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Bell's 1964 theorem, which states that the predictions of quantum theory cannot be accounted for by
any local theory, represents one of the most profound developments in the foundations of physics. In
the last two decades, Bell's theorem has been a central theme of research from a variety of
perspectives, mainly motivated by quantum information science, where the nonlocality of quantum
theory underpins many of the advantages afforded by a quantum processing of information. The focus
of this review is to a large extent oriented by these later developments. The main concepts and tools
which have been developed to describe and study the nonlocality of quantum theory and which have
raised this topic to the status of a full subfield of quantum information science are reviewed.
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I. INTRODUCTION

In 1964, Bell proved that the predictions of quantum theory
are incompatible with those of any physical theory satisfying a
natural notion of locality1 (Bell, 1964). Bell's theorem has
deeply influenced our perception and understanding of phys-
ics, and arguably ranks among the most profound scientific
discoveries ever made. With the advent of quantum informa-
tion science, considerable interest has been devoted to Bell's
theorem. In particular, a wide range of concepts and technical
tools have been developed for describing and studying the
nonlocality of quantum theory. These represent the main focus
of this review. Hence we will not discuss, at least not directly,
the extensive literature dealing with the conceptual implica-
tions of Bell's theorem from a traditional foundational
perspective. Skipping many important contributions before
and after Bell's ground-breaking discovery, the most notable
one being the famous Einstein-Podolosky-Rosen paper
(Einstein, Podolsky, and Rosen, 1935), we start straightaway
with the mathematical formulation of a locality constraint in
the context of certain experiments involving separate systems
and its violation by the predictions of quantum theory.

1To avoid any misunderstanding from the start, by “locality” we
do not mean the notion used within quantum mechanics and quantum
field theory that operators defined in spacelike separated regions
commute. Bell's notion of locality is different and is clarified below.
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A. Nonlocality in a nutshell

In a typical “Bell experiment,” two systems which may
have previously interacted—for instance they may have been
produced by a common source—are now spatially separated
and are each measured by one of two distant observers, Alice
and Bob (see Fig. 1). Alice may choose one out of several
possible measurements to perform on her system and we let x
denote her measurement choice. For instance, x may refer to
the position of a knob on her measurement apparatus.
Similarly, we let y denote Bob's measurement choice. Once
the measurements are performed, they yield outcomes a and b
on the two systems. The actual values assigned to the
measurement choices x, y and outcomes a, b are purely
conventional; they are mere macroscopic labels distinguishing
the different possibilities.
From one run of the experiment to the other, the outcomes a

and b that are obtained may vary, even when the same choices
of measurements x and y are made. These outcomes are thus
in general governed by a probability distribution pðabjxyÞ,
which can of course depend on the particular experiment
being performed. By repeating the experiment a sufficient
number of times and collecting the observed data, one gets a
fair estimate of such probabilities.
When such an experiment is actually performed—say, by

generating pairs of spin-1=2 particles and measuring the spin
of each particle in different directions—it will in general be
found that

pðabjxyÞ ≠ pðajxÞpðbjyÞ; (1)

implying that the outcomes on both sides are not statistically
independent from each other. Even though the two systems
may be separated by a large distance, and may even be
spacelike separated, the existence of such correlations is
nothing mysterious. In particular, it does not necessarily
imply some kind of direct influence of one system on the
other, for these correlations may simply reveal some depend-
ence relation between the two systems which was established
when they interacted in the past. This is at least what one
would expect in a local theory.
We formalized the idea of a local theory more precisely.

The assumption of locality implies that we should be able to
identify a set of past factors, described by some variables λ,
having a joint causal influence on both outcomes, and which

fully account for the dependence between a and b. Once all
such factors have been taken into account, the residual
indeterminacies about the outcomes must now be decoupled;
that is, the probabilities for a and b should factorize

pðabjxy; λÞ ¼ pðajx; λÞpðbjy; λÞ: (2)

This factorability condition simply expresses the fact that we
have found an explanation according to which the probability
for a depends only on the past variables λ and on the local
measurement x, but not on the distant measurement and
outcome, and analogously for the probability to obtain b. The
variable λ will not necessarily be constant for all runs of the
experiment, even if the procedure which prepares the particles
to be measured is held fixed, because λ may involve physical
quantities that are not fully controllable. The different values
of λ across the runs should thus be characterized by a
probability distribution qðλÞ. Combined with the above
factorability condition, we can thus write

pðabjxyÞ ¼
Z
Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (3)

where we also implicitly assumed that the measurements x and
y can be freely chosen in a way that is independent of λ, i.e.,
that qðλjx; yÞ ¼ qðλÞ. This decomposition now represents a
precise condition for locality in the context of Bell experi-
ments.2 Note that no assumptions of determinism or of a
“classical behavior” are being involved in Eq. (3): we assumed
that a (and similarly b) is only probabilistically determined by
the measurement x and the variable λ, with no restrictions on
the physical laws governing this causal relation. Locality is the
crucial assumption behind Eq. (3). In relativistic terms, it is the
requirement that events in one region of space-time should not
influence events in spacelike separated regions.
It is now a straightforward mathematical theorem3 that the

predictions of quantum theory for certain experiments involv-
ing entangled particles do not admit a decomposition of the
form (3). To establish this result, we consider for simplicity an
experiment where there are only two measurement choices per
observer x; y ∈ f0; 1g and where the possible outcomes take
also two values labeled a; b ∈ f−1;þ1g. Let haxbyi ¼P

a;babpðabjxyÞ be the expectation value of the product
ab for given measurement choices ðx; yÞ and consider the
expression S ¼ ha0b0i þ ha0b1i þ ha1b0i − ha1b1i, which is

a b

x y

S

FIG. 1 (color online). Sketch of a Bell experiment. A source (S)
distributes two physical systems to distant observers, Alice and
Bob. Upon receiving their systems, each observer performs a
measurement on it. The measurement chosen by Alice is labeled x
and its outcome a. Similarly, Bob chooses measurement y and
gets outcome b. The experiment is characterized by the joint
probability distribution pðabjxyÞ of obtaining outcomes a and b
when Alice and Bob choose measurements x and y.

2Bell also used the term local causality instead of locality. Local
hidden-variable or local realistic models are also frequently used to
refer to the existence of a decomposition of Eq. (3); see Goldstein
et al. (2011) and Norsen (2009) for a critical discussion of these
terminologies.

3It is relatively frequent to see a paper claiming to “disprove”
Bell's theorem or that a mistake in the derivation of Bell inequalities
has been found. However, once one accepts the definition (3), it is a
quite trivial mathematical theorem that this definition is incompatible
with certain quantum predictions. Such papers are thus either using
(possibly unaware) a different definition of locality or they are
erroneous. Quantum Randi challenges have been proposed to
confront Bell deniers in a pedagogical way (Gill, 2012; Vongehr,
2012).
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a function of the probabilities pðabjxyÞ. If these probabilities
satisfy the locality decomposition (3), we necessarily have that

S ¼ ha0b0i þ ha0b1i þ ha1b0i − ha1b1i ≤ 2; (4)

which is known as the Clauser-Horne-Shimony-Holt (CHSH)
inequality (Clauser et al., 1969). To derive this inequality, we
can use Eq. (3) in the definition of haxbyi, which allows us to
express this expectation value as an average haxbyi ¼R
dλqðλÞhaxiλhbyiλ of a product of local expectations haxiλ ¼P
aapðajx; λÞ and hbyiλ ¼

P
bbpðbjy; λÞ taking values in

½−1; 1�. Inserting this expression into Eq. (4), we can
write S ¼ R

dλqðλÞSλ, with Sλ ¼ ha0iλhb0iλ þ ha0iλhb1iλþ
ha1iλhb0iλ − ha1iλhb1iλ. Since ha0iλ; ha1iλ ∈ ½−1; 1�, this
last expression is smaller than Sλ ≤ jhb0iλ þ hb1iλjþ
jhb0iλ − hb1iλj. Without loss of generality, we can assume
that hb0iλ ≥ hb1iλ ≥ 0 which yields Sλ ¼ 2hb0iλ ≤ 2, and
thus S ¼ R

dλqðλÞSλ ≤ 2.
Consider now the quantum predictions for an experiment in

which the two systems measured by Alice and Bob are two
qubits in the singlet state jΨ−i ¼ ð1= ffiffiffi

2
p Þðj01i − j10iÞ, where

we have used the shortcut notation jabi≡ jai ⊗ jbi, and
where j0i and j1i are conventionally the eigenstates of σz for
the eigenvaluesþ1 and −1, respectively. Let the measurement
choices x and y be associated with vectors x⃗ and y⃗ corre-
sponding to measurements of x⃗ · σ⃗ on the first qubit and of
y⃗ · σ⃗ on the second qubit, where σ⃗ ¼ ðσ1; σ2; σ3Þ denotes the
Pauli vector. According to quantum theory, we then have the
expectations haxbyi ¼ −x⃗ · y⃗. Let the two settings x ∈ f0; 1g
correspond to measurements in the orthogonal directions ê1
and ê2, respectively, and the settings y ∈ f0; 1g to measure-
ments in the directions −ðê1 þ ê2Þ=

ffiffiffi
2

p
and ð−ê1 þ ê2Þ=

ffiffiffi
2

p
.

