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Abstract. This document gives a historical review of the scaling of particles yields emitted from excited nuclei. The focus

will be on what scaling is, what can be learned from scaling, the underlying theory of why one might expect particle yields to
scale, how experimental particle yields have been observed to scale, model systems where particle (cluster) yields do scale and
finally scaling observed in the particle yields of various low and medium energy nuclear reaction experiments. The document
begins with a basic introduction to scaling in the study of critical phenomena and then reviews Fisher’s theory which has all
the aspects of scaling and can be directly applied to the counting of clusters, the most reliable measurement accessible to the
experimental study of nuclear reactions. Also this document gives a history of the various scalings observed in nuclear reaction
experiments and culminates with an estimate of the nuclear liquid-vapor phase boundary based upon measured patrticle yields.
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INTRODUCTION

This document performs the modest task of covering a century worth of research on scaling in condensed matter and
nuclear physics [1, 2, 3, 4,5, 6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32,33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71,72,73,74,75,76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122,123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 146, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172,173, 174, 175, 176, 177,178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192,193,194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215].
Inevitably, such an attempt will be incomplete and every reader will have his or her own favorite reference(s) omitted.
To that end we submit this document as a starting point for the motivated reader from which he/she can, perhaps,
further his/her own understanding and research.

Scaling in the study of critical behavior

Scaling has been called a pillar of modern critical phenomena” [140]. The scaling hypothesis used in the study of
critical phenomena was independently developed by several scientists, including Widom, Domb, Hunter, Kadanoff,
Fisher, Patashinskii and Pokrovskii (see reference [19] for an authoritative review). Much of scaling is contained in
the renormalization group work of Wilson [34].

The scaling hypothesis has two categories of predictions, both of which have been verified experimentally for a
variety of physical systems. The first category is a set of relations cadlglihg laws These scaling laws relate the
critical exponentsx,  andy which describe, for instance, the behavior of the the specific at{~*), density
differences of the phasep, (- py ~ €P) and isothermal compressibilitycf ~ £~7) for fluid systems; specific heat
(C ~ £~ %), magnetizationNl ~ £#) and isothermal susceptibilityf ~ £~7) for magnetic systems or the singular
part of the zeroth, first and second moment of the cluster distribution percolating systems near a critical point
(e = (Tc —T) /T, for physical systems an(p. — p)/pc for percolating systems). In all the systems mentioned here,
and more, these exponents are related via the scaling law

oa+2B+y=2. 1)

The second category iiata collapsewhich is easily demonstrated with the Ising model. We may write the equation
of state as a functional relationship of the fokin= M(H, €) whereH is the applied magnetic field. Sinb&H, ¢) is
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FIGURE 1. Examples of data collapse for various fluids and a magnetic system. Top left: the tempEwdituded by the critical
temperaturd plotted as a function of the vapor densityand liquid densityp; normalized to the critical densify. [7]. Bottom
left: the cube of the normalized liquid vapor density differeRce (p; — pv)/pc = Ap/pc plotted as a function of the normalized
temperaturd /T, for “quantum” fluids (a: Hé, b: He* and c: H) and classical fluids (d), all fluids show scaling of the first category:
p1 — pv ~ €P [14]. Center: the scaled chemical potentis| / \8\35 plotted as a function of the scaled density differejigs| / \e|ﬁ

in the critical region of several fluids (GOXe, Sk, Ar, N,O and CCIF) [16]. Top right: scaled experimentsIHT data on five

different magnetic material: CrBrEuO, Ni, YIG and PgFe [140]. Bottom right: the scaled susceptibility plotted as a function of
the scaled temperature for tHe= 3 Ising model [194].

a function of two variables, it can be graphically represented a&s ¢ for differentH values. The scaling hypothesis
predicts that all of thes®! vs € curves can be “scaled” or “collapsed” onto a single curve provided that one plots a
scaledM (M divided byH) to some power as a function of a scakede divided byH to some other power). The
predictions of the scaling hypothesis are supported by a wide range of experimental work with physical systems as
well as computational models [7, 14, 16, 19, 36, 37, 38, 40, 42, 46, 48, 55, 68, 79, 107, 123, 140, 159, 160, 162, 165,
181, 187, 193, 194, 198, 209, 211]. Figure 1 shows some selected examples of data collapse.

Nuclear clusters

The success of scaling in condensed matter is impressive. However, how can this scaling be observed in nuclear
reaction experiments? More specifically, how is this scaling related to the scaling of light fragment yields from nuclear
reaction experiments (where direct, straightforward measurements of standard thermodynamic quantities like density,
pressure, chemical potential and so on are impossible)?To see how the two are related we present a derivation of
Fisher's theory in the next section.

Note: in the following text the more general term “cluster” will be used instead of “fragment” or “droplet.” This
is done to underscore the similarity between nuclear fragments and clusters (properly defined [25, 29, 45, 190]: all
clusters in Ising calculations are so-called Coniglio-Klein clustes [45]) in systems like the Ising model and droplets
of fluid (classical or quantum). We also do this to avoid the unfortunate labeling of the process of nuclear cluster
production as “fragmentation” which has a specific meaning in condensed matter physics (fragments are the results
of the cold fragmentation or fracturing of solid materials [76]) that may be quite different than what the nuclear
multifragmentation community has in mind.



FISHER’S THEORY AND SCALING

Physical cluster theories

Fisher’s theory is a physical cluster theory that scales [18, 19, 162, 190]. Physical cluster theories of hon-ideal fluids
assume that the strength of the monomer-monomer interaction is exhausted by the formation of clusters, and that the
resulting clusters behave ideally (i.e. they do no interact with each other). Clusters of a given number of contituents
can be characterized by their masg, a chemical potential (per constitueptland a partition functioma(T,V) that
depends on the temperatureand volumeéV of the fluid. Because of the ideality of the fluid of clusters, the pressure
and density are straightforward to determine the pressise

T ©
P=y 2 WTVIZ @
and the density is
1 0
== 5 AQ(T,V)2 3
P=y A; Ga(T,V) ®)
wherez s the fugacityz= /™. The concentration oA clusters is then
V)2
NA(T,2) = M~ (4)

Fisher’s theory

Fisher’'s contribution to physical cluster theory was to write the partition function of a cluster in terms of the free
energy of the cluster. The energetic contribution to the free energy (very recognizable to nuclear scientists) is based on
the liquid drop expansion

Ean=EBEs+Es (5)

whereEy is the volume (or bulk) binding energy of the cluster which is taken to be
Ev=aV ~dA (6)

HereV is the volume of the clustesy is the volume energy coefficient in terms\6f and&, is the volume energy
coefficient in terms ofA. The termEs is the energy loss due to the surfage(where surface is taken as the- 1
measure of a cluster that existsdrEuclidean dimensions) of the cluster. For clusterd-tlimensions this is usually
taken to be
/ d-1
Es=ass~aA d . @)

Wheres is the surface of the clustes; is the surface energy coefficient in termsspind &, is the surface energy

coefficient in terms oA"a" . Becausdss is a measure of the volume energy loss due to the surface of the cluster, the
surface energy coefficient is nearly equal to and opposite in sign to the volume energy coeéficient,. Fisher
wrote the surface energy factor more generallffas a,A° whereo is some general exponent describing the ratio of
the surface to the volume of the cluster.

Fisher estimated the entropic contribution to the free energy of the cluster based on a measure of the combinatorics
of the number of clusters with surfas@nd cluster numbeh: gso. Summing over the cluster number gives the total
number of ways to form a cluster with a given surface

Os= ; OsA (8)

where the sum runs over all possible cluster numBeteat result in a cluster with surfaseFor instance, for clusters
on ad = 2 square lattice fos = 4 the only possible cluster numberAs= 1 andgs = 1. The next larger possible
surface iss= 6 and is only possible foA = 2 andgs = 2. However, clusters witlhh = 3 andA = 4 can result in a



: :
. 0.625255097

S

10% gszzAgsA & &
p— 102 gs,A =49 o ¢
Osa=36 o
10 Osa=25 SR A

gs,A =16

o oD ¢ #F o @

[
5 o o
© P i
@ &
L e et st T e e B
=
o
N
S
w
S
IS
o
)
S
~
(=}
©
(7,1 I BV VIV Y Y Y HY RV EY VRV Y RV R BT ROV ROV

FIGURE 2. Left: an example of a self-avoiding polygon on the square lattice &vith23 ands = 40. There are 4457,726 494

ways to form a cluster with this number and surface. Right: The combinatorics of self avoiding clusters on the square lattice as a
function of cluster surface The open symbols shogg a for A= 4,9,16,25,39,49. The values ofs o were obtained via a direct
counting of the clusters [188]. The solid line shows a figdwsing Eq. (9).

surfaces = 8, thus the sum runs in Eq. (8) frof= 3 to A= 4 andgs = 7. As the surfaca increases, the range of
possible cluster numbesswith surfaces increases ands grows exponentially

Os = gos ¥e>* )

wheregp is an overall normalizatiorhs can be thought of as the limiting entropy per unit surface of a cluster. This
estimate can be tested by the study (and direct counting) of the number of self-avoiding polygons on the square lattice
[146, 188, 200]. An example of a self-avoiding polygons on the square lattice is shown in Fig. 2. The study of self-
avoiding polygons shows that to leading order [146]

gs ~ 0.562301495 297 (10)

while a fit to the direct counting of self-avoiding polygons (shown in Fig. 2) giges 0.62s>55¢%97 [188, 201].
Fisher then assumed that for large clusters, over some small temperature range the most probable or mean surface of
a cluster would go as

S~ apA° (11)

so thatgs could be re-written as
Oa ~ GhA TP (12)
whereg, = goay ¥, T = xo andbj = bsag. Which gives the entropy of a cluster as:
Sa=Inga=Ingy—tINA+BA°. (13)

The partition function of a cluster is then

d
L [2nmaT\ 2 Ea—TS:
da(T.V) = V<h2 >exp<—_|_ )

[ = 5T (57) | A T (14)

— —T _
= VgA “exp T exp{ T

Equation (4) then gives the cluster concentration as

2= 5:T1n (aamer )| A T

(T) = gyA “Zexp T exp {— T




%A_fexp{ [ﬂ*avé’ATT'” (z,J‘anT)]A}exp[ T "

Fisher identified the numerator of the first exponential as the distance from phase coexistence as measured by the
chemical potential

d h?

where at coexistence (or condensatiap)= 0 anducoex= 2 T I (T?ﬁ,ﬁ) —ay.

