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We obtain the critical parameters for the site-percolation problem on the square lattice to a
high degree of accuracy (comparable to that of series expansions) by using a Monte Carlo
position-space renormalization-group procedure directly on the site-occupation probability. Our
method involves calculating recursion relations using progressively larger lattice rescalings, b.
We find smooth sequences for the value of the critical percolation concentration p,(5) and for
the scaling powers y,,(b) and y,(b). Extrapolating these sequencés to the limit b — oo leads to
quite accurate numerical predictions. Further, by considering other weight functions or "rules"
which also embody the essential connectivity feature of percolation, we find that the numerical
results in the infinite-cell limit are in fact "rule independent." However, the actual fashion in
which this limit is approached does depend upon the rule chosen. A connection between extra-
polation of our renormalization-group results and finite-size scaling is made. Furthermore, the
usual finite-size scaling arguments lead to independent estimates of p, and y,. Combining both
the large-cell approach and the finite-size scaling results, we obtain y, =0.7385 +0.0080 and
yp=1.898 £0.003. Thus we find &, =—0.708 +0.030, By =0.138(+40.006, —0.005), yp=2.432
+0.035, 8,=18.6 £0.6, v, =1.354 £0.015, and 2 — 7, =1.796 £0.006. The site-percolation
threshold is found for the square lattice at p, =0.5931 £0.0006. We note that our calculated
value of v, is in considerably better agreement with the proposal of Klein et al. that

v,=In \3/1n (%) ==1.3548, than with den Nijs’ recent conjecture, which predicts v

_4
P 3

However, our results cannot entirely rule out the latter possibility.

I. INTRODUCTION

The recently much-studied percolation problem,
which deals with the cluster properties of a system, is
a mathematical problem of great interest in itself.!
However, it is also a model of much utility in
describing many physical situations, ranging from di-
lute magnets, ? cluster properties of the Ising model,?
conduction in random systems,* and polymer gela-
tion,> to fluid flow through porous materials.® For
general reviews of some of these problems, and for
further references, see Refs. 7 and 8.

In the "pure" percolation problem, the elements
(usually taken to be sites or bonds on a lattice) are
placed entirely at random. Although this is a model
of a noninteracting system, it is intriguing that it
nevertheless exhibits critical behavior. The singulari-
ties in the percolation problem occur in the properties
of the physical clusters, rather than in quantities re-
lated to the thermodynamic properties, such as the
net fraction of sites that are occupied. This latter
quantity, the magnetization, might also have a singu-
larity in an interacting system—though as a function
of the thermodynamic variables. The study of a criti-
cal phenomena has most commonly concerned itself
with such thermodynamic quantities. However, the
critical point that occurs in pure percolation is re-
markably similar to critical points in interacting sys-
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tems. In fact, particular limits of interacting systems
(describable by Hamiltonians) reduce to. pure percola-
tion (which is entirely statistical, and has no Hamil-
tonian).

In particular, the s —1 limit® of the s-state Potts
model' corresponds to pure bond percolation. This

- fact provided the initial bridge between conventional

critical phenomena and percolation. The vast arsenal
of theoretical tools available for studying cooperative
phenomena was soon employed to study this limit.
In particular, the renormalization group'! was applied
to the Potts Hamiltonian both in momentum space
by € expansion from d =6 dimensions'>!? and in real
space.'>!* However, a Hamiltonian is not necessary
for studying percolation. The existence of a diverg-
ing length scale is sufficient to motivate the use of
the renormalization group. Young and Stinch-
combe!’ showed how a decimation procedure ap-
plied directly on the bond occupation probabilities—in
which a set of vertices is summed over, leading to re-
normalized bond probabilities on a rescaled lattice—is
equivalent to summing out degrees of freedom in the
Potts partition function. Furthermore, Kirkpatrick!®
used Migdal recursion relations!” directly on the pro-
babilities, again for the bond problem.

The present authors were able to treat both site and
bond percolation using a Niemeijer—van Leeuwen-
type cluster approach directly on the occupation pro-
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babilities.'® We chose a renormalization transforma-
tion which reflects the fact that the order parameter
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ing these connectivity weight functions. In Sec. V we
present the results obtained by applying these con-
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percolated (infinite) cluster, rather than the net
number of sites occupied. The transformation embo-
dies the "connectivity rule": a block "spin" is taken to

250000 sites. In this way we obtain sequences for
the values of the percolation threshold p, and for the
scaling powers. ve and v, from which all the critical

be occupied if the "spins" of which it consists form a
spanning cluster. This reflects the fact that the singu-
larities occur in the cluster properties. A majority-
rule transformation, such as is used for the Ising
model, has a symmetry which picks out singularities
in the magnetization. We showed that the procedure
of block renormalization is exact in one dimension
(d=1), though in higher dimensions approximations
are necessary. Results for small cells on various lat-
tices were encouraging. In the same paper we also
showed how a ghost site® ! could be introduced to
directly rescale a field probabililty. In that way we
were able to calculate the field scaling power as well
as the "thermal" (occupation probability) scaling
power for d=1. Previous work!>!® with direct re-
scaling of the probabilities had only dealt with the
thermal scaling power.

Subsequently, Marland and Stinchcombe? per-
formed a direct rescaling of the field in d=1,2 by a
decimation transformation. An inherent flaw in their
procedure (decimation implies y,=d or n=2—d)
was subsequently circumvented by Marland by use of
a variational technique.?! Also, Yuge? has calculated
the thermal exponents (though not the field ex-
ponents) for various d =2 cells on a number of lat-
tices, using a block formulation similar to our original
one. Kunz and Payandeh? have also used this type
of block transformation to calculate both thermal and
field scaling powers for small cells in d =2, 3. Tsallis
and Schwachheim?* have defined several alternative
transformations for the occupation probability, and
catagorized the types of "rules" for percolating. Fur-
ther work with direct rescaling®®=?8 has included the
conductivity problem, ¢ site-bond percolation,?’ and
calculation of cluster numbers.?® Also, we introduced
the use of very large cells for percolation and report-
ed preliminary results for site percolation.?? Here our
discussion goes into greater depth, and we treat ex-
tensions of that early work. The large-cell method
has also recently been followed by Kirkpatrick® and
Magalhdes et al.* for bond percolation.

We begin in Sec. II with some preliminaries on
position-space renormalization group (PSRG) for per-
colation. Then, in Sec. III we give examples of calcu-
lations with small cells. We discuss why we expect
improvement in our results with increasing cell size.
In order to proceed with large-cell calculations, the
definitions and properties of our rescaling transfor-
mations are given in Sec. IV. All these renormaliza-

exponents may be obtained. We also show how ex-
trapolation of these sequences to the limit of infinite
cell size leads to quite accurate numerical results.

For our connectivity weight functions, we find that
these numerical results are in fact "rule independent".
How rapidly we converge to this limit, however, does
depend upon the rule chosen. We also discuss con-
nections with finite-size scaling. In Sec. VI we dis-
cuss our results. In particular, our calculation of y,
may be considered a test of the recent conjecture of
den Nijs, 3! which connects the s-state Potts model to
the eight-vertex model. We find that den Nijs’ value
for s =1 (percolation) does not agree as well with our
results as the value of y, proposed by Klein et al., >
though den Nijs’ result cannot be entirely ruled out
by our calculations. Appendix A presents the
closed-form PSRG calculation of the d =1 percola-
tion problem with further-neighbor bonds. We
derive the recursion relations for arbitrary rescaling
length b, and show that in the limit & — oo we obtain
the exact results known for this model.??

II. POSITION-SPACE RENORMALIZATION
GROUP FOR PERCOLATION

In the Niemeijer—van Leeuwen approach to the
position-space renormalization group,!! one starts by
partitioning a lattice into cells which both cover the
lattice and which—if viewed from a perspective in
which these cells are renormalized sites—form a lat-
tice which has precisely the same symmetry as the
original. One thing has changed, however, and that
is the length scale. Measured in terms of the new
lattice constant, all distances are smaller by a factor
of b=NY4 where N is the number of sites in a cell,
and d is the dimension of the space. If on the renor-
malized lattice the functions of interest are to main-
tain the original singularity structure, these functions
must have the same form as before (assuming we
keep the same number of arguments). These argu-
ments (the "coupling constants") must now be at new
renormalized values, however, to compensate for the
change in length scale.

To illustrate the above, consider £,, the analog of
the correlation length in thermal critical phenomena.
In percolation this is the connectedness length, which
is a measure of a typical linear cluster dimension—
the rms cluster diameter for example. On the renor-
malized lattice £, is smaller by a factor of b, and thus
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value further from the percolation threshold p..

If we let {p;} denote the set of occupation probabil-
ities of various kinds (sites, nearest-neighbor bonds,
further-neighbor bonds, and so forth) then all the
coupling constants in {p;} will be renormalized, as we
shall see below. Thus, we may write

£,(1p) =ng,,( () . Q1)

It is the basis of the cluster approximation to con-
sider a small cluster of neighboring cells, and to re-
normalize only those members of {p;} that "fit" into
the cluster. This procedure, however, involves an
approximation because the renormalized occupied
sites created in this process have connectivity func-
tions (e.g., the pair connectedness) that differ from
those on the original lattice of randomly occupied
sites. A cluster containing more than one cell thus
necessitates the introduction of additional probabili-
ties from {p;} into the equation for the renormalized
p’ (and these additional probabilities are in fact them-
selves renormalized). These new couplings are used
to "undo" the unwanted connectivity correlations.

The result of all this is a renormalization-group
transformation

{p1=RUp}) . 2.2

This transformation has a "fixed point" where R
leaves the coupling-constant space unchanged:
{p*)=R({p*}). By Eq. (2.1) we see that physically
a fixed point corresponds to either £, =0 or £, = oo,
and thus the critical point, at which &, = oo, is to be
associated with a fixed point of Eq. (2.2). However,
a complete and exact treatment in this manner would
involve an infinite number of coupling constants p;,
and a cluster of cells covering ever larger regions of
the lattice. Equation (2.2) would then become an in-
finite set of coupled equations. Somewhere we must
truncate.

