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Cluster statistics are obtained by computer sirnul ltion for percolation processes on cr'-

dimensional lattices with d = 2 through 7. For;&11 d, », , the number of »-site clusters per site, is

found to satisfy reasonably well the scaling hypothesis first proposed by Stauffer. The scaling

functions are analyzed for dimensional dependence, and it is found that ls d incre lses they ap-

proach very rapidly the exactly known result for the Bethe lattice corresponding to d = ~.
Corrections to scaling are also studied, hand at the upper critical dimension d, =6, l deviation

from scaling consistent with a logarithmic correction is obtained. Some universal quantities such

as the ratio of the amplitudes C+ and C of the "susceptibility" (second moment of », ) below

and above the percolation threshold p, are also found to approach the Bethe 1 &ttice limit very

quickly. In addition, our data suggest that C+/C lire ldy lssumes the limiting v llue of unity

for d =6. This is consistent with the exact relation for the asymmetric decay of rr, proved by

Kunz and Souillard if we adopt the hypothesis that the 'lsymmetry of », about p, only enters the

corrections to the leading scaling term for fj ~ 6.

I. INTRODUCTION

The study of critical phenomena has seen remark-
able progress, largely due to the concept of scaling'
and to the renormalization-group (RG) approach'
that stems from it. Thus, after the connection was
established between percolation and other critical
phenomena by Kasteleyn and Fortuin' a number of
studies have been made to understand scaling in per-
colation. 4 One approach has been to exploit fully the
correspondence between percolation and q-state Potts
model in the limit q 1 and to study the scaling of
the analog of the thermodynamic equation of state. '
Another approach is to focus attention directly on the
scaling of the cluster size distribution function», .
In this paper, we shall discuss only the latter ap-

proach; a second paper dealing with the equation of
state in d-dimensional percolation will be published
elsewhere.

Although the past work illuminates many aspects
of scaling, a number of important questions remain
unanswered. For example, the universality classes
for percolation were not fully explored since no nu-
merical study of the global features of the scaling
functions was made for systems of dimensionality
greater than three. In particular, the onset of mean-
field-like behavior as d increases past the upper criti-
cal dimension d, = 6 was not treated numerically in

the context of scaling previously. ' One related ques-
tion is how to reconcile the symmetric mean field
scaling function with the asymmetry that arises from
the theorem of Kunz and Souillard. 8 Moreover,
corrections to scaling have been analyzed numerically
only in two dimensions'„ in particular, detailed Monte n () 'e, Z 'y) =) "n (ey) (1.1a)

Carlo work is available only for the site problem on
the triangular lattice. In the following sections we
address these and other questions, drawing our data
from extensive Monte Carlo simulations for cf

= 2, 3, . . . , 7. Our present work should be com-
pared with those of the field-theoretic studies of
Ref. 9.

This paper is organized as follows: In the remain-
der of this section, the scaling hypothesis for», is

restated. Section II addresses the question of the
validity of this hypothesis by presenting the general
features of the scaled data for»„while Sec. III
discusses scaling and corrections to scaling at the per-
colation threshold p, . Section IV is devoted to the
behavior of », away from p, and in Sec. V, we study
the critical exponents and universal constants such as
C+/C . Brief conclusions are presented in Sec. VI.

In bond (site) percolation on a given lattice, bonds
(sites) are occupied or empty with probability p and
( I —p), respectively, independent of one another.
Two (occupied) sites belong to the same cluster if
they are connected through occupied bonds (sites).
Let », be the mean number of clusters containing s
sites, normalized by the total number of lattice sites
and taken to the thermodynamic limit. We begin by
restating the hypothesis of n, scaling as the statement
that n, (p ) = n (e,y ) is "asymptotically" [as e
—= (p, —p)/p, 0 and y —= I/s 0] a generalized
homogeneous function (GHI')'o; i.e., there exist two
numbers a~ and a„[a, having been fixed to
I/(2 —a) Ref. 5] such that the functional equation,
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-a /a
n (e,y) =y " 'n (ey ' ', 1) (1.1b)

is satisfied for all X, e, and y provided that all

arguments —both sides of Eq. (l.la) —are small. By
a - [/a

setting X "y =1, or X=y ~, we obtain

and

3 (z) =z [27r(z —2)(z —I)'] ' ',
B(z) = (z —I )/[2(z —2) ]

(2.4b)

which can be rewritten as

n, (p)=s 'f(es ) (1.2)

with r =—a„/a~ and o. =—a,/a~.
Equation (1.2) is the n, scaling hypothesis of

Stauffer. The exponents v and a- are related to the
usual percolation exponents n, P, y, and 8 by4

2 —a=(r —1)o, P=(r —2)/o. ,

y = (3 —r)/o, 8=1/(2 —7)
(1.3a)

or

(1.3b)

az
——a,/cr= I/(I+ I/8), a„=ray ——ay+1 . (1.4)

II. SCALING FUNCTIONS IN d-DIMENSIONS

With a, = 1/(2 —n), this leads to the identification of
the scaling powers a~ and a„,

The maximum of f(x) occurs at x .„„=0,and f is

symmetric about x =0: B(z) is a slowly varying
function of z for large z with lim, B(z) = 2.
Hence we shall write (valid also for the bond prob-
lem)

f„(x)=exp(--, x')1

We note here that a simplified universality law, in
which the normalization of the scaling variable is ac-
complished by the choice of x = es, is only valid ap-
proximately since B(z) does depend (weakly) on z.
In this paper, however, we shall assume this pro-
cedure to be applicable in obtaining the scaling func-
tions fd For d =. 2 and 3, as well as in the case of
the Bethe lattice, there is sufficient evidence to be-
lieve its approximate validity.

Figure 1 shows the shape of the scaling functions
in the two limiting dimensions, d =1 and ~. Thus,
we are led naturally to investigate their behavior in
intermediate dimensions, particularly to find out how
the d = ~ limit is approached as d increases past d, .

In all dimensions, n, (p) for fixed s has a single
maximum as a function of p: for small p, it clearly

When Eq. (1.2) holds, we call the function f (x) a

scaling function. In the case of one dimension, f (x)
can be calculated exactly" as 0.6

(a)

f(x) =x'exp( —x) (2.1)

Since f (0) = 0 we cannot divide f (x) by f'(0) to
normalize its amplitude unlike for d & 1. Therefore,
we nrom lai ezf(x) by dividin, g by its maximum value
(taken at x,, „=2) to obtain the "universal scaling
function" f) for d =1. Below we shall compare f)
and fd similarly defined by d ) 1.

A second exactly solved system is the Bethe lattice
of coordination number z" for which n, (site prob-
lem) is given by

n psq2+(z-2)sz [s (2 —I ) ] I/ [ s![s (z —2) + 2] I I

(2.2)

00-4

For s )) 1 and e &( 1, we have

)1 z [2)r (z —2) (z —I )'] ' 2s

x exp[ —(es' 2)'(z —I)/[2(z —2)] } . (2.3)
-5-4 0

~s~

Therefore, f (x) is a Gaussian function

f(x) = A (z) exp[ —B,(z)x']

where

~ = (p, —p )lp, =1 —(z —1)p

(2.4a)

FIG. 1. Universal scaling functions f'] and f for d =1
and the Bethe lattice (Z =14), respectively. A linear scale

is used in (a), and in (b) the curves are obtained by first di-

viding by the maximum value and then plotting them using
a semilog scale. The broken curves schematically represent
a scaling function for 1 & d ( 0o.
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increases with p while, as p becomes large, most sites
are annexed by very large clusters thereby "draining"
» for a given s. Thus, defining p „, „ to be the max-
imum for n„we can fit a straight line to the log-log
plot of (p, —p .,„) vs s in accordance with the scaling
law (1.2). In practice, there is a question of what
value to use for p, since its effective value p,'" for a
finite lattice may be quite different from the true p, .
One way to resolve this question self-consistently is
to vary the trial value of p,'" until the best linearity is
achieved (as evidenced in the correlation coefficient
R being closest to unity). This procedure was fol-
lowed in two and three dimensions where p „, „can be
estimated fairly accurately, whereas in d & 4, where
scarcity of data and the broadness of the peaks of »,
curves prevent us from locating p „, „with any accura-
cy, we simply use the series estimates of p, as p,'".

In two dimensions, we obtain in this way p,'"
=0.50115 for the bond problem on the square lattice
(where p, =0.5 exactly), and the fitted line gives

(p, —p„,. „)so.&6 0 077 (2.6c)

with R =0.99005. Similarly, for the hypercubic site
problem in d = 5, we obtain

series estimate'4 0.247 of the true p, is used instead„
the exponent corresponding to a- becomes 0.74,
much larger than the series estimate'4 of 0.48, and R
is also low at 0.98825. The value x „. „of the scaling
variable for which f (x) takes its maximum is ap-
proximately 0.9 in two dimensions and 0.8 in three
dimensions. This is in contrast to Hoshen ef al. ,

6

which found x,„ to be about 0.8 for both d = 2 and
d =3.

For the reasons cited above, for d = 4 and 5, the
. linear fit to the log-log plot of (p,'""—p, ,„) vs s is

merely an order of magnitude estimate. Kith this in

mind, we give below the best fits using the series es-
timates" of p„0.197 for d =4 and 0.141 for d =5, in

place of p,'". For the hypercubic site problem in
d=4, it is

(p eff p )&0400+0010 0 458 + 0 03 (2.6a) (p, —p,„)sa" = 0.048 (2.6d)

(peff p )&0.504+0.030 P 203 y 0 P3 (2.6b)

where the choice of p,""=0.2498 was made. If the

with R =0.99934, in fair agreement with the series
estimate'3 of a. of about 0.389. (This fit was

achieved over the range 2 ~ s ( 2". For the details
of the actual Monte Carlo realizations, we refer the
reader to Appendix A. ) If the true value of p, is

used in'stead, the resulting exponent becomes about
0.43, a little too large, and R drops to 0.99905, For
d = 3, the corresponding equation for the cubic bond
problem is

in rather poor agreement with the combined series—
Monte Carlo estimate'" of a- =0.52, The data for
p,. „(s) for d = 2 through 5 are plotted in Fig. 2 along
with the best fits given in Eqs. (2.6), and the location
x .,„and value n, (p ,„)/n, (p) of .the maxima of
f(x) are summarized in Table I.