The (a5 — T k) contribution to the surface tension vanishes at the critical point, leaving only a power law (which has
been explicitly verified in computational systems [31, 42, 72, 68, 73, 74, 75, 88, 90, 91, 97, 99, 109, 117, 121, 122,
123, 124, 138, 141, 143, 150, 159, 162, 193, 198, 201, 209] and implicitly verified in a wide variety of physical fluids
[26, 30]). Thus

a
Te = b—/s an

Using Eg. (16) and assuming little or no temperature dependeraéeaofib} over the temperature range in question,
then we may re-write Eq. (15) as

/ O
na(T) = ggATexp(Afll_A> exp(— BEA ) (18)

T

which gives the familiar expression for the cluster number concentration.

Scaling from Fisher’s theory
Data collapse

We consider first with the second category of scaling, namely: data collapse. We start by looking at the cluster
concentrations in Fisher's theory given by Eq. (18). Dividing both sides by the power law factor and the chemical
potential factor then gives:

na(T LEAC
# = exp(as > . (19)
g vexp( ) T
This shows that scaling the cluster concentrations by the power law and chemical potential factors against the cluster

surface free energy should collapse the data for each clusteh sizeach temperatufe to a single curve. Figure 3
shows this type of scaling and data collapse in percolation [199] and Ising model cluster yields [198]

Scaling relations

To arrive at the first category of scaling from Fisher’s theory, we combine the general equations for pressure and
density for physical cluster theories, equations (2) and (3), with Fisher’s estimate of the cluster partition function,

Eq. (15) giving
l _ ApA aLeA i 1 ApA aLeA°
_ / T _ _ / T _
p=T A§:1g0A exp <T ) exp( T ) andp ZlgoA exp - exp T . (20)

Along the coexistence line, i.Au = 0, we have

(2

hd LeAC hid LeAC
Pcoex = TAZ g()A_TeXp(_ aST ) andpcoex= AZ gbAl‘Texp<— asT ) . (21)
=1 =1



At the critical point we have
P = TCAZ gyA " andpe = AZ ghAL . (22)
= =1

Taking the ratios of equations (21) to (22) gives the reduced prepssssg pc and reduced densifyeoex/ Pc

o -7 _ageA° 1-7 aseA
Pcoex T2a1A exp( T ) Pcoex ZA 1A exp( )
= — and T
Pc Teya1A" Pc TeyaaA

which has the advantage of being free of the congignin order to further test the results above, we determine the
magnetizatiorM of thed = 3 Ising model using Eg. (23) and recalling that the magnetization per lattice site is simply:

(23)

P
M= oo (24)

Using the values 06, 1, ¢y and T, determined from fitting clusters on tlie= 3 Ising lattice shown in Fig. 3 [198]

in Eqg. (23), Eqg. (24) gives one branch of the magnetization curve, the brandh f00. Since the magnetization is

symmetric about the origin, the points fbt < O are reflections of the points féd > 0. The results are shown as

the open circles in the bottom right plot of Fig. 3. These results compare well with a parametrizatibfirfpf198]

(used as a “benchmark”) shown as a solid line in the bottom right plot of Fig. 3. Better agreement wWiliTthe

parameterization is found when the valuesof 0.63946+ 0.0008,7 = 2.209+ 0.006 (from the scaling relations in

Fisher's theory developed below and valuegof 0.32653+ 0.00010 andy = 1.2373+ 0.002 [184]),a, = 12 and

T. = 451152+ 0.00004 were used. Nearly perfect results were observed ahems “tuned” to 16 and the more

precise value ofl; and the scaling relation exponent values were used. The agreement between the magnetization

values calculated via the sum in Eq. (24) and Mh€T) parameterization for & T < T, suggest that the ideal gas

assumptions in Fisher's theory allow for an accurate description of the system even up to densities ag:high as

By combining equations (21) and (22) we can arrive at the scaling relations as follows:

-2

c _ '\ L
Pcoex Az AT |:1 exp( aSSA )] ~ gO (_”) (as) gTZ = BeP (25)
PcO o Te

since asl — T large values oA give the dominant contribution to the above sum and the sum may be replaced by an
integral (5’ Y te Ydy =T (x)) [39]. Heref§ = %2 This leads directly to the familiar relatign — p, ~ €P.
Similarly, one finds that along the coexistence line the specific heat at constant volume is [18, 190]

92 PcoexV

C\/:Tz T

372 ~ g2 T g (26)

thusa =2 — =1
Finally, the isothermal compressibility can be found to be [162]

K= --=|T~eo ~e? 27)

thusy = 3%,

The thrge examples above show how Fisher’s theory leads to the power laws that describe the behavior of a system
near its critical point. Putting the equations defining3 andy together recovers the scaling law+ 28 + y = 2 and
illustrates that (aside from so-called “hyperscaling”) there are only two independent expanems £ in Fisher's
theory) from which all others are recovered.

Caveats

Before proceeding further, we must study the implications and assumptions inherent to Fisher’s theory and any
problems, inconsistencies or discrepancies that arise because of them.
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FIGURE 3. Top three plots: the scaling of Eq. (19) fd= 3 bond breaking percolation on the simple cubic lattice of kige9,

6 and 4 § is the bond breaking probability) [193]. Bottom left plot: the scaling of Eq. (19)dfer 3 Ising model on the simple

cubic lattice of side. = 50 [198]. Bottom right plot: the magnetization as a function of reduced temperature. The open circles show
the magentization predicted via Fisher’s theory (see text) and the solid line shows a parameterization for the magnetization.

Surface tension

The first implication is that a cluster’s surface free energy is linear ifihis implication appears in Fisher’s work
only when deriving the singular behavior of quantities near critical point (e.g. the isothermal compressibility and the
liquid-vapor density difference) [18] and does not appear explicitly in the cluster concentrations until other work with
Fisher’s theory [31, 35, 39, 42].

To see the linearity in the surface free energy most clearly, we can recast Fisher’s theory solely in terms of the
surface area of a clustey the concentration is the product of the combinatorial factor and a Boltzmann factor that
depends on the surface energy:

ns(T) O gsexp(—%sj . (28)

Following the arguments put forward in the preceding section and using Eq. (9) gives

(29)

ns(T) O s*Xexp<— aseS) ,

T
suggesting that the surface tension coefficient of a clustgis

However, it has long been known empirically [2] that the surface tension of macroscopicT(tits surface free
energy per unit area) is not linearén In fact, to lowest order, a6 — T [15, 19, 20]

[ =Toed@ DV (30)
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FIGURE 4. The scaling of cluster concentratiomgT ) from d = 3 Ising calculations on the simple cubic lattce [211]. Top (from

left to right): The cluster concentration &t= 0.997T. in terms of cluster surface(the solid line shows the cluster concentration

at the critical point which is empirically estimated to gorgéT;) = 3.8552569): the scaling ofs(T) according to Fisher's theory

with a surface free energy which varies linearlyirand the scaling afis(T) according to Fisher’s theory with a surface free energy
which varies ag2”. Bottom (from left to right): The cluster concentrationiTat= 0.997T. in terms of cluster numbex (the solid

line shows the cluster concentration at the critical point which goag(@s) = 0.093%~2209[198)); the scaling ofiz(T) according

to Fisher’s theory with a surface free energy which varies linearly, and the scaling ofia(T) according to Fisher’s theory with

a surface free energy which variesef¥ (the solid line shows the value of the surface free energy coeffielent12.63+ 0.04

[211]). Colors give the surface or number of the cluster as can be seen in the left most plots. No fitting has been done in any of the
scaling plots of this figure.

wherev is the critical exponent that also describes the divergence of the correlation length near the critical point and
is related to other exponents through the hyper-scaling relation [15, 19]

dv:y+2ﬁ:2—a—%1. (31)

Studies of thel = 3 Ising model indicate that the surface tension is sensitive to higher order terms (H.O.T.s)
M= asgz" (1—1— aeee + ale) (32)

with ag = 1.55+0.05,a9 = —0.41+0.05,0 = 0.51 anda; = 1.2+0.1 [126].

Futhermore, it has long been known that the surface tension of a dlugkef ) may differ from surface tension of
a macroscopic fluid [8, 210]

rAT)=r <1—26r> (33)
ra

where the Tolman length is independent of cluster sizes ands the radius of the cluster. However, this affects only
the magnitude of the surface tension, whereas the temperature dependence of the surface tension remains the same for
clusters and the macroscopic fluid.

The top panels of Fig. 4 shows that the concentrations of clusters as a function of their sg(ffgda d = 3 Ising
calcutaions [211] are poorly described by Eq. (29) and better described by

aSEZVS
T I

ns(T) Os™X exp(— (34)
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FIGURE 5. Left: the scaling of cluster concentrationg(T) from d = 3 Ising calculations on the simple cubic lattce [211]
according to Eq. (35). Over 700 points are collapsed to a single curve with the fit parameter516-0.004,g; = 4.3+0.2,
x=2.58+0.01,as = 4.04+0.09,a9 = —2.11+0.04,a; = 1.73+0.06 andds = —1.7+0.1. Colors give the surface of the

cluster as in Fig. 4. Right: a comparison of the behavior of the surface tension from the fit to the left (open circles) and the surface
tension determined in reference [126] (open squares), while the parameters are different, the overall behavior is similar over the
temperatures considered5X T < 4.5.

with v = 0.6299+ 0.0002 set to itsl = 3 Ising value and; = 4.51152+ 0.00004 set to its value for the simple cubic
lattice [184], the exponentis determined empirically from a power law fit to the cluster concentratiofis=afT..
Thus when counting clusters in terms of surfaeesurface tension that varies&® is needed to describe the cluster
distrubtions. The top panels of Fig. 4 show, empirically, the same is not true when scaling in terms of cluster number
A: Eq. (15), where a surface free energy lineag gives a better description than the foedY.

As an aside we note that the data collapse shown in Fig. 4 can be improved by taking into account the higher order
terms in Eq. (32) and the cluster size effects in Eq. (33) the cluster concentration of Eq. (34) to give

sae?’ (1+age® +ae) (1— 255)

ny(T) =G5 *exp | - - ”

(39)

Figure 5 shows the results for the scaled cluster concentrations and the surface tension.