This paper treats the truncation induced by consid-
ering the one-cell cluster. As we will discuss in Sec.
III, the severity of the unwanted correlation intro-
duced by renormalization appears to diminish with
the size of the single cell. Thus the approximation
improves progressively with increasing cell size. Our
results can, in fact, be extrapolated to the limit of in-
finite cell size, where the single-cell cluster possibly
becomes exact.>* For the case of the single cell, the
only probabilities in the set {p;} that enter are p, the
site occupation probability, and A, the "ghost"-bond
occupation probability.> %35 The ghost-field bonds
are physical links from a single "ghost site" which is
not on the lattice to each site on the lattice. If one
were to quantify the cluster properties by their bond
size rather than by their site size, the ghost bonds
would link to every bond in the lattice instead.®
Such ghost bonds drastically change the topology of

the lattice when A 0, causing many finite clusters
to be connected to a single infinite cluster. The ordi-
nary percolation threshold obtains when A =0.

In order to obtain the critical properties for percola-
tion in this approximation, we must calculate the re-
cursion relations

p'=R,(ph) (2.3a)
and
h' =Ry(ph) . (2.3b)

The percolation threshold corresponds to a fixed
point at (p*=p, h*=0). In practice h* =0 is readily
obtained, since Eq. (2.3b) may be written

h'=hR,(p,h) , 2.4

with R,(p,0) finite.’® Thus we decouple the two re-
cursion relations immediately by evaluating p’ as a
function of p alone. Then, by calculating the eigen-
values of the renormalization-group transformation
linearized about the fixed point, we obtain the neces-
sary information for calculating the critical-point ex-
ponents. Briefly, this is done in the following way:

The average of the total number of clusters on the
lattice, upon renormalization, should remain constant
up to a nonsingular term.’%37 Thus we may relate
the singular part of the average number of clusters,
G, (now taken per site) before and after renormaliza-
tion by

G ((p'—p*),h") = bG;((p —p*),h) , (2.5)

since the new lattice contains a factor of b9 fewer
sites than the original lattice.

Very near the fixed point we may linearize the
decoupled renormalization-group equations (2.3) to
obtain’®

(p'=p") =N (p=p") , (2.6a)
h,=)\hh y (26b)
with
_a
A, d |p=r" (2.7a)
=0
and
_dh’
Ap= ah |p=p* (2.7b)
h=0

Defining the scaling powers y, by
Ae=0b" (2.8)
we may rewrite Eq. (2.5) as [cf. Eq. (2.6)]

G (67 (p —p*),b""h) =b%G,(p — p*,h) . (2.9)
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All the usual percolation exponents may be deter-
mined in terms of y, and y,. This is because the
singular part of all the "thermodynamic" percolation
functions may be obtained by taking appropriate
derivatives of Eq. (2.9).3° For example, the singular
behavior of the "Gibbs potential," or the mean total
number of clusters, is given by

I 2-a

Gi(ph=0)~|p—p*I" 7 . (2.10a)

The "order parameter", the fraction of occupied sites
belonging to the infinite cluster, varies as

P(p,h=0) ~ —6&8%@— h=0~ (P —p") (2.100)
and
P(p=prpy <GP0 s ) 00

oh

The "susceptibility"”, which'is the mean cluster size,
diverges as

9*G;(p,h)

o o~ lp—p*177 . (2.10d)

S(p,h=0) ~

From the generalized homogeneous function form
of Eq.-(2.9) it follows that3®

2—a,=dly, , (2.11a)
Bp=(d—y)/y, , (2.11b)
8 =(d~y) [y . (2.110)

and

Yo=Quy—d/y, . (2.11d)

The "correlation function" exponents may also be
derived from y, and y, as follows. Near the fixed
point, the connectedness length &, diverges as

&~lp—p77 . (2.12)
Combining Egs. (2.6a) and (2.8) we have
(p'—p") =b"(p—p") . (2.13)

It follows on raising Eq. (2.13) to the (—v,) power,
that £,=b 7 P¢,. Comparing this with Eq. (2.1) we
find

vy=y . (2.14)

Furthermore, it is readily shown from scaling’® that,
by integrating C,(r) to obtain S(p), y,/v,=2—,.
Hence ‘

2—m,=2y—d . (2.15)

III. SMALL CELLS VERSUS LARGE CELLS

A. Calculations with small cells

We will now make our discussion concrete with a
few examples. We begin by discussing small cells on
various lattices. At this point, our concern is only
with renormalizing the occupation probability p, at
h =0. Thus the first step is to find the function
R,(p,h =0) of Eq. (2.3). The renormalization
transformation must reflect the fact that percolation
involves the formation of an infinite connected
network —that is, one that actually "gets across" the
entire lattice. Below the percolation threshold only
finite clusters are present. Thus we define a cell as
occupied if and only if it contains a set of sites such
that the cell "percolates".!® This determines R,(p,4)

for us. Different possible definitions for when a fi-

nite cell has percolated are considered in Refs. 18 and
22—-24, and Sec. IV of this paper. References 24, 29,
and this paper discuss the effect of such choices of
rule.

We demonstrate our approach first in one case
where the transformation is exact. For the d =1
linear-chain lattice we define an Fsite cell as occupied
if we can get across it. This requires that all the sites
be present. Thus!®

p'=R,(ph=0)=p' . 3.1)

Setting p’ = p, we find fixed points at p*=0,1. The
unstable fixed point at p* =1 determines p,. From
Eq. (2.7a) we find A, =/ Since the rescaling length
is b =1, Egs. (2.8) and (2.14) yield y,=1 and v, =1,
respectively. These are in fact the exact results.
For d =2 the simplest cell is the three-site cell on
the triangular lattice. Applying our rule, the cell is
occupied if all three sites are occupied or if any two

sites are occupied and one is vacant, since in both

cases we can get across. However, with one or no
sites the cell is vacant. Thus, '8

P'=R,(ph=0)=p*+3p2(1-p) , (3.2

with fixed points at p*=0, 1, and —;— This PSRG
therefore predicts p. =% for the triangular lattice,
which is in argeement with the exact results known
for this lattice.! Once again, from Egs. (2.7a), (8),
and (14), we calculate v,

v=Inv3/In(3)=1.3547 - - -, (3.3)

which is in excellent agreement with the series results
v, =1.34 £0.02 for the bond problem,* and v,
=1.3223% for the site problem.*® Furthermore, Eq.
(3.3) may be an exact result.’? Others, ! however,
have proposed that v, = % exactly. We will return to
this point in Sec. VI. Applying our transformation to
the square lattice with a length rescaling factor of

. b =2, our results are not nearly as good. In particu-
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lar we found'® v, ==1.64, about 20% larger than the
series result.

For bond percolation it is not as obvious how to
choose a cell that covers the lattice with bonds, and
rescales to another bond. We choose a simple eight-
bond cell on the square lattice [see Fig. 3(a) of Ref.
181. If the cell can be traversed horizontally, then
the renormalized horizontal bond is present, and
similarly for the vertical direction. We find'®

R,(p,h=0) =p>+5p*(1 —p) +8p°(1 —p)?
+2p*(1—-p)* (3.4)

with p*=0.5 (exact) and v, =1.43. The generaliza-
tion of this simple cell to the cubic lattice gives
p*=0.21 and v, =1.03, while numerical work
predicts® p. =0.2495 +0.0005 and v, =0.845 £0.015.

However, these d > 1 calculations all share one
negative feature. They are single-shot calculations,
whose approximation are uncontrolled. What is the
nature of this approximation?

B. The approximation: Why large cells

As a natural beginning, we have treated the
lowest-order approximation, using just a single cell in
our cluster. Thus, we require only one lattice proba-
bility p together with a field & Further, because the
Egs. (2.3) decouple, we are able to treat the probabil-
ity p alone, as we have done in Sec. III A.

We have assumed that the renormalized sites are
still random. Actually, the cells are not independent,
and additional coupling constants need to be intro-
duced to cancel this correlation effect. However,
finding a solution to the coupled Eq. (2.2) becomes
difficult when there are more than just a few ele-
ments in {p;}.

As an alternative to this approach of increasing the
space of coupling constants, we have retained the
single-cell cluster. However, this simple PSRG,
which might at first seem a poor approximation, may
be systematically improved by treating successively
larger cells.

In this single- or independent-cell approximation,
the connectivity within a cell (the volume) is treated
exactly. The approximation comes in at the inter-
faces between cells, where, upon renormalization, we
lose some actual connecting paths, and gain. other,
new, connecting paths. In Fig. 1 we see an example
of the problems encountered at the interface between
cells.

We note that with increasing cell size, the interfac-
ing problem plays a progressively smaller role, as it is
a surface effect (edge of a cell), whereas the connec-
tivity within a cell involves the full cell volume.
While these surface effects vanish as b tends to infin-
ity, the treatment of the ever-enlarging interior
voluime remains exact. Thus, intuitively we would

“cells"

FIG. 1. Illustration of the interfacing problem between
cells. Cells 4, B, and D are each connected from edge to
edge, and, by the connectivity rule described in the text, oc-
cupied upon renormalization ("cell sites" a, b, and d). Two
competing effects are illustrated: (i) 4 and B do not join
(by nearest-neighbor bonds alone) on the site level, yet a
and b are joined implicitly at the cell level. The introduction
of a new member of the set {p;}, p,,, would solve this
problem where p,,,, the probability of a nearest-neighbor
bond being occupied, would no longer be constrained to uni-
ty (Ref. 27). (ii) 4 and D are joined through nearest-
neighbor bonds on the site level. On the cell level @ and d
ought to be joined; however cis empty. Another member
of {p,-}, Pann» the probability of a next-nearest-neighbor
bond being occupied, would now be needed if we were to
follow this approach. Both these effects may be overcome
by either introducing additional members of {p;}, or by go-
ing to larger cells. In the example pictured here, b =3.

expect the approximation to become better as the cell
size increases. This is indeed borne out, as we will
see in Sec. V.

An illustration of how this surface effect becomes
negligible is given in Fig. 2. Let X; be the average
fraction of sites belonging to the spanning cluster of
cell I The probability that two such spanning clus-
ters do not join at one point on the interface is
(1 —-X4X3g). If the sites belonging to the spanning
cluster were independently distributed—which strictly
speaking they are not—we could write the probability
that the two spanning clusters touch nowhere along
the interface as (1 — X, X5)*"“™", where 6%V is the
number of sites at which cells 4 and B meet. As
long as X, #0, Xz #0 (i.e., the two cells each con-

_tain a spanning cluster, and are therefore "occupied"),

we find*!

s _g (3.5)

bli_r.r:o (1—X,X3)

Such a form implies that, as the cell size tends to in-
finity, there is no chance that two occupied celis do
not link together. We expect a form similar to this to
hold true, even though the sites in the spanning clus-
ter are not independent.