For d ~ 5, p .„„(s)for all s studied is smaller than
the estimate of p, made from susceptibility [by shift-
ing the trial value of p,'" until the exponents y
(below p, ) and y' (above p, ) match]. For d = 2, p,
according to this method is about 0.5035 for 1000
x 1000 samples (square-bond problem); for d = 3

10 I I I I I I I I II I I I I I I I II I I I I I I I L

E
5 10

Q.
l

CL

d=5
(R = 0.98480)

10
10

I I I I I Il
10~ l0~

S

]04

I.IG. 2. Test of scaling for the maxima of n, curves for c/=2, 3, 4, and 5. The error bars included for ft'=2 1nd 3 are those
associated with finding p~„.„on the n, curves, not including the errors in each point on these same curves.
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TABLE I. Dimensional dependence of the location
(x,„) and value fn, (p,„)/n, (p, )] of the maximum of the
scaling function f'(x), normalized by its value at p, .

xlQ™

3

nq(p)

(a)
-N— xlQ

—12

+max [n, (p,. „)/n, (p, ) ]

2

0.8 —0.9
0.6 -0.8
0.4 —0.45

0.35 —0.4

4.8
1.6
1.4
1.1

1.0
1.0
1

0
0.080

i=6

0.090 0,100 0.110 0.120
0

0.1 30

"'Our data suggest values significantly larger than 0; howev-
er, there are reasons to believe they are spurious. See text.

x10 xlQ

8

(cubic-bond problem), 4 and 5 (hypercubic-site prob-
lems), it is 0.252, 0.198, and 0.143, respectively. For
the hypercubic site problem in six dimensions, where
samples containing one million sites are used, we ob-
tain p, =0.108 in this way, For this dimension, how-

ever, the peaks occur clearly on both sides of
p =0.108 [cf. Fig. 3(a)]. In addition, for large s, p,, „
appears to be almost constant at about 0.110. We in-

terpret this as the further shift of p,'" and that the s

dependence of p,„derives from the corrections to
scaling (perhaps higher corrections than the leading
logarithmic modulation). This conclusion is support-
ed both by a good overall data collapse and the stud-
ies of a smaller system (the reader is referred to Ap-
pendix A for details).

In seven dimensions, where 8' ( & two million)
site samples are used, the peaks of the n, curves [cf.
Fig. 3(b)] are too broad to admit any reasonable esti-
mates. Therefore, no attempt is made to plot
(p, —p,,„) against s. However, a feature clearly dif-
ferent from all previous data (d ~ 6) is observed.
That is, for small s, p,„ is clearly above p, (which is
estimated to be 0.085 from susceptibility, in fair
agreement with the I/z expansion of Gaunt et al "), .

and as s grows, the peaks move closer to p, . In other
words, the peaks move toward smaller p as s in-

creases, in contrast to d ~ 6 where the opposite oc-
curs (discussions in Appendix A). We also note, as
in d =6, p,.„ for large s appears to be stationary at
about 0.085. Our interpretation here is similar to that
in d = 6; the scaling term makes only symmetric con-
tribution with p,„=p,. = const.

On the other hand, we may investigate the entire
scaling function f (x) by plotting n, (p)/n, (p, ) for

. various values of p and s, thus checking whether the
data points collapse onto a single curve. In two di-
mensions, this is done using the true p, of 0.5 and
the series estimate 0.389 of a while in three dimen-

ns(p)

0.8

0.4

0
0.075 0.080 0 085 0.090 0.095

iQ
0.100

FIG. 3. The cluster size distribution I~, is plotted for fixed
values of .s as function of p for (a) d =6, and (b) d =7. The
error bars in (a) are the standard deviations obtained by
separating the total sample into three groups of 10 realiza-
tions each, The values i indicate the bins 2'~, s ( 2'+ .

sions, the value 0.250 close to the p,'" estimated in
(2.6b) is used together with a =0.47, a combined
series —Monte Carlo estimate. ' ' For d = 4 and 5, we
use the series estimates" for p,'"', and the series—
Monte Carlo estimates'" for o-. In six and seven di-
mensions, cr is known exactly to be the mean-field
value of 0.5, and for p,'", we use 0.110 for d = 6 [cf.
Fig. 3 (a)] and 0.085 for d = 7 [cf. Fig. 3(b)]. The
scaled data thus obtained are plotted in Fig.
4(a) —4(f).

For d = 2, data collapsing is seen in a rather wide
range of p and s, in complete agreement with the pre-
vious results. ' In the neighborhood of x =0, the
scaling function is nearly linear, and when plotted
against (p, —p)s, its slope is about 7.5+0.2, again
in agreement with the previous result from the tri-
angular site problem. This slope enters an expres-
sion for the mean perimeter-to-volume ratio for a
cluster of size s as explained by Stauffer. 4 For d =3,
4, and 5, its value is 5.5+0.4, 4.7+0.4, and
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3.0,

()
0.0—

sion is stable to $4 perturbation, although the $4

operator becomes relevant below d =4 with respect
to the Gaussian fixed point.

—3.0—

-4.5—

—6.0—

-7.5—

-9.0
I I

0- (

I I I I

I I I

I I I

III. SCALING AND CORRECTIONS
TO SCALING AT p,

Scaling law (1.2) reduces at p, to

n, (p, ) =s 'f(0) —= qps
' (3.1)

4-2I-
C= -~l

c 4j. *y
/

-6—
-0.5

7 I I

I I

0—

-01 0.3 0.7
I I I

I I I

a
In

a
Vl-3 c

-4 C

Therefore, neglecting corrections, a log-log plot of »,
vs s should yield a straight line for sufficiently large s.
Indeed this behavior was found previously in d =2
(triangular siteP and square site") and d =3 (simple
cubic and bcc 1, 2 site6) over 5 to 6 decades of s.

Assuming (3.1), the amplitude qp can be estimated
theoretically in at least two ways (Ref. 4 and refer-
ences therein). First, we note

-3P

-6 I I

-0.4 -0.2 -0.0
(p -p)

I I I

0.2
S

I I I I I I I

-0.4 —0.2 0.0 0.2 0.4
(pt. -p) s

gsn, =1(or p) for p ~ p,

in bond (or site) problem, and that

Qsl1&(p&) =qp Xs =qp)(1+ 1/8)

(3.2a)

(3.2b)

I"IG. 4. The scaled data for», in (a) d = 2 to (f) d = 7 to-

gether with the least-squares fits (for d =2 to 5, cubic poly-

nomials are fitted, for if =6 and 7, quadratic ones are used). q, = 1/g(1 + /8) [or p, /g(1 + 1/8)] (3.3)

where r =2+ 1/8 and f(x) =—Xi "(Riemann zeta
function) have been used. Thus,

3.9+ 0.4, respectively. In six dimensions it is about
4.4, but in view of our interpretation that the asym-
metric appearance of Fig. 4(e) results from the
correction terms to scaling [and that therefore Fig.
4(e) does not accurately represent the scaling func-
tion], this number may not have much physical

meaning. In the seven-dimensional case, the scaling
function of Fig. 4(f) is extremely flat, even flatter
than f (if plotted with proper normalization), so
that it does not allow an estimate of x,, „or the slope
at x =0. However, it does seem clear that, if f'

(Fig. 1) is indeed the universal scaling function, for
d = ~, then the case for d = 7 has moved somewhat
"past" it. The peculiar behavior of the peaks of n,
curves mentioned above corroborates this impression.
%'hether or not this is a real trend that continues to
even higher dimensions is unclear, and it will be of
interest to study at what d, if at all, the scaling func-
tion "turns around. "

In summary, we have shown in this section that
the general trend established in d =2 and 3 continues
to achieve a rapid convergence toward f except that
in d = 7, this trend appears to "overshoot" in some
respects. There does not seem to be any indication
of irregularity at d =4, as predicted in Ref. 16; i.e. ,
the percolation fixed point found in (6 —d) expan-

and the estimates using this are tabulated in Table II.
Since this method requires only the knowledge of p,
and 5 in addition to a good table of the zeta function,
it is very convenient to use to estimate qo in all di-

mensions. However, we observe that qp (or qp/p, in

site problem) would have to be a universal quantity
according to (3.3) while, e.g. , llI(p, ) = (1 —p, )' [or
n I(p, )/p, in site problem], where z is the coordina-
tion number of the lattice, is certainly not universal
although it may assume fairly close values for dif-
ferent lattices (also between site and bond problems)
of the same dimensionality. For example, the bond
problem on the simple cubic lattice gives n I(p )
=0.18 while the fcc bond problem yields 0.22, and
the diamond lattice bond problem gives 0.14." This
means that the degree of departure from scaling (3.1)
of n, for small s greatly differs from lattice to
lattice —and for some lattices, (3.1) is optimally satis-
fied. This is in fact the case for the square-bond
problem as seen below,

The second method consists of the following. Eq.
(55) of Ref. 6 gives

q = E/[81'(1 —1/8) ] (or p, E/[8(1 —1/8) ] ], (3.4)

where F. is the amplitude in the scaling relation
P (p„H ) = EH'ia and 1'(x) is the gamma function.
Since E is estimated for various lattices in d =2 and 3
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TABLE II. Estimates of the amplitude of the scaling function from Eqs. (3.3) and (3.4). The es-
timate of 8 is obtained by the combination of the series and Monte Carlo results. The values of
the Riemann zeta function are computed approximately by interpolating from those given in

jahnke, Emde, and Losch (Ref. 35).

r ( I —I/S)
Fq (3 4)

~( I + I/S) c/0(c/0/p, )

Eq (3 3)

3

18.0

5 ' 3

3 ' 9

3.0

1,04

1 ~ 15

1 ~ 24

1 ~ 37

1.31—
1.38'

0.056

0.22

18,5

5.8

4.6

3,6

0.054

0.17

0.22

0,28

«6 1.77 2.612 0.38

"'Reference 19.

by series expansion methods, ' this can also be a

suitable method to obtain qo. Similar comments as
above apply here also, and in particular, if Eq. (3.1)
held rigorously, then qo (or qo/p, in site problem)
would be universal, and thus F. would also be univer-
sal. The series results for F- indeed point to near
universality, which is a corroborating evidence for the
goodness of the approximation in Eq. (3.1). These
estimates are shown in Table II.