To understand why the surface free energy in terms of cluster nufisemore accurately described by a surface
free energy linear i we look in more detail at the change in describing the cluster concentrations in terms of cluster
numberA rather than the cluster’s surfaseWorking ind = 3 for the sake of illustration and assuming that the clusters
are spherical (which will be tested below) we have the cluster’s surface as:

s=4nr3 (36)
wherer 4 is the radius of the cluster in question. The cluster’s volume is
4
V= gnri. (37)

Using the density of the clustgr= A/V shows that

3 \*° 2/3

If we treat each cluster in the vapor as a small drop of liquid, then the pertinent density is the density of thg liquid

and 2/3
_ 3 2/3
s=4r (47TPI ) A=, (39)
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FIGURE 6. The surface tensioh (in N/m) in terms of cluster surface(first and third rows) and the surface tensl‘o,fp,z/3 (in

(N/m) / (mole/l )2/3) in terms of cluster numbeXk (second and fourth rows)) as a functionsof (Tc — T) T for: “quantum” fluids
(hydrogen and helium), noble gases (krypton and xenon) and more complex fluids (methane and water). The thin solid lins show

data points [213] and the heavy dashed-dotted lines over the thin line showfTits fge2¥ amdr/plz/3 =Tge.

The surface free energy is

2v 2v 3\ 2/3 r 3\** 2/3

Thus when writing the surface free energy in terms of cluster nuAvétthe surface tensioh is effectively modified
by p?/® which varies ag? asT — Te.
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details.

To see the effect of the change from cluster surface to cluster number we look at the surface tension for a selection
of real fluids shown in Fig. 6. For a broad range of fluidssas 0 Eq. (30) describes the behavior of the surface

tension. However, the ratio Gf/plz/ 3is adequately described by

r

p|2/3

—Te. (41)

Figure 6 shows empirically that the modificationfoby plz/ 3 effectively changes the power law variation fresY to

1
e
This change can also be seen analytically by looking at the effective expapentte of Fsin Eq. (40):
dInFs 2 die +dg BeP
dng 31+die+dgeP

Veff = (42)
where the parameterization

1= pe (1+dls+dﬁsﬁ) (43)
was used for the density of the liquid [7]. In the limit of— 0: ve — 2v but in the limit of e — 1: veg — 1 for

systems in thel = 3 Ising class. Thus, it is clear that the translation from cluster surface to cluster number causes the
surface free energy to vary, approximately, linearlg imway from the critical point.

Cluster shape

Next we can examine Fisher's assumptions on the most probable or mean sufaceluster. We may do this by
using the combinatorics of self-avoiding polygons and noting that, at phase coexistencéAwhefk Eq. (44) is the
product of the combinatorial factor and a Boltzmann factor that depends on the surface energy:

NsA(T) U gsa eXp(—aTiS) (44)

where now we write the cluster concentrations explicitly in terms of both cluster nufbed cluster surface
[199, 201]. The mean surface of a cluster is then just

Sa-1SnsA(T)
Sa-1nsa(T)

Using the direct counting ajs o (see Fig. 2) and setting (as in the Ising modgh= 2 (thusT; ~ %97 = 2.06) we can
determine the most probable surface of a clustek cbnstituents at temperatufe Fitting S(A) with apA° letting ag

5= (45)
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ando be free parameters we can study Fisher's assumption. Figure 7 shows that at low temperatx8sas one
would expect for al = 2 system. As the temperature increases the valuein€reases. AT = T, ~ 2.06, ¢ ~ 0.65,
a change of 30% from th€ = 0 value ofc. Thus, Fisher’s implicit assumption thatis a constant is only accurate
to the 30% level in this example. Looking at the accpeted value ©f8/15 from thed = 2 Ising model [209] and
comparing it to the expectel = 0 value ofoc = 1/2 shows this assumption to be accurate to tf&&% level for
0 <T < T, Looking at the accpeted value af= 0.63946+ 0.0008 from thed = 3 Ising model [198] and comparing
it to the expected = 0 value ofc = 2/3 shows this assumption to be good to th@ss level for 0< T < T.. When
the temperature is restricted to a very small range ardurdT. this assumption is quite good.

Another possible problem with this assumption is not only the dependercemtemperature, but the dependence
of ap on temperature and cluster sigeFisher implicitly assumed that féx— o ag is some constant. Using Eq. (45)
with thegs a of self-avoiding polygons we can test this assumption, by examining

_ p-0g— p-o 2A=15TA(T)
o=ATS=A Ya-1Nsa(T) (46)

In this exampleo = 8/15 is taken from thal = 2 Ising model andl' = 1 ~ T./2. Figure 8 shows the results. For
A < 10 the value ofg clearly shows “shell effects” that cause fluctuations on the order of 10% of the limiting value of
ap. For A > 10 the shell effects diminish and the limiting valueagf~ 4.6 is reached. Thus in this example Fisher’s
assumption holds fok > 10 [199].

Figure 8 also shows the results from a direct countingd ef3 self-avoiding polyhedra [203] and clusters from the
d = 3 simple cubic Ising lattice [211]. Thag 4 for the self-avoiding polyhedra has been directly counted w09,
counting forA > 10 is prohibitively time consuming on today’s computers. However, the dependeagemtluster
size and temperature can be investigated just as in the case att#epolygons (usings = 0.63946+ 0.0008 and
as = 2, which holds for thel = 3 Ising model as well). We see that for the lowest temperailire {, as compared to
thed = 3 Ising modelT; = 4.51152+ 0.00004 [184]) the shell effects are evident: for perfect cubesl andA =9
ap = 6 as expected. As the temperature increases the shell effects are washedapuslzowls a steady rise with.
The steady rise dadp with A could indicate thab > 0.63946+ 0.0008 (which violates the first category of scaling as
will be seen below) or that the limiting behavior Fisher assumed does not set id\untB0. In either case, it seems
this assumption is poorer fok= 3 than ford = 2.



Excluded volume

The final entry into this section discussing caveats to Fisher’s theory is the effect of the extended, non-zero volume
of real, physical clusters, the so-called excluded volume. Fisher’s theory, like any physical cluster theory, assumes
that the clusters are point clusters and have no volume. Obviously this is not the case for real fluids, so how well does
Fisher’s theory do in describing real clusters which have non-zero volume [41]? We have already seen in Fig. 3 that
Fisher’s theory collapses the cluster concentrations of computer models quite well when the parameters (exponents,
critical temperature, surface energy coefficient) are allowed to vary; the values returned for these parameters from the
fitting procedures usually agree well with expected values [193, 198] (with the exceptwrioofthe d = 3 Ising
model, though that discrepancy may be the result of using clusters that are too small, see Fig. 8 and the discussion
above).

In the case of physical fluids the effects of the extended volume of clusters at the critical point can be studied by
realizing that Fisher’s theory gives the compressibility faGpas the ratio of two Riemand functions

Cre Pe SaATT_ C(D)
Tepe  TaaAYT  C(r-1)

The top panel of the left most plot of Fig. 9 shows the valu€oés a function ofl. for 30 fluids from helium through
water. When the compressibility factor for real fluids (e.g*Hée, ethane, acetylene, GBH, CHsCl, etc.) was
analyzed it was found that= 2.202+ 0.004 which is to be expected fdr= 3 systems [26]. This result indicates that
for real fluids the value of is not greatly affected by the finite size of the clusters. Furthermore, an analysis of the
“excluded-volume” effect and Fisher’s theory later showed that the scaling lawsx(¢.83 + y = 2) were unchanged
[28].

More insight to this can be gained by examining an attempt that was made to explicitly correct Fisher’s theory [18]
for the effect of the cluster's extended volume by the adding of a Boltzmann factobwAtio Eq. (21). Thus the

pressure is given by [167]
ad _ ApA aLeA° bpA
_ / T _ _
p= TA§:1QOA exp( T > exp( T exp T (48)

whereb is the one-particle volume as in the van der Waals fluid [1] (and BAus the volume of a cluster oA
particles). The vapor density is then found from

= 0.277+0.004, (47)

o Al AuA—alACe—bpA
ap do a1 Al TeXp(iu s p)

DL 14 by Z§=1A1—fexp(7”‘ Afaé/?%*pr) |

(49)

At the critical point:e = 0, Au — bpe = 0 so that the pressure and density at the critical point are given by

Po=Tigh 3 A" andp = - BZAAT (50)
AZl 1+bgyya-1 AT
The sums in Eq. (50) are Riemagrfunctions and easily calculated. For= 2.209 [26] then
0p5.37690859
= Tc0p1.48488211 = 1
Pe = Tego 148488211 anfe = 7= 7 37660859 (1)

Combining equations (47) and (51) yields an estimate for the one-particle vdiume0.001+0.003/g,. The
middle panel of the left most plot of Fig. 9 shows that for flugds~ 2 molel (determined from the empirical value
of p. and Eq. (51)) so thab ~ (—6+7) x 10724 cm?® per particle (bottom panel of the left most plot of Fig. 9).
Typical atomic radii for fluids are on the order of 200pm so the volume of a single particle in the fluid is approximately
Vparticle ~ 4.2 x 10-2tcm®.

Sinceb ~ Vparticle/ 700 the effects of excluded volume on Fisher’s theory at the critical point are negligible. This
is obvious when one examines the valueCpfgiven by Fisher’s theory assumitg= 0 and puttingr = 2.209 into
the Riemann;-functions in Eq. (47)Cr = 0.276159 which agrees, to within error bars, with the empirical value.



Furthermorepc is the highest density at which Fisher’s theory is applicable, thus this exercise has provided us with
empirical evidence that Fisher’s theory is unaffected by one-particle volume effects from<Q Te.

If the exponents, scaling laws and compressibility factor are unaffected by the extended volume of clusters, then
what are the effects of the non-zero volume of the clusters? To answer this question we turn our attention back to
the self-avoiding polygons [200]. Figure 8 shows that using the directly counted combinagg(iese were able
to reproduce the behavior of clusters from the- 2 lattice gas (Ising) model on a square lattice, up to a point.
The critical temperature predicted by the self-avoiding polygins 2.06 is approximately 10% below Onsager’s
analytically determined valug = 2.26915.. . [6].

To improve the above estimate o, at coexistence, we think of an initial configuration of a cluster wgh— oo
constituents and surfacg and a final state of a cluster #fconstituents and surfasand its complement: a cluster
of Ac = Ap — A constituents and surfase This assumes stochastic cluster formation and is supported by the cluster’s
Poissonian nature [198]. Now the free energy of cluster formation is

AG = AE — TASH peoedV = av [A+ (Ao —A) —Agl +as(s+s—S0)— T (In Osa+INgs, A, —IN gsO,AO) +pAV (52)

AV is the volume change between the initial and final configurations. All terisancel. In the limitdg — oo, S~ 5
and Ings, =~ Ingg, leaving only the cluster’s contribution to tiA&. The volume change for the lattice gas is

AV =g [A+ (Ao—A) — Ao +1(s+ % —%) (53)

wherea; is the geomertrical prefactor relating the cluster volume to the cluster nufvdoad! is the interaction range
between two constituents, one spacing on a lattieel. The second term of Eq. (53) arises from the fact that no two
clusters can come within a distanicef each other and be considered two clusters, thus each cluster has a i®lume
surrounding it which is excluded to all other clusters.