Likewise, the probability of having two occupied,
diagonally opposite, cells (e.g., cells 4 and D of
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FIG. 2. Interfacing problem diminishes with increasing
cell edge, b. It is likely that the probability of two occupied
nearest-neighbor cells not linking vanishes as b — . A dis-
cussion of why this might be is given in the text. A particu-
lar realization is shown here, with sites belonging to the
spanning clusters drawn as shaded squares, and occupied
sites (not part of the spanning clusters) drawn as shaded cir-
cles. Open circles represent empty sites.

Fig. 1) connected through an empty cell (e.g., C) van-
ishes as b —oo. This is so because at large b, and at
a value of p high enough that 4 and D are occupied,
a cluster in C sufficiently branched to connect to both
the spanning clusters in 4 and D will tend also to be
branched enough to span C. This effect increases as
b — oo because, on the average, larger clusters will be
needed to connect 4 to D, and these are more likely
to span C.

We have argued that the surface effects diminish
as we increase b. In addition, our PSRG transforma-
tion treats the interior connectivity correctly for all b.
To see that the volume is treated properly, and that
the rescaling transformation (of getting across)
makes sense, consider an infinite cell. The cell now
comprises the whole lattice. Since the renormalized
site-occupation probability p’ is the probability of
spanning the lattice, we find p'=0 if p < p, and

'=1if p > p.. Thus p'=p=p*at p=p.. The
transformation (if we could determine it for an infin-
ite lattice) produces the exact p,. Although the
transformation R,(p,h) is itself singular when & = oo,
we will treat finite values of b and extrapolate the
results to the limit & — oo,

A further reason why we expect this limit to be
correct stems from our PSRG treatment of percola-
tion on the linear-chain lattice with further-neighbor
bonds (cf. Appendix A). Here the exact result for v,
obtains in the limit of the cell size tending to infinity.

IV. CALCULATION OF CLOSED-FORM AND
MONTE CARLO RECURSION RELATIONS

In this section we will be dealing with the PSRG
equations obtained by using the two coupling con-

stants p, the site occupation probability, and 4 the
probability of a ghost bond. We will study the
transformations

p'=R,(b:p,h) (4.1a)
and
h'=hR,(b:p,h) , (4.1b)

both for their general properties, and specifically for
methods to calculate them for various values of the
rescaling length b. Calculation of these recursion re-
lations, however, involves first defining the above
two transformations, R;.

A. Definition of the rescaling transformations

On physical grounds R, is any cell-to-site transfor-
mation which uses connectivity of the cell as the
determining factor for a renormalized site being occu-
pied. We have defined three such "rules" for the
square lattice, though they apply equally well to other
lattices with "square-like" cells (e.g., four-site, nine-
site, ..., b%site cells on the triangular or square
matching lattices). - These rules state that a cell is oc-
cupied if and only if there is a spanning cluster® in
the cell, which, for rule Ro: spans the cell either hor-
izontally or vertically; R;: spans the cell in a fixed
direction (e.g., horizontally); or R,: spans the cell
both horizontally and vertically.

These rules are not independent of one another, as
we may, for example, calculate Ro(p,h) as the proba-
bility of spanning horizontally plus the probability of
spanning vertically, minus any over-counting of clus-
ters that span horizontally and vertically. Thus,

Ro(p,h) =2R(p,h) —R,(p,h) . 4.2)

As a result, it is sufficient to study only two of these
three rules in detail. We will consider primarily R,
and R;.

Furthermore, at # =0, these functions obey match-
ing relationships

Ri(p) +R¥(g) =1 (4.3a)
and
Ry(p) +R{(g) =1 , (4.3b)

where ¢ =1 —p, and the M means that the rule is to
be applied to the matching graph of the original cell,
and hence to a study of the matching lattice** (see
Fig. 3).

"We may understand Eq. (4.3a) by considering each
configuration of occupied ("black") and vacant
("white") sites: if we can span the cell horizontally
with black sites, then they form a blockade on the
matching lattice for a vertical path by white sites [see
Fig. 3(a)]; if there is no black path horizontally, there
is always a vertical path with white sites on the
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(a)

FIG. 3. Configurations of two species of sites, blacks
(solid circles) and whites (open circles), on a 5 X5 cell.
Solid lines represent bonds on the square lattice, L. Dashed
lines are additional bonds which are present in the square
matching lattice, L™. In (a), a horizontal spanning path of
black sites (in this case spanning both L and L™M) blocks any
vertical path by white sites on the matching lattice (either
LMor L). Part (b) shows part of a configuration, where
blacks do not span horizontally on L, but whites do span
vertically on LM. Note, it we were to interchange L and
LM there is a horizontal path of blacks, but now there is no
longer a vertical path of whites on LM,

matching lattice [see Fig. 3(b)]. Thus we get across
one and only one way—either horizontally with
blacks on the lattice, or vertically with whites on the
matching lattice—and hence Eq. (4.3a) follows.

Equation (4.3b) is similar. Now if black sites span
in both directions, white paths on the matching lattice
cannot span in either direction; if black sites do not
span in both directions, white sites will span in one
or the other direction on the matching lattice.

This matching property implies that the fixed point
of R,, and the fixed point of R, on the matching lat-
tice, are complements (i.e., they add up to 1). This
follows on evaluating Eq. (4.3b) at p*, the fixed point
of Rz,

R —-p")=1—-Ry(p*)=1-p* , (4.4)

which shows that (1 —p*) is the fixed point of Ry on

‘the matching lattice. Also, the eigenvalues of the

two transformations, on their respective lattices, are
equal. This follows again from Eq. (4.3b), first tak-
ing a derivative with respect to p, and using —d/dq
=d/dp to obtain

dR2 (p)

_ dR{Y (g)
dp *

- » @.5)

g=1-p*

Thus the scaling power y, =, is the same on both
lattices.

By the same reasoning, the fixed point obtained
with R, on a particular lattice is complementary to
the fixed point R, gives on the matching lattice;
again y, is the same for the two lattices. The above
results are consistent with the matching property*
that p, + pM=1 (where pM is the critical concentra-
tion on the matching lattice) and is also consistent
with universality, in that y, is independent of lattice
type in a given dimension d. We also note that on
any self-matching lattice (like the triangular lattice)
the use of R; must always give p*= %, since
R (p=3)+R, (g=1—p=7) =1, implies
R, (%) = —12— This explains Yuge’s result? of p* = %
on the triangular lattice.

We turn now to the transformation of Eq. (4.1b)
for the ghost field. To define R,, we consider the
connectivity from a cell to the ghost site. We must be
able to get into the cell (probability p’ on the cell lev-
el) and to the ghost (probability 4’ that the renormal-
ized ghost bond is occupied). On the site level, how-
ever, there are several ways one can get into the cell,
and thus we have defined three rules for lattices with
square cells. We must reach the ghost by approach-
ing the cell: H,: from a single direction (e.g., hor-
izontally); H;: either horizontally or vertically; or Hy:
from any of the four edges. We will consider pri-
marily H, in this paper.

TABLE I. Renormalization-group transformation p’ =Rp(b:p,h =0), evaluated in closed form on the square lattice, using

rule Ry, for b=2, 3,4, and 5. Note g =1—p.

b Rp(b:p.h =0)

pt+4p’q +4p’q

P2 +9p8q +36p7q2 +82p8q> +93p3q* +44p*q® +6p3q°

4 plo+16pg +120p"q% +560p"3 ¢ +1818p'2g* +4296p'1 g5+ 7196p'0q® +8136p°¢" +5988p3¢% +2784p7¢°

+780p%'° +120p%¢"" +8pq'?

5 p¥+25p¥q +300p3¢? +2300p2¢> +12650p2'¢* +53 128p245 +176 992p'%¢% +478 316p'8¢7 +1 054923 p!7 48

+1880864p¢°+2666712p"5¢'% +2963364p"¢!" +2556058p"3¢'2+1699 665p'2¢'3 +865132p'1 4"
+333630p'% "5 +95845p%¢'6 +19916p%¢'7 +2836p7¢'8 +248p°¢"° +10p°¢%°
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TABLE II. Renormalization-group transformation p’ = Rp(b:p,h =0), evaluated in closed form
on the square lattice, using rule Ry, for b =2, 3, and 4.

b R, (bip.h =0)

2 pt+4pig +2p%¢?

3 pP+9p%q +36p7¢% +67p%¢% +59p3q* +22p%q +3p3¢°

4 pl416p"g +120p"g? +560p3¢> +1752p"2¢* +3736p" ¢° +5414p1%% +5272p%"
+3416p%¢® +1452p"¢° +390p%q'1° +60p3¢'! +4p4q12

Which rule we choose from each set (R, Ry, or
Ry, Hy, H,, or Hy), for any given b, affects the form
of our recursion relations (4.1a) and (4.1b) and
hence p*, A,, and A4. All, however, lead to reason-
ably good approximations. More significantly, the
trend as b — oo of all these rules is to the same ulti-
mate value of p., and the scaling powers y, and yj.
Thus, for large cell PSRG’s, one is free to choose
those connectivity rules for which calculations are
most readily performed (generally Ry and H1).

B. Closed-form enumeration of the recursion relations

The closed-form, 4 =0, polynomial recursion rela-
tions for p’ [cf. Eq. (4.1a)] according to Ry, R;, and
R, on the square lattice, are listed in Tables I-III,
respectively. For R, and R, we have calculated the
cases b =2, 3, and 4 while for Ry we have also calcu-
lated b =5. By Eq. (4.3), these recursion relations
(with the roles of p and q reversed) also apply to the
square matching lattice.

The closed-form, general A, recursion relations for
h' [cf. Eq. (4.1b)] according to H,, H,, and H, on
the square lattice are listed in Tables IV—VI. We
have calculated these recursion relations for 5 =2, 3,
and 4.

To show how these recursion relations are ob-

tained, we demonstrate the calculation for the 2 x 2
cell using Rp and H,. Unlike the recursion relations
in Tables I-III, here we also include 4 in the p’ cal-
culation, in order to obtain the full, coupled set of
equations. A 2 x 2 cell, with additional ghost bonds,
is transformed into a renormalized site and a renor-
malized ghost bond as in Fig. 4.

