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This Resource Letter provides a guide to the literature on the geometric angles and phases in
classical and quantum physics. Journal articles and books are cited for the following topics:
anticipations of the geometric phase, foundational derivations and formulations, books and review
articles on the subject, and theoretical and experimental elaborations and applications. ©1997

American Association of Physics Teachers.

I. INTRODUCTION

Suppose a system undergoes an evolution so that after
some time it returns to its original state. We shall call such
an evolution acyclic evolution. If the system is classical,
then it is impossible to say from its initial and final states that
it has undergone any evolution. However, the wave function
of a quantal system retains a memory of its motion in the
form of a geometric phase factor. This phase factor can be
measured by interfering the wave function with another co-
herent wave function enabling one to discern whether or not
the system has undergone an evolution. Therefore geometric
phase factors are ‘‘signatures’’ of quantum motion. The ad-
jective ‘‘geometric’’ emphasizes that such phase factors de-
pend only on the loop in the quantum-mechanical state
space—the set of rays of the Hilbert space, sometimes called
the projective Hilbert space. In particular, geometric phases
are independent of parametrization of the path in the projec-
tive Hilbert space, and therefore of the speed at which it has
been traversed.
As early as 1956,1 in a classic paper on phase shifts in

nonquantal polarized light,2 S. Pancharatnam anticipated the
quantal geometric phases. He was only 22 years of age at the
time. He studied the problem of determining the phase
change undergone by polarized light after it has passed
through a sequence of polarizers such that its final polariza-
tion is the same as its initial polarization. To describe how
the phase of polarized light changes under passage through a
polarizer, Pancharatnam needed to define thephase differ-
encebetween two different polarization states. He reasoned
that the most natural way to accomplish this task is to ask
what would happen if two such states were brought to inter-
fere with each other, and accordingly he proposed the fol-
lowing definition: The polarization states of any two mono-

chromatic beams of light with the same momenta arein
phaseif the superposition of the two has the maximum pos-
sible intensity. LetuA& and uB& represent the polarization
state vectors of photons in the two beams. Since the intensity
of their superposition is proportional to

~^Au1^Bu!~ uA&1uB&!5212u^AuB&ucos$pĥ AuB&%, ~1!

according to his conventionuA& and uB& are in phasewhen
their scalar product̂AuB& is real and positive, or equiva-
lently, when pĥAuB&50. Incidentally, since orthogonal
states do not interfere, this convention breaks down for such
states, and the phase difference between them remains unde-
fined. In the general case ofnonorthogonalstates, it is natu-
ral to identify the phase difference betweenuA& anduB& with
the phase pĥAuB& of their scalar product.
Pancharatnam used this definition of the phase difference

to analyze an experiment involving a sequence of changes in
polarization of a beam of classical light by sending it through
suitable polarizers. His experiment consisted of three sequen-
tial changes in polarization, fromuA& to uB& to uC& and back
to a stateuA8& of the initial polarization. It is easy to show
that in such a scheme each successive state remains in phase
with the previous one. Now, the labelA used here to describe
a state of a polarized wave of light represents a set of values
~the eigenvalues of a complete set of commuting observ-
ables! required to specify this state uniquely. In Pancharat-
nam’s experiment all but one of these values—including the
one that specifies the polarization—were returned to their
original values, with the phase of polarization being the only
exception. Thus Pancharatnam’s evolution was not cyclic in
the sense described above. Indeed, in what follows, the clas-
sical phase difference he observed will be shown to come
from the quantum mechanical phase difference between the
initial and final one-photon states:
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^cuc8&5exp~2~ i /2!aABC!, ~2!

where aABC is the solid angle subtended by the geodesic
triangle ABC on the Poincare´ sphere~whose points, as is
well known, represent all conceivable forms of polarization
states!. For simplicity, we ignore the dynamical phase differ-
ence due to the fixed frequency of the photon. Remarkably
enough, Pancharatnam not only anticipated the quantal geo-
metric phases, but also was able to corroborate his theory
experimentally.
Another geometric phase given by a solid-angle formula

analogous to~2! was put forward in 1984 by M. V. Berry
~who was unaware of Pancharatnam’s work! in a seminal
paper on the quantum-mechanical adiabatic theorem.7 He in-
vestigated the nonrelativistic Schro¨dinger evolution

i
d

dt
uc~ t !&5H~R~ t !!uc~ t !& ~3!

of a quantal system in a slowly changing environment de-
scribed by a set ofN time-dependent parametersR(t)
5(R1(t),R2(t),...,RN(t)), with the initial state

uc~0!&5un;R~0!& ~4!

being the stationary state given by the time-independent
Schrödinger equation

H~R~0!!un;R~0!&5En~R~0!!un;R~0!&. ~5!