We then have ha0b0i ¼ ha0b1i ¼ ha1b0i ¼ 1=
ffiffiffi
2

p
and

ha1b1i ¼ −1= ffiffiffi
2

p
, hence

S ¼ 2
ffiffiffi
2

p
> 2; (5)

in contradiction with Eq. (4) and thus with the locality
constraint (3). This is the content of Bell's theorem, establish-
ing the nonlocal character of quantum theory and of any
model reproducing its predictions.
The CHSH inequality (4) is an example of a Bell inequality,

a linear inequality for the probabilities pðabjxyÞ that is
necessarily verified by any model satisfying the locality
condition (3), but which can be violated by suitable mea-
surements on a pair of quantum particles in an entangled state.
The violation of these inequalities and the predictions of
quantum theory were first confirmed experimentally by
Freedman and Clauser (1972), then more convincingly by
Aspect, Grangier, and Roger (1982b), and in many other
experiments since.
Before outlining in more detail the content of this review,

we first reconsider Bell's locality condition from a more
operational perspective, which illustrates the spirit underlying
this review.

B. The limitations of noncommunicating Ph.D. students

Consider a quantum apparatus which can perform
a measurement on a quantum system in a state ρA. If

measurement x is chosen, an output a is obtained.
Quantum theory predicts the statistics pðajxÞ for the outcomes
given the measurements. Suppose that a Ph.D. student, who
cannot realize such a quantum experiment, is instead provided
with unlimited classical computational power and a source of
random numbers. If the student is competent, he can simulate
the same statistics as in the quantum experiment based only on
the description of the state ρA and of the measurement x to be
performed on it. This is not a particularly deep remark: it is the
daily job of physicists all over the world and an obvious
consequence of the fact that the theory allows one to predict
the results.
Now consider two quantum devices in two distant locations

A and B performing measurements x and y on two systems in
a joint state ρAB. Quantum theory allows one to compute the
joint probabilities pðabjxyÞ, so certainly the above student
can simulate the experiment if he is given all the relevant
information. However, in the quantum experiment the two
locations can be sufficiently separated so that no information
on y is available at the location A before a result is obtained,
and similarly no information on x is available at B. Can two
students, one at A and the other at B, simulate the quantum
statistics in the same circumstances? As before, the students
cannot manipulate any quantum systems, but they have
unlimited computational power, access to a source of random
numbers, and a perfect description of the joint state ρAB.
Although they cannot communicate once the measurements
are specified, they may have set up in advance a common
strategy and have shared some common classical data λ, which
can vary across different simulation runs according to a
probability distribution qðλÞ. In full generality, the output
of the first student will thus be characterized by a probability
distribution pðajx; λÞ, which is fixed by their common strategy
and the joint state ρAB, but which may depend on the specific
measurement x chosen and of the data λ shared with the
second student. Similarly the output of the second student is
given by a probabilistic function pðbjy; λÞ. The joint statistics
simulated by the two students are thus characterized by the
probabilities

pðabjxyÞ ¼
Z

dλqðλÞpðajx; λÞpðbjy; λÞ; (6)

which is nothing but the locality condition (3). This condition
thus admits a very simple and operational interpretation: it
characterizes the correlations that can be reproduced with
classical resources by our two noncommunicating students.
The fact that certain experiments involving entangled quan-
tum states violate Bell inequalities then imply that the two
students cannot simulate such experiments. The violations of
Bell inequalities can thus be interpreted as establishing a gap
between what noncommunicating observers having access to
classical or to quantum entangled resources can achieve. Note
that locality, i.e., the constraint that the two observers cannot
communicate, is the important limitation here. As we said
previously, if all the information about x and y is available to
one of the students, it is always possible to reproduce the
quantum statistics using only classical resources.
There is another point worth noting here. The fact that

entangled quantum systems are able to do things completely
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different from classical systems is well known. Indeed, for
more than a century physicists have discovered that classical
physics does not explain everything. However, if given only
the statistics of a real quantum experiment and of a classical
simulation of it, there is no way to tell the difference. The brute
measurement data produced, for instance, by a Stern-Gerlach
experiment can be simulated classically; its “nonclassicality”
becomes evident only when one takes into account the fact
that a magnetic moment is being measured and that the
measurements are associated with the direction of the gradient
of a magnetic field. In the case of Bell nonlocality, however,
the real quantum experiment and its (attempted) simulation
can be distinguished solely from the measurement data,
without having to specify which physical degree of freedom
is involved or which measurements are performed. This
property is referred to as device independence. Interpreted
in this way, the violation of Bell inequalities can be seen as a
detector of entanglement that is robust to any experimental
imperfection: as long as a violation is observed, we have the
guarantee, independently of any implementation details, that
the two systems are entangled. This remark is important: since
entanglement is at the basis of many protocols in quantum
information, and, in particular, quantum cryptographic pro-
tocols, it opens the way to device-independent tests of their
performance.

C. Scope of this review

We have given here only a succinct and intuitive presen-
tation of the locality condition from which Bell's theorem
follows. This naturally raises a series of questions: What are
the precise physical assumptions on which this condition is
based? Can we rigorously justify, in particular, on relativistic
grounds, the notion of locality captured by this condition? To
what extent does nonlocality, i.e., the violation of Eq. (3),
conflict with relativity? What do the various interpretations of
quantum theory have to say about this issue? We do not
address here such questions that have been the subject of
extensive analysis and discussion by both physicists and
philosophers of science since Bell's discovery. A recent
concise review has been written from this perspective
(Goldstein et al., 2011). Bell's collection of papers on the
subject (Bell, 2004) is a must read, in which he explains and
develops his main result from a variety of perspectives. In
particular, the two articles (Bell, 1975, 1990) introduce the
principle of local causality—a precise formulation of the
notion of relativistic locality—from which the condition (3)
can be derived; see also Norsen (2007). For a discussion of the
implications of nonlocality for relativity, see Maudlin (2002).
This review has a more technical flavor: How can one show

that the measurement statistics of a given experiment do not
satisfy the condition (3)? How can one derive Bell inequalities
in a systematic way? Which entangled states violate these
inequalities, and which ones do not? Can quantum nonlocality
be exploited for information processing, and if yes how? How
should one design the best experimental test of quantum
nonlocality, etc.? Although they may have foundational
motivations or implications, the works discussed here have
an original technical component. Many of them also follow a
recent trend in which nonlocality is considered from an

operational perspective and where its relations with other
topics in quantum information science, such as the theory of
entanglement or cryptography, are investigated. Finally, we
focus on progress reported in the last 15 years or so. For works
on Bell nonlocality before this period or for aspects not
covered here, see Clauser and Shimony (1978), Home and
Selleri (1991), Khalfin and Tsirelson (1992), Mermin (1993),
Tsirelson (1993), Zeilinger (1999), Werner and Wolf (2001a),
Genovese (2005), and Buhrman et al. (2010), and references
therein.

