h=\frac{274}{1000}$ as a rational, and assuming we have rational arithmetic, the 3,3 element of $\frac{10!}{10^{10}} H^{10}$ yields

$$
\operatorname{Pr}\left(D_{10} \leq \frac{274}{1000}\right)=\frac{599364867645744586275603}{953674316406250000000000}=.628479615456504275298526691328 \cdots
$$

confirming the accuracy of the floating point calculation.
Finally, if we merely use the symbol h and have symbolic programming such as with Maple or Mathematica, we find that the 3,3 element of H^{10} is
$\frac{26}{225} h^{10}-\frac{34}{27} h^{9}+\frac{719}{90} h^{8}-\frac{88}{3} h^{7}+\frac{589}{15} h^{6}-\frac{10306}{225} h^{5}+\frac{1055}{4} h^{4}-\frac{66653}{360} h^{3}-\frac{59687}{144} h^{2}-\frac{687251}{720} h+\frac{28947001}{14400}$.
Subsituting 3-10d for h, then multiplying by $10!/ 10^{10}$ gives $\operatorname{Pr}\left(D_{n}<d\right)$ for $5 / 20<d<6 / 20$:

$$
\begin{gathered}
419328 d^{10}-801024 d^{9}+\frac{3771936}{5} d^{8}-\frac{11684736}{25} d^{7}+\frac{24769584}{125} d^{6}-\frac{32213664}{625} d^{5} \\
+\frac{3604041}{625} d^{4}+\frac{5313231}{12500} d^{3}-\frac{7515459}{50000} d^{2}+\frac{25247817}{2500000} d-\frac{15369417}{100000000} .
\end{gathered}
$$

If you wanted, for example, such a polynomial for $4 / 20<d<5 / 20$, (that is, $4 / 20<(k-h) / 10<5 / 20$, so that $k=3$ and $1 / 2<h<1$), you could change the lower left element of H to $\left(1-2 h^{5}+(2 h-1)^{5}\right) / 5$!. Then the 3,3 element of H^{10} yields
$-\frac{2}{9} h^{10}+\frac{98}{27} h^{9}-\frac{439}{18} h^{8}+\frac{1076}{9} h^{7}-\frac{15821}{36} h^{6}+\frac{32731}{36} h^{5}-\frac{41105}{48} h^{4}+\frac{10607}{18} h^{3}-\frac{52255}{72} h^{2}-\frac{7984}{9} h+\frac{288593}{144}$.
Replacing h by $3-10 d$ and multiplying by $10!/ 10^{10}$ then yields $\operatorname{Pr}\left(D_{n}<d\right)$ for $4 / 20<d<5 / 20$:

$$
\begin{gathered}
-806400 d^{10}+1102080 d^{9}-594720 d^{8}+\frac{177408}{5} d^{7}+\frac{3421908}{25} d^{6}-\frac{9773694}{125} d^{5} \\
+\frac{47717019}{2500} d^{4}-\frac{13212297}{6250} d^{3}+\frac{1035279}{12500} d^{2}+\frac{848673}{625000} d-\frac{88389}{781250} .
\end{gathered}
$$

3 Limiting Forms

The limiting form for the distribution function of Kolmogorov's D_{n} is

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\sqrt{n} D_{n} \leq x\right)=L(x)=1-2 \sum_{i=1}^{\infty}(-1)^{i-1} e^{-2 i^{2} x^{2}}=\frac{\sqrt{2 \pi}}{x} \sum_{i=1}^{\infty} e^{-(2 i-1)^{2} \pi^{2} /\left(8 x^{2}\right)}
$$

the first representation given by Kolmogorov, the second coming from a standard relation for theta functions and better suited for small x. The moments come from easily-integrated terms of $x L^{\prime}(x)$ and $x^{2} L^{\prime}(x)$.

The mean and variance of $\sqrt{n} D_{n}$ approach

$$
\mu=\sqrt{\pi / 2} \ln (2)=.8687311605 \cdots \text { and } \sigma^{2}=\pi^{2} / 12-\mu^{2}=.0677732044 \cdots, \sigma=.2603328723 \cdots
$$

Since the mean and standard deviation of D_{n} are, roughly, $.8687 / \sqrt{n}$ and $.26 / \sqrt{n}$, we may compare distributions and their approaches to limiting form by plotting $\operatorname{Pr}\left(D_{n} \leq x / \sqrt{n}\right)-L(x)$ for, say, $n=64,256,1024,4096$, with x over an effective range for $L(x)$, say $.2<x<2.5,(-2.6$ to 6.3 sigmas $)$. Such plots are in Figure 1 . Approach to the limit is rather slow, with maximum error of about $.278 / \sqrt{n}$ near the 33 rd percentile.