In the Ag — o limit the first term of Eq. (53) vanishes, thus the inclusion of the Boltzmann factor lwithin
Eq. (48) isincorrect. The second term of Eq. (53) depends only on the cluster’s surface. Writing the partition function
for a cluster asjs(V, T) ~ exp(—AG/T) [39] and now including the excluded volume factor from Eq. (53) gives

ass 2 S B S(as—Ths+2
ns(T)~gseX|o(Ts)ex|0<'°°$exI >~905 Xexp[ (8o~ TDs+ 2Pooed) | (54)

T

The factor of two in the final Boltzmann factor arises when thinking in terms of transition state theory with the initial
state being a liquid drop with no bubbles surrounded by a vapor and the final state being the liquid drop with a bubble
the same size as the new cluster in the vapor surrounding the liquid drop. Both the bubble in the condensed phase and
the cluster in the dilute phase have the associated excluded volume contribuson of

Just as above, th@s — T bs+ 2pcoed ) portion of the surface free energy vanishes at the critical point so

as+2pd  as  2pd
To=——— == )
©= b b s

(59)

The first term in Eq. (55) can be thought of as the “ideal” critical temperature and the second term can be thought of
as the correction that arises due to the non-zero volume of the cluster. Working at the critical pomtaviéhil1 for
thed = 2 lattice gas (Ising) model, Eq. (55) givés= 2.29, within 1% of the Onsager value [6].

The e version of Fisher’s theory can be recovered by letting:

a = as+2pdl (56)

so that

with bs = a,/Te.

Equation (54) also provides a good description of Ising cluster yields. The middle plot of Fig. 9 shows the lattice gas
(Ising) yields a(T) = Tsnsa(T)) of a two dimensional square lattice of side= 80 and the predictions of Eq. (18)
and (54) (both at coexistence and both using the directly countg@dombinatorics of the self-avoiding polygons)
with no fit parameters

The right most plot of Fig. 9 also shows the integrated quantities of the density and pressure along the coexistence
line for thed = 2 Ising system. The values pfoex and peoex determined from calculations on the square lattice [211]
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FIGURE 9. Left: The compressibility factor (top), normalization (middle) and excluded volume parameter (bottom) as a function
of critical temperature for fluids from helium through water. Middle: Ising cluster yields frord ta@ square lattice (open circles)

at four different temperatures compared to Eq. (18) (filled circles) and (54) (filled squares) (both at coexistence and both using the
directly countedys o combinatorics of the self-avoiding polygons) with fit parameter§200]. Right: the densitpcoexand pressure

Peoex at coexistence from the Onsanger solution (solid line), flom2 Ising calculations on the square lattice [211] (open circles),

from Egs. (21) and (18) (filled circles) and from Egs. (21) and (54) (filled squares).

(open circles), from Egs. (21) and (18) (filled circles) and from Eqgs. (21) and (54) (filled squares) are compared to
the analytical solution of Onsager (solid line) [6]. One can still assume that the formation of clusters exhausts all
the non-idealities and simply calculate the pressure and density from the self-avoiding polygon combinatorics and the
finite cluster volume concentration, the equations

S(8s+ 2Pcoed ) S(as+2pcoex|)} . (58)

Pcoex=T ) Gsa€Xp |:—:| andp =Y Agspexp I:_
coex ; s, T coex ; T

were solved iteratively usings = 2 and the directly countegs o [188]. As one might expect, at low temperatures,
where the dilute phase is very dilute, the “ideal” expressions of Eqgs. (21) and (18) work quite well. However as
the temperature increases and more and more clusters appear in the dilute phase the “ideal” expressions fail and
predict, as expected based on the cluster concentration predictions, pressure and density values that are higher than the
Onsager solution [6]. The non-zero volume expressions of Egs. (21) and (54) follow Onsager’s solution and the Ising
calculations more closely.

This exercise shows that by leaving surface energy coefficient and critical temperature as a free parameters when
fitting cluster concentrations, or by obtainifigfrom other methods (e.g. the Onsager solution for the Ising model on
a square lattice [6]), one accounts, for the most part, for the effects associated with the non-zero volume of the clusters.

Super critical temperatures

Finally, we note that Fisher’s theory is valid only for< T.: temperatures greater th@gnyield cluster surface free
energies that are negative, and thus unphysical. The parametrization used in Fisher’s theory is only one example of a
more general form of the scaling assumptipn= A~*f(X) andX = A°¢? and wheref (X) is some general scaling
function which [38, 42, 46, 55, 160]:

- is valid on both sides of the critical point;

« for smallX (T ~ T; and smallA) ande > 0, f(X) will vary as exg—X) with 6 =1/(86) =1/(y+B) ~ 0.64
for three dimensional Ising systems/1% for two dimensional Ising systems &r0.45 for three dimensional
percolation systems and=1;

- for large X (T far from T or largeA) and e > 0, f(X) will vary as exg—X) with ¢ = (d —1)/d for all d
dimensional systems and with= 2v.
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FIGURE 10. Left: the natural log of the scaled cluster yields= na(p)/A~" as a function of the argument of the scaling
function X = A%(p— pc)/pe for bond building ¢ is the bond building probability) = 3 percolation on a square lattice with®10
sites. Data from differenp follow the same curve as required by the scaling hypothesis. The parabola is the general foxh of
[42]. Middle: the natural log of the scaled cluster yields as a functiop.¥f (solid points) for (a)d = 2 to (f) d = 7 together with
the least-squares fits (solid lines) [46]. Right: the scaled cluster yields plotted as a functiea @A° for |¢| < 4.5x 1072 on a
linear (a) and semi-logarithmic (b) scale; solid lines represents fits to a scaling fuh{ofi160].

Figure 10 shows the general form of the scaling funcfioX) for percolation systems [38, 42, 46, 160]. However, this
more general scaling functioi(X) does not lend itself as easily to a physical interpretation as does the parameteriza-
tion given by Fisher’s theory and it is this physical interpretation which is important to the application of this method
to the nuclear data.

Summary

We have seen that Fisher's theory is a physical cluster theory. Fisher's main contribution was to introduce an accurate
approximation for the entropic contribution to the cluster partition function. This lead to the development of a theory
that shows both types of scaling: the singular behavior of quantities near that critical point and the scaling laws that
relate exponents as well as the data collapse of cluster concentrations. Fisher’s theory has an unphysical surface tension
above the critical temperature, however beluit serves as a good approximation that lends itself easily to a physical
interpretation. Though Fisher’'s assumption about the mean surface of a cluster is crude (using a constant values for
ap ando ignores the temperature dependence of the mean surface of a given cluster size) and it explicitly ignores the
non-zero volume of the clusters (though implicitly the finite volume is almost all accounted for by the proper choice of
T¢) it has successfully: described cluster production in percolating systems and Ising systems (see above); reproduced
the compressibility factor at the critical point (see above); predicted (within a few percent) the compressibility factor
of real fluids from the triple point to the critical temperature [30, 92]; and has been used to describe the nucleation rate
of real fluids [32, 78].

A BRIEF HISTORY OF NUCLEAR CLUSTER PRODUCTION

#n the beginning there was neutron evaporatjén5], and the evaporation was go¢a2]. . .

It was noted long ago that statistical methods could be applied to nuclear processes if the energies involved are
large when compared to the lowest excitation energies of nuclei [4]. By doing this, Weisskopf was able to formulate
expressions for the probability of neutron (or charged particle) emission from excited nuclei. Weisskopf based his
work on evaporation from a body at low temperatures. In that regard, Weisskopf was working out the formulae to
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nuclei after bombardment from 190 MeV protons [12]. The slopes of the lines give the inverse of the effective temperature of
evaporation.

describe the evaporation of neutrons from a hot nucleus, i.e. he was describing a first order phase transition with a
neutron leaving (or evaporating from) the condensed phase (the hot nucleus) and entering the dilute phase (a very low
density neutron vapor).

Following Bohr, Weisskopf divided processes initiated by nuclear collisions into two stages: the first was the
formation of a compound nucleus and the second was the disintegration of the compound nucleus. Both stages could
be treated independently. The energy of the compound nucleus is similar to the heat energy in a solid or liquid and
the emission of particles from the compound nucleus is analogous to an evaporation process and Weisskopf derived
a general statistical formula for the evaporation of particles from an excited compound nucleus (with the caveats of
the finiteness of the nucleus and the fact that the evaporation of a particle takes away significant energy from the
compound nucleus).

The probability per unit time of a nucledg with excitation energ¥* emitting a neutron of mass, with kinetic
energy betweed’ and& + d& (whered&’ is much larger than the levels 8§), thus transforming itself into nucleus
Ac with an excitation energig* — Eg — & (whereEy is the neutron binding energy 8§) is

Wn(c?)dé"_a(Eo,é”)%exp{—g_T [Ing+s¥—&\c— f(£) }dé“‘ (59)

whereo (Ep, &) is the mean cross section for the collision of a neutron of kinetic eng€ngith nucleusA. of energy

E* — Eg— & resulting in the production of nucledg of energyE*; g is the number of states for the spin of the particle
under consideratior§(E) = Inp(E) corresponds to the entropy of a nucleus with and energy betes E + dE

(level densityp (E)); T is the temperature at whidh is the most probable energy of nuclefys and f (e) “contains

all further terms of the development.” The probability per unit time for the evaporation of particles of nucleon number
A, chargeZ and mas#na from nucleusty is

E+e%E _T|| — S — (& —e?%E
WA(g)d@@nR%<£eZZROOZ>:AeXp _rE [ng+sf\r° e 1 %) de  (60)

whereRy is the radius of the compound nucleus afidis its charge. It is no surprise, given that Weisskopf had
evaporation in mind, that equations (59) and (60) are similar to Fisher’s estimate of the cluster partition function given
in Eq. (14).

