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The following set of exercises are a mixture of calculations, numerical evaluations and plot-
ting. Use the plotting software you like best, but plots should be clear neat and include
labels and units. You can code in whatever language you prefer.

Please produce the write-up in Latex with plots merged in (I can send an example file for
you to edit if you need one). Calculations should also be a bit elaborated until the final
expression (that’s why we use Latex). And answers explained with logical arguments.

Referenced papers can be found at https://arxiv.org/search/astro-ph

Useful constants and definitions

• (Newton’s constant) G = 6.673× 10−8 cm3 gr−1 sec−2

• (Hubble expansion rate) H = 100 h km/sec Mpc−1

• (Critical density) ρcrit(t) = 3H(t)2/(8πG) = 1.879 h2 10−29 gr cm−3

• (Total relative density) Ω0 = ρ(t)/ρcrit

• (Energy density in radiation) Ωrad = 2.47× h−2(T/T0)
4

• (CMB temperature today) T0 = 2.726 Kelvin (∼ -270 Celsius)

• (MICE Cosmology): Throughout the exercises we will compare against simulations
that were run with the following cosmological model: Ωm = 0.25, Ωb = 0.044, Ων = 0,
ns = 0.95, σ8 = 0.75, h = 0.7 and a flat Universe.
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1.- The background Universe

Age of the Universe. Starting from the Friedmann equation

H2(t) =
8πG

3
ρ(r)− k

a2
(1)

where ρ(t) = ρm(t) + ρΛ + ρrad(t) show that the age of the Universe t0 is given by,

a) In a matter dominated Universe with zero cosmological constant as

t0H0 =
∫ 1

0

dx√
Ω0/x + 1− Ω0

(2)

b) In a radiation dominated Universe with zero cosmological constant as

t0H0 =
∫ 1

0

dx√
Ω0/x2 + 1− Ω0

(3)

c) In a flat Universe with cosmological constant (i.e. k = 0 and Ω0 = 1 = Ωm + ΩΛ) as

t0H0 =
2

3
√

Λ
ln

[
1 +

√
Λ√

Ωm

]
(4)

For a fixed H0 value, compare the age of the Universe for two cases (Ωm = 0.3, ΩΛ = 0.7) vs
(Ωm = 1, ΩΛ = 0), which one is older and why?

d) How old is the Universe. From the Planck 2018 results (see Table 1 in e-print arXiv
1807.06209), take the value of H0, Ωbh

2 and Ωch
2 from the table and estimate the age of the

Universe today (in Gyrs) using what you believe is the most appropriate formula from those
derived above. Compare your result with theirs (10th raw in Table 1 of the paper). Think
of reasons why they are not “exactly” the same.

e) The earliest time we can see. Choose what you think is the appropriate scenario above
and estimate how old was the Universe at the Last Scattering Surface (take zrec = 1100).

f) The age of the accelerating Universe. Using the values from the Planck table derive the
redshift at which the matter and vacuum energy densities are the same (i.e. when the Uni-
verse started to be dominated by dark energy and hence expanding with acceleration) and
find the age of the Universe the age of the Universe there.
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2.- Linear growth and linear growth rate of structure

The linear evolution of (cold dark matter) density perturbations δ(τ) in the matter dominated
era is given by the growth factor D(τ) which, as we saw in class, obeys

d2D

dτ 2
+HdD

dτ
=

3

2
ΩmH2D, (5)

where H(τ) is the conformal expansion rate H ≡ (1/a)da/dτ = aH(a), τ is conformal time
and Ωm(τ) is the ratio of matter to critical density. In the general case where there is only
matter and vacuum energy Eq. 5 has the following growing mode solution,

D(+)(a) =
H(a)

a

5Ω0
m

2

∫ a

0

da′

H(a′)3
. (6)

In turn, in linear perturbation theory, the velocity field divergence θ = ∇v is related to the
density contrast δ, by θ = −Hfδ, where f ≡ d ln D/d ln a is directly related to the growth
rate of structure (dD/dτ). The logarithmic growth rate f measures how fast velocity per-
turbations grow with respect to density ones.

