
Ejercicios de Cosmoloǵıa (Segunda Parte)

Problema 1:
(2 puntos)

Consider the relic population of neutrinos. At kBT � 1 MeV, neutrinos
(and antineutrinos) interact quickly enough that they are populated at their
thermal abundances. At kBT ≈ 1 MeV, the neutrinos stop interacting with
the rest of the particles. After that time, the annihilation of the electrons
and positrons heats the photons to a temperature that is (11/4)1/3 higher
than the temperature of the neutrinos.

The mass is negligible near the decoupling redshift, so one can use the
relativistic limit E = qc. But at low redshift, we will assume the mass is
large enough that the neutrinos are non-relativistic.

a) What is the velocity distribution of the massive neutrinos today? In
other words, what is dn/dv? To compute this, use the fact that the neutrinos
at high temperature are in a thermal distribution for a massless fermion and
that the temperature at the decoupling redshift zd is (4/11)1/3(1+zd)2.725 K.
After decoupling, the momenta scale as (1 + z)−1. You should compute the
momentum distribution at zd and then convert is to the velocity distribution
today. (Note that you do not need to compute zd; it will cancel out).

b) Compute the mean velocity of the neutrinos today. The following
integrals could be useful:∫

dx
xn

ex − 1
= n! ζ(n+ 1) (1)∫

dx
xn

ex + 1
= n! ζ(n+ 1)(1− 2−n) (2)

where ζ(m) =
∑∞

k=1 k
−m is the Riemann zeta function. ζ(2) = π2/6, ζ(3) ≈

1.202, ζ(4) = π4/90.

Problema 2: Big Bang Nucleośıntesis.
(1 punto)

a) Suppose an extra neutrino species is added to the Universe. Would
the predicted helium abundance go up or down?
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b) Suppose the weak interactions were stronger than they actually are, so
that the thermal equilibrium distribution between neutrons and protons were
maintained until kBT = 0.25 MeV. Would the predicted helium abundance
be larger or smaller than in the standard model?

c) Suppose the proton-neutron mass difference were larger than the actual
value. Would the predicted helium abundance be larger or smaller than in
the standard BBN calculation?

Problema 3:
(2 puntos)

Consider the following reaction that takes place in the Universe:

p+ n→ D + γ

What fraction of neutrons are in Deuterium when the Universe is 5-
minutes old? Use that Ωbh

2 = 0.02, and that the baryons consist of 14%
neutrons and 86% protons.

Problema 4:
(2 puntos)

Consider that we change particle physics so as to include a yet-undiscovered
stable massive particle. For simplicity, we will make it spin-0 (meaning that
g = 1) and call it X. X and its antiparticle X̄ interact quickly enough in
the early universe that their number densities reach thermal equilibrium. We
will imagine that the mass mX is large, of order the proton mass or larger.

a) If X interacts rarely enough, then it will decouple (interaction rate
less than Hubble parameter) when the universe is still hotter than mXc

2. In
that case, X remains in a thermal distribution today. Show that this is a
cosmological catastrophe by computing Ωmh

2.

b) If X interacts more quickly, then it remains able to follow the thermal
equilibrium prediction as the temperature drops below the rest mass. In other
words, as the temperature drops, the X and X̄ can annihilate. However, as
the number density drops, the annihilation reaction slows and freezes out.
This leaves a relic population of X and X̄ particles that might be the dark
matter today.

Compute the relic abundance of X and X̄ particles as a function of the
annihilation cross-section σa and the mass mX . You may assume that the
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reaction ends when the reaction rate is equal to the Hubble parameter. You
may assume that the Hubble parameter is to be computed at a time when the
temperature of the universe is 0.1mXc

2/k. You may assume that g∗ = 100;
g∗ is the total number of relativistic spin-states, including a penalty of 7/8
for fermions. Assume a zero chemical potential.

Compute the cross section the particle should have if we want it to be
the dark matter today (i.e., ΩXh

2 ≈ 0.11).

Problema 5:
(2 puntos)

The scale of the acoustic peaks in the CMB power spectrum is set by the
comoving distance that a sound wave could travel between the time when the
perturbation was created (t ≈ 0) and the epoch of recombination (t = t∗).
In other words,

s =

∫ t∗

0

dt cs(z) (1 + z)

where cs is the sound speed. s is called the sound horizon.

a) The sound speed results from the competition between restoring forces
and inertia. For a simple fluid, c2s = dp/dρ. Before recombination, the
photons and baryons can be assumed to be locked together. For the photons,
pγ = ργc

2/3, but for the baryons pb ≈ 0.
Compute the sound speed of the combined fluid, c2s = (dp/da)/(dρ/da) in

terms of redshift and cosmological parameters. Remember that the photons
have their pressure and density scale by a−4, while the baryon density scales
only as a−3.

Show that for Ωbh
2 = 0.02 and Ωradh

2 = 4.2 × 10−5 the approximation
that cs ≈ c/

√
3 is good to ∼ 30% for z > 1000.

For the rest of the problem, assume cs = c/
√

3.

b) Now compute the sound horizon s. Assume only matter and radiation.
Assume recombination occurs at redshift z∗, which we’ll take to be 1000.
Argue why one cannot neglect the radiation contribution to H(z) in this
calculation. Assume Ωmh

2 = 0.14 and Ωradh
2 = 4.2× 10−5.

c) Demonstrate that the position `acoustic of the acoustic peaks depends
primarily on ΩK and only slightly on Λ and h, by varying the relevant pa-
rameters.
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Problema 6:
(1 punto)

a) Calculate the mean free path length of a photon in the early universe
as a function of redshift, assuming that the dominant opacity is Thompson
scattering and that all of the electrons in the universe are ionized. Assume
Ωbh

2 = 0.02, Ωmh
2 = 0.14, and treat all the baryons as hydrogen. Compare

your result to the Hubble distance (i.e. to c/H(z)).

b) At z = 1000, what ionization fraction would be needed to allow the
mean free path to be equal to the Hubble distance (which is the rough criteria
for the photons to stream freely past the electrons).

That this number is less than 1 means that the recombination of the
electrons and protons is important to the physics of the CMB. In particular,
because recombination sweeps the ionization fraction from 1 to about 10−4

in about 10% of the Hubble time (then), it means that the photons we see
last scattered in a rather thin shell in redshift.

Alternative cosmologies might keep the hydrogen ionized even at z < 1000
(by some large amount of energy injection, of course). In such cosmologies,
the photons still eventually decouple from the electrons (you can use part (a)
to say when this is), but they do so over an entire Hubble time. The resulting
last-scattering surface is very thick, resulting in a significant weakening of
the CMB anisotropies.
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