If H~R(t)! is nondegenerate and slowly varying, then it is
known that the time-evolving Schro¨dinger stateuc(t)& re-
mains an eigenstate of the instantaneous Hamiltonian
H~R(t)!. More precisely,

uc~ t !&5expF2 i E
0

t

dsEn~R~s!!G
3exp$ ib@n,R~ t !#%uEn~R~ t !!&, ~6!

where

b@n;R~ t !#5E
0

t

dŝ n;R~s!u i
d

ds
un;R~s!&, ~7!

or, equivalently,

b@n;R~ t !#5E
R~0!

R~ t !
dR8–^n;R8u i“R8un;R8&, ~78!

where“R is the gradient operator in the parameter spaceR.
This is, of course, just the time-honored adiabatic theorem.
Berry’s investigations, however, went beyond the usual

formulation of the adiabatic theorem captured in~6! and~7!.
He considered the case of an adiabatic transport around a
closedpath,

r t5$R~ t !uR~T!5R~0!;0,t,T%, ~8!

in the parameter space, and made the crucial observation that
in such an adiabatic setup the phase factoreib@n,R(t)# is not
integrable, i.e., in general it cannot be written as a function
of R, and in particular is not single-valued under continua-
tion around the loop: exp$ib@n;R(T)#%Þexp$ib@n;R~0!#%.
Moreover, it is easy to see that~78! can be re-expressed in
the form

b@n;r#5 R
r
dR–^n;Ru i“Run;R&, ~9!

from which it is evident thatb@n;R(T)#, or the Berry phase
as it is now called, is independent of parametrization:
b@n;R(T)#5b[n;r], where r denotes the unparametrized

loop corresponding tort . In particular, unlike the usual dy-
namical phase$2*dsEn%, the Berry phaseb[n;r] is inde-
pendent of the rate at which the state of the system traverses
aroundr.
To illustrate his findings Berry analyzed the example of a

spin-s particle interacting with a magnetic fieldB through
the Hamiltonian

H~B!5kB–S, ~10!

wherek is a constant involving the gyromagnetic ratio, andS
is the vector spin operator whose components have 2s11
eigenvaluesn lying between2s and1s with integer spac-
ing. The eigenvalues ofH~B! are, of course,

En~B!5kBn, ~11!

with B5uBu. Now, if one identifies the components of the
external magnetic fieldB with the parameter spaceR, then
Berry’s formula is easily applicable to this case. In particu-
lar, ~9! gives the geometric phase change of an eigenstate
un;B(t)& of H~B(t)! as B(t) is slowly transported—and
hence the spin is slowly precessed—around a loopg in theB
space. Berry was able to show that, in that case,

exp$ ib@n;B~T!#%5exp~2 inag!, ~12!

whereag is the solid angle subtended by the loopg atB50.
In particular, whens5 1

2 and the initial state isu
1
2;B~0!& ~‘‘spin

up’’ alongB!, then the right-hand side of~12! takes the form
of the right-hand side of the observation~2! of
Pancharatnam—namely, exp@2~i /2!a#. To establish an anal-
ogy between~2! and ~12! it suffices now to identifyuc~0!&
5uc& and uc(T)&5uc8&, and note that the left-hand side of
~12! can be rewritten, after the dynamical phase is removed,
in the form ^c~0!uc(T)&.
A simple explanation of the beautiful result~12! was given

in 1987 by J. Anandan and L. Stodolsky.36 They considered
a sphere whose points represented the possible directions of
the magnetic fieldB. In the above example of Berry, it is
sufficient for the direction ofB to trace a closed curveĝ on
this sphere in order for each eigenstate to acquire a geometric
phase. In other words, it is not necessary forB(t) to form a
closed curve; it is sufficient if merely the directions ofB~0!
andB(T) coincide. Anandan and Stodolsky then considered
a Cartesian triad with its origin onĝ(t) and itsz axis in the
radial direction of the sphere~the direction ofB(t) and the
spin axis!. If the triad is moved alongĝ(t) so that thex,y
axes are parallel-transported along the surface of the sphere,
then when the triad returns to the original pointĝ(0)5ĝ(T),
it will have rotated about itsz axis by the solid anglea
subtended byĝ at the center of the sphere. Now, relative to
the triad, each eigenstate individually should acquire only the
usual dynamical phase factor because the triad has no angu-
lar velocity about the spin axis. Consequently, the additional
phase factor acquired by the eigenstate must be interpreted as
the geometricphase factor due to the rotation of the triad
given by exp(iaJzun&5exp(ian)un&, whereJz generates ro-
tation about thez axis of the triad.
For an arbitrary cyclic evolution in any Hilbert space, the

above anglea generalizes to a set of anglesa1,...,aN . These
are the geometric quantum angles introduced by Anandan,14

which perhaps provides the deepest approach so far to the
geometric phase. The geometric phases acquired by a com-
plete set of orthogonal states$un&% are now obtained by the
‘1action on eachun& by exp(i(k51