D. Outline

The outline of this review is as follows. Section II is devoted
to setting up some general definitions and presenting a
mathematical characterization of nonlocal correlations. In
particular, we study the general properties of correlations that
can arise between local, quantum, and no-signaling systems.
We address the problem of deriving Bell inequalities from
the locality condition (3) and determining their maximal
quantum violations. Section III addresses nonlocality in
quantum theory. The main question is to understand how
quantum nonlocality relates to certain properties of quantum
resources, such as entanglement and Hilbert space dimension.
The relation between nonlocality and information is discussed
in Secs. IV and V. We first present in Sec. IV various
applications of quantum nonlocality, such as communication
complexity, quantum cryptography, and device-independent
quantum information processing. Section V provides an
information-theoretic perspective on nonlocality, in which
nonlocal correlations are viewed as a fundamental resource.
Notably, these ideas stimulated a series of works trying to
recover the structure of quantum correlations (and more
generally of quantum theory itself) from information-theoretic
principles. Section VI is devoted to the nonlocality of
multipartite systems. The notions of genuine multipartite
nonlocality and monogamy of correlations are discussed, as
well as their relevance for quantum multipartite systems. In
Sec. VII we review the experimental work that has been
achieved on quantum nonlocality, where Bell inequality
violations have been demonstrated using a variety of different
physical systems and experimental configurations. We also
discuss the loopholes that may affect Bell experiments and
report recent progress made toward a loophole-free Bell
experiment. Finally, Sec. VIII deals with variations around
Bell's theorem, in which different notions of nonlocality,
stronger or weaker than Bell's, are considered. Section IX
gives our conclusion. And finally, the Appendix provides a
guide referencing Bell inequalities for a wide range of Bell
scenarios.

II. MATHEMATICAL CHARACTERIZATION OF
NONLOCAL CORRELATIONS

This section presents the main concepts and tools for
characterizing nonlocal correlations. The notations introduced
here will be used throughout this review. For clarity, the
discussion focuses mainly on the case of two observers,
generalizations to the multipartite case being usually
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straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).

A. General definitions

As in the Introduction, we consider two distant observers,
Alice and Bob, performing measurements on a shared
physical system, for instance, a pair of entangled particles.
Each observer has a choice of m different measurements to
perform on his system. Each measurement can yield Δ
possible outcomes. Abstractly we describe the situation by
saying that Alice and Bob have access to a “black box.” Each
party locally selects an input (a measurement setting) and the
box produces an output (a measurement outcome). We refer to
this scenario as a Bell scenario.
We label the inputs of Alice and Bob x; y ∈ f1; :::::; mg and

their outputs a; b ∈ f1; :::::;Δg, respectively. The labels
attributed to the inputs and outputs are purely conventional,
and the results presented here are independent of this choice.
Some parts of this review might use other notations for
convenience. In particular, when the outputs are binary, it
is customary to write a; b ∈ f−1; 1g or a; b ∈ f0; 1g.
Let pðabjxyÞ denote the joint probability to obtain the

output pair ða; bÞ given the input pair ðx; yÞ. A Bell scenario is
then completely characterized by Δ2m2 such joint probabil-
ities, one for each possible pair of inputs and outputs.
Following the terminology introduced by Tsirelson (1993),
we refer to the set p ¼ fpðabjxyÞg of all these probabilities as
a behavior. Informally, we simply refer to them as the
correlations characterizing the black box shared by Alice
and Bob. A behavior can be viewed as a point p ∈ RΔ2m2

belonging to the probability space P ⊂ RΔ2m2

defined by
the positivity constraints pðabjxyÞ ≥ 0 and the normalization
constraints

PΔ
a;b¼1 pðabjxyÞ ¼ 1. Due to the normalization

constraints P is a subspace of RΔ2m2

of dimension
dimP ¼ ðΔ2 − 1Þm2.
The existence of a given physical model behind the

correlations obtained in a Bell scenario translates into addi-
tional constraints on the behaviors p. Three main types of
correlations can be distinguished.

1. No-signaling correlations

The first natural limitation on behaviors p are the no-
signaling constraints (Cirel'son, 1980; Popescu and Rohrlich,
1994), formally expressed as

XΔ
b¼1

pðabjxyÞ ¼
XΔ
b¼1

pðabjxy0Þ; for all a; x; y; y0;

XΔ
a¼1

pðabjxyÞ ¼
XΔ
a¼1

pðabjx0yÞ; for all b; y; x; x0: (7)

These constraints have a clear physical interpretation: they
imply that the local marginal probabilities of Alice pðajxÞ≡
pðajxyÞ ¼ PΔ

b¼1 pðabjxyÞ are independent of Bob's meas-
urement setting y, and thus Bob cannot signal to Alice by his
choice of input (and the other way around). In particular, if
Alice and Bob are spacelike separated, the no-signaling
constraints (7) guarantee that Alice and Bob cannot use their

black box for instantaneous signaling, preventing a direct
conflict with relativity.
Let NS denote the set of behaviors satisfying the no-

signaling constraints (7). It is not difficult to see thatNS is an
affine subspace of RΔ2m2

of dimension

dimNS ¼ 2ðΔ − 1Þmþ ðΔ − 1Þ2m2 ¼ ∶t; (8)

see, e.g., Pironio (2005). One can thus parametrize points in
NS using t numbers rather than the Δ2m2 numbers [or ðΔ2 −
1Þm2 taking into account normalization] necessary to specify
a point in the general probability space P. A possible
parametrization is given by the set of probabilities
fpðajxÞ; pðbjyÞ; pðabjxyÞg, where a; b ¼ 1;…;Δ − 1 and
x; y ¼ 1;…; m. There are indeed t such probabilities and
their knowledge is sufficient to reconstruct the full list of
pðabjxyÞ for any a, b, x, and y. Seen as a subset of Rt, the
no-signaling set is thus uniquely constrained by the
Δ2m2 positivity constraints pðabjxyÞ ≥ 0 (which have to
be reexpressed in terms of the chosen parametrization).
In the case of binary outcome (Δ ¼ 2), an alternative

parametrization is provided by the 2mþm2 correlators
fhAxi; hByi; hAxByig, where

hAxi ¼
X

a∈f�1g
apðajxÞ; hByi ¼

X
b∈f�1g

bpðbjyÞ; (9)

hAxByi ¼
X

a;b∈f�1g
abpðabjxyÞ; (10)

and we assumed a; b ∈ f−1; 1g. Joint probabilities and
correlators are related as pðabjxyÞ ¼ ½1þ ahAxi þ bhByiþ
abhAxByi�=4. Thus an arbitrary no-signaling behavior must
satisfy 1þ ahAxi þ bhByi þ abhAxByi ≥ 0 for all a, b, x, and
y. See Bancal, Gisin, and Pironio (2010) for a more general
definition of correlators for the Δ > 2 case.
A particular subset of interest of NS in the Δ ¼ 2 case is

the one for which hAxi ¼ hByi ¼ 0. We refer to this set as the
correlation space C. In terms of the m2 correlators (10), an
arbitrary point in C is constrained only by the inequalities
−1 ≤ hAxByi ≤ 1. Bell inequalities that involve only the
quantities hAxByi, such as the CHSH inequality, are called
correlation inequalities.

2. Local correlations

A more restrictive constraint than the no-signaling con-
dition is the locality condition discussed in the Introduction.
Formally, the set L of local behaviors is defined by the
elements of P that can be written in the form

pðabjxyÞ ¼
Z
Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (11)

where the (hidden) variables λ are arbitrary variables taking
value in a space Λ and distributed according to the probability
density qðλÞ and where pðajx; λÞ and pðbjy; λÞ are local
probability response functions for Alice and Bob, respectively.
Operationally, one can also think about λ as shared random-
ness; that is, some shared classical random bits, where Alice
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will choose an outcome a depending on both her measurement
setting x and λ and similarly for Bob.
Whereas any local behavior satisfies the no-signaling

constraint, the converse does not hold. There exist no-signal-
ing behaviors which do not satisfy the locality conditions.
Hence the set of local correlations is strictly smaller than the
set of no-signaling correlations; that is, L ⊂ NS.
Correlations that cannot be written in the above form are

said to be nonlocal. Note that this can happen only if Δ ≥ 2
and m ≥ 2 (otherwise it is always possible to build a local
model for any behavior inP). In the following, we thus always
assume Δ ≥ 2, m ≥ 2.