a) Integrate Eq. (6) numerically for the MICE Cosmology (flat Universe) to find the linear
growth factor at z = 0.5 (i.e. D(+)(0.5)/D(+)(0), growth normalized to 1 at z = 0).

b) We will now find a widespread approximation for f . From the Friedmann equation for
arbitrary curvature and matter domination find an expression for dH/dτ and then dΩm/dτ .

c) Use Eq. 5 to find a differential equation for f as a function of Ωm (i.e. change to Ωm as
a time variable). Show that this differential equation has the expected solution for Ωm = 1
that we found in class. By expanding around Ωm = 1, show that f(Ωm) = Ωp

m is a solution,
and find the value of p (note that here Ωm is a function of redshift). The usual fitting formula
is f ∼ Ωm(z)0.6 (valid for 0.1 < Ωm < 1). How does the p-value compare?.

d) Plot the relative error of your approximate expression as a function of Ω0
m, w.r.t. the

“exact” value obtained by numerically differentiating Eq. (6) 1. For 0.2 < Ω0
m < 1 and

0 < z < 2 (e.g. do four curves at fix values, z = 0, 0.5, 1, 2), and assuming flat Universe,
show that your result from c) is better than 2% (and certainly better than f = Ω0.6

m ).

Note: The growth rate of structure and its redshift dependence is a very important quantity
in cosmology. Measuring f allow us to test, not only Ωm in general relativity, but also
different theories of gravity in extended models (see Weinberg et al, e-print arXiv 1201.2434).

1This can be obtained as f(a) = D(+)(a)
a limh→0

D(+)(a+h)−D(+)(a−h)
2h
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3.- The linear and nonlinear matter power spectrum

Download CAMB from http://camb.info/.

CAMB is a numerical code that solves exactly the Boltzmann equations governing the evo-
lution of linear modes after they leave inflation, evolving outside the horizon with general
relativity, and throughout the matter and radiation dominated Universe. Exactly the same
idea to what we did in class but taking into account all species, baryons, dark matter, radi-
ation, neutrinos, etc, and the exact equations in GR (to linear order).

CAMB is the code used and developed by the Planck Collaboration to derive the cosmolog-
ical parameters as we know them now, out of CMB power spectrum measurements.

Install it and try to run the demo, we will use it for some of the exercises below.

Exercises

a) Derive zeq (the redshift of matter radiation equality) and keq (the inverse of the comoving
size of the Horizon at matter-radiation equality H−1(zeq)) as a function of Ωmh2 and Ωradh

2.

b) Assuming the MICE cosmology given in the first page run CAMB to output a linear
power spectrum and a linear transfer function at z = 0. Are they related in the way we
discussed in class ? does P (k) follow the expected low-and-high-k asymptotes ?
[Note: this is the cosmology of the simulations that we will use later on, so keep this output]

c) For the cosmological model in b) and assuming the value of Ωradh
2 given at the beginning,

derive the value of keq in units of h/Mpc. This should be similar to which feature in the
linear power spectrum ? (explain why).

d) A popular measure of the amplitude of the density perturbations is the RMS overdensity
in a sphere of radius R, defined as

σ2
R = 〈δ2

R(x)〉 (7)

with
δR(x) =

∫
d3x′δ(x)WR(x− x′) (8)

where WR(x) is equal to 1 for |x| < R and vanishes otherwise (spherical top-hat filter). Show
that

σ2
R =

1

2π2

∫ ∞

0
dkk2P (k)W 2(kR) (9)
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where W (x) = (3/x3)(sin x−x cos x). It is standard to quote fluctuations at R = 8 Mpc h−1,
which are denoted by σ8.