In addition, Ref. 6 estimated the correction to Eq.
(3.1) in the triangular site problem assuming a gen-
eral form for x = ~s and a suitable exponent 0,

n =s 'f(x) —s ' "f'~(x)+

which reduces at e = 0 to

(3.5a)

n~=qos (1 —Xs + ) (3.5b)

In scaling approach, one only needs to include one
other scaling field p, (an "irrelevant" one) in n, in ad-
dition to e and y =1/s to obtain Eq. (3.5). Thus,
(l.la) becomes

n() 'e, A. «y, ) "p, )=A"n(e, y, p, ).
and the analog of Eq. (l. lb) is now given by

(3.6a)

n (e, py, ) =y " 'n (ey ' ', 1, py I' ') . (3.6b)

Therefore, we have for the scaling law,

which leads in e 0 limit to

a /a
n, —qos '(1 +qs & '+ ) . (3.8)

We note that, if a„&0, (3.7) describes a crossover
(with the crossover exponent $ = a„/a«), while, if
a„&0, it describes a correction to scaling as in Eq.
(3.5) which is small for large s.

In the language of RG, this means that, if p, is a
relevant operator, there is a crossover and that, if p,

is irrelevant, there is a correction to scaling. ' As-
suming that we have no other relevant operator to
consider here, we choose for p, the most important
irrelevant operator, namely, the one with the least
negative a„. At d = 6, we must consider the p'roblem

separately since there exists a marginal operator p,

with a~=0 (the @' operator in the field-theoretic
language' ). Thus, the size of this crossover term is

a function of two factors: how far a given system is
located from the fixed point [reflected in the constant
amplitude in (3.8)] and how fast the fixed point is

approached in the p, direction as the RG is repeatedly
applied (a„/a«). This is an important fact, and we
will come back to it shortly.

To relate this "correction" exponent a„/a« to other
familiar ones, first note that the analog of the free
energy in percolation is the mean number of clusters.
To be precise,

a /a
n, (e, p, ) = s 'g(es, ps " «) (3.7a) G (e, H) = X n, (e) exp( —Hs ) (3.9)

Suppose g can be expanded in powers of p„'

n~(Ep, ) = s g ,(ts, 0)

+&s '"~'«g, (Ks, O) +, (3.7b)

corresponds to the q 1 limit of the free energy of
the q-state Potts model with the dimensionless ex-
change integral J [where p =1 —exp( —J)] and the
dimensionless external magnetic field H. The scaling
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assumption (1.1) for n, then implies

G;„(X E, AH) .= Xexp( —X Hs )n(X t y )

1 Sing

Xexp[ —H(X s) jn (X 'e, X»/(X s))
S

t sing

1

=) -» Xexp( H—s')n(X 'e, X'«/s')
I

S , sing

«G, ;„s(e,H ) (3.lo)

which means

an ~y 1 ay OIi (3.11)

Note a„a~, and a„were defined so that the scaling

law G„„,(X 'e, X "H) = h. G„„,(e, H) holds in the
first place. Thus,

Equations (3.8) and (3.13) together, then, give the
scaling law with the leading correction to be tested
(for d&6) by computer simulations. On the other
hand, as we obtained these by scaling e, we could
also scale y. In that case, the scaling law to be tested
would be

—a„/a« = —a~/aq ———da„/daq, (3.12a) n, (e, p, ) =e'~ g(ye '~, 0)

where —da „is the so-called "correction-to-scaling
exponent" usually denoted by cu. Moreover,

and as s

7/cr-a /a+ pe " 'g, (ve '~, 0) + {3.l4)

dal, = d/(1+ 1/5) (3.12b) —a /a
n, —e'~ (1+const e " '+ ) (3.ISa)

or using the hyperscaling law dv = 2 —n (valid only
for d ~6), with

daq =PS/v (3.12c)
—a~/a, = cuv (3.15b)

giving

ft = —a~/a« = o)v/Pg (3.13)

[or ~(1+ I/5)/d for d ) 6]. A table summarizing
these exponents estimated from a field-theoretic RG
on the Potts model" (co) and the series and Monte
Carlo methods' '4 "(P, g) is produced below (Table
III). Note that, since the Gaussian fixed point is

stable to the perturbation of $' operator above d = 6,
the result su = —,(d —6) is exact for d ) 6.1

As mentioned above, d =6 is a special case. In the
case of a thermal n-vector model, the Q4 operator
[which is irrelevant at the Wilson-Fisher fixed point
in (4 —d) expansion) becomes marginal at d =4, in-

ducing logarithmic corrections to various thermo-
dynamic functions. " In the present case of percola-
tion, the @' operator plays a similar role and intro-
duces logarithmic corrections to the percolation ana-
logs of these functions (mean number of clusters,
percolation probability, and mean size of finite clus-
ters, etc.).' We show in Appendix B, a logarithmic

TABLE III. The correction-to-scaling exponent ~ and the corresponding correction exponent L'k

for», . The, exponent ao is from the (6 —d) expansion with resumm ttion, tnd P and y are from

the combined estimates using both the series ~nd Monte C trio results.

v[= (2p+y)/f/ for d ~ 6] 0 (= o) v/PB for (l ~ 6)

1.11"'

1.01"'

0.85'
0.59"'

0
0.5

1—(d -6)
2

1

1.36
0.85
0.64
0.52
0.5
0.5
0.5
0.5

1.50
0.86
0.54
0.31
0
0.25

1—(ff —6)
4

0.59
0.40
0.27
0.16
0
0. 1 1

3—((/ —6)
4

0.75

'Reference 21.
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correction for n, given by

n, —s "(Ins )' (3.16)

where I) = —exactly from the (6 —d) expansion.
7

In Figs. 5(a) —5(f), curves of n, (p) vs s are shown
on a log-log scale. Fig. 5(a) for the square bond
problem in d = 2 and Fig. 5(b) for the simple cubic
bond problem may be compared with the similar
results of Ref. 6 for the triangular site problem in
d = 2 and the simple cubic and bcc 1,2 site problems
in d =3. However, for d = 2, one immediately no-
tices a striking difference; namely, Fig. 5(a) is con-
siderably more linear. This is borne out also in the
plot (not shown) of it, s' against Ins (with the series
estimate' 2.05 for r =2+ I/8). Almost constant, the
latter figure implies the smallness of the correction-
to-scaling amplitude compared to its counterpart in

the triangular-site problem.
When we try to fit a straight line to Fig. 5(a) we

find that the slope varies from 1.97 to 2.10 depending
on the range of s to be fitted. This is of course partly
due to the statistical fluctuations and finite size ef-
fects (in particular, the oscillatory behavior for very
I rge s) but also to the systematic corrections in-

I Educed by the largest irrelevant operator &cf. q.
(3.8)1. To estimate the relative correction amplitude

(o)

9xlo x=0.2
k x=0.6

x= 1

S hs

q, and exponent 0, we plot in Fig. 6(a) s'n, against
s "for trial values of x. Since in the bond problem
we get a one site cluster as a minimal cluster (when
all bonds surrounding a site are empty) as opposed to
the site problem where the minimal size is zero, the
data point corresponding to s = 1 can be safely dis-
carded for the scaling analysis. We also note that the
data for s ~ 512 corresponds to the region of large
systematic increase in s'n, corresponding to the finite
size effects (not shown). Thus, we consider the re-
gion 2 ~ s ( 512 for the purpose of studying the
correction to scaling, keeping in mind that a slight
finite-size effect would be sufficient to mask it.
When we consider this region of Fig. 6(a) only, we
have a clear indication that 0 is somewhere between
0.6 and 1.0 (and closer to 0.6). This compares well

with the finding of Ref. 6, that 0 =0.67 and wit
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I I I 1 1 I II I I I I I I

(d) 4
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FIG. 6. Correction to scaling are estimated by plott&ng

. 'i~ ( ) vs s "for various trial values of x. (a) is for d =2
t45 sam les of (1000)2 square lattice for 0.499» p ~0.501
are used]; + for x =0.2, 5 for 0.6, and ~ 'for 1. (b) is for
d =3, + for x =0.05, b, for 0.4, and ~ for 1.0.

FIG. 5. Cluster size distribution at p, in (a) d =2 to (f)
d =7. For d =2, (2000)2 samples are used for this plot.
The line segments merely connect the data points.



2474 HISAO NAKANISHI AND H. EUGENE STANLEY

the (6 —d)-expansion result (with resummation) list-

ed in Table III, thus demonstrating universality for
the correction exponent A.

If we assume 0 =0.6 in order to estimate the am-
plitude C of the correction term, then C =—0.029.
The scaling amplitude qo, on the other hand, is about
0.062 directly estimated from the least-squares fit to
our data, while the value obtained by using E es-
timated by series expansion" [cf. Eq. (3.4)] is 0.056
as shown in Table II. Thus, the relative amplitude of
the correction term to the scaling term q~ = C/qo is
about 0.45. We note that the corresponding ampli-
tude for the triangular site problem' of —1.19 is (I)
negative, and (2) more than twice as large in magni-
tude. Therefore, we demonstrate the nonuniversality
of the correction amplitude relative to the scaling
term. This is as it should be since Eq. (3.7b) clearly
states that this amplitude is proportional to p, , a
nonuniversal quantity which measures the distance of
the system at (e, p, ) from the fixed point. However,
we note that if n, —qos '( I + q~s ") held exactly,
then P(p„H) =EH'~6(I —FH") would also be exact
with E =gqoI'(I —I/O) and F = —q)I'(I —I/O —fI)/
[(I+80)I (I —I/8)]. This would mean that if F
were universal, then q] would also be universal.
Gaunt and Sykes' found F to be close to universal
for two dimensions in contrast to our data which in-
dicate that q[ varies a great deal from lattice to lattice.