The calculation of the renormalized site-occupation
probability p’ now reduces to the enumeration of the
set of all possible configurations of sites and ghost
bonds that span the cell. Using R, we obtain

p'=p*+4p°q +4p*q* +2p%q*h? . (4.6a)

In the first three terms on the right, we have
enumerated all the ways of traversing the cell for
which no 4 bonds are required. In these cases, the
site configuration alone spans, and so explicit
enumeration of all the possible ghost-bond states
simply provides a factor of unity. Thus, we only con-
sider 4 when it is explicitly needed to span. The p*
term gives the probability that all four sites are occu-
pied, and this configuration certainly spans the cell.
The term 4p3q corresponds to the four possible con-
figurations which are missing exactly one site. Each
of these configurations occurs with probability p3gq,
and each spans the cell. For two sites missing, there
are six possible configurations, four of which enable
one to traverse the cell by R, regardless of the A

TABLE III. Renormalization-group transformation p’ =Rp(b:p,h =0), evaluated in closed form
on the square lattice, using rule R,, for 6 =2, 3, and 4.

b R,(b:p,h =0)

2 pi+dpig
3 pP+9p8q +36pq% +52p%q> +25p°¢*

4 pl+16pg +120p"g% +560p3¢> +1686p'2¢* +3176p'1¢° +3632p1%¢5 +2408p%¢"

+844p3¢% +120p7¢°
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TABLE 1V. Recursion relations for the ghost field using rule Hy, for cells of side b =2, 3, and 4. We use the
notation Ay =[1-(1 — h)!1 for the probability of reaching the ghost from a group of /sites. Note hy=h. This form
is useful for determining X, since the linear part of A, is /h.

b p/hl

2 pthyt+4pighs +p2q*(2h +3hy)+2pg*h

3 pPhe+9p3qhs+pTq*(2he +34h;)
+p8q3(3h +3hy+3hy+5hs +13hs+56h6)
+p3¢*(15h +14h, +15h3 +25h, +51hs)
+p*q*(30h +25h,+25h3+31hy)
+p3¢%(30h +20h, +14h3)
+p2q7(15h +6h,) +3pqgth

4 p16h16+16p'5qh|5+p”q2(2h|3+118h14)
+pR¢3(2hyg+4hy +32hy, +522h3)
+p2q*(4h +6hy +6h3+Thy+6hs+8hg +8h,+13hg +28hg +54h,g+210h,, +1469h,;)
+p"q*(44h +62h, +62h3 +T0hs +T0hs +86hg +108h7 + 166 hg+ 288 hg + 730, +26704,,)
+p'%g(220h +290h, +288h3+ 316k, +338 hs +410he+532h, +806hg +1500h9 +3242h,¢)
+p%q"(660h +808h, +786h; +834hs +904hs +1066he +1368h,+ 19865 +2808hy)
+p8q®(1320hn +1484h,+1386h; +1398h,+1460hs +1606hs +1850h; +1871hg)
+p"q°(1848h +1876h, +1636h; +1518h, +1432h5 +1328he +1010h,)
+p%¢'°(1848h + 1652k, +1292h3 +1040h, +T790hs +462h¢)
+p%¢"'(1320h +1000/h, +658h; +410h, +188hs)
+p%q'2(660h +398h, +196h; +71h,)
+p3q3(220h +94hy +26h3) +p2q'*(44h +10h,) +4pq'Sh

TABLE_V. Recursion relations for the ghost field using rule H,, for cells of side b =2, 3, and 4.
We define #,=[1—(1—h)"].

b p'h'

2 pthya+apighy +prqr(h +5hy) +3pgPh

3 pPho+9p3qhg+pTq*(hg+35h7) +p°q3(hs+2hs+8hs+T73h¢)
+p3¢*(h +5h, +10h3 +22h, +88hs) +p*q>(8h +20h, +32h5+65h,)
+p3q%(18h +29h, +33h3) +p2q" (167 +14h,) +5pgih ’

4 pléhm + l6p’5-qh15 +p”q2(h13 +119h14) +pl3[]3(h|0 +2h“ + 17h12 +540h13)
+p2g*Che+2h7+5hg +14hg +28h 1o+ 122k, +1648h,,)
+p“q5(h3 +4h4 +11h5 +24h6 +48h7 +90h8 + 166/19 +500h|0 +3524hu)
+p1% (h +Thy, +26h; +61hs +117Ths +209h¢ +344h; +568hg +1300h¢ +5375h )
+p°%q"(15h +70hy + 181 h3 +335h4 + 549 hs +845he +1262h7 +2262 hg + 5920 k)
+p3¢8(84h +298h, +616h3 +974hs + 140455 +1921 he +2758 h, +4806 hg)
+p7¢°(252h +712hy+1221h3 +1670h4 +2089hs +2477 hg +2983 h7)
+p%¢'%(462h +1050h, +1490h; +17094, + 1724 hs + 1489 he)
+p3q'" (546 h +982h, +1109h3 +973hs +632h5)
+p*q'2(420h +570h, +464h; +240h,)
+p3¢"3 (2040 +188h, +84h;3)
+p2q"*(5Th +27hy) +TpgtSh
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TABLE VI. Recursion relations for the ghost field using rule Hy, for cells of side 6 =2, 3, and

4. We define iy =[1-(1-h)].

b
2 ptha+4apiqh; +6prgth, +4pgih
3 pPhe+9p qhy +36p7 g h, +84p8q3he +p3qt (hy +125h5) +p%q3(4h3 +1224,)

+p3q%(6hy +78h3) +p2q7(4h +32h,) +8pqth

4 p16h16 + l6p’5qh15 + 120[714(]2’1]4 +560p‘3q3h13 +p12£]4(4h“ +1816h|2)
+p"q5(44h 1y +4324 ) +p0q%(6hg +216hg + 7786 A1)
+p°q"(4hg+48h, +628hg +10760h,)
+p%3(hy +24hs+168hg +1208 4, +11469hg)
+p7q°(4h; +60h, +336hs +1624he +941647)
+p%q'%(6h, +80h;3 +420h, +1568h5 +5934h¢)
+p3q" (4h +60h, +336h3 +1096h, +2872h)
+p*q'2(24h +168h, +548h3 +1079h,)
+p3q3(48h +188h, +320h3) +p2q'*(40h +T74h,)

+12pgh

bonds. The two remaining configurations, in which
only diagonally opposite sites are occupied, do not al-
low one to span the cell by nearest-neighbor bonds
alone. However, we do get across these two config -
urations if we go from one site to the other via two
ghost bonds,* and thus we obtain the 2p2g2h® term
of Eq. (4.6a).

The analogous calculation for rescaling the ghost-
bond probability [cf. Eq. (4.1b)] is obtained by
enumerating the configurations which enable us to
reach the ghost. Using H, we obtain

p'h'=p*1—(1—=m*+4p*q[1 —(1-h)3]
+5p2¢2[1 — (1 —h)2] +p¢*h +3pg°h . (4.6b)

The left-hand side reflects that we must be able to
enter the renormalized site, and travel up the renor-
malized ghost bond, to reach the ghost (cf. Fig. 4).
On the right-hand side, the derivation of the p2q?
term will suffice as a demonstration of the method of
calculation. There are six possible configurations
with two sites occupied and two vacant. In five of
these, we reach both the occupied sites by entering
the cell from the two directions indicated in Fig. 4.
The probability that neither ghost bond associated
with these sites is occupied is (1 — /)2 Hence

[1—(1-h)?] is the probability that we do reach the .

ghost, given one of these five-site configurations.

Thus we obtain the 5p%¢?[1 — (1 — 4)?] term in Eq.
(4.6b) above. In the one remaining two-site config-
uration (sites 2 and 4 of Fig. 4 occupied) the proba-

bility that we reach the ghost is controlled by the sin-
gle ghost bond emanating from site 2. Hence the
term p?q®h of Eq. (4.6b) results.

This sort of manual enumeration procedure was
used to calculate the Ry, R, and R, recursion rela-
tions for b =2 and 3, and the H;, H,, and H,4 recur-
sion relations for  =2; for any larger cells, this pro-
cedure becomes prohibitively time consuming and er-
ror prone when done by hand. For this reason we
have written computer programs which enumerate all
possible configurations. By using a cluster multilabel-

s ghost

FIG. 4. Illustration of the rescaling of a 2 X2 cell. The
four original sites, each occupied with probability p, are
transformed into a single renormalized site occupied with
probability p’. If the original cell can be traversed in the
directions indicated, the renormalized site is occupied ac-
cording to rule Ry. The ghost bonds, which join to every
site, are occupied with probability & The probability of
reaching the ghost, coming from the directions indicated,
rescales the ghost bond according to H, (see text).
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ing algorithm, * we determine if spanning by Ry, R,
or R, occurs, and how many sites (and hence poten-
tial ghost bonds) are wetted by H;, H,, and Hj.
However, even the computer can take us only a little
further in these calculations. The 26? configurations
possible for a b X b cell, increases so rapidly with b,
that only two additional cell sizes could be calculated
in closed form. To illustrate the times involved, on a
CDC 6600 computer calculation of the closed-form
Ry recursion relations takes approximately 0.5 sec for
b=3, 60 sec for b =4, and 12 hours for b =5! For
cells of size larger than S by § it is simply not feasible
to calculate these recursion relations in closed form.

C. Monte Cario calculation of the recursion relations

The physical interpretation of p’ as the probability
of spanning a cell whose sites are occupied with prob-
ability p, makes a numerical, Monte Carlo, evaluation
of Eq. (4.1a) quite feasible for cells of considerably
larger size than we could treat in closed form. We
have obtained, in this way, an accurate numerical
form of the transformation p’= R,(p) using R, and
R, for b as large as 500 (cells of 250000 sites). - This
procedure is a Monte Carlo renormalization group.*®

The technique we have used is to take an array
(cell) and fill it with random numbers in the interval
(0,1). Our Monte Carlo program then asks the ques-
tion, "At what p does this array first percolate?"
(those sites whose random number is less than p be-
ing wetted, and the rest not). Repeating this pro-
cedure thousands of times, we obtain a distribution
of p values which approximates the underlying proba-
bility density function, L (b:p). We plot the numeri-
cal distribution which we obtain*’ with R, for a few
values of b, in Fig. (5a). To obtain a feeling for how
good such Monte Carlo calculations are, we show in
Fig. 6 both the exact and the Monte Carlo results*’
for L(b=5:p). (Using R, the analogous pictures
are qualitatively the same, though with a somewhat
smaller shift in the position of the peak as a function
of b, primarily at small b.)