Multiplying the total probability of particle emission tythen gives the decay width: for neutrons:

My

rnZEWTzexp(lngjts%—S%) (61)
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FIGURE 12. Left: The fission probability? as a function of the inverse of the square root of the excitation erlﬁ*?gﬁr/z for
the reactiong3%Ph(*H, f), 337Au(*H, f) and3§W(*H, f) [21]. Middle: (a) The fission probability plotted as a function of
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reduced mass-asymmetric fission rRedivided by 2/a@, as a function of* /2 for the compound nucleiB61871880g, 20|
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(whereo is the mean value of (Eq, &) f(&£') averaged over the Maxwell distribution) and for charged particles

My
FaA= coﬁTzexp(lng+&\0—S%). (62)

Thus Weisskopf developed a theory of nuclear evaporation, i.e. a theory of first order phase transition in finite, charged,
asymmetric nuclear matter.

Experimental evidence of neutron evaporation appeared in the energy distributions of neutrons measured after
various nuclei were bombarded with 190 MeV protons [12]. Equation (59) gives the probability of the evaporation of a
single neutron from a single compound nucleus at a specific excitation energy. However, experimental measurements
of neutron kinetic energy distributions were measured for neutrons that came from a cascade of successive evaporations
from compound nuclei with a distribution of initial excitation energies. Thus to connect Eq. (59) with the experimental
measurements the successive neutron (and proton) evaporation and distributions of initial excitation energies had to be
taken into account which gives [12]

i—1
W (6)dé O o (Eo, &) (f) exp(—f) %d@“’ (63)

wherei is the generation of the evaporation. Figure 11 shows logarithmic plots of scaled neutron energy distributions

(% vs. &) follow a straight line whose slope is the inverse of the effective temperature of evapdrailibe
plots in Fig. 11 are similar to the Arrhenius plots of nuclear cluster yields observed later [127], as such they present
early evidence for thermal scaling in nuclear evaporation.

The thermal nature of cluster production in nuclear reactions was seen to extend all the way to fission [13, 21, 85,

98, 108]. The fission probability and fission cross section can be written as

Of Ff
-2 = 4
P p and of = GOI_T (64)



where - Es
rf:TPS( _Bf_gsr)

2np (E* —E7)
't andlt are the fission and total decay widtl8s,is the fission barrels is the saddle-point level density,is the

compound nucleus level density aBflandE?® are the saddle and ground-state rotational energies.
For large excitation energieE{ > By, E* > ES andE* >> E?®) the fission width is
T &

_ Tps(E*—B) - Tps(E*) -5 T
= ompE) 2mpE)° | T2t (66)

(65)

where the Boltzmann factor arise from the first-order term in the Taylor expansiopgdBh— Bs). Then in the limit
that the nucleus behaves as a Fermi gas With /E* /a the natural logarithm of the fission probability should go as

B
VE

where and % are constants. Consequently, a plot of the natural logarithm of the fission probabilities veydrs 1
should be linear. This is just the case as is shown for several fission reactions in Fig. 12 [21, 85].

For lower excitation energies and nuclei wih>> B, (the neutron evaporation barrief}y ~ I'y. Then Eq. (64)
can be rewritten as

InszlnD:;zi— (67)
rr

2np (E* —E? : s
rop 72 E &) T ) = ps(E" —B{—E}) ~ @VAEEE), (68)

where we have assumed a simplified form of the Fermi gas level density, and therefore,

(E*—Bi—EP) (69)

*_ =9
lnlrnPonp(E Ers)] InRe /&

1

2\/an T 2yan Van
whereas anda,, are the level density parameters associated with the fission saddle point and the ground &aite and
the reduced mass-asymmetric fission rate. The neutron width can be approximated as

. 2mRg_,p (E*—Bn—E)
"R " 2np(E-EP)

(70)

whereBy, is the last neutron binding enerdly, is the temperature after neutron evaporation Rislthe radius of the
compound nucleus.
For fission excitation functions in the Pb region, strong shell effects make the approximation

E*—Bn—E%)

p (E — By — ES) 0 &Vl 71)

a very poor one. However, for excitation energies higher than 15-20 MeV, the level density assumes its asymptotic
form [33]:

*__ — 957
p (E —Bn— Ergs) 0 ez\/an(E Bn—Er Ashell)7 (72)

whereAghe is the ground-state shell effect of the daughter nucleus after neutron evaporation. Assuming this asymp-
totic expression for the level density after neutron evaporation, the fission excitation functions can be fit with Eq. (64)
usingAghel @s a free parameter in the expressionlfer~ I, [108]. Thus, a plot of the left hand sige of Eq. (69)

(which can be constructed from measured fission cross sections and known non fission channels (mostly neutron evap-
oration)) versus/E* — B, — EF should be linear (actually a 4%ine for as = a,). That this is so can be seen in Fig. 12

[98, 108], where a large number of fission excitation functions scale exactly to the same straight line illustrating the
thermal nature of cluster production in nuclear fission reactions.

If the analogous behavior of evaporation from excited nuclei and evaporation of classical fluids holds, then one
expects that as the temperature increases the first order phase transition (evaporation) becomes a continuous phase
transition at a critical temperatuiig above which there is a smooth cross over from the liquid-like phase of ordinary
nuclear matter encountered at low excitation energies to a gaseous phase where the average interparticle distance
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FIGURE 13. The inclusive cluster yieldsa as a function of cluster siz& from the reaction of 8& Epeam< 350 GeV protons
incident on xenon (left [50]) and krypton (right [54]) nuclei. Solid lines show a fit to the data with a power law.

TABLE 1. Values for the parameters in the fits to the isotopic yields. These values were calculated bafixirigl.1 MeV
and leaving the remaining parameters free [51, 54].

Parameter ay (MeV) aj(MeV) ac(MeV) as(MeV) ap(MeV) pup(MeV) pun(MeV) T MeV T

Nominal
value 14.10 1300 060 1900 3350 221
p+Kr 14.10 553 049 2266 592 —-11.32 —7.59 328 264
p+Xe 14.10 661 040 2330 528 —-11.01 —7.62 324 265

is much larger that the range of the interparticle interaction. Thus, when inclusive (i.e. the average cluster yield for
a given cluster sizé\ was generated by averaging over all excitation energies) cluster yields from the reaction of
80 < Epeam< 350 GeV protons incident on krypton and xenon nuclei exhibited a power law (as expeatgdTorin
Eq. (18)) with an exponert between 2 and 3 (as expected (b 3 systems [42]) it seemed possible that the critical
temperature had been reached [50, 51, 53, 54].

An analysis of the isotopic cluster yields provided further evidence that the clusters arising fromXleeapd
p+Kr reactions were thermal in nature and perhaps critical. The measured inclusive yields were fit to a version of
Fisher’s theory modified to account for the nuclear aspects of the fluid in question. Specifically th&/ yReldsof a
cluster withA nucleonsN neutrons and protons were fit with the following parameterization [51, 54]

2 _ 2
avA—alA?/3 —ac 2 — aa A2 — 5+ iNN+ pizZ

T

Y(A,Z) =CA "exp

N z
NIn—+ZIn— 73
+ nA+ nA (73)

with § = a,A~%/4 for odd-odd nuclei§ = 0 for odd-even nuclei and = —a,A~3/ for even-even nuclei. Here Fisher’s
theory has been modified to use Weizacker’s semiempirical mass formula (the first five terms in the Boltzmann factor)
and a chemical potential for neutrons and protons (the last two terms in the Boltzmann factor). The final terms in the
exponential in Eqg. (73) take into account the entropy of mixing protons and neutrons. Figure 14 shows the results for
the 59 different isotopes from theqiKr reactions and 62 different isotopes from theXe reaction fit to Eq. (73) with

the free parameters and results given in Table 1.



LI L N I A B B B B B L N B B S S SR R B S H B T T T T T T T T T T T
B (a) I ae 1 B (c)
o’ 4 4 ok N ® 4 0% e
10’k ER 4 0% 4
e FE E = 4 9 E =
@ F 13k Ja f 7
> ] s + ] > - -
c°k 3 IO 4 ©k E
joP——L 11 N T T T T 102 N T Y T T Y N o 5 e N Y Y B
o 2 14 16 18 20 22 24 2 K4 B 1B 20 22 24 20 22 24 26 28 30 3R
As At At
1T T 1T T T T T T T T T U N T I N O D N IR N (N FT T 1T 1T T 1T T T 1T T 1T T TJ]
A (d) L oc © ] B )
'055 «B FAL 3 s <3 5
E q 0 3 I0g 3
o'k E o | I ]
a F = 0k E 10 3
o F 3 E = E 3
= L 4 o [ 19 ¢ ]
L 1a [ D ]
> L > - B
|055
E (13 § 10g 3
- = 3 = 4
E F A E 3
L C 3 E ]
i C ] - ]
i Ev vy | Pl 1 e T O T Y Y
0O 12 14 16 18 20 22 24 2 14 16 18 20 22 24 20 22 24 26 28 30 32
Ag Af /-\f

FIGURE 14. Top (bottom): the isotopic inclusive cluster yieldf$A,Z) as a function of cluster sizA from the reaction of
80 < Epeam < 350 GeV protons incident on xenon (krypton) nuclei [51, 54]. Circles represent data, while squares are the fit
according to Eq. (73). The dashed and solid lines are drawn to guide the eye.

In a similar analysis [70], the inclusive cluster yields{(Z < 14) from the reaction of pXe was fit to Fisher's
theory in a more generic form

MA(T) = GoA XA7YA (74)

where the surface free energy contribution is founXia- exp(—ate/T) and the chemical potential contribution is
found inY = exp(Au/T). The energy of the incident proton was varied fr@gam= 1 GeV toEpeam= 18 GeV.

At each beam energy the inclusive cluster yields were fit to Eq. (74) with the normalizatiod andY left as free
parameters and the exponewotsand T were fixed to theid = 3 Ising values. Figure 15 suggests that at low beam
energies the system is super saturated (1 indicates thaf\u > 0) and there is a sizeable surface free energy cost
in cluster formation. As the beam energy is increased, the system moves towards coex¥steriteand the surface
free energy vanisheX(— 1). For beam energies above 12 G¥\=Y = 1 and the cluster yields are well fit by a
power law.

While the results of the analysis of the above two experiments are not completely clear, it is clear that the clusters
created in these reactions are well described as a thermal phenomenon. Regardless of whether the critical point was
reached, the inclusive cluster yields for three different reactions over a wide range in excitation energies were well
fit by Fisher’s theory. Using Fisher’s theory to describe clusters emitted from highly excited nuclei was, in hindsight,

a natural extension of the theoretical work of Weisskopf [4] and the experimental work on neutron evaporation [12].
Specifically the extension of Weisskopf’s particle evaporation probabilities to include Fisher’s estimates of the entropic
cost of cluster formation is much the same as the actual development of physical cluster theories [190].