Implement a code in your preferred language that evaluates the above integral for a given
input power spectrum.

e) Assume the following Planck 2018 best fit values from Table 1 in e-print arXiv 1807.06209:
Ωbh

2 = 0.0224, Ωch
2 = 0.1201, ns = 0.966 (scalar spectral index), ln(1010As) = 3.0448

(where As is the scalar amplitude of fluctuations) and h = 0.6732. Compute σ8 and Ωm

at this cosmology. Decrease the cold dark matter density Ωc by 15%, re-run CAMB, and
recompute σ8 and Ωm. Explain the result (why σ8 decreases/increases).

Locate these two results in the contour plot for (Ωm, σ8) given by the cosmological analysis
of the first year of DES data, Fig 5 in e-print arXiv 1708.01530. Which one is ruled out or
disfavoured by DES ?

f) Run CAMB but output instead the nonlinear power spectrum (look for the variable
do nonlinear) at z = 0 and z = 0.5. At each of these redshifts, find the scale at which
the linear and nonlinear power spectra start to differ (at each redshift). This is the scale in
which nonlinear gravitational collapse starts to be important (basically when the amplitude
of linear fluctuations k3P (k)/(2π2) ∼ 1). Does this scale increase of decrease with time ?
Explain whether this makes sense for you (or not).

Make a (nice) plot of these 4 spectra (two linear, two nonlinear) showing clearly the transi-
tion to the nonlinear regime.
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4.- The halo mass function

For this exercise you will need these halo catalogs from the MICE simulation,

https : //www.dropbox.com/s/a56sj2tfqpynthd/halo MICE N4096 L3072 z0 b0p2 np40.tar?dl = 0
https : //www.dropbox.com/s/tkhfk9x9vwmxwxb/halo MICE N4096 L3072 z0p5b0p2 np40.tar?dl = 0

The above are formatted ascii files with columns (np, x, y, z, vx, vy, vz), where nP is the num-
ber of particles in the given halo (i.e. npmp is halo mass, with the dark-matter particle
mass mp given below), (x,y,z) are the coordinates of the halo center of mass in Mpc h−1 and
(vx, vy, vz) its velocity in km/sec. Filenames are halo $i $j with i, j = 1 to 10.

The MICE Grand Challenge N-body simulation is described in detail in e-print arXiv
1312.1707 and 1312.2013. An N-body run refers to a simulation that evolves only particles
interacting gravitationally, from initial conditions at some high redshift were fluctuations are
small (typically z ∼ 100). These simulations track the nonlinear collapse of structure.

MICE evolves gravitationally 6.8× 1010 cold dark-matter particles (40963) from their initial
conditions at z = 50, within a periodic comoving box of L = 3072 Mpc h−1. The cosmology
is given in the 1st page. The dark-matter particle mass is mp = 2.93× 1010 M�h−1. Bound
structure (i.e. Halos) in the simulation were found using a Friend-of-Friends algorithm with
linking length b = 0.2. Such algorithm finds all the neighbours to a given particle whose
distance is less than a fixed fraction of the mean interparticle distance (in this case 0.2), and
repeats the process iteratively on all the linked neighbours or “friends” until no new “friend”
is found. These effectively defined halos as iso-density contours (which are typicall not spher-
ical). Other algorithms define “spherical over-densities” instead, or find halos in phase-space.

For what follows consider the expression for the halo mass function n(m, z) representing the
number density of halos of mass m and redshift z in terms of the multiplicity function f(ν)
with ν = δc/σ(m, z) (δc ≡ 1.686)

n(m) =
ρm

m2
f(ν)

d ln σ−1

d ln M
, (10)

where for Press and Schechter (1974, ApJ 187, p. 425),

fPS(ν) =

√
2

π
ν exp[−ν2/2] (11)
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while the more accurate expression from Sheth and Tormen (e-print arXiv 0105113) is,

fST(ν) = A

√
2q

π
ν

[
1 +

(
qν2

)−p
]
exp[−qν2/2] (12)

with A = 0.3222, q = 0.707 and p = 0.3. In ν = δc/σ(m, z) the variance is computed as,

σ2(m, z) =
D2(z)

2π2

∫ ∞

0
dkk2P (k)W 2(kR) (13)

where W (x) = (3/x3)(sin x− x cos x), m = ρm4πR3/3, and D(z) is the linear growth factor
normalised to 1 at z = 0 (use ρm = Ωmρc and ρc = 2.775× 1011 h−1 M�/( h−1 Mpc)3).