Our PSRG transformation defines p’ as the total
probability that we span at p, and thus is the cumula-
tive distribution function, which is related to L (b:p) by

/4
=Ry (bph=0) = [ L(b:p) dp . @.7)

Thus the eigenvalue A\, = dR,/dp |p_p* =L (b:p*).
However, because numerical approximation of

L (b:p) amounts to the creation of a discrete set of
points, Eq. (4.7) becomes a sum.

In Fig. 5(b) we plot R,(b:p,h =0) obtained in this
way using Ry, for the same values of b shown in Fig.
5(a). In Fig. 6, the Monte Carlo curve R,(b=5:
p,h =0) is seen to be indistinguishable from the
closed-form result.

90—

60— 500

Q!
0.50 0.55 0.60 0.65

FIG. 5. (a) Probability density functions, L (b:p), for
b =32, 100, 200, and 500. L (b:p)dp gives the probability of
first spanning a b X b cell in the range from pto p +dp.
These curves were calculated numerically by Monte Carlo
methods, using R (spanning in either direction). (b) The
renormalized probability p' =R (b:p,h =0) of spanning a
b X b cell using Ry, for the same values of b as in (a).
These curves are obtained numerically by integrating (sum-
ming the histograms) L (6:p) of part (a). The intersection
of these curves with the line p’ = p (dashed) gives the fixed
point value p* of these transformations. The slope of these
curves at their respective values of p* is just L (b:p*(b)),
and is the "thermal” eigenvalue A, of the PSRG from which
we calculate v, =Inb/In A,

Next, to use Monte Carlo methods to calculate Eq.
(4.1b) numerically, we note that in general [cf. Eq.
(4.6b)]

P =3 pll—(1=n"1=1-1-n" , 48

config

where p; is the probability of a class of site configura-
tions, and #»; is the corresponding number of sites
reachable in this type of configuration. Thus, n; is
the number of ghost bonds that need to be blocked if
we are not to get to the ghost site. Linearizing
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FIG. 6. Comparison of the Monte Carlo determined
probability-density function L (b =5:p), and cumulative dis-
tribution function Rp(b =5:p,h =0), with the exact one for
Ry. The Monte Carlo version is calculated by binning the
spanning values of p into 100 bins of width 0.01 each, and
averaging over adjacent bins. The resulting curve (here
shown only as data points) is virtually indistinguishable from
the exact curve (solid). R,(b=>5:p,h=0) is simply the sum
of L(b=>5:p) up to p. It is thus independent of binning,
and as may be seen, is also indistinguishable from the
closed-form (solid) curve.

Eq. (4.8),

h'={(n)h/p . (4.9a)
Thus, a Monte Carlo calculation of
A=dh'/dn pp® =R, (b:p*,0) = (n;)/p*  (4.9b)

h=h*=0
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involves only the calculation of the average over lat-
tice configurations, of the number of sites wetted
(n;) by our particular rule. We do not need to ran-
domly occupy ghost bonds as well, as these are treat-
ed exactly by Eq. (4.8).

V. LARGE-CELL PSRG RESULTS

We present the results of our PSRG for various
cell sizes on the square lattice in Tables VII-IX. The
results of rescaling the site-occupation probability ac-
cording to the transformations Ry and R, are pre-
sented in Tables VII and VIII, respectively. The
transformation H, for the field leads to the eigen-
values A, and the scaling powers y, given in Table
IX.

We stop here for a moment to discuss operationally
how we obtain A\, and A\, from the Monte Carlo
PSRG. Recall that [see, e.g., below Eq. (4.7)]

A, =L (b:p*), where L(b:p) is the probability densi-
ty for spanning a b X b cell at concentration p. Nu-
merically we estimate L (b:p) by sampling random
arrays for their spanning thresholds, and then bin-
ning together the number that span in a given inter-
val. This procedure generally results in a somewhat
jagged L (b:p). However, after thousands of Monte
Carlo realizations, the jaggedness becomes consider-
ably less severe [cf. Fig. 5(a)]. If the curve is too
narrow (not enough resolution) or too wide (too few
realizations per bin), we rebin the data. To smooth

TABLE VII. Exact and Monte Carlo results from p’=R,(b:p,h =0) using R on the square lattice. The quantities (p) and
o refer to the mean and standard deviation of the underlying distribution L (b:p). The fixed points of the PSRG transforma-
tions are labeled p*. The eigenvalues Ay—and derived from them the exponents vyis—are determined from L (b:p*). The vis
refers to the Monte Carlo method of estimating L (5:p*) by binning and averaging data, and then visually fitting a smooth
curve through the data points. We obtain )\f as a closed-form approximation to A, from a B distribution having the same (p)
and o as L (b:p). From the small cells we see that A,F and vf are useful approximations. For large cells, they serve as unbiased
estimates of )\p(b) and vp(b). Each Monte Carlo realization is a calculation of the value of p at which a b X b array of random
numbers first percolates.

b No. realizations {(p) o p* )\‘)’is by v,‘,’is vp
2 Exact 0.4667 0.22111 0.3820 1.528 1.522 1.635 1.650
3 Exact 0.4865 0.17521 0.4726 2.069 2.059 1.511 1.521
4 Exact 0.5041 0.14755 0.5093 2.543 2.523 1.485 1.498
4 99980 0.5036 +0.0010 0.14767 +0.000 30 0.5076 £0.0020 2.542 +£0.025 2.520 1.486+0.016 1.500
N Exact 0.5170 0.128 39 0.5290 2.979 2,950 1.474 1.488
5 106 040 0.5168 £0.0007 0.12816 +0.00025 0.5282 +0.0008 2.980 +0.020 2956 1.474 +0.009 1.485
8 92975 0.5395 £0.0005 0.09447 +0.000 20 0.5552 £0.0015 4.183 +£0.035 4.108 1.453+0.009 1.472
16 58250 0.5623 +0.0002 0.058 50 £0.000 15 0.5749 £0.0010 6.775 +0.057 6.772 1.449 +£0.007 1.449
32 15585 0.5742 £0.0002 0.03568 +0.00021 0.5826 £0.0004 11.06 +0.10 11.16 1.442+0.005 1.437
64 6210 0.5824 +0.0002 0.02133 +£0.00019 0.5875 £0.0003 18.72 +0.16 18.69 1.420+0.004 1.420
100 3855 0.5856 +£0.0003 0.01486 +£0.00018 0.5894 +0.0004 26.87 +0.35 26.83 1.399+0.006 1.400
150 3195 0.5875 +0.0003 0.01136 £0.00015 0.5905 £0.0004 36.40 +0.65 35.11 1.394+0.007 1.408
200 1830 0.5884 +0.0004 0.00924 +0.00016 0.5907 £0.0008 42.19 +1.0 43.17 1.416+0.009 1.407
500 2010 0.5905 +0.0002 0.004621 +0.000076 0.5918 +0.0005 87.35 *1.0 86.33 1.390+0.004 1.394
oo cee 0.5931 +0.0006 ce 0.5932 +£0.0007 cee -+ 1.354+0.012 1.357
(extrap) +0.010
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TABLE VIII. Exact and Monte Carlo results from p’ =Rp(b:p,h =0) using R;. For a description of the quantities listed see

Table VIIL
b No. realizations (p) T »* Ay Py Vs vB
2 Exact 0.5333 0.22111 0.61804 1.528 1.522 1.635 1.650
3 Exact 0.5524 0.18138 0.61926 1.967 1.970 1.624 1.621
4 Exact 0.5640 0.15483 0.61935 2.370 2.381 1.607 1.598
4 80000 0.5635 +0.0010 0.15457 £0.00034 0.6181+0.0015 2.395+0.035 2.386 1.587 +0.027 1.594
5 80000 0.5713 £0.0010 0.13542 £0.00031 0.6186 £0.0015 2.777 £0.035 2.775 1.576 £0.019 1.577
32 7995 0.5914 £0.0006 0.03946 +0.00033 0.6019+0.0012 10.19 +0.19 10.08 1.493+0.012 1.500
64 6495 0.5926 £0.0004 0.02311 £0.00021 0.5988 +0.0004 16.83 +0.25 “17.24 1.473 +0.008 1.461
100 2880 0.5923 £0.0004 0.01676 £0.00023 0.5968 +0.0005 22.95+0.50 23.79 1.470+£0.010 1.453
150 1725 0.5927 £0.0005 0.01227 +0.00022 0.5957 +£0.0005 32.51 +0.65 32.50 1.439+0.009 1.439
200 1005 0.5920 £0.0008 0.00957 £0.00022 0.5947 £0.0010 41.13 +3.0 41.68 1.426+0.028 1.420
500 1005 0.5926 +0.0005 0.00510 £0.00012 0.5939+£0.0010 789 1.5 78.2 1.423 £0.006 1.426
oo ce 0.5931 +0.0006 - 0.5930 £0.0007 s -+ 1.340+£0.025 1.352
(extrap) +0.015.

the curve further, we average over neighboring bins.
Finally, we draw a smooth curve through the distri-
bution, and thereby obtain an estimate for L (b:p*).
These estimates are marked Ay in Tables VII and
VIIL.

The error bars on A\ys—and in fact on all our
Monte Carlo data are derived by comparing the
values obtained using different subsets of the data
and taking the standard deviation. For the visual es-
timate of A, in particular, we have also compared the
results obtained with different binnings of the same
data. For each subset or rebinning of the data, the
visually placed smooth curves through the distribu-
tion provide an additional measure of the error bar,
since the less jagged the distribution the less uncer-
tainty we have in placing the smooth curve.

There is, however, a certain degree of subjectivity
in finding the best smooth curve to fit L (b:p). For
this reason we seek a closed-form distribution which
could be used to approximate L (b:p), from which we
could then obtain objective estimates of A,. Such a
closed-form distribution should ideally have parame-
ters which could be fit to those properties of L (5:p)
that we can calculate most accurately. In particular,
we are able to calculate very accurately the mean (p)
and the variance o= ({p?) — (p)?) of L(b:p). Our
first inclination, to use a Gaussian to fit L (b:p), in
fact works reasonably well for very large b. That it
works less and less well for smaller b is not surpris-
ing, as a Gaussian is unbounded in its domain,
whereas L (b:p) is only defined for p €[0,1]. Itis
pointless to have an unbiased estimate for A, based
on such a model distribution, if it is clearly worse
than the value of A, obtainable visually from the
Monte Carlo for the true distribution. Furthermore,

it is difficult to know when & is sufficiently large that
we may trust the value of A, obtainable from the
Gaussian.