For d ~ 3, p, is not exactly known and ~ not as
accurately estimated as in d =2 (except for d « 6
where r is 2.5 exactly). Nevertheless, we carry out
the same sort of analysis basically for the reason that
v is known sufficiently accurately that the correction
exponent 0 (as read from Table III) should be much
larger than the uncertainty in ~. We would also like
to know simply whether the best estimates for these
exponents are consistent with one another. For the
details of the Monte Carlo realizations, the reader is
referred to Appendix B.

For d =3, we see a remarkably straight line in Fig.
S(b) with the fitted exponent varying from 2. 16 to
2.24 and amplitude from 0.16 to 0.22 depending on
the range covered by the least-squares fit. From the
graph of s'», (with r =2.19 from Table III), we can
see perhaps the range 2 ~s ( 512 would be suitable
to analyze correction from, and in this region Fig.
6(b) indicates a reasonable estimate of 0 =0.4, in
agreement with Table III. The relative amplitude can
also be obtained from the same figure, giving C/q„
=0.08/0. 16 =0.5, with the sign of the correction term
again positive. We note that a simple linear fit to
Fig. 5(b) in this range yields r = 2.24 and ampli-
tude=0. 22, while qo estimated from Eq. (3.3) should
be about 0.17 and from Eq. (3.4) about 0.22. With
an estimate of q~ for the simple cubic-site problem,
we would be able to consider whether a oond prob-
lem is in general "closer" to scaling than a site prob-
lem. There is some evidence that this is true in the

two dimensional square lattice. Unfortunately, Ref. 6
does not discuss corrections to scaling in cI =3.

For d =4 and 5, we have fewer and less accurate
data than other dimensions, and thus the correction-
to-scaling analysis is rather difficult. In the case of
the four-dimensional hypercubic-site problem„a
linear fit to Fig. 5(c) ranges in slope from 2. 15 to
2 ~ 30 and in amplitude from 0.034 to 0.063 depending
on the range of s covered by the fit. These numbers
should be compared with the combined series-Monte
Carlo estimate'" of 2.26 for v. , and with 0.043 for
qo from Eq. (3.3). Focusing our attention on rela-
tively small s, we can see that 0 =0.2 would not be
inconsistent with the data (cf. Table III) while

q, -= —0.6 is a very rough estimate. At any rate, it
seems likely that the correction term is negative, as
in the triangular site problem but opposite to both
the square- and simple cubic-bond problems. The
linear fit to Fig. S(d) for the five-dimensional
hypercubic-site problem yields slope between 2.21
and 2.26„and amplitude between 0.033 and 0.039
depending on the range. The series-Monte Carlo es-
timate'" for ~ is 2.33 while the estimate of qo from
Eq. (3.3) is 0.039. It seems that 0.16 ( 0 ( 0.5, and
q, = —0.54, again a negative correction term. We
also note that, using the Eq. (3.3) estimates for qo,
the amplitude E can be estimated to be about 1.04 in
d =4 and 1.11 in d =5,

For d =6, excepting the last two points
(s ) 1024), a linear fit seems rather good, which
yields r =2.38 and amplitude=0. 042 for the hypercu-
bic site problem. The estimate of qo from Eq. (3.3)
gives 0.042 while the Bethe lattice solution with
z =12 yields 0.041. Here, we know v. to be exactly
2.5, and therefore, we expect. to find the correction
term more reliable. We also have much better statis-
tics than for d = 4 or 5,

Noting the region 2 ~ s & 1024 of Fig. 7, we at-
tempt to test a logarithmic correction as mentioned

—0.6
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4 —1.2—
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HG, 7. Test of logarithmic correction for the six-
dimensional hypercubic site problem. Plotted are s'», ~s

log]0& on 1 log-log scale. The broken line has a slope of 0.29,
the theoretical prediction for the exponent of the in» term.
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before' [cf. Eq. (3.16)]. Figure 7 seems to indicate
fairly well a correction close to a logarithmic one with
g =0.45. In view of the fact that in Sec. V we see an

p,'"' of 0.108 from the susceptibility, we have also
studied similar figures for p =0.108. The conclusion
remains the same except now 0 appears to be about
0.56. These values are not very close to the theoreti-
cal prediction of —, =0.29, and we attribute this to:
(1) probably p,""of 0.110 being a slight underesti-
mate, and (2) insufficient statistics and finite size
preventing us from going further into the. asymptotic
region.

For d = 7, we use samples of the hypercubic lattice
of size 8'

~ Although this is a rather large lattice in
terms of the volume (more than two million sites),
the smallness of the linear dimension is quite restric-
tive. Figure 5(f) shows n, (p =0.085) against s. A

linear fit to this plot yields a slope between 2.35 and
2,49, and amplitude between 0.024 and 0.035. The
zeta-function estimate of the amplitude is 0.033 while
the Bethe lattice solution with z = 14 gives 0.034.
Since v is exactly known for all d «6 to be 2.5, this
perhaps restricts the amplitude to be that associated
with the slope of 2.49 or about 0.035. Figure 5(f)
shows severe finite-size effects, and therefore we do
not attempt to estimate correction to scaling. Howev-
er, a plot similar to Fig. 6 appears to show a very
small correction-to-scaling amplitude (not shown).
Noting that the finite-size effects scale as 1

' ","and
that v =0.5 for d «6, it appears as if samples as large
as 10' sites would be needed before we can attempt
such a task, as we needed 10' sites for the case of
d =6.

Thus, both scaling and correction-to-scaling anal-

yses yield striking confirmation of Stauffer's hy-

pothesis and other previous calculations, except in

the analysis of the size of the correction term F.
Universal and nonuniversal quantities are clearly dis-
tinguished, and first numerical estimates of some of
these are obtained. %e observe a rapid convergence
toward the result for the Bethe lattice in the sense
that scaling amplitudes approach the Bethe lattice
result very fast. A correction consistent with a loga-
rithm is for the first time proposed and observed for
d =6.

IV CLUSTER NUMBERS AWAY FROM p

Various power laws described so far are "critical"
power laws in the sense that they follow from scaling
(or GHF) hypotheses near the percolation threshold.
There are other power laws that are valid away from
p, that do not appear to follow from usual scaling. In
this section, we discuss these and their interplay with
the critical power laws.

Kunz and Souillard" proved the asymptotic rela-

tions for fixed p and s ~, in d dimensions,
1—as' '" for p «p, ()p, ),

lnn, —
—hs for p p&( (p ),

(4.1a)
(4.1b)

inn, ——s~ as s (4.2)

As is clear from Eq. (4.2), this is a law governing the
asymptotic decay of the cluster number with the
discrepancy between ( and unity describing its depar-
ture from the pure exponential decay. As opposed to
power law behavior at p„ it describes behavior away
from the critical threshold.

Equations (4.1) have been tested numerically in
two dimensions in a few studies. In particular,
Hoshen et ai. state that, in their Monte Carlo data
for the triangular site problem, p~ can be as large as
0.47 and p~ as small as 0.505. In fact, Klein and
Stauffer" recently presented a RG argument that
these decay laws must be valid all the way up to p,
(excluding p, itself, of course). We shall see later on
in this section, however, that our Monte Carlo data
do not necessarily support this argument.

Now, recall from Eq. (2.7b) that n, ean be written
as

n, =s 'f(es )+s " 'f, (es )+ (4.3)

where the effects of the irrelevant fields are taken
into account in the scaling approach. In the limit
e 0, s ~ with es const, the first term clearly
dominates; this is the asymptotic scaling region. In
contrast, the limit used in the decay law (4.1) or
(4.2) is for fixed e(AO) and s ~ implying
es ~. Since GHF hypotheses such as Eq. (1.1a)
require small arguments throughout (corresponding
to the closeness to criticality), this latter limit may
even make (4.3) no longer valid. However, because
the inclusion of more and more correction terms
presumably enlarges the region of applicability of the
sealing hypothesis, we shall assume (4.3) to be valid
for fairly large values of ~s for the sake of the ensu-
ing argument. Then the question is whether the first
term in Eq. (4.3) continues to dominate' in this limit
or the correction terms become more important. Re-
call we have seen in Eq. (3.7b) that these correction
terms are the derivatives of the "scaling" function
with respect to composite variables containing ir-
relevant fields [such as p, in Eq. (3.7)]. This implies
that neither of the two possibilities can be excluded
from the general consideration of scaling alone. Con-
sider, e.g. , g (x,y) = exp ( —x'+x'y ) and h (x,y)
= exp[ —x'+yexp( —x') ]. Then, y (Bg/By )» o

=x'yexp( —x'), whereas y (Bh/By )» O=y exp( —2x').
If one has y —s " and x —s (with 2a ) 0), then
g (x, 0) = h (x, 0) = exp( —x') decays for large s more

for suitable choices of p~ and pq. This gives a rigorous
foundation for the exponent ( proposed by 13akri and
Stauffer, '
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—a(e)s' '~" +a(e, s) for p & p, (4.4a)

—b(e)s+b(e, s) for p & p, , (4.4b)

where a and b contain weaker s-dependences than s~.