3. Quantum correlations

Finally, we consider the set of behaviors achievable in
quantum mechanics. Formally, the set Q of quantum behav-
iors corresponds to the elements of P that can be written as

pðabjxyÞ ¼ tr ðρABMajx ⊗ MbjyÞ; (12)

where ρAB is a quantum state in a joint Hilbert space
HA ⊗ HB of arbitrary dimension, Majx are measurement
operators [positive operator valued measure (POVM)
elements] on HA characterizing Alice's measurements (thus
Majx ≥ 0 and

PΔ
a¼1 Majx ¼ 1), and similarly Mbjy are

operators on HB characterizing Bob's measurements.
Note that, without loss of generality, we can always assume

the state to be pure and the measurement operators to be
orthogonal projectors, if necessary by increasing the dimen-
sion of the Hilbert space. That is, we can equivalently write a
quantum behavior as

pðabjxyÞ ¼ hψ jMajx ⊗ Mbjyjψi; (13)

where MajxMa0 jx ¼ δaa0Majx,
P

aMajx ¼ 1A and similarly for
the operators Mbjy.
A different definition of quantum behaviors is also possible,

where instead of imposing a tensor product structure between
Alice's and Bob's systems, we merely require that their local
operators commute (Tsirelson, 1993). We call the correspond-
ing set Q0, i.e., a behavior p belongs to Q0 if

pðabjxyÞ ¼ hψ jMajxMbjyjψi; (14)

where jψi is a state in a Hilbert space H, and Majx and Mbjy
are orthogonal projectors on H defining proper measurements
and satisfying ½Majx;Mbjy� ¼ 0. The former definition (13) is
standard in nonrelativistic quantum theory, while the second
one (14) is natural in relativistic quantum field theory. Since
½Majx ⊗ 1B; 1A ⊗ Mbjy� ¼ 0 it is immediate that Q⊆Q0. It is
an open question, known as Tsirelson's problem, whether the
inclusion is strict, i.e., Q ≠ Q0 (Scholz and Werner, 2008;
Tsirelson, 1993; Junge et al., 2011; Fritz, 2012a). In the case
where the Hilbert spacesH,HA, andHB are finite, it is known
that Eqs. (13) and (14) coincide (Tsirelson, 1993; Doherty et
al., 2008; Navascues et al., 2011). It is also known that Q ¼
Q0 if Alice has a binary choice of inputs with two outputs
each, independently of Bob's number of inputs and outputs
(Navascues et al., 2011). More precisely, in this case any

element of Q0 can be approximated arbitrarily well by an
element of Q. For many applications and results, it does not
matter whether we consider the quantum sets Q or Q0. In the
following, we drop the distinction and use the notation Q to
refer to both sets, except when results are specific to only one
definition.
It can easily be shown that any local behavior admits a

description of Eq. (12) and thus belongs to Q (Pitowsky,
1986). Moreover, any quantum behavior satisfies the no-
signaling constraints. However, there are quantum correlations
that do not belong to the local set (this follows from the
violation of Bell inequalities) and, as we will see, there are no-
signaling correlations that do not belong to the quantum set
(Khalfin and Tsirelson, 1985; Rastall, 1985; Popescu and
Rohrlich, 1994). In general, we thus have the strict inclusions
L ⊂ Q ⊂ NS (see Fig. 2). Furthermore, it can be shown that
dimL ¼ dimQ ¼ dimNS ¼ t (Pironio, 2005), where t is
defined in Eq. (8).
In the following sections, we discuss the properties of L,Q,

andNS in more detail. In particular, we see how it is possible
to decide if a given behavior belongs or not to one of these
sets. We show how each set can be characterized in terms of
Bell-type inequalities and discuss how to compute bounds for
Bell-type expression for behaviors in L, Q, and NS.

B. Bell inequalities

The sets L, Q, and NS are closed, bounded, and convex.
That is, if p1 and p2 belong to one of these sets, then the
mixture μp1 þ ð1 − μÞp2 with 0 ≤ μ ≤ 1 also belongs to this
set. The convexity of Q can be established for instance by
following the argument in Pitowsky (1986). By the hyper-
plane separation theorem, it follows that for each behavior
p̂ ∈ Rt that does not belong to one of the sets K ¼ L, Q, or
NS there exists a hyperplane that separates this p̂ from the
corresponding set (see Fig. 2). That is, if p̂∉K, then there
exists an inequality of the form

s · p ¼
X
abxy

sabxypðabjxyÞ ≤ Sk (15)

FIG. 2 (color online). Sketch of the no-signaling (NS), quantum
(Q), and local (L) sets. Notice the strict inclusions L ⊂ Q ⊂ NS.
Moreover, NS and L are polytopes, i.e., they can be defined as
the convex combination of a finite number of extremal points.
The set Q is convex, but not a polytope. The hyperplanes
delimiting the set L correspond to Bell inequalities.
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that is satisfied by all p ∈ K but which is violated by p̂:
s · p̂ > Sk. In the case of the local set L, such inequalities are
simply Bell inequalities. Thus any nonlocal behavior violates
a Bell inequality. An example of such an inequality is the
CHSH inequality (4) that we introduced in Sec. I.A. The
inequalities associated with the quantum set, which character-
ize the limits of Q, are often called quantum Bell inequalities
or Tsirelson inequalities.
In the following, we refer to an arbitrary s ∈ Rt as a Bell

expression and to the minimal value Sl such that s · p ≤ Sl
holds for all p ∈ L as the local bound of this Bell expression.
Similarly, we define the quantum bound Sq and the no-
signaling bound Sns as the analog quantities for the setsQ and
NS. If Sq > Sl we also say that quantum mechanics violates
the Bell inequality s · p ≤ Sl. When such a behavior is
observed one speaks of a Bell inequality violation.

1. The local polytope

We now investigate how Bell inequalities, i.e., the hyper-
planes characterizing the set L, can be found. To this end, it is
useful to note that we can express local correlations in a
simpler form. The first step is to realize that local correlations
can, equivalent to Eq. (11), be defined in terms of determin-
istic local hidden-variable models. In a deterministic model,
the local response functions pðajx; λÞ and pðbjy; λÞ only take
the value 0 or 1, that is, the hidden variable λ fully specifies the
outcome that is obtained for each measurement. No such
requirement is imposed on the general stochastic model (11).
That both definitions are equivalent follows from the fact that
any local randomness present in the response functions
pðajx; λÞ and pðbjy; λÞ can always be incorporated in the
shared random variable λ. To see this, introduce two param-
eters μ1; μ2 ∈ ½0; 1� in order to define a new hidden variable
λ0 ¼ ðλ; μ1; μ2Þ. Let

p0ðajx; λ0Þ ¼
�
1; if Fða − 1jx; λÞ ≤ μ1 < Fðajx; λÞ;
0; otherwise;

(16)

where Fðajx; λÞ ¼ P
~a≤apð ~ajx; λÞ, be a new response func-

tion for Alice and define a similar one for Bob. If we choose
q0ðλ0Þ ¼ q0ðλ; μ1; μ2Þ ¼ qðλÞ for the new hidden variable
distribution, that is, if we uniformly randomize over μ1 and
μ2, we clearly recover the predictions of the general, stochastic
model (11). The newly defined model, however, is determin-
istic. This equivalence between the two models was first noted
by Fine (1982).
We can further simplify the definition by noting that we

need to consider only a finite number of hidden variables.
Indeed, in a deterministic model, each hidden variable λ
defines an assignment of one of the possible outputs to each
input. The model as a whole is a probabilistic mixture of these
deterministic assignments of outputs to inputs, with the hidden
variable specifying which particular assignment is chosen in
each run of the experiment. Since the total number of inputs
and outputs is finite, there can be only a finite number of such
assignments, and hence a finite number of hidden variables.
More precisely, we can rephrase the local model (11) as

follows. Let λ ¼ ða1;…; am; b0;…; bmÞ define an assignment
of outputs ax and by for each of the inputs x ¼ 1;…; m and

y ¼ 1;…; m. Let dλ ∈ L denote the corresponding determin-
istic behavior

dλðabjxyÞ ¼
�
1; if a ¼ ax and b ¼ by;
0; otherwise:

(17)

There are Δ2m possible output assignments and therefore Δ2m

such local deterministic behaviors. A behavior p is local if and
only if it can be written as a convex combination of these
deterministic points, that is, if

p ¼
X
λ

qλdλ; with qλ ≥ 0;
X
λ

qλ ¼ 1: (18)

This last representation is particularly useful as it provides
an algorithm for determining if a given behavior p is local
(Zukowski et al., 1999; Kaszlikowski et al., 2000). Indeed,
determining whether there exist weights qλ satisfying the
linear constraints in Eq. (18) is a typical instance of a linear
programming problem (Boyd and Vandenberghe, 2004) for
which there exist algorithms that run in time that is polynomial
in the number of variables. Note, however, that since there are
Δ2m possible λ the size of this particular linear program is
extremely large and hence the algorithm is not efficient by
itself. Every linear program comes in a primal and a dual form.
The dual form of the linear program associated with Eq. (18)
has an interesting physical interpretation. Indeed, it can be
formulated as

maxðs;SlÞ s · p − Sl;

s:t: s · dλ − Sl ≤ 0; λ ¼ 1;…;Δ2m;

s · p − Sl ≤ 1:

(19)

If p is local, the maximum S of the above program is S ≤ 0. If
p is nonlocal, the maximum is S ¼ 1, i.e., the program returns
an inequality s · dλ ≤ Sl satisfied by all deterministic points
(and hence, by convexity, by all local points), but violated by
p∶ s · p ¼ Sl þ 1 > Sl. That is, Eq. (19) provides a procedure
for finding, for any p, a Bell inequality that detects its
nonlocality.
Since the set L is the convex hull of a finite number of

points, it is a polytope. The local deterministic behaviors dλ

correspond to the vertices, or extreme points, of the polytope.
It is a basic result in polyhedral theory, known as Minkowski's
theorem, that a polytope can, equivalently to Eq. (18) as the
convex hull of its vertices, be represented as the intersection of
finitely many half-spaces. Hence, we have that p ∈ L if and
only if

si · p ≤ Sil ∀ i ∈ I; (20)

where I indexes a finite set of linear inequalities. If, on the
other hand, p is nonlocal, it necessarily violates one of the
inequalities in Eq. (20). Thus the local set L can be
characterized by a finite set of Bell inequalities.

2. Facet Bell inequalities

If s · p ≤ Sl is a valid inequality for the polytope L, then
F ¼ fp ∈ L∣s · p ¼ Slg is called a face of L. Faces of
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dimension dimF ¼ dimL − 1 ¼ t − 1 are called facets of L
and the corresponding inequalities are called facet Bell
inequalities. The terminology “tight Bell inequalities” is also
used.4 Facet inequalities are important because they provide a
minimal representation of the set L in Eq. (20): minimal as
they are necessarily required in the description (20), and since
any other Bell inequality can be written as a non-negative
combination of the facet inequalities. These notions are easily
understood and visualized in two or three dimensions (note,
however, that our low-dimensional intuition is often unreliable
in higher dimensions). A more general discussion of polytope
theory (not applied to Bell inequalities) can be found in, e.g.,
Schrijver (1989) and Ziegler (1995). The connection between
optimal Bell inequalities and polytope theory was realized
early by Froissard (1981) and later by Garg and Mermin
(1984), Pitowsky (1989), Peres (1999), and Werner and
Wolf (2001b).
Facet Bell inequalities provide a practical description of the

local polytope L. Usually, however, we start from the vertices
of L, which are the local deterministic behaviors dλ. The task
of determining the facets of a polytope, given its vertices, is
known as the facet enumeration or convex hull problem. For
sufficiently simple cases, it is possible to obtain all the facets
with the help of computer codes, such as CDD (Fukuda, 2003)
or PORTA (Christof and Lobel, 1997), which are specifically
designed for convex hull computations. However, such pro-
grams become prohibitively time consuming as the number of
parties, inputs, or outputs grow. Note also that the simpler
problem of determining whether a behavior is local using the
linear program associated with Eq. (19) also becomes rapidly
impractical for a large number of inputsm since the number of
deterministic points scales exponentially with m. Results in
computer science tell us that this problem is in general
extremely difficult (Babai, Fortnow, and Lund, 1991).
Evidence in this direction was first given by Pitowsky
(1989). Then it was proven that deciding whether a behavior
is local for the class of Bell scenarios with binary outputs
(Δ ¼ 2) and m inputs is NP complete (Avis et al., 2004). It is
therefore highly unlikely that the problem of characterizing
the local polytope admits a simple solution in full generality.
In the following, we list some facet Bell inequalities of

interest. Note that the positivity conditions [corresponding to
pðabjxyÞ ≥ 0] are always facets of the local polytope, but
obviously are never violated by any physical theory. All other
facet inequalities are violated by some no-signaling behaviors
and possibly by some quantum behaviors. It is in fact an open
question whether there exist facet inequalities in the bipartite
case (different than the positivity ones) that are not violated by
any quantum behaviors [such inequalities are known in Bell
scenarios with more parties (Almeida, Bancal et al., 2010)].
Note also that if an inequality defines a facet of the local
polytope then it is obviously also the case for all the
inequalities obtained from it by relabeling the outputs, inputs,
or parties. What we mean thus in the following by an
“inequality” is the whole class of inequalities obtained by

such operations. Finally, it was shown by Pironio (2005) that
there exists a hierarchical structure in the facial structure of
local polytopes, in the sense that a facet Bell inequality of a
given polytope with Δ outputs and m inputs can always
be extended (or lifted) to any polytope with Δ0 ≥ Δ and/or
m0 ≥ m (and also to polytopes corresponding to more parties)
in such a way as to define a facet of the new polytope.

3. Examples

The simplest nontrivial Bell scenario corresponds to the
case Δ ¼ 2, m ¼ 2. The corresponding local polytope was
completely characterized by Froissard (1981) and independ-
ently by Fine (1982). In this case, there is only one (nontrivial)
facet inequality: the CHSH inequality introduced in Eq. (4). It
was shown by Pironio (2004) that the CHSH inequality is also
the only facet inequality for all polytopes with two inputs and
two outputs for Alice and an arbitrary number of inputs and
outputs for Bob.
The case Δ ¼ 2, m ¼ 3 was computationally solved by

Froissard (1981) who found that, together with the CHSH
inequality, the inequality

pA
1 þ pB

1 − p11 − p12 − p13 − p21 − p31 − p22

þ p23 þ p32 ≥ −1 (21)

is facet defining, where pA
x ¼ pða ¼ 1jxÞ, pB

y ¼ pðb ¼ 1jyÞ,
and pxy ¼ pða ¼ 1; b ¼ 1jxyÞ. This result was later on
rederived by Sliwa (2003) and Collins and Gisin (2004).
The Froissard inequality is also referred to as the I3322
inequality, following the terminology of Collins and Gisin
(2004). Note that this inequality could be generalized for the
case of an arbitrary number of measurements m with binary
outcomes, a family known as the Imm22 inequalities (Collins
and Gisin, 2004), proven to be facets by Avis and Ito (2007).
For Δ arbitrary and m ¼ 2, Collins, Gisin, Linden et al.

(2002) introduced the following inequality [we used the
notation of Acín, Gill, and Gisin (2005)]:

½a1 − b1� þ ½b1 − a2� þ ½a2 − b2� þ ½b2 − a1 − 1� ≥ d − 1;

(22)

where ½ax − by� ¼
PΔ−1

j¼0 jpða − b ¼ jmodΔjxyÞ and simi-
larly for the other terms. Note that for convenience the
measurement outcomes are now denoted as a; b ∈
f0; 1; :::;Δ − 1g. This inequality is known as the Collins-
Gisin-Linden-Massar-Popescu (CGLMP) inequality. For
Δ ¼ 2, it reduces to the CHSH inequality. It has been shown
to be facet defining for all Δ by Masanes (2003).
The above inequality can be extended to an arbitrary

number of inputs m in the following way (Barrett, Kent,
and Pironio, 2006):

½a1 − b1� þ ½b1 − a2� þ ½a2 − b2� þ � � � þ ½am − bm�
þ ½bm − a1 − 1� ≥ d − 1. (23)

Although this Bell inequality is not a facet inequality, it is
useful in several contexts. In the case Δ ¼ 2, it reduces to the

4Note, however, that in polytope theory a tight inequality refers
merely to an inequality that “touches” the polytope, i.e., such that
F ≠ ∅.