N akJk), where the ele-
ments of the set$Jk% commute among themselves. In the
classical limit the geometric angles$ak% reduce to the classi-
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cal angles of J. H. Hannay,10 while the observables$Jk% be-
come the corresponding action variables that are in involu-
tion with each other.
We now illustrate the usefulness of geometric angles by

providing a quantum-mechanical explanation of the above-
mentioned experiment of Pancharatnam. For this purpose,
we need to generalize his classical electromagnetic polarized
wave, with fixed momentump, passing through an arbitrary
number of polarizers, such that the final polarization is the
same as the initial polarization. A classical electromagnetic
wave is an approximation of a coherent state in quantum
electrodynamics. In the Coulomb gauge the quantized
vector-potential for the electromagnetic field may be written
as

A5(
k

(
l51

2

@ak,l exp@ i ~k–x2vt !#

1ak,l
† exp@2 i ~k–x2vt !##ek,l , ~13!

wherek is the momentum vector,v5uku is the frequency,
ek,l are real orthogonal polarization vectors perpendicular to
k, andak,l , ak,l

† are the annihilation and creation operators
for the mode~k,l!. The electric and magnetic fields corre-
sponding toA areE52]A/]t andB5“3A, respectively.
The coherent state corresponding to the electromagnetic
wave considered by Pancharatnam is then

uz1 ,z2 ,p&5exp@2 1
2~ uz1u21uz2u2!#

3exp~z1ap,1
† 1z2ap,2

† !u0&, ~14!

which is an eigenstate ofap¢ ,l with eigenvalueszl . There-
fore,

^z1 ,z2 ,puAuz1 ,z2 ,p&52$uz1ucos~p–x2vt1u1!ep,1

1uz2ucos~p–x2vt1u2!ep,2%,

~15!

whereu1 andu2 are the phases ofz1 andz2, respectively. It
follows that uz1uv and uz2uv are the amplitudes of the electric
field E in the directions ofep,1 andep,2 , respectively.
We may represent the polarization state of a one-photon

state (z1ap,1
† 1 z2ap,2

† )u0& as a two-component spinor

S z1z2D
in a two-dimensional vector space with the usual inner prod-
uct, which makes it a Hilbert space. The corresponding pro-
jective Hilbert space is the Poincare´ sphere. As each photon
corresponding to the mode~p,m! passes through the polarizer
it undergoes a transition to a state~p,m8!. The new state is
obtained by simply projecting the old state onto the state that
passes through the polarizer. It can be shown that this corre-
sponds to parallel-transporting the old state-vector along the
shorter geodesic joining the two points on the Poincare´
sphere representing the two polarization states.43 Therefore,
using arguments similar to those used by Anandan and
Stodolsky,36 the final state obtained after a sequence of such
polarization changes that return the photons to their initial
polarization state is given by the action of the operator
exp(iaJ) on the initial photon state. Herea is the solid angle
subtended by the geodesic polygon defined by the sequence
of the polarization states on the Poincare´ sphere, andJ5N/2,
N being the number operator for the initial and final mode

~p,m!. As a result, the final state of the electromagnetic field
is

exp~ iaJ!uz1 ,z2 ,p&5Uz1 exp i a

2
, z2 exp i

a

2
,pL ~16!

Finally, in this resultant state we have

^z1 ,z2 ,puAuz1 ,z2 ,p&

52H uz1ucosS p–x2vt1u11
a

2 Dep,1
1uz2ucosS p–x2vt1u21

a

2 Dep,2J . ~17!

Comparison of this expression with Eq.~15! shows thata/2
is the phase Pancharatnam observed in his classical experi-
ment. A similar explanation can be given to the experiment
of Tomita and Chiao,117 except in their case we would have
J5N for the photon since it is a spin-1 particle.
Having obtained these results using the operator exp~iaJ!,

which depends on the geometric anglea, we may generalize
them to an arbitrary superposition of number eigenstates
with the same polarization. In general, such a state would not
be a coherent state and cannot therefore be represented by a
classical electromagnetic wave. Nevertheless, the geometric
part of the evolution may be obtained by taking the expecta-
tion value of exp~iaJ! with respect to the initial state.
The above-mentioned geometric treatment of Berry’s

phase by Anandan and Stodolsky suggests that the geometric
phase is associated with the motion of a quantum system and
not with the particular Hamiltonian used to achieve this mo-
tion. This is the basic idea used by Aharonov and Anandan11

in obtaining a geometric phase, which, since it is associated
with the motion of the quantum-mechanical state itself, does
not require an adiabatically varying Hamiltonian~environ-
ment!. However, if an adiabatically varying Hamiltonian is
used to implement this motion, then this geometric phase is
the same as Berry’s phase. They defined the evolution of a
normalized stateuc(t)& to be cyclic in the interval@0,T# if
and only if

uc~T!&5exp@ if~0,T!#uc~0!&, ~18!

where f~0,T! is a real number. Equivalently, this can be
re-expressed with the help of the unitary time evolution op-
eratorU(0,t) in the form

U~0,T!uc~0!&5exp@ if~0,T!#uc~0!&. ~19!