Although this leads to fractional powers of x = es on
the right-hand sides of Eqs. (4.4), and thus seems to
give rise to the nonanalyticity of f as a function of x,
the apparent singularity at x =0 is of no concern
since Eqs. (4.4) are considered here only in the limit

x ~. Thus, it follows that

a (e) =aot'' ' "'~ for p & p,

=boa' for p ( p,

(4.5a)

(4.5b)

where ao and bo are constants. We note that the
ln(s) term arising from s ' has already been factored
out. Also, in order to make numerical fits feasible,
we shall assume a and b to be independent of s.
This, of course, leads to a = a 0 = const and b = ho
= const since a and b must be functions of es .

Thus, we have derived power laws for the Kunz-
Souillard decay amplitudes assuming the dominance of
the scaling term in Eq. (4.3). Clearly, the converse is
also true; if Eq. (4.5) holds, then the dominant term
can be cast into a scaling form. We must emphasize,
however, that scaling does not a priori determine
whether or not the first term dominates. Although
some numerical studies related to Eq. (4.5b) do exist
in d =2, this crucial point was not recognized previ-
ously. In fact, within rather large uncertainties, our
results suggest some sort of a crossover from two and
three dimensions, where Eq. (4.5) is valid, to seven
dimensions, where it is probably not.

In this context, we should note that the scaling
dominance (4.4) requires asymmetry of f (es ), and
thus the asymmetry of susceptibility X = X, s'n,
= $,s' 'f(es ) about a=0. This would, of course,
mean C+/C & I; however, C+/C & I does not
necessarily imply the dominance of the scaling term
because both terms could be asymmetric with only
the correction term giving the dominant Kunz-
Souillard asymmetry. C+/C will be studied in detail
in Sec. V, and the result, in short, is that it decreases
monotonically from about 200 in d = 2 to probably 1

in d = 6 (not clear in d = 7). If we assume in addi-
tion that C+/C remains unity for all d & 6, then the

rapidly than y ((Ig/By )» o but more slowly than

y (1)h/I)y)» o.
However, we may consider the consequences of

making either assumption, and examine them against
our Monte Carlo data, Thus, suppose the scaling
term dominates in the limit of fixed e and s ~ in

Eq. (4.3). Then, provided that e is within the range
of applicability of Eq. (4.1), we must have

lnf (es ) = In[ n, /n, (e = 0) ]

scaling function cannot dominate in Eq. (4.3) for any
finite d & 6.

We note that the Bethe lattice scaling function does
obey Eqs. (4.4) and (4.5) since o(rI = ~) = —, ,

I

ln(f ) ——e's (both above and below p, ) while
I —I/d I as d ~.27 In one dimension also,
ln( f'~ ) ——es and a. (d = I ) = I are consistent with

Eqs. (4.4) and (4.5).
In studying our data, among the questions we must

concern ourselves with are: (I) How close to p, does
the validity of the Kunz-Souillard law extend? (2)
Are we observing the true asymptotic behavior'? (3)
Are fluctuations and finite size effects sufficiently
small? With this in mind we study Eqs. (4.1) and
(4.5). However, we shall focus on Eq. (4.5) in this
section, referring the reader to Appendix C for the
studies of Eq. (4. 1) themselves and the associated de-
tails of the Monte Carlo realizations.

For d =2, Eqs. (4.5) are studied by piotting a (e)
vs e in a log-log plot [Fig. 8(a)]. Each data point is

obtained by least-squares fitting In[n, /n, (—p = 0.5) ]
vs s by a linear function assuming a =—ao as
described before, This figure yields a striking lineari-
ty (R =0.99973 for p & p„and R = 0.99798 for
p & p, ). The slope yields 1.33 for p & p, whereas
(I —I/d)/a is about 1.28 using rr=0;39. For p & p„
the slope is 2.58 to be compared with I/a = P+ 8
=2.57 in d =2. Thus, we demonstrate the domi-
nance of the scaling term in the Bakri-Stauffer limit
for both p & p, and p ( p, . The assumption of
a =ao is also justified fairly well, since for p & p„ao
from these fits are between 0.16 and 0.22 throughout
most of the region where Eq. (4.1) seems to be valid
(0.54» p»0.7). For p & p„ this value is between
2.0 and 2.5 throughout most of the range of p used
(0.275» p» 0.495).

For 6'=3, the slopes can be extracted over
p ~0.26 vs s (for p & p, )„and they are plotted in
Fig. 8(b), to be compared with Eq. (4.5a). The best
linear fit gives the slope of 1.60, and since
( I —I/O)/rr is about 1.42 for rI =3, the agreement is
reasonable. The term ao is also about constant. at
0.3 ~ For p (p„ the linear fits against s are much
better than those against s' ' in the case of p & p„
and the region where these fits are unquestionably
better is also larger, extending at least from 0.23 to
0.20 all with R & 0.999. Fig. 8(b) also demonstrates
Eq. (4.5b) by yielding a slope of 2.21 whereas I/rr is
about 2. 13 for d =3. The value bo appears to be
between 0.7 and 1.0 justifying our assumption of
bo = const as before.

In Figs. 8(c) and 8(d), we have the slopes from
linear fits against s' '~~ for p & p, [cf. (4.4a)] and
against s for p & p, [cf. (4.4b)] plotted as functions
of Ip. —p I for 4»r/»7. Since we have only 2 or 3
data points for each d (except for d = 6 where we
have more, and for d =7 where we have only a sin-
gle point below p, ), whatever slope we extract from
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these log-log plots is bound to be a crude estimate.
Nevertheless, these values may serve to throw some
light upon our discussions of Eqs. (4.5) since these
are the only numerical estimates available to date on
this point.

In d =4, the slope from Figs. 8(c) and 8(d) are
about 1.25 and 1.6 for p )p, and p & p„respective-
ly, whereas (I —I/d)/a and I/o. for d =4 would be
1.52 and 2.03, respectively. The corresponding
numbers in d = 5 are about 1.5 and 1.63 from Figs.
8(c) amd 8(d) whereas Eq. (4.5) would predict 1.55

and 1.94, respectively. Considering the scarcity of
data points and the fact that each of them is secon-
dary data themselves (estimated as slopes of least-
squares fits on primary data, i.e., the cluster
number), these values are certainly not incompatible
with one another. The error bars shown in Fig. 8
(and in other figures) are nominal ones that follow
from the least-squares fitting process, and there are
in fact much larger error bars arising from the statis-
tical errors associated with each primary data point.
The total errors are not estimated because of the dif-
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ficulty of weighing each data point. In d =6, howev-
er, we have three points for p ) p, and five points
for p & p, as. well as the fact that each of these points
is of higher accuracy. The slopes from Figs. 8(c) and
8(d) are about 1.5 and 1.7, and since (1 —1/d)/o. and
1/a. would give 1.67 and 2.0, again these numbers
are inconclusive in determining if Eqs. (4.5) are
valid. Finally, in d =7, studying p & p, only, we ob-
tain a slope of 2.33 from Fig. 8(c) whereas
(1 —1/d)/a is exactly 12/7 = 1.71. . . , This
discrepancy is by far the largest of all we have seen,
and thus, though not conclusive„we are inclined to
interpret it as indicating the breakdown of Eq. (4.5a).
In fact, both at p =0.095 and 0.1, the linear fits
against s are just as good as against s ', and if' indeed
the decay law is Inn, ——s, then the above discrepan-
cy can be understood.

Thus, our tentative conclusion is that for d = 2 and

3, the scaling term dominates in Eq. (4.3); for d =4,
5, and 6, the same may or may not be true: and for
d =7, the correction terms are likely to be the more
important part in the limit of fixed e and s

V. CRITICAL EXPONENTS AND
UNIVERSAL CONSTANTS

In this section, we discuss some of the universal
constants. Most familiar among them are the critical
exponents. In particular, the percolation probability
P —~a~a determines P while the mean cluster size

5 —
~e~ ~ defines the exponent y. However, since in

the simulations finite size effects often shift the loca-
tion of apparent singularity away from the true p„we
are faced with a choice of how to calculate these ex-
ponents. If the true value of p, happens to be known
(either exactly or else with very high accuracy by an
independent method such as series expansions), we

may use such a value and then obtain the exponents
by simply power-law fitting the data. An alternative
is to somehow estimate p,""consistent with the par-
ticular function of interest as well as with the particu-
lar samples (type and size) as we have already seen
in earlier sections. In studying the susceptibility, we

opt for this latter approach since there exists a partic-
ularly simple method of estimating p,'" for this func-
tion; that is, we adjust trial values of p,'" so that y
matches y' as was done in Ref. 6. This method
differs from that we used previously for the same
two-dimensional Monte Carlo data, and thus it yields
somewhat different values for the exponents from
those reported before. ' In those dimensions for
which we do not have too many values of p, this
gives a very convenient method to define effective p,
and thus to compute the exponents. Of course, for
the percolation probability, which is nonzero only for
p & p, in the infinite lattice limit, this method cannot
be used. In such cases, we find it most convenient to
first determine what range of p ( ) p, ) to study and
then to shift the trial. value of p,'" until the best fit to
a power law is achieved (as evidenced by the correla-
tion coefficient closest to unity). Table IV summa-

TABLE IV. Critical exponents P, y and the universal susceptibility amplitude ratio C+/C for
d =2 through 7. The last column gives y/P (with P and y being. either exact or series results)
since this ratio coincides with C+/C up to 0 ((6 —d ) ) in the (6 —d) expansion.

Constant This work Previous work
Series Monte Carlo

p
y

c,/c
p
y

c,/c
p
y

c,/c
p
y

c,/c
p
yc,/c

) p
yc,/c

"'Reference 13,
"Reference 6.

0.13 + 0.01
2.48 + 0.10
219+ 25

0.42 + 0.02
1.78 + 0.05

—8

0.55+ 0.05
1.4 + 0. 1

—5

0.60+ 0.08
1.3 + 0. 1

—4

1.1 + 0.2
1,0 + 0. 1

—1

1.1+0.2
1.0 + 0. 1

0.138 + 0.007"'

2.43 + 0.03a

0(1)'
0.42 + 0.06'
1.66+ 0.07'

0.52 + 0.03'
1.41 + 0.25'

0.66 + 0.05'
1.25 + 0.15'

0 97+, 0 05e

1.06 + 0.20'

'Reference 14.
Reference 7.