Brunner et al.: Bell nonlocality 427

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



chained inequality introduced by Pearle (1970) and
Braunstein and Caves (1990).
Beyond these simple cases, a large zoology of Bell inequal-

ities has been derived and it would be impossible to discuss
them all here in detail, in particular, given the increase of
complexity with larger values of Δ and m. For instance, in the
case Δ ¼ 2, there is only one (nontrivial) facet Bell inequality
for m ¼ 2, two inequalities for m ¼ 3, but already for m ¼ 4
their number is not known (Brunner and Gisin, 2008). For
m ¼ 10, there are at least 44 368 793 inequalities (Avis et al.,
2004) (and this value is probably a gross underestimate). To
complete the simple examples given above, we mention some
recent papers where new Bell inequalities have been derived.
Collins and Gisin (2004) and Brunner and Gisin (2008)
obtained several facet Bell inequalities by numerically solving
the convex hull problem for small values of Δ and m. Avis
et al. (2004, 2005) and Avis and Ito (2007) obtained large
families of Bell inequalities by establishing a relation between
the local polytope for Δ ¼ 2 and a high-dimensional convex
polytope called the cut polytope in polyhedral combinatorics.
Vértesi (2008), Vértesi and Pal (2008), and Pal and Vértesi
(2009) proposed new algorithms to construct families of facet
and nonfacet Bell inequalities in the Δ ¼ 2 case. Methods
exploiting symmetries to generate Bell inequalities for arbi-
trary Δ andm (and an arbitrary number n of parties) have been
investigated by Bancal, Gisin, and Pironio (2010) and Bancal,
Branciard et al. (2012). While we focused here on the case
where Δ and m are finite, it is also possible to define Bell
inequalities taking a continuous set of values for the outputs
(Cavalcanti et al., 2007; Salles et al., 2010) or the inputs
(Kaszlikowski and Zukowski, 2000; Aharon et al., 2013).
Finally note that nonlinear Bell inequalities have also been

considered. Quadratic inequalities were discussed by Uffink
(2002), while Cavalcanti et al. (2007) and Salles et al. (2010)
considered Bell inequalities based on moments of the prob-
ability distribution. Another approach, based on entropic
quantities, was introduced by Braunstein and Caves (1988)
and further developed by Cerf and Adami (1997) and Chaves
and Fritz (2012).

4. Nonlocal games

Bell inequalities are also referred to as nonlocal games or
sometimes simply as games. Looking at Bell inequalities
through the lens of games often provides an intuitive under-
standing of their meaning. Such games enjoy a long history in
computer science where they are known as interactive proof
systems; see Condon (1989) for an early survey. More
recently, they have also been studied in the quantum setting,
under the name of interactive proof systems with entangle-
ment (Cleve et al., 2004). In order to make such literature
accessible, we see how the two concepts can be translated into
each other.5

When talking about a game, we imagine that there is an
outside party, the referee that plays the game against Alice and
Bob. In this context, parties or systems are referred to as

players. Papers dealing with interactive proof systems also
refer to the referee as the verifier and to the players as provers.
The referee chooses a question x ∈ X for Alice and y ∈ Y for
Bob according to some probability distribution π∶X × Y →
½0; 1� from some set of possible questions X and Y. Upon
receiving x from the referee, Alice (Bob) returns an answer
a ∈ RA (b ∈ RB) from some set of possible answers RA (RB).
The referee then decides whether these answers are winning
answers for the questions he posed according to the rules of
the game. These rules are typically expressed by means of a
predicate V∶RA×RB×X×Y→ f0;1g, where Vða; b; x; yÞ ¼
1 if and only if Alice and Bob win against the referee by giving
answers a and b for questions x and y. To emphasize the idea
that the correct answers depend on the questions given, one
often writes the predicate as Vða; bjx; yÞ.
Alice and Bob are fully aware of the rules, that is, they

know the predicate V and the distribution π. Before the game
starts, they can agree on any strategy that may help them
thwart the referee. However, once the game starts they can no
longer communicate. In particular, this means that Alice does
not know which question is given to Bob and vice versa. In the
classical setting, such a strategy consists of shared random-
ness, which is the computer science name for local hidden
variables. In the quantum case, Alice and Bob's strategy
consists of a choice of shared quantum state and
measurements.
The relation between games and Bell inequalities becomes

apparent by noting that the questions are simply labels for
measurement settings. That is, using our earlier notation we
can take X ¼ Y ¼ f1;…; mg. Note that we can without loss
of generality assume that the number of settings jXj and jYj
are the same; otherwise, we can simply extend the number of
settings for each party but never employ them. Similarly, the
answers correspond to measurement outcomes. That is, we
can take RA ¼ RB ¼ f1;…;Δg.
Any strategy leads to some particular probabilities

pða; bjx; yÞ that Alice and Bob give answers a, b for questions
x, y, respectively. In the language of Bell inequalities, this is
simply the probability that Alice and Bob obtain measurement
outcomes a and b when performing the measurements labeled
x and y. The probability that Alice and Bob win against the
referee for some particular strategy can thus be written as

pwin ¼
X
x;y

πðx; yÞ
X
a;b

Vða; bjx; yÞpða; bjx; yÞ: (24)

In the classical or quantum setting, one can consider the
maximum winning probability that Alice and Bob can
achieve. For instance, considering classical resources, we have

maxpwin ¼ Sl; (25)

where the maximization is taken over all deterministic
strategies of Alice and Bob. Note that this leads to the familiar
form of a Bell inequality

pwin ¼ s · p ≤ Sl; (26)

where the coefficients are given by

5For the purpose of illustration, we will here restrict ourselves to
the case of only two parties, Alice and Bob. However, the relation
holds for an arbitrary amount of parties.
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sa;bx;y ¼ πðx; yÞVða; bjx; yÞ: (27)

Hence games form a subset of general Bell inequalities. In
complexity theory, the winning probability is also often
referred to as the value of the game.

a. XOR games

A class of games that is very well understood are so-called
XOR games (Cleve et al., 2004). In an XOR game, each
player has only two possible answers a; b ∈ f0; 1g. To decide
whether Alice and Bob win, the referee computes the XOR
c ¼ a⊕b≔aþ bmod 2 and then bases his decision solely on
c. For such games the predicate is generally written as
Vðcjx; yÞ≔P

aVða; b ¼ c⊕ajx; yÞ. We see later that it is easy
to find the optimal quantum strategy for XOR games, and
indeed the structure of their optimal measurements is entirely
understood. Also, multiplayer XOR games are reasonably
well understood and bounds relating the classical and quan-
tum winning probabilities are known (Briet and Vidick, 2013).
We simply note for the moment that XOR games are

equivalent to correlation Bell inequalities with binary out-
comes. Indeed, from Eq. (10) it follows that we can write
pða⊕b ¼ 0jx; yÞ ¼ 1

2
ð1þ hAxByiÞ and pða⊕b ¼ 1jx; yÞ ¼

1
2
ð1 − hAxByiÞ. The winning probability for an XOR game

can thus be written as

pwin ¼
1

2

X
x;y

πðx;yÞ
X

c∈f0;1g
Vðcjx;yÞ½1þð−1ÞchAxByi�; (28)

which is the general form of a correlation Bell inequalities.
XOR games can thus be recast as correlation inequalities and
vice versa.

b. An example: CHSH as a game

An illustrative example of how correlation Bell inequalities
transform into games and vice versa is provided by the CHSH
inequality. For convenience, we take here X ¼ Y ¼ f0; 1g
(instead of f1; 2g), as well as RA ¼ RB ¼ f0; 1g. Viewing
CHSH as a game, the rules state that Alice and Bob win if and
only if x · y ¼ a⊕b. Plugging this into Eq. (28) one obtains

pCHSH
win ¼ 1

2

�
1þ S

4

�
; (29)

where S is the CHSH expression as given in Eq. (4). Indeed
one has S ≤ 2 for any classical strategy. Hence, the probability
for Alice and Bob to win the game using classical resources is
at most 3=4. Using quantum resources, the winning proba-
bility is at most ð1þ 1=

ffiffiffi
2

p Þ=2 ≈ 0.85, as given by Tsirelson's
bound S ≤ 2

ffiffiffi
2

p
.

c. Projection and unique games

A projection game is a game in which for every pair of
questions x and y to Alice and Bob, and for every answer a of
Alice, there exists a unique winning answer for Bob. In the
quantum information literature, these are also often simply
called unique games. However, in the classical computer
science literature and also some of the quantum information

literature the term unique game can also refer to a game for
which for any pair of questions ðx; yÞ there exists a permu-
tation πx;y over the set f1;…;Δg of possible answers such that
Alice and Bob win if and only if their answers obey
a ¼ πx;yðbÞ. In terms of the predicate this means that
Vða; bjx; yÞ ¼ 1 if and only if b ¼ πx;yðaÞ. Note that in this
language, every unique game is a projection game because
there is only one correct answer for Bob for each x, y, and a.
However, not every projection game forms a unique game.
A more general notion which imposes a limit on the number

of winning answers are k-to-k0 games (Kempe, Regev, and
Toner, 2010). More precisely, a game is k to k0 if for all
questions x and y the following two conditions hold: for all
answers a of Alice there exist at most k winning answers for
Bob, and for all answers b of Bob there exist at most k0

winning answers for Alice. A projection game is thus a k-to-k0

game for k ¼ k0 ¼ 1.