Exercices

a) Modify the code that computed σ(R) to compute the mass variance σ(m, 0) from roughly
m = 108 h−1 M� to 1016 h−1 M� and plot it in logarithmic scale. Explain the result.

b) Plot n(m) vs. m (in log-log scale) for the MICE cosmology but assuming σ8 = 0.7, 0.8
and 0.9. Explain the dependence of the halo abundance on this cosmological parameter. A
similar dependence is expected for increasing Ωm. The cluster (halo) mass function is an
excellent probe of growth of structure.

c) For M? = 1013 h−1 M� integrate the mass function to find all halos above this threshold :
nh(> M?) =

∫∞
M?

n(m)dm. Plot this as a function of redshift (0 < z < 1). The dependence
with redshift is also an excellent tracer of growth.

d) Measure the “cumulative” halo mass function n(> m) vs. m in the MICE halo catalog2

at z = 0 and compare it with the ST and the PS predictions. For this you will need to write
a little code to read and count halos above a certain mass limit. Note that the predictions
are for number densities. Which prediction works better? Do you find the trends that we
discussed in class (at low and high mass) ?

e) Measure the “cumulative” mass function at z = 0.5 and compare it with the one at z = 0.
Below the cut-off mass scale, the abundance of halos should be roughly constant with red-
shift. What is the value of this halo mass ?

Bib: Overall, e-print arXiv 1312.2013 could be of help (e.g. Fig 2)

2Suggestion: use a log binning in mass, from ∼ 1.2×1012 h−1 M� to ∼ 7.5×1015 h−1 M�, and ∼ 30 bins
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5.- Clustering of tracers: halo bias and bias evolution

For this exercise you will need PowerI4 from https://github.com/sefusatti/PowerI4
(it requires FFTW libraries to be installed, see the README for instructions).

Note: It is faster to read the halo catalogs as unformatted (fortran binary)
https : //www.dropbox.com/s/s1jlf1orloojhd3/halo.uf MICE N4096 L3072 z0 b0p2 np40.tar?dl = 0
https : //www.dropbox.com/s/v2khtan43s5tvqa/halo.uf MICE N4096 L3072 z0p5 b0p2 np40.tar?dl = 0

In class we show that halo bias can be obtained by taking derivatives of the conditional mass
function with respect to the barrier for halo colapse:

b1 ≡ 1− ∂ ln n(m, z)

∂δc

(14)

For the Sheth and Thormen mass function given in Eq. (12) this leads to

bST
1 (m, z) = 1 +

qν2 − 1

δc

+
2p/δc

1 + (qν2)p
(15)

The bias of “halo samples” defined by mass ranges is then computed as,

bh =
1

nh

∫ m2

m1

bST(m, z)nST(m, z)dm (16)

nh =
∫ m2

m1

nST(m, z)dm.

Press Schechter predictions are trivially obtained by setting q = 1 and p = 0.

Exercises

a) Evolution of bias. Suppose there is a component in the universe (e.g. galaxies) that
forms at some characteristic time t = t?, with density contrast satisfying the local linear bias
relation δg = b0δ at t = t?, where δ is the dark matter density. Assume that the number of
these objects is conserved (which is a strong assumption for halos because of halo merger
and accretion), and that their velocities equal those of dark matter particles. Show that at
linear order the bias factor b = δg/δ evolves towards unity at late times and that the relation
stays local.

b) Consider 6 different halo samples at z = 0 defined by the following mass thresholds,
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Mh/ h−1 M� > 1.465× 1012, 5.86× 1012, 1.465× 1013, 2.93× 1013, 8.79× 1013, 1.465× 1014,

corresponding to number of particles per halo > 50, 200, 500, 1000, 3000, 5000. Select those
samples from the catalogs given above and measure their power spectrum Phh. Then esti-

mate halo bias as bh =
√

Phh/Plinear where Plinear is the linear power spectrum you obtained
by running CAMB for the MICE cosmology. You can for example average the ratio for the
range of scales where bias seems linear.