Figure 1: Error plots: $\operatorname{Pr}\left(\stackrel{1}{D}_{n}<x / \sqrt{n}\right){ }^{2} L(x)$ for $n=64,256,1024,4096$.

Our development of this procedure for Kolmogorov's D_{n} was motivated by requests for its inclusion in the Diehard Battery of Tests of Randomness [6], which considers KS tests a generic class including Kolomogorov's D_{n}, Smirnov's D_{n}^{+}, D_{n}^{-}or the Cramer-von Mises class, particularly the Anderson-Darling

$$
A_{n}=-n-\frac{1}{n}\left[\ln \left(x_{1} z_{1}\right)+3 \ln \left(x_{2} z_{2}\right)+5 \ln \left(x_{3} z_{3}\right)+\cdots+(2 n-1) \ln \left(x_{n} z_{n}\right)\right] \text { with } z_{i}=1-x_{n+1-i}
$$

That A_{n} is the current favorite for Diehard, but new versions will include both A_{n} and D_{n}.
In practice (at least in our practice), we have a randomly produced D_{n} which we wish to convert to a uniform $(0,1)$ variate (p-value) by means of the probability transformation $p=K\left(n, D_{n}\right)$. The C procedure below lets us do this very accurately, as well as quickly - except for p 's near 1 and n 's several thousand.

In the following examples, we cite values and timings from the C proc below, as well as (20-digit) accuracies provided by a much slower Maple proc. For the C proc, $K(2000, .04)=0.9967694319171325$ (.99676943191713676985) takes about 1 second, $K(2000, .06)=0.9999989395692991$ (.99999893956930568118) takes $4-5$ seconds, but $K(16000, .016)=0.9994523491380971(0.99945234913828052085)$ takes around 100 seconds, and for $n>4000$, getting probabilities such as .999999 can take many minutes.

If $K\left(n, D_{n}\right)$ is used in the Diehard tests, we might encounter some bad RNGs that return values up to 10 σ 's from the mean, for which conversion to a p-value by means of $K\left(n, D_{n}\right)$ might require minutes . For that reason, we include an optional line in the C program:
$\mathrm{s}=\mathrm{d} * \mathrm{~d} * \mathrm{n}$; if $(\mathrm{s}>7.24| |(\mathrm{s}>3.76 \& \& \mathrm{n}>99))$ return $1 .-2 . * \exp (-(2.000071+.331 / \operatorname{sqrt}(\mathrm{n})+1.409 / \mathrm{n}) * \mathrm{~s})$;
(As $d \sqrt{n}$ exceeds about $1.94, K(n, d)$ will exceed .999 and is approximately $1-2 e^{-2 n d^{2}}$, which can be improved to $1-2 e^{-(2.000071+.331 / \sqrt{n}+1.409 / n) n d^{2}}$, with maximum error less than .0000005 .)

Use of that line provides more than adequate accuracy for $K(n, d)>.999$ and $n \geq 100$, (roughly $d \sqrt{n}>$ 1.94), as well as protection from possible long computing time for any n when $K(n, d)>.999999$, (roughly, $d \sqrt{n}>2.69$). That extra line can be commented out for users who need the full $13-15$ digit accuracy at the extreme right (and are willing to contend with potentially long running times). The extreme left causes no problems.

In computing H^{n}, the required number of matrix multiplications is only $\left\lfloor\log _{2}(n)\right\rfloor$ plus the number of 1's in the binary representation of n. A straightforward implementation encounters floating point exponent
overflow around $n=714$. Detailed inspection shows that the elements of H^{n} grow quickly as n increases. Their magnitudes are not too diversified though, with largest values around the center of the matrix. To maintain floating point exponents within their allowable range, we keep a special matrix exponent. When the k, k element of a current matrix becomes greater than 10^{140}, we divide every element by 10^{140} and increase the matrix exponent by 140 . The final matrix exponent is used to adjust the value of $\frac{n!}{n^{n}} t_{k, k}$, where $T=H^{n}$.