It follows from this equation that for an initial state to evolve
cyclicly in the interval@0,T# under the time-evolution opera-
tor U(0,t), it is necessary and sufficient for it to be an eigen-
state of the operatorU(0,T). Incidentally, this assures the
existence of cyclic evolutions as defined above at least in the
finite-dimensional case. According to Aharonov and Anan-
dan, the geometric contribution tof~0,T!, denoted byb, is

exp~ ib!5expF if~0,T!1 i E
0

T

dŝ c~s!u i
d

ds
uc~s!&G ~20!

or, equivalently,

exp~ ib!5^c~0!uc~T!&

3expF i E
0

T

dŝ c~s!u i
d

ds
uc~s!&G , ~208!

which reduces to the Berry’s phase factor in the adiabatic
limit.11,67What is more, just as Berry’s phase, it is indepen-
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dent of the choice of parametrization or the speed at which
the path uc(t)& is traversed. More significantly, Aharonov
and Anandan demonstrated thatb is projective-geometric in
nature, i.e., it is the same for all pathsuf(t)& that project to
the same path in the projective Hilbert space. In other words,
it is the same for any two motionsuf(t)& anduc(t)& such that
pf(t)5pc(t) , wherepa denotes a ray corresponding to a vec-
tor ua&, namely,

pa5$ub&uub&5zua&; zPC%. ~21!

The above two properties imply thatb5b@pc#, and suggest
thatb may have a geometric interpretation in terms of paths
in the projective Hilbert space. Indeed, it may be geometri-
cally understood as theanholonomywith respect to the natu-
ral connection on the projective Hilbert space. This interpre-
tation generalizes an earlier differential-geometric
interpretation of the Berry phase given by B. Simon in
1983.8

Berry’s 1984 paper was concerned with nondegenerate
states undergoing adiabatic evolution. In the same year F.
Wilczek and A. Zee reported on how the theory can be gen-
eralized to include the adiabatic evolution ofdegenerate
quantum states.9 They showed that in the case of ad-fold
degeneracy, Berry’s phase factor of the nondegenerate case,
exp(ib[n;r]), is generalized to ad3d unitary matrix, which
is now called the non-Abelian Berry phase or the Wilczek–
Zee phase. More precisely, if the initial state is one of the
eigenstates belonging to an orthonormal set of eigenstates of
H~R~0!! with a d-fold degenerate eigenvalueEn~R~0!!, i.e.,

H~R~0!!u l ;R~0!&5En~R~0!!u l ;R~0!&, ~22!

with l51,2,...,d, then

uc~ t !&5expF2 i E
0

t

dsEn~R~s!!G
3 (

l 851

d

Dl 8 l~R~ t !!u l ;R~ t !&. ~23!

Here, the matrixD is a path-ordered exponential integral

D@R~ t !#5P expH i E
R~0!

R~ t !
dR8A~R8!J , ~24!

with

Al 8 l~R~ t !!5^ l 8;Ru i“Ru l ;R&, ~25!

andP represents the path-ordering. The non-Abelian phase
factorD@l;R(T)# is a unitary matrix, and may be denoted by
D[ l ;r] because it too is independent of parameterization or
the speed with which a particular path is traversed and is
therefore geometric.
Berry’s 1984 paper, and the other reports discussed above,

were followed by a great number of papers on the subject.
They can be divided into two broad groups. The first con-
tains contributions that reformulate or generalize Berry’s
findings, while the second contains papers in which geomet-
ric phases are identified or measured in a great number of
apparently disparate physical phenomena, or in which at-
tempts are made to use these phases to explain unresolved
physical questions. The bibliography that follows is selective
and by no means exhaustive since there are hundreds of re-
search papers on the subject.
We conclude by remarking that, there are at least four

different reasons for the phenomenal success of the concepts
related to geometric phases. First, these concepts are excep-

tionally clear and have a very elegant geometric interpreta-
tion in terms of anholonomies and connections~gauge
fields!. Second, geometric phases have a certain unifying
character that enables one to relate many apparently dispar-
ate phenomena. Third, these phases can be observed and,
indeed, various predictions of the geometric phases have
been amply corroborated. Finally, and perhaps most impor-
tantly, these concepts reassert the importance and fruitfulness
of geometric ideas in physical theories.
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