Plot b(> Mh) vs. Mh in log-linear scales. On large scales you should find the regime of “lin-
ear bias” that we discussed in class where bh is scale independent. At what scale does linear
bias brakes down? How does it compare with the scale at which matter power spectrum
becomes nonlinear, found in Exercise 3f ?

Comment: Power spectrum measurements need to be corrected by shot-noise from the dis-
crete nature of the number of objects used to measure it. This is more important for the most
massive halos that have the lowest number density. If one assumes shot-noise is “Poisson”
then the correction is simply P = P − (2π)−3n̄−1, where n̄ is the number density of objects.
PowerI4 outputs in its first line the number of objects and the shot-noise correction 3.

Comment: You will need to modify the routine “input catalog.f90” in PowerI4 to read in
halo catalogs. I strongly recommend to read binary files which is much faster. My routine
for doing this is here

https : //www.dropbox.com/s/z4et436ofvbmd2q/input catalog.f90?dl = 0

you should be able to use it right away. For params.ini I use

# Input file type = 2
# FFT grid sizes = 256 256 256
# Interpolation order (integer 0 to 4) = 4
# Interlacing (true/false) = true
# Box sides = 3072. 3072. 3072.
# bin size in units of the fundamental frequency (linear binning) 3
# center of the first bin in units of the fundamental frequency 3
# measure multiples for anisotropic clustering (0,1,2,3, see below) 0
# output density file (see below) 0

3The factor (2π)3 is coming from the convention used in the FFT transform
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c) Predict b(> Mh) from the Sheth and Tormen expression in Eq. (16) setting m2 very large
(e.g. 1016 or so), and plot them together with the measurements made above Discuss the
results (e.g. in terms of the accuracy of the prediction)

d) Select a sample of halos in the range 50 ≤ np ≤ 200 both at z = 0 and z = 0.5. From the
mass function exercise we see that number density of this objects is roughly constant with
time. Estimate the linear bias in both cases (recall that at z = 0.5 bias must be defined
w.r.t. the linear power spectrum at z = 0.5, which is D(z = 0.5)2PCAMB(z = 0)). Do
these two biases relate in the way you found in point a) ? In reality halos are being created
constantly and the evolution of bias is more consistent with a constant clustering amplitude,
i.e. b(z) = b?D(z?)/D(z). Do you find this ?

Bib: e-print arXiv 0906.1314 or 1405.5521 could be of help in this exercise
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6.- Redshift Space Distortions

When studying the large-scale structure of the universe, the redshift of galaxies is used as
a distance indicator. This would be exact in an homogeneous universe where velocities are
only due to the Hubble flow; however, because of density and velocity perturbations, the
comoving distance thus obtained is affected by peculiar velocities,

s = x + ẑ(vp · ẑ)/H (17)

where s is the so-called redshift-space (comoving) position that corresponds to real-space
(comoving) position x, vp is the peculiar velocity, H is the conformal Hubble factor (H ≡
da/dτ = aH(a)) and we assumed that the line of sight is along a fixed direction denoted by ẑ.