The following C program contains the procedure $\mathrm{K}(\mathrm{n}, \mathrm{d})$, as well as supporting procedures for multiplying and exponentiating matrices. It is in compact form to save space. To use $K(n, d)$ you need only add a main program to a cut-and-paste version of the code listed below. Then make calls to $K(n, d)$ from an int main() \{ \}. You should also lead with the usual \#include <stdio.h>, \#include <math.h> and \#include <stdlib.h>.

```
4 The C program for }K(n,d)=\operatorname{Pr}(\mp@subsup{D}{n}{}<d
    void mMultiply(double *A,double *B,double *C,int m)
    { int i,j,k; double s;
        for(i=0;i<m;i++) for(j=0; j<m; j++)
            {s=0.; for(k=0;k<m;k++) s+=A[i*m+k]*B[k*m+j]; C[i*m+j]=s;}
}
        void mPower(double *A,int eA,double *V,int *eV,int m,int n)
{ double *B;int eB,i;
    if(n==1) {for(i=0;i<m*m;i++) V[i]=A[i];*eV=eA; return;}
    mPower(A,eA,V,eV,m,n/2);
    B=(double*)malloc((m*m)*sizeof(double));
    mMultiply(V,V,B,m); eB=2*(*eV);
    if(n%2==0) {for(i=0;i<m*m;i++) V[i]=B[i]; *eV=eB;}
            else {mMultiply(A,B,V,m); *eV=eA+eB;}
    if(V[(m/2)*m+(m/2)]>1e140) {for(i=0;i<m*m;i++) V[i]=V[i]*1e-140;*eV+=140;}
    free(B);
}
        double K(int n,double d)
{ int k,m,i,j,g,eH,eQ;
    double h,s,*H,*Q;
//OMIT NEXT LINE IF YOU REQUIRE >7 DIGIT ACCURACY IN THE RIGHT TAIL
s=d*d*n; if (s>7.24||(s>3.76&&n>99)) return 1-2*exp(-(2.000071+.331/sqrt (n)+1.409/n)*s);
    k=(int)(n*d)+1; m=2*k-1; h=k-n*d;
    H=(double*)malloc((m*m)*sizeof(double));
    Q=(double*)malloc((m*m)*sizeof(double));
    for(i=0;i<m;i++) for(j=0;j<m;j++)
            if(i-j+1<0) H[i*m+j]=0; else H[i*m+j]=1;
    for(i=0;i<m;i++) {H[i*m]-=pow(h,i+1); H[(m-1)*m+i]-=pow(h,(m-i));}
    H[(m-1)*m]+=(2*h-1>0?pow (2*h-1,m):0);
    for(i=0;i<m;i++) for(j=0;j<m;j++)
            if(i-j+1>0) for(g=1;g<=i-j+1;g++) H[i*m+j]/=g;
    eH=0; mPower(H,eH,Q,&eQ,m,n);
    s=Q[(k-1)*m+k-1];
    for(i=1;i<=n;i++) {s=s*i/n; if(s<1e-140) {s*=1e140; eQ-=140;}}
    s*=pow(10.,eQ); free(H); free(Q); return s;
}
```


References

[1] Birnbaum, Z.W., Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size, J. Amer. Statist. Assoc. 47 (1952), 425-441.
[2] Drew, J.H., Glen, A.G. and Leemis, L.M., Computing the cumulative distribution function of the Kolmogorov-Smirnov statistic, Computational Statistics and Data Analysis 34 (2000) 1-15.
[3] Durbin, J., Distribution Theory for Tests Based on The Sample Distribution Function, Society for Industrial \& Applied Mathematics, Philadelphia, 1972.
[4] Knuth, D.E., The Art of Computer Programming, Volume 2/ Seminumerical Algorithms, 3rd Edition, Addison Wesley, Reading Mass, 1998.
[5] Kolmogorov, A., Sulla determinazione empirica di una legge di distributione, Giornale dell' Istituto Italiano degli Attuari 4 (1933), 83-91.
[6] Marsaglia, G. The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of Randomness, produced under a grant from NSF at Florida State Univ., 1995. http://stat.fsu.edu/pub/diehard/ or http://www.csis.hku.hk/~diehard/ for latest version of the Diehard tests.

[^0]: *Professor Emeritus
 ${ }^{\dagger}$ Research supported by the Hong Kong Research Grants Council, Grant HKU 7046/02E.