Q 133+0 Q10
2.36+ 0.10b

196+40b

0.39 + 0.02d

1.8+ 0 05d

11b

0.52 + 0.03d

1.6 + Q. 1
d

0.66+ 0.05'
13+01'

Q.97+ Q 05
1,0 + 0.05d

17.6

3.95

2.7

1.9

'Reference 15,



22 SCALING STUDIES OF PERCOLATION PHENOMENA IN. . . 2479

C+/C =2' '(y/P) +O((4 —d)') (S.la)

On the other hand, Aharony' recently showed for
percolation,

C+/C =1+—(6 —d) + [565/(2)327'](6 —d)'

rizes the result of these operations in d = 2 through
7. When the statistics are not excellent, however,
the results depend heavily on which data points are
covered by the least-squares fit. This consideration is

the main source of the rather large error bars includ-
ed in Table IV.

Figure 9 exhibits the two-, three-, and six-
dimensional data for P(p) and X(p) together with
the curves obtained by using the critical parameters
(exponents and amplitudes) estimated as above.
Clearly, both very close to p, and far away from it,
we expect deviations from the true critical behavior
since, for the former, finite-size effects set in as soon
as the connectedness length reaches the size of the
sample, and as for the latter, since the critical region
is exceeded. This figure is typical of our results in all

dimensions, but we are not able to reproduce the cor-
responding figures for other dimensions because of
the space considerations. Our results from d = 2 and
3 are probably most reliable due to best statistics
while those for d = 6 are expected to be better than
those for d =7, 4, or 5.

Among the remaining universal constants, the ratio
of the critical amplitudes of the susceptibility, C+/C,
is of considerable interest. The (4 —d) expansion for
the analogous quantity for the thermal Ising-like
models" yields
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O
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0.6

+ O ((6 —d)')

= y/P + 0 ((6 —d ) ') (5.lb)

This (6 —d) expansion provides the only theoretical
estimate with which to compare our data, and there-
fore these are also included in Table IV. We note
first that at d = 6 this ratio from Eq. (5.1b), the
mean-field approximation, " the Bethe lattice solu-
tion, and our Monte Carlo data are all consistent in

giving the value unity. The convergence toward the
mean-field results appears to be rapid, reinforcing our
impressions gained in Sec. II.

At this point, we discuss our resolution of the con-
troversy over the value of C+/C for d =2. The
series estimate was of order unity, "and our previous
estimate' was about 20, where both of these were ob-
tained from the mean cluster size function
S = g', s n, /X', sn, (X' implies summation omitting

the infinite cluster). On the other hand, Hoshen
et al. ' used the susceptibility function X = g', s'n, to

obtain C+/C =—200. Since they also obtain 20 if the
mean size function is used instead (albeit with unac-
ceptably low exponent y = 1.9), the question is which
function is to be used for scaling analysis. We have

CV

~65
Q3

CL
UJ

(f)

0.5

0.2

0.1

p 1

Q. O5 0.95 1.Q5 1.15

PROB A B I LI T Y

1.25 rip'

FIG. 9. Unscaled data t'or the percol ~tion probability P
(the fraction of sites in the largest cluster ~mong the occu-
pied sites) and susceptibility X (the second moment of /7, )
for (a) d = 2, (b) d = 3, and (c) 8 = 6. The curves obtained
from least-squares fitting the d ~t ~ linearly on log-log plots
are also included. The rounding in P is a finite-size effect.

undertaken a thorough analysis of this point using
our data in d = 2 from lattices of three different
sizes, as well as with two different ways (see below)
to interpret the sum g' appearing in S and X in a fin-

ite system, Our finding is that X must be used for at
least two clear reasons: (1) ~hen a suitable region
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FIG. 10. Anomaly associated with the mean size function
(susceptibility divided by the first moment) is shown; in (a),
the upward curvature in the lower branch (p ) p, ) repre-
sents the extra singularity in the denominator, and in (b)
p,' estimated from the susceptibility obeys the finite size
scaling hypothesis well while that obtained from the mean
size does not.

of p is selected to be fitted to a power law, setting

y = y' leads to. results with an anomalous behavior in

S for p & p, (upward curvature near p, ) while no
such anomaly occurs in X, This anomaly can be easi-

ly explained by the extra singularity introduced by the
denominator in S [cf. Fig. 10(a)]. (2) The p,

'"r es-
timated from X obeys a finite size scaling law (with a

reasonable exponent v =—1.5) whereas that from S
does not [cf. Fig. 10(b)]."

For these reasons, we have used X in all dimen-
sions. Actually, we used both X[ and X2 where in X]
we define g to mean the exclusion of the largest

cluster for all p, and in X2 we take X' to exclude the

largest cluster only for p )p,'". For d =2 and 3, X]

(S.2)

and X2 give practically identical results whereas for
d ~4 the results are substantially different. In par-
ticular, X] tends to give unacceptably low values for
the exponents y and y'. We attribute this to the
rather severe effect of removing the largest cluster
(below p, ) on a very small lattice. Also„although we

use the individual n, data, and no( the grouped data
as in Hoshen et al. for d =2, our estimate of
C+/C =—219 in d =2 is very close to that of Hoshen
e~ aI. '

In three dimensions, our result of C+/C =—g

differs considerably from Ref. 6 which gives 11 as
their best estimate. Since both of our analyses use
the individual n, data here, the difference appears to
be the lattice type and statistics. %'e have already
pointed out that the bond problem tends to be
"closer" to scaling than the site, and we have in gen-
eral better statistics in d = 3. Indeed, fitting the re-

gions 0.22«p «0.24 and 0.26«p «0.28 for the
matching of y and y', the least-squares fit to the
linear function in a log-log plot of X vs ~p

—p,'""]

yields R =0.99998 for p & p,'" and 0.99999 for
p & p,'rr. Thus, we are inclined to believe that C+/C
is closer to 8 than to 11 (assuming universality, of
course).

The results of C+/C =1.0 for d =6 and

C+/C =—2 for d =7 require some qualifications. In

d = 6, if the region of p to be fitted were chosen to
achieve best linearity in the log-log plot of X vs

~p
—p,'rr~, then we would find C+/C to be as high as

2; however, the matched exponent thus obtained
would be unacceptably high at 1.3. On the other
hand, we may include data points closer to p, in the
fit, and this yields y = y' = 1.0 almost exactly,
although with a somewhat worse correlation coeffi-
cient. This process also gives C+/C of 1.0 almost
exactly. Therefore, we consider this to be an evi-
dence supporting the conjecture C+/C = I although
a larger value (perhaps as large as 2) could not be
ruled out. A test of logarithmic correction to the sus-
ceptibility X)e('r —[ln(e([ (with 0= —, ) was also at-

tempted, but the data scatter was too great to yield
any tangible result. In d =7, the estimate C+/C =—2

seems to be barely compatible with y = y'=1, which
would imply the asymmetry of the scaling function
about p, appearing once again at d =7. This would
be highly anomalous since we expect C+/C to
remain unity once it achieves this value. However,
this could be simply due to insufficient data and
severe finite size effects as seen previously. The data
for p & p, are particularly unreliable as already en-
countered in Sec. II.

The last universal constant we discuss here is the
amplitude combination first studied by Stauffer, ". for
the bond or site problem, respectively,

K = C' ~qo 'B' ' ~ (bond)
= (C+/p, )'"(qo/p ) '8' ' ' (site)
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K =sr(I —I/8)2'-'i'+O((6 —d)') . (5.3)

VI. CONCLUSIONS

In summary, we have, by extending the work of
Hoshen et al. 6 beyond three dimensions, not only
reaffirmed the scaling ansatz of Stauffer4 but also
found some new insights into the phenomenology of
scaling in percolation. In two and three dimensions,
we strengthen the previous findings; in higher di-

mensions we show that the' trend established in d ~ 3

continues largely undisturbed except some key devia-
tions such as the dominance of nonscaling terms in

high d. Our results also focus on the important sub-
ject of what is and what is not universal. We find
universal correction-to-scaling exponents for d up to
7; at the same time, the correction amplitude is
shown quite clearly to be nonuniversal. We demon-
strate numerically how the scaling functions change
as functions of dimensionality. In particular, compar-
ison between the Bethe lattice and d =6, 7 are made
and the asymmetry of Kunz-Souillard decay laws is

conjectured to lie in the correction terms for d «6.
A correction to scaling consistent with a logarithmic
correction is also seen at d = 6 for the first time for
n, (p, ), the cluster number at p, . In short, this paper
strengthens the scaling approach in percolation in

general, and at the same time presents interesting
possibilities by supplying the first numerical results
on many aspects of unresolved questions.

where C+ is the susceptibility amplitude for
p & p, (C for p ) p, could also be used), q0 is the
amplitude of the scaling function as studied in Sec.
III, and B is the amplitude of the percolation proba-
bility [both C+ and 8 are defined as the prefactors of
the power-law term of e = (p, —p )/p, ]. Stauffer"
computed this constant in d = 2 from the extrapola-
tion of the series results on the triangular site, square
site, and honeycomb site problems, and obtained
values ranging from 19 to 21. Our Monte Carlo
results for the square bond problem corroborate this
by yielding K =—19 or 20 where most of the uncer-
tainty comes from that of q0. Since this is the first
result for a bond problem (as stated with q0 in the
definition of K), it is encouraging that the number is
in good agreement with those of Stauffer for the site
problem. In d «3, there are no previous calculations
of K, and since we have only one lattice type for each
of d = 3, . . . , 7, we are not able to state any conclu-
sion about the universality of K. However, it may be
useful to give our results on K for future reference.
Thus, in d =3, K is about 7+ 1, and both in d =4
and 5, it is about 6+ 1. The results for d =6 and 7
are much less certain, but in both of these dimen-
sions, K is roughly 5 with the uncertainty of perhaps
+ 2. The mean-field value for K is 24m = 3.54. . . .