We have instead turned to the 8 distribution,*® de-
fined by

Tltm  mo(j_yym1 gsx<1

Bun () = 15T 0

5.1

The mean and variance of this distribution are related
to the parameters n and m by

(x)y=m/(m +n) (5.2a)
and

at=mn/l(m+n)?*(m+n+1)] , (5.2b)
and through the inverse formulas

n=[{x)(1-(x))—a*1(1=(x))/o?  (5.3a)
and

m=n{x)/(1-(x)) . (5.3b)

For large b the B distribution B,,(p) agrees exceed-
ingly well with both the Monte Carlo data and the
Gaussian approximation. However, even for small
b—where we have exact expressions for L (b:p) —
B,,,(p) mimics the overall shape of the actual func-
tion almost perfectly.

One characteristic of the fit is worth noting, how-
ever. Whereas p.y, the value of p at which the dis-
tribution is a maximum, and the mean, {(p), are dis-
tinct for L (b:p), the maximum of B,,(p) is forced
to occur at (p). Because we adjust n and m so that
the means of the two distributions coincide, we effec-
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tively shift the maximum of B,,(p) over from the
maximum of L(b:p) by ({p) —pmax). Furthermore,
because p* lies quite close t0 pmax, Where L (b:p) is
essentially stationary, we make little error in assum-

ing

)\,,=L(b1p*) ZL(b:pmax)
= [Bnm(p)]max=Bnm( <p>) .

PETER J. REYNOLDS, H. EUGENE STANLEY, AND W. KLEIN

(5.4)

TABLE IX. Results from rescaling the ghost field using //,. Where error bars are not shown, the errors are smaller than the

last significant digit shown.

I

b

No realizations

p >‘h Yh Mp
2 0.592 Exact 3.834 1.9387 0.1226
2 0.593 Exact 3.834 1.9390 0.1220
2 0.594 Exact 3.835 1.9393 0.1214
3 0.592 Exact 8.317 1.9282 0.1436
3 0.593 Exact 8.322 1.9287 0.1426
3 0.594 Exact 8.326 1.9291 0.1418
4 0.592 Exact 14.37 1.9225 0.1550
4 0.593 Exact 14.38 1.9231 0.1538
4 0.594 Exact 14.39 1.9236 0.1528
5 0.592 80000 21.92 1.918 0.1632
5 0.593 80000 21.94 -1.919 0.1620
5 0.594 80000 21.97 1.920 0.1608
8 0.592 80000 53.45 1.913 0.1732
8 0.593 80000 53.55 1.914 0.1715
8 0.594 80000 53.64 1.915 0.1699
16 0.592 80000 198.3 1.908 0.1843
16 0.593 86000 199.0 1.909 0.1816
16 0.594 80000 199.7 1.910 0.1791
32 0.592 30000 733.6 £0.2 1.904 0.1925 +£0.0002
32 0.593 9000 738.8£0.2 1.906 0.1884 +0.0002
32 0.594 39000 743.7 £0.1 1.908 0.1846 +0.0001
64 0.592 11190 2722.5+2.0 1.902 0.1964 +0.0003
64 0.593 21390 2753.1 £5.0 1.904 0.1911 +£0.0009 *
64 0.594 20190 2785.2£4.0 1.907 0.1855 £0.0007
100 0.592 9008 63105 1.900 0.2000 +0.0003
100 0.593 10388 6426 + 15 1.904 0.1920 +0.0009
100 0.594 9008 6533 +10 1.908 0.1849 +0.0007
150 0.592 4008 13497 £20 1.898 0.2040 £ 0.0006
150 0.593 5418 13908 £70 1.904.+0.001 0.1920 +£0.0020
150 0.594 2508 14224 £75 1.908 +0.001 0.1831 +£0.0021
200 0.592 1008 23233 £20 1.8975 0.2051 £0.0003
200 0.593 2088 24039 £ 80 1.904 +£0.001 0.1922 £0.0013
200 0.594 1008 24821 75 -1.9099 £0.001 0.1801 +0.0012
500 0.592 660 128960 + 50 1.893 0.2130 +0.0001
500 0.593 675 137256 +750 1.904 +0.001 0.1930 £0.0018
500 0.594 672 144980 + 500 1.912 £0.001 0.1754 £0.0012
oo 0.592 —oo )
(extrap) 0.593 1.898 +0.003 0.204 £0.006
0.594 2 0
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In fact, since frequently p* and (p) lie on opposite
sides of pmax, we would be badly underestimating X,
by evaluating the 8 distribution at p*. Estimates of
A, made according to Eq. (5.4) are listed in Tables
VII and VIII, under the column headed Af. Compar-
ison of Af with A} provides another estimate for the
Monte Carlo errors. .

This difficulty of obtaining an unbiased estimate is
not present in calculating A\, which is obtained
directly in the Monte Carlo program [cf. Eq. (4.9)].
The only ambiguity here is at what value of p to
evaluate A, =R,(b:p,h =0). The obvious choice of
p* leaves open the question of which
transformation— Ry, R, or R,—to use in determining
p*. Since p* is really only an approximation to p., we
use A, =Ry(b:p=p.,h=0).

Having thus obtained \, and X\, for various values
of b (cf. Tables VII-IX), we recall our earlier discus-
sion that larger cells should provide a better approxi-
mate PSRG transformation. This is indeed borne out
upon comparison with series results. We note that
our 5 X5 cell (with its 2%° states) is larger than any
cell used for closed-form PSRG calculations on the
d =2 Ising model. Nevertheless, the values of p. and
v, we obtain still differ from series estimates by
about 10% at this cell size. This is essentially the ac-
curacy one has come to expect from PSRG tech-
niques on these small cells. Of course, we have pro-
ceeded further and treated cells up to 500 x 500.
Here accuracy (as compared with series) is on the or-
der of 0.2% for p., and within a few percent for the
exponents. However, even b =500 amounts to a
one-shot approximation. We know that the error we
have introduced at the surface is "small" because the
cell is "large"; however, we have no quantitative way
to estimate how small is "small". Fortunately, we are
not limited to this one-shot approach.

A. Extrapolation of large-cell Monte Carlo PSRG results

Since we have PSRG results for a sequence of
values of b, we may extrapolate our results to the
b — oo limit.** Although the PSRG itself becomes
singular at b = oo, our PSRG calculations are always
for finite values of b. It is the result of successive
finite transformations which we then extrapolate to
obtain reliable estimates of the true values of p., yp,
and yp.

We extrapolate the p* sequence on a basis different
from that on which we extrapolate y, and y,. In both
cases, however, we discover power-law behavior.
Thus it is not surprising that our analysis looks quite
similar to the analysis of experimental data in the vi-
cinity of a critical point.

Let us consider first p*(5). We expect from
finite-size scaling considerations® that

~1/v

[pctrue_p*(b)]EAp*«-b po (5.9)

In Fig. 7 we plot p* vs b_l/v’, with a trial value of
v,=1.355. This leads to an extrapolation for p/™° at
the intercept b =0, As Fig. 7 shows, although R,
and R, give different values for p* at all finite values
of b, the extrapolations of these to b — oo essentially
agree, giving p;=0.5931 +0.007 —consistent with but
more accurate than the value p.=0.593 +£0.002
predicted by series.’l We have also used other trial
values for v, in Eq. (5.5). However, this is neither a
sensitive way to determine the exponent v,, nor does
the predicted value of p. change appreciably for a
range of reasonable choices of v,. Nevertheless, if
we have found p/™¢ accurately, we may return to Eq.
(5.5) to see if our choice of v, was a reasonable one.
In Fig. 8 we plot In Ap* vs In b, for Ry. Note that in
the asymptotic region of Eq. (5.5), the uncertainty in
Ap* becomes comparable to Ap* itself. Thus we use
Fig. 8 only to give us confidence that the exponent in
Eq. (5.5) is in fact v,.

For the extrapolation of the scaling powers y, and
v, We consider the eigenvalues A, calculated from
the PSRG. Recall that the scaling powers were de-
fined in terms of the eigenvalues through the relation

Ae=b% (5.6)

- where x is either p or h. We may write

Ae(b) = A (D) A(b) 5.7

thereby defining A4 (b), a "correction" whose magni-
tude (different from unity) is a measure of the accu-

— O T T T 16
0.10
B 1O, ro[i -132
pi/n | / b
0051~ 1ol O —64
0.04+ \ /
[e] /0 — 100
0.03—
\»9 O+ —150
0.02+ »o\« »—75* 200
0.0l FOA HOA —500
| | y {
0.57 0.58 0.59 4 0.60
0.593|
p*

FIG. 7. Extrapolation of the sequence of fixed point
p*(b) obtained from both rules Ry and R;. We have
chosen the trial value of v,=1.355 for this plot.
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FIG. 8. Log-log plot of Ap*=(0.5930—p%) against b, for
rule R There is initial curvature in this plot since
(p—p*) ~ bul/v" only asymptotically. For large b, the error
in Ap* is comparable to Ap* itself. Thus we seek only to
confirm that the exponent is v,. We find the inverse slope
of this plot to be 1.3 £0.1.

racy of the approximation. Then [cf. Eq. (5.6)]
yie=InA4(b)/In b +yg. Thus, if € is to ap-
proach y,™¢ as b — oo, we need only impose the rela-
tively weak condition that 4 (5) must either not tend
to zero or infinity, or do so no faster than logarithmi-
cally. If In 4 does not diverge, we assume In 4 —¢
or oscillates about ¢. Thus asymptotically,

peale = pive ¢ /in b (5.8a)
or
InAS(5) =yl b —c . (5.80)

Equation (5.8a) suggests that the sequence y,(5)
should be extrapolated against the variable //1n b,
and that in the asymptotic region where Eq. (5.8a) is
valid, this should be a straight line with intercept
ylrue - Equation (5.8b) suggests that a plot of In
AS(b) vs In bshould also be a straight line asymp-
totically, and this line should have a slope of y,™°.
These two equations are the basis of our extrapola-
tion for determining the critical exponents.