The above experimental results stimulated much theoretical interest in the possibility of critical phenomena in

nuclear matter [52, 57, 58, 59, 63, 64, 65, 71, 72, 81, 84, 87, 88, 90, 91, 93, 96, 97, 99, 104, 105, 109, 110, 118, 121,
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FIGURE 16. Left: the pressure as a function of volume; the dashed curves show the van der Waals fluid and the solid curves
show the results for a system interacting through a Skryme force [52]. Middle: The nuclear cluster yields of reference [50] fit with
the theory of refrence [58]. Right: the outer solid curve is the temperature-density coexistence curve, the middle solid curve is
the isothermal spinodal and the inner solid curve is the isentropic spinodal; dashed curves show trajectories for constant entropy
expansion (top) and constant energy expansion (bottom) [65].

123, 133, 143, 150, 153, 163, 181, 186]. These efforts can be separated into two different categories: analytical/semi-
analytical theories [52, 57, 58, 63, 64, 65, 105] and computational models: both on a lattice [59, 71, 72, 81, 84, 87, 88,
93, 96, 104, 110, 121, 123, 133, 143, 153, 163, 181] and off [90, 91, 97, 99, 109, 111, 118, 122, 124, 136, 141, 150,
175, 180, 182, 185, 186, 214].

The analytical/semi-analytical theories employed various methods (e.g. particles interacting through a Skyrme force,
finite temperature Hartree-Fock theory and another nuclear extension of Fisher’s theory) to determine the critical point
of bulk (i.e. infinite, uncharged and symmetric) nuclear matter and the liquid-vapor phase boundary. This lead to
estimates of the critical temperature in the range 06 12eV to 289 MeV depending on the theoretical techniques
employed. Once estimates were made for bulk nuclear matter, the effects of a finite number of nucleons and a fluid
made up of two components (one which carries an electric charge) were studied. Those effects generally lead to a
lower critical temperature with estimates betweeheV and 205 MeV.

Computational models on the lattice attempted to study the process of nuclear cluster formation from “the bottom
up” by modeling in a simple way the short range interaction of the nucleons. This was done both geometrically with
perolation models [59, 71, 72, 81, 84, 87, 88, 123] and thermally with lattice gas (Ising) models [93, 96, 110, 121,
133, 143, 153, 163, 181].
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FIGURE 17. Results from from percolation models. Left: the dependence of the cluster yields as a function of the bond breaking
probability (top:g = 0.35, middle:g = 0.60, bottom:q = 0.80) for the reaction  Xe [59]. Middle top: a doubly logarithmic plot of

the mass yield fog = 0.6 for the reaction p-Xe, the straight line shows the power |&v252 [59]. Middle bottom: a comparison of

the data from ref. [62] (open circles) and the percolation model [72] (solid line). Right: the second moment of the cluster distribution
as a function of the cluster multiplicity for the reaction of 1 AGeV+: histogram: percolation [104]; circles: data [89].

The percolation model describes the excited nucleus in question as a lattice with nucleons at every vertex. The
distance between each vertex, or the lattice spacing, depends on the density of normabgantbis approximately
p&/?’ ~ 1.8fm. Bonds between the nucleons are broken with a probahi{i/ ) that depends on the excitation energy
E* of the system: the greater tl& the higher the value of [59, 72, 87]. This mapping of excitation energy onto
bond breaking probability is similar to the mapping of a ferromagnetic Potts model onto a corresponding percolation
model [25, 29, 45, 87]. Thus the percolation model becomes an Ising model and the success in describing a thermal
phenomenon such as cluster production from an excited nucleus is to be expected. Figure 17 shows that the percolation
model was able to reproduce many of the observations of the experimental measurement: the cluster yields were
described by a power law at some valueqdE*) and matched experimental measurements. The model also gave
indications of what would be expected for exclusive cluster yields, i.e. cluster yields that could be separated based
on some measure of the excitation energy of the reaction. The percolation model was compared with data from many
other reactions and studied the influence of the shape of the lattice boundary (e.g. spherical [81] and toroidal [84]) and
has successfully described the clusters arising from excited gold like nuclei [104, 177].

A complete (every cluster measured), exclusive data set of the clusters from the reaction 900 AMaulsion
[60] was compared to the clusters from bond percolation on the simple cubic lattice with 216 sites [67, 71]. The
moments from each cluster distribution were calculated as

A<Amax
Mc(T)= 5 Ama(T). (75)
A=1

where Anax is the size of the largest cluster in a given event or lattice realization. In the case of the percolation
moments;T was replaced with the bond probabildyaccording to common practice [42]. In the case of the nuclear
moments;T was replaced by the total cluster multipliaty(more specifically the total charged particle multiplicity)

and the nucleon numbét of the cluster was replaces with the charge of the clustérhe moments of the cluster
distribution were used to determine the value &y plotting the third momens as a function of the second moment
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FIGURE 18. From left to right: a plot of the natural log of the third moment of the cluster distribution as a function of the natural
log of the second moment for nuclear clusters [60, 67]; a plot of the natural log of the third moment of the cluster distribution as a
function of the natural log of the second moment for bond percolation on the simple cubic lattice [67]; the second moment of the
cluster distribution as a function of the total cluster multiplicity for nuclear data (full circles), percolation on the simple cubic lattice
(open circles) and percolation on a line (crosses) [71]; the size of the largest cluster as a function of the total cluster multiplicity (see
previous plot for symbol definition); and the fluctuations in the size of the largest cluster as a function of total cluster multilpicity
[71]. See text for discussion.

M, and recalling (see above discussion on scaling from Fisher’s theory or reference [42]) that for

T—1-k

My O el o (76)

-4

so thatMz O szj’. Thus the slope of a plot of M3 as a function of IiM; is related to the exponentand for both

percolation clusters and nuclear clusters this analysis yielde@.2 + 0.2 [67]. On a more qualitative level, a plot of

the natural log of the size of the largest clusigry (or the charge of the largest nuclear clustgky) as a function of

InM, shows two branches. This is also shown in Fig. 18 where the upper branch can be thought of as the condensed

phase (all particles in a single large cluster) and the lower branch can be thought of as the dilute phase (all particles in

small clusters). Finally, comparisons of the second moment, largest cluster size and fluctuations in the largest cluster

size all as a function of total cluster multiplicity shown in Fig. 18 show a similarity between the nuclear data (full

circles) andd = 3 percolation (open circles) but not with= 1 percolation (crosses) a system without a phase transition

[42]. The conclusion of this analysis was that nuclear clusters are produced from a system that behaves as finite systems

which have a phase transition in the infinite limit. Behavior of this sort for the second moment of the cluster distribution

and size of the largest cluster has been observed in many experiments [86, 144, 151, 162, 183, 189, 192, 193, 212].
In reactions of 600 AMeV Au on various targets (C, Al, Cu and Pb) a high degree of universal scaling behavior

was observed [80, 82, 86]. Figure 19 shows the behavior of the mean charge of the largest&iastethe value

of t of the cluster distribution, the mean number of intermediate mass clusters (where an IMC is defined as clusters

with charge X Z < 30) (Mimc) and the mean longitudinal velocity of a clus(ﬂw and the ratio of the clusters’ root

mean square deviations of the transverse and longitudinal velociwgrm$rms(ﬁ||) all as a function of the violence

of collision (the more violent the collision, the higher the temperature). The universal scaling behavior associated with
measures of the cluster yields indicated that the cluster yields did not depend on the target but on the energy deposited
by the collision and is a necessary—though not sufficient—condition for chemical equilibrium being established. The
universal scaling behavior QBH> andrmgp,) /rms(ﬁH) are compatible with the assumption of a kinetic equilibrium

being accomplished prior to the decay of the primary spectator [82]. The universal scaling behavior shown in Fig. 19
supports the idea of equilibrium that Weisskopf (following Bohr) had in mind in his neutron evaporation work [4].

An analysis of the clusters witd > 5 produced in the reactions 60 AMeV AW\, V and Cu showed that the
natural logarithm of the branching ratios for binary, ternary, quaternary and quinary decay depended linearly on
E*Y2 strongly suggesting the clusters were produced statistically [85]. These results were the natural extension
of the analysis of Weisskopf [4]. This can be seen by assumingBhaBs, By, ..., B, are the average “barriers”
associated with binary, ternary, quaternary and quinary decays (i.e. a reaction at a given #&luenfits in one,
two, three, or four clusters and the residual nucleus). The decay prob&gifity each channel is proportional to the
level density of the system(E*) as

P(E") Op(E"—Bn) (77)
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or (b) the ratia /t, as a function of the square root of the transverse erﬁfd‘{fz, solid lines are fits to the data in the upper panel
only [95]. Right: The experimental (symbols) and the calculated (solid) probability toremtiérmediate mass clusters (IMCs) as

a fucntion of the transverse enery Forn=0-8, P" (P(n) in the figure) is calculated assuming a binomial distribution with the
values ofP, from the linear fits shown in the plots immediately to the left and the corresponding valoesarf Eq. (84) [95].

Using a Fermi gas level density with a constant level density parametgd in the limit thaE* > B, gives

B
Ph(E¥) O exp(—_l_") ) (78)
Figure 20 shows that the ratio offold events to binary events
R a
m<£>D—MEﬁ&—BQ. (79)

is linear in E*~Y/2 which is proportional toT. The linearity of InR,/P,) as a function of some measure of the
temperature is called thermal scaling and is an indication that these clusters were created thermally.



Arelated analysis of cluster multiplicity distributions for the reactions 80 and 110 AMeMMurreactions exhibited
binomial behavior at all excitation energies [95]. That is, a single binary event probdbilityuld be extracted with
a thermal dependence indicating that cluster production is reducible to a combination of nearly independent emission
processes. Once again this arises naturally from Weisskopf’s work on nuclear evaporation [4]. The partial decay width
for a given binary channel is approximately

My~ h‘a)zexp<—l?l_2> (80)
wherew, is a frequency characteristic of the binary decay channel. In fisgipis, the collective frequency of assault
on the barrier an® is the fission barrier. The binary decay probability is related to the partial decay width

P
P ~ T (81)
The channel period is = 1/ @, and the corresponding decay time is
t :tzexp<l?|_2) . (82)

For nuclei with smalE* (e.g. compound nuclei) the total decay width is the sum of the widths over all channels. For
nuclei with largerE* only the decay width of the binary channel need be considered, while the abundant light particle
decay can be treated as a background that may maodifiydB,.