The (6 —d) expansion by Aharony" gives
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APPENDIX A

Here we discuss the details of the Monte Carlo
simulations as well as some results, both analytic and
numerical, pertaining to Sec. II which could not be
accomodated there.

In two dimensions, we draw our data from the
simulation of the bond problem on the square lattice.
We performed 20 realizations at each of 80 values of
p where 0.3~p ~0.85, for a lattice with (500)'
=250000 sites. Also, we performed 15 realizations
at each of 64 values of p, ~here 0.275~ p ~0.7, for
a lattice with (1000)'=1000000 sites, and 5 reaiiza-
tions at each of 16 values of p, where 0.45 ~ p
~0.55, for a lattice with (2000)'=4000000 sites or
8 million bonds. All of these simulations are done
with free boundaries. The- statistics of all the runs
combined in d = 2 is roughly equivalent to Ref. 6.
The data for n, used in Sec. II and Appendix A are
grouped in bins of 2'~s (2'+', i =0, 1, 2, . . . as in

Ref. 6. As noted in Sec. I, the data points used for
Eq. (2.6a) corresponds to 5 ~ i ~ 14 or 2' ~ s & 2".

Least-squares fit to Fig. 4(a) with a quadratic func-
tion yields

f((p, —p)s )

= f (0)exp(0.042+6.879x —8.407x') (Ala)

with the standard deviation S = 1.277 & 10 ' while the
cubic fit gives

f((p, —p)s )

= f(0)exp(0.005+7.165x —7.664x' —1.102x')

(A lb)

with S =9.197 & 10 '. These fits are extremely close



2482 HISAO NAKANISHI AND H. EUGENE STANLEY 22

to the corresponding functions for the triangular site
problem given by Ref. 6.

Our three-dimensional simulations are done for a
simple cubic bond problem on a lattice with (100)3
=1000000 sites at each of 15 values of p, where
0.2 «p «0.3. Fifteen realizations are obtained for
0.2 «p «0.248, while 12 realizations are performed
for 0.25 «p «0.3, Here also, we used the free
boundary condition. The samples we use contain
three million bonds, and thus we have three times
the size of the lattice and at least as many concentra-
tions as the principal samples which were used to ob-
tain the scaling function for d =3 in Ref. 6. Of
course, their simulations were also done for different
problems from ours (namely, the site problems on
the simple cubic lattice and the bcc 1,2 lattice). Equa-
tion (2.6b) is obtained over the range 3 ~ i ~ 10 or
2' ~ s ( 2" with R = 0.99916, In Fig. 4(b), the
large scatter of the data points away from x =0 is

partly due to the fact that, because of the finite size
of the lattice, this region can only be reached by tak-

ing a large e, which takes us out of the scaling region.
Another reason for this appears to be that, even
within the scaling region, the finite size effect pro-
duces an oscillatory structure around the scaling
function, This effect is seen in Sec. II also which will

be discussed in Appendix B.
The quadratic fit to Fig. 4(b) yields

f((p, —p)s )

= f'(0) exp( —0.014+ 2.646x —9.191x') (A2a)

with S = 2.599 && 10 ' while the cubic fit gives

f((p, —p)s )

=f (0)exp( —0.040+ 4.029x —8.324x' —5.62x')

(A2b)

with S = 1.496 & 10 '. Unfortunately, both fits miss
the peak by a fair amount.

For d = 4, we performed for the site problem 20
realizations each at 6 values of p (p = 0.177, 0.187,
0.192, 0.197, 0.207, and 0.217) on the hypercubic lat-
tice with (20)4 = 160 000 sites. These samples are
generated with periodic boundaries. Although the
scarcity of data makes it difficult to estimate the max-
ima of the n, curves, a closer spacing would not
make any sense for this size of samples since the
pseudo-random-number generator we used would not
produce the actual concentration of sites sufficiently
close to the nominal concentration p. We also have a
sample with (40)4=2560000 sites; however, it is

only generated at p =0.197—the series estimate of p, .
Equation (2.6c) is obtained by fitting over the range
5 «i «10 or 2'«s & 2". The scaling function of
Fig. 4(c) is obtained by normalizing n, by its value at

p =0.197 and using cr =0.493 while our estimate of
p, best consistent with the susceptibility function is

0.198. Again we notice a large scatter of data points
clustering around a roughly Gaussian curve on the
semilog plot. The oscillatory nature of scatter strong-
ly suggests the finite-size effects previously men-
tioned.

The best quadratic fit of Fig. 4(c) yields

f((p, —p)s )

=,f'(0)exp(0. 024+2.891x —15.899x') (A3a)

with S = 1.349 && 10 ' while the best cubic fit gives

f((p, —p)s )

= f'(0) exp(0.018 + 3.524x —15.595x' —7.881x')

(A3b)

with S = 1.251 & 10 '.
In five dimensions, our samples consist of 20 reali-

zations each at 6 probabilities (p = 0.121, 0.131,
0.141, 0.146, 0.151, and 0.161) for the site problem
on the hypercubic lattice with (10)' = 100000 sites.
We also have one realization of 16' sample at

p =0.141, the series estimate of p, . All of these are
generated with periodic boundaries. The peaks of the
functions n, (p) at several values of fixed s are too
broad to estimate p „, „with any precision„however,
again the practical consideration of random number
generation prevents us from spacing the data points
more closely. Equation (2.6d) is obtained by fitting
over the range 5 «i «9 or 2' «s ( 2' .

The best quadratic fit to Fig. 4(d) is

I((p, —p)s ),'

=f (0)exp( —0.029+ 2.657x —23.779x') (A4a)

with S = 7.428 && 10 ' while the cubic fit gives

f((p, —p)s )

= f (0)exp(- 0.028 + 2.822x —23.799x' —3.580x')

(A4b)

with S =7.424 && 10 '. Again, the trend seen from
d = 1, 2, 3, and 4 continues with no drastic change.

Since six dimensions is the upper marginal dimen-
sionality for the percolation problem, we have con-
ducted more thorough simulation for d =6 and 7
than for d =4 or 5. For d =6, we simulate for the
site problem 30 realizations of the hypercubic lattice
with (10)6=1000000 sites at each of 9 probabilities
(0.088 ~ p ~ 0.128), all with periodic boundaries.
For the sake of investigating some finite size effects,
we have also generated 40 realizations of 5' lattice at
various probabilities. The error bars indicated in Fig.
3(a) are nominal statistical ones estimated from di-
viding the total set of samples into three independent
groups of 10 realizations at each probability and tak-
ing standard deviations.

As stated in Sec. II, we reject the possibility of the
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breakdown of n, scaling for d = 6 in view of the rath-
er good overall data collapse as seen in Fig. 4(e}. To
check that p,'"=0.110 is a more appropriate value
here, we plotted (p,'""—p,. „) vs s for several trial
values of p, ~0.108 on a log-log scale. For p,'"
=0.108, the resulting curve has a definite downward
curvature, thus not reflecting any power laws. The
choice of p,'"=0.110, on the other hand, results in a
rather linear graph (presumably characterizing a
power law correction to the logarithmically modulated
scaling function). We have also simulated 56 samples
to make certain that the finite size effect is responsi-
ble for the shift in p,'". Among the 40 realizations
generated at each of the probabilities between 0.103
and 0.113, 18 at p =0.108, and 23 at p =0.110 are
actually used for this purpose (because of the devia-
tions of the actual concentrations from the nominal
ones). The result shows that p,, „(s=362) is defin-
itely greater than 0.108 just as for the case of 10
samples. Since this effect is in fact much more ap-
parent in 5 case, we are led to the conclusion that
this shift is mainly a finite size effect. The reason for
our interpretation of the s dependence as corrections
to scaling is essentially because we think that the
scaling function is symmetric about p„and this point
will be elaborated on in Sec. IV.

The best quadratic fit to Fig. 4(e) gives

f((p, —p)s )

=,f (0)exp( —0.002+ 2.179x —41.076x2) (A5a)

with S = 1.047 x 10 ' while the best cubic fit is

f ((p, —p)s )'
=f(0)exp(-0.010+ 2.685x —40.310x' —13.267x')

(ASb)

with S = 1.011 x 10 '.
For d = 7, our Monte Carlo data are drawn from 16

realizations for the site problem on the hypercubic
lattice with (8)' = 2097 150 sites at each of 6 proba-
bilities (p = 0.075, 0.080, 0.085, 0.090, 0.095, and
0.100). Again, we use the periodic boundary condi-
tion.

In Sec. II, the backward "motion" of the peaks of
the n, curves (as s increases) was mentioned. We
note here that this phenomenon is not related to the
effect of finite s in the exact solution for the Bethe
lattice. There, the use of Stirling's formula led to the
symmetric scaling function (2.3), while if one uses
(2.2) for finite s, one obtains (p, —p,,„)—2/
[s(z —1)] (cf. Fig. 11). Thus, the leading correction
to scaling makes p, ) p „, „, and never the other way

as we see in d =7 results. In fact, we mentioned ear-
lier that this sort of correction to scaling could ac-
count for the skewed appearance of f, as in Fig. 4(f):

6x)0
i N

5
6 7
8 8

ns

0
0.70 080 0.90

P
100 1.10x10

FIG. 11. Cluster size distribution for fixed s as function
of p for the solution on the Bethe lattice with coordination
number z =14. "i" indexes the bins for s.

=f (0)exp( —0.040 —0.642x —15.108x'+ 34.542x')

(A6b)

with S =1.139& 10 '.

APPENDIX B

In this appendix, we discuss the logarithmic correc-
tion to n, for d =6 as stated in Eq. (3.16), as well as
some details pertaining to Sec. III.