In Fig. 9 we plot In\,(b) vs Inb. For b <5 the
values shown are the exactly calculated eigenvalues
of the Rg transformation, while b =8 we have fit our
Monte Carlo data for Ry to a 8 distribution in order
to obtain A,(5) (see Table VII). From the inverse
slope of this line we obtain v, =1.357 £0.010. The
same plot using the visually estimated values of A,,
gives v, =1.354 £0.012. These values should be

103
()
L RO /
R —102
/
102 ot
>\p 10!
0's
10°
100§ [ RN !
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| 2 345 8 16 32 64100150200 500
b

FIG. 9. Eigenvalue )x,,(b) in a log-log plot against b.
Points marked E are evaluated in closed form, while the
remaining points are obtained from the 8 distribution. The
slope gives y, = v;l. Also shown is the inverse width ¢!
of L (b:p), which asymptotically should have the same slope.
These plots were obtained using rule R,

compared to the series values®®* referred to above.

Our error bars are obtained by comparing the results
of least-square fits with successive data points re-
moved from the set, and also with the values of the
individual data points varied within their own error
bars.

When we use R; as our "rule", we do not expect
(nor do we find) that A,(b), and hence v,(b), have
the same values as we obtained from Ro. For a
single-shot RG procedure this would be worrisome.
One might wonder which rule is "correct". However,
by extrapolating, as done here, we find that we ob-
tain virtually the same ultimate value for v, regard-
less of the rule. For R, the analogous plot to Fig. 9
gives v, =1.352 £0.015, while using visually obtained
estimates for A,(b) we find v, =1.340 £0.025.

In Fig. 10 we extrapolate y, by following Eq.
(5.8a). For both Ry and Ry we plot y, vs 1/1n b,
once again using the values of A\, determined from
the B distribution. Here too we find "rule indepen-
dence" in the limit & — oo. Asymptotically Ry heads
toward v, =y, ! =1.354 £0.014 while R, seems to
point at v, =1.356 £0.025. Here the error bars
represent confidence limits much like those obtained
when extrapolating the results from series expan-
sions. We obtain these confidence limits by first not-
ing that a number of straight lines may be made to fit
the data points when their individual error bars are
taken into account, and when the number of data
points is varied by the choice of the "asymptotic re-
gime". The lines which fit the data with the greatest
and smallest intercepts are used to provide the confi-
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FIG. 10. Extrapolation against 1/1n b, for Yp determined
from the B distribution. Results for both R and R, are
shown. Note that for finite b, both rules are off from yp‘“‘e,
but both approach approximately the same final value of
yp=0.738, as b —oo. The representative error bar shown
derives from the uncertainty in the B distribution due to er-
ror bars on (p) and o.

dence limits.

In Fig. 11 we show, for the field eigenvalue, a plot
of In A, (5) vs Inb. We have calculated A, (b) ac-
cording to the transformation H;, with the eigenvalue
evaluated at p =0.593 (see Table IX). Note how ex-

1027 T T S
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FIG. 11. Log-log plot of the magnetic eigenvalue \,(5)
against b. Note the extreme linearity of this plot. From the
slope we determine the scaling power y.

ceptionally linear this plot is. From the slope of this
line we estimate y, =1.899 +£0.002. In Fig. 12 we
show the 1/In b extrapolation of y,. From the inter-
cept at 1/In b =0 we estimate

y=d(1+8 1) 1=p6r"1=1.897(+0.003, —0.002)

As discussed earlier, there is an ambiguity as to
the value of p at which to evaluate A,. We decided
to use p =p.. However, we do not know p,. exactly.
To determine how sensitive y, is to the correct choice
of p. we evaluated \j at p =0.592, 0.593, and 0.594
(see Table IX). As expected, for small b, y, is not
very sensitive at all to the choice of p. However at
large b, a small change in p causes a large change in
how many sites are "wetted", and hence in A;. In
fact this behavior, which can be clearly seen in Fig.
12, may be used as a sensitive way to determine p,.
From Fig. 12 we estimate p.=0.5930 +0.0005.

We may understand the behavior in Fig. 12 if we
recall that [cf. Eq. (4.9)]

A= {n;)/p = b%P(p,b)/p = b°P(p,b)

Thus yy=d +In P(p,b)/Inb. At p=p., P(p.b)

~p P (see below), and so y,=d —B,/v,. This is
the correct asymptotic behavior. If, however, we are
at p > p., P(p,b) —const, and

yn=4d +In (const)/In b —d. Hence in Fig. 12 we see
the curve marked 0.594 initially heading toward y;™¢,
for the small cells do not yet "know" that 0.594 > p,.
The large cells "know", and y, —2. Likewise, when
p < pe, P(p,b) —0 faster than b~ﬂ"/v" (almost cer-
tainly faster than any power® of b). Thus we expect,
in the limit b — oo, y, ——oo. Again in Fig. 12, we
see the curve marked 0.592 initially heading toward
yitue but now y, drops lower and lower.

1.88 ] 1 | 1 1 |
O Ol 02 03 04 05 06 07
1/inb

FIG. 12. Extrapolation against 1/In.b of y;, determined by
evaluating the H, recursion relations, for 4’ at p =0.592,
0.593, and 0.594. Initially yj is not sensitive to the correct
choice of p,. However, deviation from a straight line be-
comes quite apparent for b =32. This plot for y, is analo-
gous to the plot shown in Fig. 10 for y,.
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B. Connection with finite-size scaling

Thus far we have presented the PSRG analysis.
However, in the process of determining the recursion
relations we generate p Monte Carlo realizations,
where b%p =107. The renormalization function
R,(b:p,h =0) was calculated by integrating L (b:p).
However R,(b:p,h =0) may be treated in a purely
statistical sense®> as may L (b:p).>* In this case
L (b:p) is the probability density function, while
R,(b:p,h =0) is the cumulative distribution function.
For each b, we have calculated the mean, (p), of
L (b:p) and the standard deviation from the mean,
a=((p—{(p))?)2 It was these values that we used
to fit the B distribution to L (b:p).

- However, the mean is itself an estimate for p..
Further, for large & both ({p) —p/™) and o should
scale™ as 5”7 Thus, in Fig. 13 we have plotted
(p) vs b_l/v', with v,=1.355, in complete analogy
with the plot for p* in Fig. 7. Both R, and R, essen-
tially agree, giving an extrapolated value of p,
=0.5931 +0.0006. To see that o scales as it should,
we have plotted, in Fig. 9, In o™ vs In & for the o
values obtained from the transformation R, (Table
VII). (We have plotted it on the same graph as the
eigenvalue A, for comparison.) From the inverse
slope we find v,=1.355 £0.013.

B T T T 16
o.l0f
- Ro R‘
B O o 32
b~1/vt L b
005}
e} o1 464
004f \ \ ,
Q o 100
0.03f- \0 |
X o 150
0.02}- Yo »o'i 4200
0.0I+ oo 1500
o ! L L
0.56 057 0.58 059
70.5931

<p>

FIG. 13. Finite-size scaling extrapolation of the sequence
of means (p) at which one first spans b x b cells, for both
rules Ry and R;. We have chosen the trial value of
v,=1.355. The plot is similar to Fig. 7 where p*(b) is ex-
trapolated.

We see here a rather intimate relationship between
finite-size scaling and the renormalization group.>
The "thermal” eigenvalue of the PSRG is the value,
L (b:p*), of the density function at p =p*. As bin-
creases, this approaches a constant times the value,
L (b:pmax), of the density function at its peak. The
limiting value of L(b:p*)/L (b:pnax) appears to be
very close to one. Because the integral over the en-"
tire density function is unity, L (5:pmax)
—1/[(2m)Y2c] if the function approaches a Gauss-
ian, as it seems to, and in general A, —const/o.
Then, the renormalization-group statement that
vp,=Inb/In X, implies finite-size scaling: asymptotical-
ly (for large 8), —v,1ln o =In b +const. From a log-
log plot, with at least two values of b, this constant
may be eliminated, and v, determined. Our two
values of b must, of course, both be in the asymptot-
ic region, or we will not eliminate the constant prop-
erly. The renormalization group, on the other hand,
chooses A, (its "o-like" parameter) in such a way that
if ois replaced by )\,,1 the constant is zero, and we
need not be in any asymptotic region. This is be-
cause A, (b=1) =1, since the eigenvalue of the
identity transformation is unity. One might say that
the renormalization group "knows" a priori its eigen-
value at one other value of b, b =1. However, since
our AC“‘“ is only an approximation to A", asymptoti-
cally the intercept need not be zero w1th the renor-
malization group either [cf. Eq. (5.8b)] though it is
expected to be close in order that the small cell
PSRG makes sense. Thus, only asymptotically need

|O-l\l T .
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,LL1n/n \ <,u3
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FIG. 14. Log-log plot of the nth roots of the nth central
moments of L(b:p) using R, for n=3, 4, 5, and 6. The in-
verse slopes of all the plots shown are consistent with

=1.35.
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the slope of In A, vs In b actually become v,"'. How-

ever, we now expect the asymptotic region to be
reached for considerably smaller & than for ordinary
Monte Carlo. ]

We have also calculated the moments (p") and
central moments u, = ((p — (p))") of L(b:p), for
n=1,2,..,9. From finite-size scaling we expect all

"p-like" quantities to vanish as b_1 . In Fig. 14 we
show a log-log plot of u,‘,/" against bfor n =3, 4, 5,
and 6. For the case n =2 we have already seen this
plot in Fig. 9, as o =pu}2. The curves shown in Fig.
14 were obtained using Rj. k
Furthermore, extrapolation of the field eigenvalue
A, is also closely related to finite-size scaling. For
sufficiently large b [see Eq. (4.9)] x, — b?P(p,,b).
Thus the renormalization group tells us that for large
b, yp=d +In P(p.,b)/Inb. Since y,=d —B,/v, from
ordinary scaling, we have derived the finite-size scal-

ing result that P(p.,b) ~ b‘_ﬁp/"p‘

V1. DISCUSSION

We have shown that one may use large-cell (Monte
Carlo) PSRG as an accurate numerical method. In
particular, for the site percolation problem on the
square lattice, we have discovered that even the sim-
plest one-parameter approximation becomes progres-
sively better as we increase b. We further noted that
the trend is so smooth that one may readily extrapo-
late to the limit b —oco. As expected, the final results
for the critical parameters are virtually the same for
all the different connectivity weight functions used.

To obtain p., we calculate p* from the PSRG.
Then we extrapolate these fixed-point values as a
function of b, in analogy with the usual extrapolation
by finite-size scaling done for p, of a finite sys-
tem>%335% (which is shifted from the true p.). How-
ever, each p* already corresponds to the fixed point
of the infinite system, since renormalization proceeds
through all length scales by interation. Thus it is
perhaps surprising that finite-size scaling should apply
here. However, finite-size effects do enter in the ap-
proximation, as noted in Sec. III. If we could in fact
write down the exact recursion relation we would ob-
tain p* = p, exactly, for all b.