If we assume that the excited nucleus has the opportunity tatitmes to emit a cluster with constat probability
of success, then the probabili]" of emitting exactlyn decay productsn(— 1 clusters and the residual nucleus) is
given by the binomial distribution

Pr,]n _ m!
n! (m—n)!

The average multiplicity and variance are then

(P)?(1—P)™". (83)

(n) =mR ando? = (n) (1—P,) (84)

thus one can extract the valuesRyfandm directly from experimental measurements of the mean multiplicity and its
variance at any excitation energy. This is shown in Fig. 20 for data from the reactiSAmf°’Au. One can also

extract?, “differentially” from the ratios ofﬁ'?{‘r% from
n+

1 t R'm-n

Ptz PT;n+1 +1 (85)

These results are also shown in Fig. 20 for data from the reactidtAofi-1°’Au. Both the method of measuring the
mean multiplicity and variance and the differential method show a linear relation to the square root of the transverse
energyk;. E; is defined asze,sin2 6,, whereg is the kinetic energy of thih particle detected in an event and and

6; is the angle between the particle and beam direction [95] and is proportional to the excitationEnhergigh is
proportional toT?, thusT O v/E;. The thermal scaling of IfL/P) (or In(t/ty)) is an indication that these clusters

were created thermally.

Figure 20 also shows a comparison between the experimental excitation functions and those calculated using the
vales ofP, from the linear fits in Fig. 20 and the associated valuesa@fom Eq. (84). The quantitative agreement
between calculations and the experimental data confirm the binomality of the process which created these clusters
and demonstrates that the probability of produaingl clustersP;, is reducible to the probability of producing one
cluster,P,. This type of reducibility is a strong indication that the clusters were created independently of each other.

The above signatures have come to be called reducibility (the probability of the productictusfers is reducible
to the probability of producing a single cluster) and thermal scaling (the natural logarithm of the cluster yields is
proportional to an inverse of some measure of the temperature). The presence of these signatures has been amply
verified in nuclear reactions [85, 95, 101, 106, 115, 127, 135, 149, 154, 155, 159, 164, 173] and has been shown to be
present in percolation [159], Ising [161, 180, 198] and classical molecular dynamics models [214] as well as inherent
in Fisher’s theory [159, 198].
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FIGURE 21. Left: Top: Arrhenius plots of the cluster charge yield of various reactions (see legend) distributions as a function of
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behavior of the extracted barriBy as a function of the charge of the cluster [135]. Middle: Top, left: Arrhenius plots of the
cluster yield distributions from bond percolation on a simple cubic lattice as a function of the bond breaking protpaddliity
lines show a fit toY (A,q) = Bopexp(—Ba/q). Bottom, left: The behavior of the extracted bariy as a function of the cluster
number, solid lines show a fit 8 = alA°, botha, ando were in agreement with the expected valuesifer 3 percolation. Top,
right: Arrhenius plots of the cluster yield distributions from the reaction 1 AGeM-8uas a function of the square root of the

inverse of the excitation enerdy", solid lines show a fit t&/ (A,E*) = Boexp<fBA/E*l/2>. Bottom, right: The behavior of the

extracted barrieBp as a function of the cluster number, solid lines show a f4o= a A°, the value ofoc was in agreement with
the expected values for= 3 Ising value and the value af was roughly half of the expected value for nuclear matter [159]. Right:
Top: Arrhenius plots of the cluster yield distributions from a simple cubic Ising lattice as a function of the temp&ratatiel
lines show a fit tdr (A, T) = Bopexp(—Ba/T). Right, bottom: The behavior of the extracted barBgras a function of the cluster
number, solid lines show a fit 8y = aA°, bothaj and ¢ were in agreement with the expected valuesdier 3 Ising systems
(also shown is the power law iy (T¢) at the critical point) [198].

Fisher’'s theory shows thermal scaling quite clearly. Begining from the cluster number concentration as given in
Eq. (18) and working at coexistena( = 0) we can immediately write

/ NO / NO
na(T) = ggATexp<asA ) exp(—asA) = Boexp<—BA> (86)
Te T T

where By contains all the temperature independent terms Bgds the barrier associated with the production of
a cluster ofA constituents. Equation (86) shows that the barrier should increase with increasing cluster number:
Ba = aA°. This behavior was observed in a wide variety of heavy ion collisions over a broad range of energies when

the natural logarithm of the yield of clusters of a given charge were W{(HE;) = By exp(—Bz/Etl/Z) wherekE; is

the transverse energy [135]. The left column of Fig. 21 shows the fitgZoE;) and the behavior of the extracted
barrierB; as a function of the charge of the cluster in question. The middle column of Fig. 21 also shows the barriers
Ba determined from the cluster yields as a function of bond breaking probadpiiitybond percolation on the simple
cubic lattice ¥ (A,q) = Bpexp(—Ba/q)) and from the cluster yields as a function of the square root of the excitation

energyE* (Y(A,E*) = Bg exp(—BA/E*l/Z)) for the reaction 1 AGeV A4C. For both percolation and the nuclear
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FIGURE 22. Top, left: the excitation functionB, for carbon (left column) and neon (right column) emission from reactions
36Ar+197Au at 100 AMeV (top panels) antfXe-+°1vi, naicy, 89y, 197ay (bottom panels; the lines are Poissonian fits to the gold
target data [135]. Bottom, left: the multiplicity distributioRy for clusters of sizé\ as a fucntion oN in bins of bond breaking
probability ppreak @nd excitation energf* for percolation (left) and the reaction 1 AGeV AC (right); lines are Poissonian
distributions calculated with the measuiéa) [159]. Top, right: the probability distributions of obtainimg clusters of sizeA

at the three temperatures indicated; lines are fits to a Poissonian distribution (Eq. (87) with the means given by the data [198].
Bottom, right: the probability distributions (histograms) and binomial fit (Eq. (83) dotted line) for the production of NTSF number
of clusters at increasing energies from low (upper left) to highest (lower right) for classical molecular dynamics calculations [214].

reaction the barrieBa was observed to vary @A° with a ando equal to their percolation values for the percolation

clusters anar equal to itsd = 3 Ising value for the nuclear clusters asidroughly half its expected value for nuclear

matter [159]. The right column of Fig. 21 shows the barriBssdetermined from the cluster yields from a simple

cubic Ising lattice as a function of temperatudgA, T) = Boexp(—Ba/T)) [198]. Again the value of the barrier

Ba went asalA° with both a and o close to their expected values. In all cases clusters of a wide range in size (as

measured by or A) and over a wide range in “temperature” (as measurel; bk *, q or T) showed thermal scaling.
Reducibility: Poissonian for the case of infinite systems

o= e, (87)
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FIGURE 23. Left: An example of the determination of the critical expongifor particular vapor and liquid fitting regions; the
natural logarithm of the second moment of the cluster distribution plotted as a function of the natural logarithm of the distance from
the critical point as measured by the total cluster multiplicity. Middle: An example of the determination of the critical exponent
for a particular liquid fitting region; the natural logarithm of the charge of the largest cluster plotted as a function of the natural
logarithm of the distance from the critical point as measured by the total cluster multiplicity. Right: The expomraus the
exponent values determined from clusters produced in the reaction 1 AGe¥@and ford = 3 percolationd = 3 Ising and

mean field[89], see plot for legend.

TABLE 2. Values for the critical exponents. The exponent values given by the ratio of integer numbers are known exactly.
The exponent vales not followed by citations are determined via the scaling relations given above. The exponent values for
nuclear matter are the average for results from experiments which measured exclusive cluster yields [89, 114, 129, 144, 159,
177,178, 183, 192, 193, 189, 212].

B Y o T
d = 2lsing 2 6] 116l = 3
d=3lIsing 0.3265:+0.0001[184] 1237+0.002 [184] 06395+ 0.0008 2209+ 0.006
Nuclear matter 0.324+0.008 125+0.07 063+0.02 218+0.02
d = 2 percolation 3 [43, 44, 47] 12143, 44, 47] 38 87
d = 3 percolation 0.418+0.002 1793+0.003 04522+ 0.0008 [142] 2189064 0.00006 [142]
mean field 3 1 2 z

and binomial for the case of finite systems (see Eq. (83)), is inherent in not only Fisher’s theory, but any physical cluster
theory which assumes that a non-ideal vapor can be approximated by an ideal vapor of clusters with the formation of
clusters exhausting the non-idealities. Thus, the stochasticity implied by reducibility is present in physical cluster
models where all clusters are completely independent of each other. Figure 22 shows the reducibility feature observed
in the cluster distributions arising from a variety of nuclear reactions [85, 95, 101, 106, 115, 127, 135, 149, 154,
155, 159, 164, 173] as well as from percolation calculations [159], Ising calculations [161, 180, 198] and classical
molecular dynamics calculations [214].

Using reverse kinematics, the clusters produced in the reaction of 1 AGeXCAwere studied [89]. The moments of
cluster charge distributiorid (m) were analyzed in a similar fashion to the percolation cluster distributions discussed
above (the total charged particle multiplicitywas used as the “control parameter” in lieu of the more standard bond
probability g, temperaturd or excitation energ¥*) [59, 67, 71, 72, 88, 123]. In this case the location of the critical
point is given bym, the total charged particle multiplicity of clusters produced when the system reaches the critical
point. Similarly, the distance from the critical point is givendy m. — m. Fisher’s theory (specifically the steps that
yields equations (25) and (27)) leads to

M O || andZmax O €P. (88)
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FIGURE 24. From left to right: an example of the Yukawa potential [77], an example of a Lennard-Jones type potential [182]
and an example of a Lennard-Jones type potential with isospon [175]. All potentials share the short range repulsion (hard core) and
longer range attraction.

With techniques developed and tested on percolation lattices [88, 123] the location of the critical point in tegms of

and the values of the critical exponents were measured from the exclusive cluster yields. Figure 23 shows the results
of that analysis and Table 2 shows the critical exponent values from several different reactions. The similarity between
the exponent values extracted from nuclear reactions and the valuesdoftBdsing universality class is striking.