We begin with the question of the logarithmic
correction. In terms of the cluster size distribution
function, in analogy to the work of Rudnick and Nel-
son" for the thermal n-vector model, we postulate
that, at p„

n, —3 (1+ [1 —B/(ed/t )](s " —1) ] s ", (Bl)

where ed=6 —d and A, 8, 6, 8 are suitable values.
[This is consistent with Eq. (3.8).] We shall deter-
mine 5 and t) as follows: (a) eq=6 —d ) 0, small.
The expression in the bracket in Eq. (Bl) can be
written as

s d —[B/(aqua, )](s d —1) —[8/(edh)](1 —s d )

(B2)

Since 1/s is taken to be very small, we have a

The best quadratic fit to Fig. 4(f) gives

f((p, —p)s )

= f (0)exp( —0.033 + 0.918x —16.465x') (A6a)

with S = 1.552 x 10 ' while the best cubic fit yields

f((p, —p)s }
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power-law correction to scaling

—r(ed ) —r(ed )—ed
n, —s " +const s

Equations (3.8) and (3.13) then give

(B3)

to be smooth through ed ——0],

II = —r'(ed = 0)/6 [=—4r'(e~ = 0) ]

(c) ed —0. In this limit, we have

or
ed' = CdV/p5 =.(1/4) Ed + 0 (ed )

6 = 1/4+0 (ag)

(B4a)

(B4b)

cdh
in ed expansion. (b) e„(0, small. Here, 1/s
term in Eq. (B2) dominates, and we have, instead of
a correction to scaling, scaling with a "different" ex-
ponent,

n 'I ' (lns) (B8)

Thus, the assumption (Bl) leads to a logarithmic
correction (B8) with II= —4r'(0). We now use the
fact that the ed-expansion results for the q-state Potts
model (field theory) and in the limit rl 1 is given
b 34

p = 1 —
7

ed + 0 (ed')]

—e 48—r(e )
. /'I s

Since above d„n, —s ",we have EyAII+ r(6d)—2.5, or

(B5) and

y= 1+—,ed+0(ed)1 {B9a)

—A(I —[r(ed) —2.5]/eg . (B6)
and thus

Taking the limit ed 0 —,we obtain [assuming r(ed)
1/8 = r —2 = T [ 1 —

7 Ed+ 0 ( Cd )']I 1 {n9b)
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Therefore, we finally obtain

r'(ad=0+) =r'(0) = ——„ (B10a)

leading to

20=—
7

(Blob)

APPENDIX C

We note that this result is exact if Eq. (Bl) is essen-
tially correct. This is the scaling law with the loga-
rithmic correction stated in Eq. (3.16).

For d = 2, we note that the result from smaller lat-
tices give very similar results to those with many mil-

lions of sites (such as those in Ref. 6). For example,
(1000)2 samples for the bond problem on the square
lattice only requires us to look at a slightly smaller
range of s, still yielding much the same results.
Moreover, we generated just one realization at

p = 0.5 for the site problem on the triangular lattice
with (1000)' sites, fully 16 times smaller than those
used in Ref. 6, and still obtained more or less identi-
cal results to theirs, although finite size effects be-
come apparent at a smaller value of s.

As to the oscillatory behavior mentioned in Sec.
III, we find it to be a finite size effect by considering
the data from three sizes of samples for the bond
problem on the two-dimensional square lattice,
(500)', (1000)', and (2000)'. Whether we consider
5 realizations 10, or 20, we find this ripple starting
from almost the same values of s (for each lattice
size). For the three sizes these starting points are ap-
proximately 400, 1000, and 4000, respectively. We
also note that these and other features of n, (at p, )
are very insensitive to the size of the bin in which we

group n, data. Similar effect of "grouping" indepen-
dence is also observed in the evaluation of x (suscep-
tibility) as will be described in Sec. V.

We note that, for the general analysis in d = 2, we

have used both the 15 samples of (1000)' and 5 of
(2000)' at p =p, =0.5, and for d = 3, the 12 samples
of (100)3 at p = 0.250. Similarly, for d = 4 and 5, we

have used 20 realizations of (20)4 at p =0.197 and
(10)' at p =0.141, respectively. Our one sample in

d =4 of (40)4 at p =0.197 corroborates the findings
obtained using those of (20)4. Similarly, the one
sample of (16)' in d = 5 supports the findings of Sec.
111. For d =6, the 30 samples are of size (10)6 and

they are used at p = 0.110; in seven dimensions,
there are 16 samples of (8)' generated at p = 0.085.
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of Ref. 6, clearly demonstrates Eq. (4.1a) for the
square bond problem; the correlation coefficient R
for linear fits of these points is 0.97053, 0.99873, and
0.99484 for s, Js, and s in the abscissa, respective-
ly. Figure 13(a), on the other hand, exhibits the
same function vs Js at several values of p in the
range 0.51» p ~ 0.7. Although not shown, similar
studies for values of p as close to p, as 0.501

This appendix discusses the numerical results for
Eq. (4.1) omitted in Sec. IV.

In Fig. 12(a), —In[n, (p =0.55)/n, (P, =0.5)] from
our data for the two-dimensional square bond prob-
lem is plotted in three ways: vs s, s' '~d=ds, and

s . This plot, which is completely analogous to Fig. 8

0
0 50 100 150 200

0

250

FIG. 13. Similarly to Fig. 12, —in[I~, /I~, (p, ) j is plotted vs

&
l-l/d for ~a) d =2, {b) d = 3, and (g) d =6.
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(2000 x 2000) and 0.505 (1000 && 1000) have also
been made. The net result is that the Eq. (4. 1a)
seems to be valid only for p «0.54 and not for
smaller p. For example, at p =0.51 (1000 x 1000),
the linear fit vs s, Js, s yields R =0.88991, 0.98026,
and 0.99288, respectively, over 0~i~14, whereas at

p =0.54, R =0.95996, 0.99891, and 0.99701 respec-
tively over O~i «9. Although the closer to p„ the
larger the fluctuations, we believe that we are observ-
ing asymptotic behavior rather than a transient one

because we have a rather large range of s for p close
to p„different ranges of fit produce much the same
result, and because. R is in general reasonable indicat-
ing acceptable level of fluctuations. On the other
hand, Eq. (4. lb) seems to be valid in a larger region.
In Figs. 14(a)—14(c) plotted are In[n—, /n, (p, ) J vs s
for p in the range 0.275~p «0.495 all showing the
asymptotic behavior (4.1b) reasonably well. For ex-
ample, even at p =0.49, the linear fit to this function
vs s, Js, s yields R =0.99130, 0.97426, and
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FIG. 14. Test of Kunz-Souillard decay law (4.1b) below p, for (a) —(c) el=2, (d) d =. 3, and (e) d =6 by plotting
—in[a, /i~, (p, )] vs s.
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0.96713, respectively.
For d =3, the function —In[n, (p =0.3)/

n, (p =0.25)] is plotted in Fig. 12(b) vs s, vs
s' ' d=s'', and s =so~'. Similarly to Fig. 12(a) for
d =2, this plot demonstrates Eq. (4.1a) for the bond
problem on the simple cubic lattice as R =0.98529,
0,99981, and 0.99542, respectively, over the range
0~i~7. Figure 13(b) is analogous to Fig. 13(a) for
d =2, and it plots this function for p between 0.26
and 0.30. The values p =0.252 and 0.255 are also
studied (not shown), but in these, the fluctuations
are too large to permit quantitative analysis. For
0.26«p «0.29 we find linear fits vs s'' is at best as
good as those vs s although considerably better than
those vs s. For example, for p =0.27, R =0,99009
vs s' ' while R =0.99881 vs s over the range
0«i«10. For p (p„we follow similar procedures,
and obtain Figure 14(d) analogous to Fig. 13(b) for

p & p, . The linear fits vs s is much better than those
vs s' ' in the case of p & p„and the region where
these fits are unquestionably better is also larger, ex-
tending at least from 0.23 to 0.20 all with R & 0.999.

In d =4, we have data at p =0.207, 0.217 above

p, (=0.197) and 0.177, 0.187, and 0.192 below p, .
At p =0.207, In[n, /n, —(p, )] can be fitted to a
straight line against s' ' "=s' and s almost equally
well although much better than vs s =so . At

p =0.217, the fit vs s' is slightly better with

R =0.99598 while it is 0.99513 and 0.97844 against s
and s, respectively, over O~i ~ 8 [Fig. 12(c)l.
Below p„only p =0.177, the fit against s is clearly
better than those vs s or s where R = 0.99517.,
0.98983, and 0.98178, respectively.

An analog of Figs. 12{a), (b), and (c) in d = 5 is
presented in Fig. 12(d) where linear fits to —ln[n, (p
= 0.151)/n, (p, = 0.141) ] against s, s' ' d= s4 5, and
s so.5[s yield R =0.99589, 0.99775, and 0.97788,
respectively, over 0«i«9. Below p„both at
p =0.121 and 0.131, linear fits are almost equally
good (or bad) vs s, s4 ', and so'".

In six dimensions, the values 0.113«p «0.128 are
used for p )p, (=0.110), but only 0.118 and 0.128
seem to yield clearly the Kunz-Souillard decay ex-
ponent of 1 —1/d = 5/6. In Fig. 12{e) plotted is
—ln[n, (p =0.128)/n, (p, )] vs s, s'6, and. s = js,
resulting in R =0.99904, 0.99927, and 0.95774
respectively. Figure 13(c) is a similar plot for all

p )p„while Fig. 14(e) is for p ( p, . For p ( p„
good fits vs s can be obtained only for p«0.098.

Finally, for d =7, above p, =0.085, for both
p =0.095 and 0.1, the linear fit of In[n, /n, (—p, ) ) vs
s' ' =s ' is equally good with those vs s whereas,
for p (p„such fits are only possible at p =0.075.
There, however, the fit against s appears to be better
than those against st' or s = Js. Figure 12(f) shows
the same functiori at p =0.1 against s, s6~', and Js.
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