To obtain the critical exponents we calculate the
scaling powers y, and y,. For large values of b these
values, as well as the p* values, are in good agree-
ment with series (within a few percent or better).
However, to obtain the best accuracy we extrapolate
to b —oo. We do this extrapolation in two separate
ways [cf. Egs. (5.8a) and (5.8b)]. These methods, in
the b — oo limit, turn out to be intimately connected
to finite-size scaling, though only the PSRG contin-
ues to have meaning even for small b.

Our best estimates for the two scaling powers are
yp=0.7385 £0.0080 and y, =1.898 +£0.003, from

which we obtain

a,=—0.708 +0.030, B,=0.138(+0.006, —0.005) ,
y,=2.432 £0.035, 5,=18.6 +0.6 ,
v,=1.354 £0.015 , (6.1)

and
2—m,=1.796 £0.006 ,

which compare well with estimates obtained by other
methods.?%40:5=% The site percolation threshold is
found for the square lattice at

p=0.5931 £0.0006 . (6.2)

We note that our error bars, which are to be inter-
preted as confidence intervals, are roughly compar-
able to those obtained from series methods. In par-
ticular, our estimates of p., v,, and 3, are more accu-
rate than estimates afforded by series. Furthermore,
because of the essential simplicity of the method, this
technique is flexible and readily modified to treat
other lattices®3%%° as well as other types of percola-
tion problems. %% 6!

Currently there exists a controversy over the true
value of v,. Various authors®!-3 have proposed "ex-
act" values for v,. Klein et al.’? argue that

vy=InV3/In(5)=1.3547 - - -, - (6.32)

while more recently den Nijs has put forth a conjec-
ture which leads to!

V=5 . (6.3b)

Our numerical work clearly favors the former value
for v,, but can by no means entirely eliminate the
possibility of the latter.

Finally, in this regard we should note a related con-
troversy. Domb and Pearce®? have done a series cal-
culation for «,, using a novel type of transformation
technique®® from which they claim o, =—0.668
+0.004 —with 50 times tighter error bars than previ-
ous series calculations'? of «,. Hyperscaling then im-
plies a value of v,=1.334 £0.002, lending support to
the den Nijs conjecture. However, the result of
Domb and Pearce is completely inconsistent with oth-
er series work.>”"*® In particular, the most recent
series calculations of>’ y, =2.425 +0.005
and*® B8,=0.139 £0.003 lead to (using the Rush-
brooke equality) o, =—0.703 £0.011. This latter
value is entirely consistent with our PSRG results
[Eq. (6.1)] and implies a value of v,=1.352 £0.006
which is consistent with Klein et al. as well as with
our numerical results here, though not with den Nijs’
conjecture.
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APPENDIX A: CLOSED-FORM LARGE-CELL PSRG:
ONE-DIMENSIONAL PERCOLATION WITH
MULTINEIGHBOR BONDS

An ideal test of the large-cell PSRG approach
would be an exactly soluble model whose PSRG re-
cursion relations may be obtained in closed form for
arbitrary rescaling length 5. We would be able to
determine if, in fact, the limit as b — oo of the vari-
ous critical parameters [e.g., p.(b), v,(b), a,(b),
B,(b) - - - 1 gives the exact results. At least one
such model exists: site percolation on a linear-chain
lattice with bonds between nearest neighbors, next-
nearest neighbors, etc., up to Lth-nearest neighbors.
The exact solution for p, and v, is known.’3 Here
we present the PSRG analysis for arbitrary 5. How-
ever, before we treat this model by the PSRG it is
helpful to review the special case’® L =1—the ordi-
nary linear chain.

For L =1 we renormalize a cell of b sites to a sin-
gle site [see Fig. 15(a)]. The individual sites are oc-
cupied with probability p; the renormalized "cell
spins" are occupied with probability p’. We perform
the renormalization transformation by preserving
connectivity. Hence a cell is occupied if we can
traverse the cell by being able to "flow" from the
external site marked 1 to the external site marked 2.
We find p’ by writing the traversal condition on both
the cell and the site levels.  We obtain p’ = p®, where
the left-hand side is the probability that we can
traverse the cell on the cell level, while the right-
hand side is the probability that we can traverse the
cell on the site level. The solution to this recursion
relation is p*=1 and v, =1, independent of b.
Hence we may take the limit b — oo trivially, and the
result p.=1, v, =1 agrees with the known exact
result.’® Note that in this (L =1) case p’, the proba-
bility that a cell spin is occupied, may equally well be
thought of as the probability of getting across the cell.

For L > 1 we must be more careful. We can no
longer meaningfully renormalize a cell of & sites to a
single site [see Fig. 15(b)]. Although on the site lev-
el we can write an expression for the probability of
traversing the cell from 1 to 2, on the cell level this is
not possible because there is always a connected path

L=1 P P P p

L=3 o+te—e—e+0 —p» O+et+o (a)
p=3 | 2 1 2

s ol % 4 (b)
bos A RN 2

05 el . AN o
b-3/2 N 2 PRS2

FIG. 15. (a) Three-site cell (/ =3) on the nearest-
neighbor (L =1) linear-chain lattice is renormalized to a
single site. The rescaling factor is b =3. The recursion rela-
tion is determined by equating the probabilities on the site
and cell levels of flowing through the cell from the point la-
beled 1 to the point labeled 2. (b) When next-nearest-
neighbor bonds are present as well (L =2), the analogous
transformation to a single site is not a valid one. This is be-
cause the probability of flowing from point 1 to point 2 in
the renormalized picture is independent of the cell occupa-
tion probability p’. To have a meaningful transformation,
our renormalized block must contain at least L (=2) renor-
malized sites. This is illustrated in (c), where now b = %

from 1 to 2 by some further-neighbor bond—
independent of the occupation of the cell spin! To
make a meaningful renormalization group (RG) we
need at least L cell spins in the renormalized block.
Our cell must be at least as large as the range of the
interaction [see Fig. 15(c)]. Now we find the RG re-
cursion relations by equating the probability of
traversing the cell on the site and cell levels. For ex-
ample, for the case pictured [Fig. 15(c)] of L =2, we
are rescaling from a three-site cell to a two-site cell.
We have b .=% and

p?+2p'q =p*+3p’q +pq* | (A1)

where ¢ =1 —p. The fixed point is at p*=1. Dif-
ferentiating, we obtain

—q—ig—=2p +%q . (A2)
q dp
To find the eigenvalue A\, =dp’/dp |p_p*, we need to
evaluate the left-hand side of Eq. (A2). First we

must determine the ratio ¢’/q when g, ¢’ —0. Note
that

lim 2@ _ jjry 1=2'(0)
¢—0 g ‘=1 1—=p
p—1 p—1
d ’
=7§7P-1 (A3)

Thus (dp'/dp)?l,=1=2, \,=~/2, and
vp=Inb/lnA,=In(3)/Inv2=12
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This is not the exact L =2 result of v,=2. However,
by going to larger cells we hope to improve this
result.

Let us rescale from an arbitrarily large isite cell to
a two-site block. (Two sites is sufficiently large for
the renormalized block since we are just treating
L =2 now.) In analogy to Eq. (A1) we find

p?+2p'q'=p'+ip'"'q

+31U-1)=U=-D1p"2P+0(g) -

(A4)

where the last term on the right comes from all pos-
sible pairs of two vacant sites, excluding the (/—1)
"two-in-a-row" pairs which break the connectivity.
We first note that p =p'=p*=1 is a fixed point.
Differentiating Eq. (A4) we obtain

2¢—"§;=2(!—1)p"2q+0(q2) - (AS)
Thus [cf. Egs. (A3) and (AS)]
’ ’ ’ 2
lim L9 _ |9 | "_;-1
s e e L (A6)

We find the eigenvalue at p*=1 to be,

dl

e =VI=1>1 . (A7)
The final inequality tells us that p*=1 is in fact the
relevant fixed point. Calculating v,(/), we obtain

: 1 1
Inb _ In —2'1 — In TI
Inx, In(/—1)1"2 In(/—1)

Thus our v, (L =2) does in fact depend on the size /
of the cell we start with. However,

(A8)

v(D =

. In5!
lim v, (1) = lim 2 L=2, (A9

TRy Ty
which is the exact result.’

We now derive the general case where all bonds up
to Lth-nearest neighbors are present. We must re-
normalize to a cell which contains at least L renor-
malized sites, to have a meaningful cell-level picture.
The probability of traversing this renormalized cell is
just (1 —g’L) since all L sites must be missing to
prevent us from traversing. Thus, the transformation
from an Fsite cell to an L-site cell is

(1—g'D)=p'+p'"lqg +[51(I-D]p' g+ - - -

! L+, L—1
+
G—L+Dz-1n? ¢

Il
(-0

+0(qt*) (A10)

+ — (/=L +1)|p'Lqt

2.0

1.4 1 1 1 1 L | 1 |
0.16 0.32 0.48 0.64 0.80
1/inb

FIG. 16. Connectedness length exponent v, for the linear
chain with nearest- and next-nearest-neighbor bonds
(L =2) is plotted against 1/In b, with b the rescaling length.
This entire curve was obtained from Eq. (A8) with
b=I/L= %l. We note that the exact result for v, is ob-
tained in the limit of b —oo. To indicate how the extrapola-
tion methods discussed in Sec. V may be used, we have
drawn in points at the same values of b used in the d =2
calculations, up to b =500. The dashed portion of the curve
may be thought of as the extrapolation to b = oo.

where the final term on the right-hand side of Eq.
(A10) is the number of ways of choosing L sites out
of a set of /sites excluding L in a row (which no
longer spans). Again p*=1 is a solution. Differen-
tiating Eq. (A10) we find

Lg*™! % =L(I-L+Dp' gt +0(qh) .

Thus (A11)
’ L_l 7
4| (L +1)ph+0(g) . (A12)
q dp
Evaluating this at p*=1 we find [cf. Eq. (A3)]
dp’ '
A,=d—1;,,_1=(l—L +1)VE (A13a)
and
_ LmInl/L
()= (A13b)

Again, for finite cells of size /, v,(/) is only an ap-
proximation, but

VpElli?le(l):L (A14)

is the exact result. In Fig. 16 we illustrate the ap-
proach to this limit for L =2.
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