d. Other special classes of games

Several other special classes of games have been studied on
occasion. A linear game is a game for which one can associate
the set of possible answers f1;…;Δg with an Abelian group
G of size Δ and find a function W∶f1;…; mg×2 → G such
that Vða; bjx; yÞ ¼ 1 if and only if a − b ¼ Wðx; yÞ. Any
linear game is a unique game and has been shown to have the
special property to be a uniform game, that is, a game in which
there exists an optimal quantum strategy such that the
marginal distributions pðajxÞ and pðbjyÞ are the uniform
distributions over RA and RB, respectively (Kempe, Regev,
and Toner, 2010). Furthermore, a game may be called free if
the questions are drawn from a product distribution, that is,
πðx; yÞ ¼ πAðxÞ × πBðyÞ for some distributions πA and πB
(Kempe and Vidick, 2011). A game is called symmetric if for
all questions x, y and all answers a, b we have Vða; bjx; yÞ ¼
Vðb; ajy; xÞ (Dinur and Reingold, 2006; Kempe and Vidick,
2011). An example of a game that is both free and symmetric
is given by the CHSH game above. Another class of games
that has drawn attention in the computer science literature is
characterized merely by the fact that there exists a quantum
strategy that wins the game with probability pwin ¼ 1. Such
games are sometimes also called Kochen-Specker games (or
pseudotelepathy or Greenberger-Horne-Zeilinger games) due
to the fact that the optimal quantum strategy yields a so-called
Kochen-Specker set (Renner and Wolf, 2004), a concept in
contextuality which is outside the scope of this review [see
Brassard, Broadbent, and Tapp (2005) for a survey on such
games; see also the related discussion in Sec. II.E].

C. Bell inequality violations

In the above discussion, we saw that it is in principle
possible to decide (albeit very inefficiently) whether a given
behavior is local and to compute the local bound Sl of an
arbitrary Bell expression. In this section, we look at the
analogous problem in the quantum and no-signaling cases. We
review the existing methods for computing the quantum and
no-signaling bounds, i.e., the maximal quantum and no-
signaling violations, of an arbitrary Bell expression s. Such
methods can also be used to determine if a given behavior
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admits a quantum or no-signaling representation and thus this
section is more generally concerned with the problem of
practical characterizations of the quantum and no-signaling
sets beyond the formal definitions (7) and (12).

1. Quantum bounds

a. Properties of quantum correlations

Before discussing in more detail how one can compute the
quantum bound Sq of a Bell expression, we briefly discuss the
general structure of the quantum set Q. Recall that a behavior
p is quantum if, as defined in Eq. (14), it can be written as
pðabjxyÞ ¼ hψ jMajxMbjyjψi, where jψi is a state in a Hilbert
space H, and Majx and Mbjy are orthogonal projectors
on H defining proper measurements and satisfying
½Majx;Mbjy� ¼ 0. (For characterizing the quantum set it is
convenient to assume we impose commutation relations rather
than a tensor product structure and we follow this approach in
the remainder of this section.)
As mentioned, the local set L is strictly contained in the

quantum set Q, i.e., there are quantum behaviors that are
nonlocal, and thus in general Sq > Sl. There are two basic
requirements that any quantum behavior must satisfy to be
nonlocal. First, Alice's different measurements must be non-
commuting as well as Bob's (Fine, 1982). Second, the state ρ
must be entangled. Without surprise, quantum nonlocality
can thus be traced back to the two features usually seen
as distinguishing quantum from classical physics: noncom-
mutativity and entanglement.
Contrary to the local set, the set Q of quantum correlations

is generally not a polytope. It cannot therefore be described by
a finite number of extreme points or a finite number of linear
inequalities. It is not difficult to see though that all extremal
points of L, i.e., the local deterministic behaviors, are also
extremal points of Q. Furthermore, certain faces of L are
also faces of Q. An example is provided by the (Δ − 1)-
dimensional face associated with the hyperplanes pðabjxyÞ ¼
0 [note, however, that the corresponding Bell inequalities
pðabjxyÞ ≥ 0 cannot be violated by any physical behavior].
Thus, while Q is not a polytope, its boundary contains some
flat regions. Linden et al. (2007)showed that the local and
quantum sets have common faces which correspond to Bell
inequalities that can be violated by certain no-signaling
behaviors. As mentioned earlier, it is an open question
whether there exist such examples of maximal dimension,
i.e., whether there exist facets of L corresponding to Bell
inequalities that are not violated by Q but which can be
violated by NS [such examples are known in the tripartite
case (Almeida, Bancal et al., 2010)].
The boundary of the nonlocal part ofQmay also contain flat

regions, i.e., the maximal violation of a Bell inequality may
sometimes be realized with two or more different nonlocal
quantum behaviors. The question of when an extremal
quantum behavior can be realized by a unique quantum
representation (up to unitary equivalence) was considered
by Franz, Furrer, and Werner (2011), where it was, in
particular, shown that in the correlation space C all nonlocal
extremal behaviors are uniquely realizable in the cases m ¼ 2
and m ¼ 3. Examples of noncorrelation Bell inequalities that
are maximally violated by unique quantum behaviors have

been given by Acín, Massar, and Pironio (2012). These
inequalities are maximally violated by partially entangled
states, thus showing that these state are necessary to character-
ize the boundary of the quantum region; see also Liang,
Vértesi, and Brunner (2011) and Vidick and Wehner (2011).
Note, however, that the so-called embezzling state (van Dam
and Hayden, 2003) is universal in the sense that any two-party
Bell inequality can be maximally violated using an embezzling
state (de Oliveira Oliveira, 2010) up to a small error term.
We now focus more specifically on the problem of

computing the quantum bound of a Bell expression. Recall
that Q as any convex compact set can be described by an
infinite system of linear inequalities of the form s · p ≤ Sq,
here the quantum Bell inequalities. Given an arbitrary Bell
expression s, its corresponding quantum bound is given by

Sq ¼ max
p∈Q

s · p ¼ max
S

jjSjj; (30)

where

S ¼
X
abxy

sabxyMajxMbjy (31)

is the Bell operator associated with s, jjSjj denotes the spectral
norm (largest eigenvalue) of S, and the above optimization is
performed over all possible Bell operators S associated with s.
That is, over all possible measurements fMajxga and fMbjxgb,
where the coefficients sabxy are given by the choice of s. In the
case of the CHSH expression, the Bell operator takes the form
S ¼ Â1ðB̂1 þ B̂2Þ þ Â2ðB̂1 − B̂2Þ, where Âx, B̂y are arbitrary
�1-eigenvalued observables. Following Landau (1987), we
can derive the quantum bound of the CHSH inequality
(Cirel'son, 1980) by noting that S2 ¼ 4þ ½Â1; Â2�½B̂1; B̂2�,
from which it follows that jjS2jj ≤ 8 and hence jjSjj ≤ 2

ffiffiffi
2

p
.