A variety of critiques of this analysis were discussed [102, 103, 104, 119] concerning the effects of mixing events
of different temperatures by binning in multiplicity and the effects of including clusters produced in the collision in
the analysis of clusters yields assumed to arise from an equilibrated source. Many of these criticisms were addressed
in another analysis of this reaction with higher statistics which excluded clusters arising from the collision from
consideration and studied the effects of binning percolation calculations in terms of cluster multiplicity [162]. In
that work it was seem that the clusters produced in the initial collision had little effect on the extracted exponent
values and that accurate critical exponents could be determined from lattices with as few as 216 sites when using
cluster multiplicity as the control parameter. That work also stated the physical picture of cluster production from an
equilibrated system [162]:

Immediately following the collision, the gold projectile remnant is in an excited state with fewer than 197
nucleons. The excited remnant cools and expands and may evolve to the neighborhood of the critical point
in the temperature-density plane, where clusters condense from a high temperature low density vapor of
nucleons.

This physical picture and the analysis above raises several questions (beyond the fundamental question about how the
system comes to equilibrium which has long been assumed to be the case [4, 5]). For instance, the simple power
laws in Eq. (88) are valid so long as the chemical potential of the liquid is equal to the chemical potential of the
vapor, i.e. the system is at coexistenfg: = 0. Is there any evidence that the system is at coexistence? Where in
pressure-temperature-density space is the system when the cluster’s condence [130]? What is the meaning of density
or pressure of a vapor which is not enclosed by any container? What are the effects of the nuclear nature of the
system? Not only is there a cost in surface energy associated with the formation of a nuclear cluster (as shown in
Fisher’s theory), there is a cost in Coulomb energy, a cost in asymmetry energy, pair energy and so on. Whatever
the answer to these questions, other types of analyses and various experiments measured similar exponent values
[144, 177,178, 183, 192, 193, 189, 212].

Another computational model that was used to study the phenomena of nuclear cluster formation was based on
classical molecular dynamics attempted to study many of the questions above [61, 66, 69, 77, 90, 91, 99, 97, 109, 111,
118, 122,124, 136, 141, 150, 175, 180, 182, 185, 186, 214].

Some calculations [61, 66, 69, 97, 111, 122, 124, 136, 141, 175, 180, 182, 185, 186, 214] were done either with a
Lennard-Jones potential [3, 17, 22, 23] (modified or otherwise)

V(r) = 4E {(”’)12— (”’)6} (89)

r r

wherer is the distance between two particles &is$ the maximum depth of the potential wellrat 21/6rg; for r < rg
V (r) — +oo (rg is the radius of the infinitely hard core) and fox> ro V (r) — 0~ (the long range attraction). Other
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FIGURE 25. Left: density profiles of the dynamical evolution in coordinate space as a function of time and impact parameter for
two colliding liquid drops [118]. Middle the time evolution of an#p cluster for various initial temperatur@g: Ti, = 2.0 shows

a typical evaporation procesg; = 4 shows the production of clusters of all sizes; dpd= 7.0 shows a rapid expansion which

may lead to instabilities and the formation of vapor clusters [124]. Right: the trajectory of the system in temperature-density space:
from top to bottom the evolution of Agg, Arsgo and Algg; solid curves indicate coexistence (CE), the isothermal spinodal (ITS)

and the adiabatic spinodal (AS) for an infinite system. For all systems the temperature decreases with increasing time. The density
shown for the trajectories is the central density of the largest cluster [124].

calculations [77, 90, 91, 99, 109, 118, 150] were done using the Yukawa potential [11] (modified or otherwise)

e Hor e Mo cutoff
Vnn(r <rfcuof) = Vo B —
r I cutoff
e Mrf @ Hrfcutoff e Mar @ Halcutoff
Vip(r <r ) = V< - =V, -
p cutoff r a
r I'cutoff r I cutoff
Von(r > reutoff) = Vip(r > reutoff) =0 (90)

whereVp, V; andV; set the scale of the potentials apgl y, and u; give the range of the force. Figure 24 shows
examples of the potentials used in various calculations. In general these efforts examined the clusters that were
produced from systems with a few hundred particles enclosed in a container with periodic boundary conditions and/or
a volume that was much larger than the volume taken up by the particles. Some calculations were performed by
starting from an equilibrated drop of a few hundred constituents at a given temperature [61, 66, 91, 97, 99, 109, 111,
122,124,122, 141, 150, 175, 180, 185, 186, 214] while others started from two drops both near zero temperature, but
which are excited through collisions [69, 77, 90, 118, 182].

In general it was found the classical molecular dymanics calculations could reproduce, in quality, several features
associated with experimentally measured clusters such as: the liquid-drop behavior of the binding energy [66, 182];
cluster yields (e.g. those shown in figures 13 and 14) which were also well described by Fisher’s theory and Eg. (18)
[69, 90, 91, 97, 99, 109, 111, 118, 122, 124, 141, 150, 185, 186, 214]; the Campi plots (shown in Fig. 18) [99, 118,
124, 175]; peaks in the moments of the cluster distributions and the associated critical exponents [186]; reducibility
[180, 214]; and thermal scaling and the associated barrier dependence on cluster size [180]. Figure 26 shows some of
these results.

While the features of the cluster distributions exhibited thermal and seemingly critical features, estimates of the
trajectories (temperature and density as functions of Tir{t¢ andp (t)) of the systems studied rarely passed close to
the liquid-vapor critical point [97]. For example, see the trajectories shown in Fig. 25 which shows that none of the
trajectories considered pass near the liquid vapor critical point (while all trajectories pass near the adiabatic critical
point) yet forTi, ~ 4 critical behavior is reported [124].

One possible solution to this paradox is that the critical point of a system depends on the size of the system
[24, 36, 37, 79, 94, 100]

Te(e0) = Te(L) DL~ and pe(e0) — pe (L) O L@V, (91)
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FIGURE 26. Left: The solid line shows the (binding) energy per particle of drops from a classical molecular dynamics calculation
at low temperatures; the dash-dot line shows a fit with to the equation (and fit parameters) shown in the figure; and the dashed line
shows the least bound particle in the drop [182]. Middle: cluster mass distributions for classical molecular dynamics calculations
of 100 particles; dots show the results of the calculations and solid lines show a fit to Eq. (74) [99]. Right: top: results from the
primary cluster distributions for the (a) cluster mass yield at an input temperature which gives the best fit to a power law (the
line shows the fit of a power law with the result= 2.18+ 0.03), (b) location of the peak iA-sized cluster production (the line

shows the fit of a power law with the resuit= 0.51+0.15), (c) size of the largest cluster (the line shows the fit of a power law
with the result = 0.29+ 0.08)and (d) peaking behavior of the second moment of the cluster distribution (the line shows the fit
of a power law with the resulg = 0.77+ 0.25); bottom: the same as the top but for the asymptotic time cluster distribution (here
7=2.18+0.03,0 =0.64+0.18, = 0.284+0.13 andy = 0.72+ 0.33). Both the primary and asymptotic cluster yields give the
same critical exponent values which are (expectjaimilar to thed = 3 Ising values shown in Table 2 [186].

However, the size referred to in the scaling equations aliqus the size of the volume in which the fluid is enclosed

[100] and not the number of particles inside the volume. Thus, one may not see any such finite size scaling of the
critical point if even just a few hundred particles are enclosed in a sufficiently large volume, or they enclosed in a
volume with periodic boundary conditions (which lessens the effects of finite size [24, 36, 37]) or if they are not
enclosed in any volume at all.

Another possibility is that the temperatures and densities used to construct trajectories as shown in Fig. 25 are not
the pertinent quantities. Generally, the temperatures and densities used to construct such trajectories are associated
with the central region of the largest cluster [61, 66, 69, 77, 90, 91, 97, 99, 124]. For instance, at low temperatures
cluster production should be predominantly a surface phenomena, thus the temperature and density at the core of the
evaporating cluster are less important than the conditions at or near the surface. In any case, it is clear that the clusters
produced in classical molecular dynamical calculations appear thermal in nature, however it is still an open question
how the dynamics leads to this result.

The Ising model, another well studied system [6, 9, 10, 24, 29, 35, 36, 37, 45, 49, 79, 109, 113, 121, 126, 128,
166, 176, 184, 198, 193, 199, 200, 209, 211], has also been widely used in the study of nuclear cluster production
[93, 96, 110, 121, 133, 137, 138, 139, 143, 147, 148, 153, 161, 163, 168, 175, 179, 180, 181, 187].

The Ising model is a simple model of magnetic systems with spipkced on the vertices of a lattice. The spins
are simplified models of atoms in a magnetic material and can point either up or down and can change direction based
on the temperaturé of the system and the spin-spin interaction strengtiWhen the majority of spins point in a
single direction (either up or down) the system has some net magnetization. When there are an equal number of up
spins and down spins the system has no net magnetization. In infinite systems there is a single temperature (the critical
temperaturd) at which the phase changes from the magnetic phase to the non-magnetic phase.

The HamiltonianH of the Ising model has two terms: the interaction between nearest neighbor spins in a fixed
lattice and the interaction between the fixed spins and an external applieddield

H=-J Z SSj —HethS. (92)
i,j={n.n.} I



In the absence of an external magnetic field, the system exhibits a first-order phase transition for temperatures up to
the critical point at which it exhibits a continuous phase transition. The critical temperature tb&tBdsing model

has been analytically for the square lattice tafpe- 2.26915... J/kg [6]. The critical temperature for tree= 3 Ising

model has not been determined analytically; however, high temperature expansion techniques have yielded a value of
Te = 4.511524+ 0.00004J /kg [176] for the simple cubic lattice.

The zero-field Ising model is isomorphous with the lattice gas model [9, 10]. The positive spins are mapped to
unoccupied sites in a lattice gas and the negative spins are mapped to occupied sites. The phase transition is then
analogous to a liquid-vapor phase transition.

Typically realizations of the lattice are calculated as follows: for each lattice configuration, a random initial
configuration of spins and a temperature is selected. Thermalization is reached via some algorithm, e.g. the Swendsen-
Wang cluster spin-flip algorithm [75] using the Hoshen-Kopelman algorithirfgr cluster identification. After the
system was thermalized, “geometric” clusters, i.e. nearest neighbor like spins, are identified (also using the Hoshen-
Kopelman algorithm) and then the Coniglio-Klein algorithm [45] is used to break the “geometric” clusters into
“physical” clusters. Use of the Swendsen-Wang algorithm and Coniglio-Klein clusters insure that the clusters are as
close to the “physical” clusters observed in fluids as possible and do not suffer from problems such as the percolating
critical point reached away from the thermal critical point or the presence of the Kertész line [73]. However, there are
many different methods used to generate lattice realizations and many alterations made to the Hamiltonian or cluster
definition in attempts to capture different sorts of physics. For instance, isospin [133, 148, 175, 180] and the Coulomb
force [137, 168].
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