In class we showed that, in linear theory (δ � 1), this mapping translates into this relation
between the Fourier components of the redshift-space and real-space density contrasts,

δs(k) = (b + fµ2
k)δ(k) (18)

where f is the growth rate of structure derived above, b the linear bias of the tracer under
consideration (galaxies, halo, etc) and µ the cosine angle of the Fourier mode k with the line
of sight (µk = k · ẑ/k). Equation 18 implies that the power spectrum of tracers, in redshift
space, is now anisotropic and given by

Ps(k, µ) = (b + fµ2
k)

2P (k). (19)

Exercises

a) Eq. 19 says that modes parallel to the line of sight (µk = 1) have enhanced amplitude
compared to those perpendicular to it (µk = 0); which, as expected, are unaffected by the
mapping). Explain physically where this enhancement is coming from.

b) Use a multipole decomposition of the anisotropic power spectrum,

Ps(k, µk) =
∑

`

P`(µk)P
(`)
s (k) (20)

where

P (`)
s (k) = (2` + 1)

∫ 1

−1

dµ

2
P`(µ)Ps(k, µ) (21)
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and P` are the Legendre polynomials of order ` to show that, in linear theory, only ` = 0, 2, 4
are non-zero and given by

P (0)
s (k) = (b2 +

2

3
b f +

1

5
f 2) P (k) (22)

P (2)
s (k) = (

4

3
b f +

4

7
f 2) P (k) (23)

P (4)
s (k) =

8

35
f 2 P (k) (24)

b) Using PowerI4 measure the power spectrum multipoles for halos in the second sample
of the previous exercise (i.e. with Mh > 5.86 × 1012 h−1 M�, corresponding to 200 or more
particles) at z = 0. Change he params.ini to “# measure multiples for anisotropic clustering
(0,1,2,3, see below) → 1,2 or 3”. This will move the particles to z-space along, x, y or z 4. I
suggest doing the 3 cases (which are roughly independent) and average the results.

Do a log-linear plot of the monopole to quadrupole ratio P `=0(k)/P `=2(k) in the range
(0.01 − 0.10) h Mpc−1. Assuming the bias from real space measurements found in exer-
cise 5b and the approximation for f in exercise 2c plot the large-scale predictions for the
monopole-to-quadrupole ratio for Ωm = 0.2, 0.25, 0.3. Is the better fit the one corresponding
to the value of matter density used in the simulation ?

Note : the quadrupole to monopole ratio “on large scales” has two important properties,
a) it cancels the statistical noise (known as cosmic variance) b) it does not depend of the
power spectrum itself (!). For a long time this was considered a very good way of measuring
f/b. By now we have precise enough measurements to fit both quadrupole and monopole
independently and hence derive both bσ8 and fσ8.

c) Plot the ratio of P (`=0) (redshift space monopole), P (`=2) (redshift space quadrupole) to
their respective linear models given by the expressions in Eq. (22). At what scale does the
model acquires a strong scale dependence ? how does it compare with the scale for nonlinear
matter clustering and nonlinear halo bias ?

One particular complication in interpreting large scale structure surveys measuring galaxy
clustering is that all the non-linear effects (matter clustering, bias, redshift-space distortions)
appear at roughly the same scale. The modeling becomes quickly complicated !.

Bib: e-print arXiv 1206.4070 Fig 5 could be of reference

4In a simulation we can place the observer in many places!
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General Bibliography

1-Modern Cosmology, Scott Dodelson (Academic Press ISBN 0-12-219141-2)
2-Cosmological Inflation and Large Scale Structure, Liddle and Lyth

By topics or a bit more specialized

• “Basic concepts”: The cosmology course by Anthony Lewis is a nice and clear intro-
duction: https://cosmologist.info/teaching/Cosmology/. Download the Course Notes.

• “Cosmic Acceleration Review”: Weinberg et al, e-print arXiv 1201.2434. A very good
and complete overview of observational probes of cosmic acceleration, from basic con-
cepts to a discussion of systematics of different observations.

• “Perturbation Theory”: By now a standard source of reference is the “Review on
perturbation theory” at e-print arXiv 0112551. It also has discuss bias and statistics.

• “Halo Model”: Check the review “Halo Models of Large Scale Structure” by Cooray
and Sheth at e-print arXiv 0206508, for mass functions and halo bias.

• “Weak Lensing”: There are many reviews and articles on this subject, I like Hoekstra
e-print arXiv 1312.5981 and Kilbinger e-print arXiv 1411.0115.
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