Computing the quantum bound of other Bell expressions is a
more complicated business. It has been shown to be an NP-
hard problem in the tripartite case (Kempe et al., 2011).

b. Correlation inequalities

The case of quantum correlation inequalities defined in the
correlation space C is particularly well understood thanks to
Tsirelson (Cirel'son, 1980; Tsirelson, 1987, 1993). Recall that,
in the correlation space, a behavior is defined by the m2

correlators hAxByi. It is easy to see that such a behavior is
quantum if we write hAxByi ¼ hψ jÂx ⊗ B̂yjψi for some
quantum state jψi in HA ⊗ HB and some �1-eigenvalued
quantum observables Ax on HA and By on HB. Tsirelson
showed that it is sufficient to consider dimHA ¼ dimHB ¼
2m if m is even and dimHA ¼ dimHB ¼ 2mþ1 if m is odd,
and jψi is a maximally entangled state in HA ⊗ HB.
Furthermore, he showed that the m2 correlators hAxByi are
quantum if and only if there exist 2m unit vectors v̂x and ŵy in
R2m such that

hAxByi ¼ v̂x · ŵy (32)

for all x; y ∈ f1;…; mg. This last representation is particu-
larly useful, as deciding if a behavior can be written in the
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form (32) can be cast as a semidefinite program (SDP) for
which efficient algorithms are available (Cleve et al., 2004;
Wehner, 2006b). This means that the problem of computing
the winning probability of the game pwin is in the complexity
class EXP (exponential time), since SDPs can be solved in
polynomial time but the input is of exponential size. However,
combining Jain et al. (2010) and Wehner (2006a) one now
knows that the problem of computing pwin for XOR games
lies in the complexity class PSPACE (the set of all decision
problems that can be solved by a Turing machine using a
polynomial amount of space).
This technique can be used to compute tight bounds for

two-outcome correlation inequalities, i.e., XOR games. In
particular, the quantum bounds for the CHSH inequality and
the chained inequalities [Eq. (23) in the caseΔ ¼ 2] can easily
be obtained in this way (Wehner, 2006b). It should be noted
that this SDP technique can be seen as a special case of the
general SDP method discussed in Sec. II.C.1.d.
In the Δ ¼ 2, m ¼ 2, this SDP approach can be used to

yield a complete description ofQ∩C (i.e., the quantum part of
the correlation space C) in terms of a finite set of nonlinear
inequalities: a behavior is quantum if and only if it satisfies

jasinhA1B1i þ asinhA1B2i þ asinhA2B1i − asinhA2B2ij ≤ π

(33)

together with the inequalities obtained by permuting the
hAxByi in Eq. (33) (Cirel'son, 1980; Tsirelson, 1987;
Landau, 1988; Masanes, 2003). For further results and a
more detailed discussion of the characterization of Q in the
correlation space C, see Tsirelson (1987, 1993) and Avis,
Moriyama, and Owari (2009).
It is interesting to note that it is much harder to determine

the optimal local bound Sl for a correlation Bell inequality
than it is to compute the quantum one unless P ¼ NP (Cleve
et al., 2004). That is, the quantum problem is actually easier
than the classical one.

c. State and measurement dependent bounds

We now return to the general case of quantum correlations
in the probability space P. To compute the quantum
bound (30) of a Bell expression, the first simple approach
is to introduce an explicit parametrization of a family of Bell
operators S in a Hilbert space H ¼ HA ⊗ HB of fixed
dimension dimH ¼ dH, and to maximize jjSjj over all
operators in this family. In general, however, we have no a
priori guarantee that the optimal quantum bound can be
realized using a Bell operator from this particular family.
Furthermore, most optimization methods cannot guarantee
convergence to the global extremum. This approaches there-
fore typically yields only lower bounds on Sq. It is never-
theless very useful when looking for an explicit quantum
violation of a Bell inequality s · p ≤ Sl (although we have no
guarantee that this is the optimal quantum violation).
Rather than directly trying to obtain a state-independent

bound by maximizing the norm of the Bell operator, it is often
easier to compute the quantum bound for a fixed quantum state
jψi, i.e., maximize hψ jSjψi over all Bell operators S. This
optimization can be dealt with as previously by introducing an

explicit parametrization of a family of Bell operators. Another
possibility, introduced by Liang and Doherty (2007), is to
exploit the fact that, for a given quantum state, a Bell
expression is bilinear in the measurement operators, that is,
it is linear in the operators fMajxg for fixed fMbjyg and linear
in the fMbjyg for fixed fMajxg. When the measurements on
one system are fixed, the problem of finding the optimal
measurements for the other system can therefore be cast as a
SDP. This SDP can then be used as the basis for an iterative
algorithm: fix Bob's measurements and find Alice's optimal
ones; with these optimized measurements for Alice now fixed,
find the optimal ones for Bob; then optimize again over Alice's
measurements and so on, until the quantum value converges
within the desired numerical precision. A similar iterative
algorithm was introduced by Werner and Wolf (2001a) for
correlation inequalities. In this case, once the measurements for
one party are fixed, optimization of the other party's measure-
ments can be carried out explicitly. This turns out to be true not
only for correlation inequalities but for any Bell expression
with binary outcomes (Liang and Doherty, 2007). Finally, we
note that a method for finding an optimal Bell operator for a
fixed quantum state can again be used in an iterative algorithm
to find a state-independent bound (Pal and Vértesi, 2009):
starting with an initial quantum state (e.g., a maximally
entangled state), find the corresponding optimal Bell operator;
then find the optimal quantum state associated with this Bell
operator (i.e., the eigenvector associated with the largest
eigenvalue); and repeat these steps starting from this new state.

d. General bounds

The techniques just described provide lower bounds on Sq.
Looking at Eq. (30) it becomes clear that finding Sq can be
understood as an instance of polynomial optimization. More
specifically, we want to optimize Eq. (31) over noncommu-
tative variables Majx, Mbjy subject to certain constraints,
namely, that such variables form quantum measurements
and Alice measurement operators commute with those of
Bob. It is known that in principle any polynomial optimization
problem in commutative variables can be solved using a
hierarchy of SDPs—two general methods that are dual to each
other were introduced by Lasserre (2001) and Parrilo (2003),
respectively.
It turns out that these techniques can be extended to the

quantum setting (Navascues, Pironio, and Acín, 2007, 2008;
Doherty et al., 2008), yielding a powerful approach to
obtaining upper bounds on Sq, i.e., of deriving constraints
satisfied by the entire quantum set. This method was originally
introduced by Navascues, Pironio, and Acín (2007), which
follows the ideas of Lasserre (2001). The idea is basically the
following. Let jψi and fMajxg, fMbjyg define a quantum
realization of a behavior p ∈ Q0, i.e., pðabjxyÞ ¼
hψ jMajxMbjyjψi. Let O be a set of k operators consisting
of all operators Majx and Mbjy together with some finite
products of them. For instance, O may consist of all operators
of the form Majx, Mbjy, MajxMa0 jx0 , MajxMbjy, and MbjyMb0 jy0 .
Denote by Oi (i ¼ 1;…; k) the elements of O and introduce
the k × k matrix Γ with entries Γij ¼ hψ jO†

i Ojjψi, called the
moment matrix associated withO. Then the following proper-
ties are easily established (independently of the particular
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quantum realization considered): (i) Γ≽0 is semidefinite
positive, (ii) the entries of Γ satisfy a series of linear
inequalities, and (iii) the probabilities pðabjxyÞ defining
the behavior p correspond to a subset of the entries of Γ.
A necessary condition for a behavior p to be quantum is
therefore that there exists a moment matrix Γ with the above
properties, a problem that can be determined using SDP. For
anyO, the set of behaviors p ∈ P for which there exists such a
moment matrix thus define a setQO that contains the quantum
setQ0 (and thus alsoQ). Optimizing a Bell expression (which
is linear in p) over this set QO is also a SDP and yields an
upper bound on Sq. Consider, in particular, the case where O
is the set of all operators consisting of a product of at most ν of
the operators Majx and Mbjy and denote the corresponding set
of behaviors Qν. Then the associated SDP defines for
ν ¼ 1; 2;…, a hierarchy Q1⊇Q2⊇ � � �⊇Q of relaxations
approximating better and better the quantum region from
the outside (see Fig. 3). Or, equivalently, they define a
decreasing series of upper bounds on the quantum bound
Sq of any Bell expression.
Subsequently, following the ideas of Parrilo (2003),

Doherty et al. (2008) constructed the SDP hierarchy that is
dual to Navascues, Pironio, and Acín (2007). It relies on the
fact that for any Bell operator S we have ξ ¼ b̂q1 − S ≥ 0

(i.e., ∥S∥ ≤ b̂q) if and only if the polynomial ξ can be written
as a (weighted) sum of squares of other polynomials. We can
thus think of minimizing b̂q such that ξ is a sum of squares of
polynomials in order to find ∥S∥. If we limit the degree of
these polynomials, the problem can be cast as an SDP. Very
roughly, at level l of the SDP hierarchy we then limit the
degree to be at most 2l, leading to better and better bounds for
increasing values of l.
Doherty et al. (2008) and Navascues, Pironio, and Acín

(2008) showed that this hierarchy of SDP relaxations con-
verges in the asymptotic limit to the set Q0 [see also Pironio,
Navascues, and Acín (2010) for a more general approach not
limited to quantum correlations]. It is also possible to certify
that a behavior p belongs to the quantum setQ or to obtain the
optimal bound Sq of a Bell expression at a finite step in the
hierarchy [see, e.g., (Doherty et al. (2008) and Navascues,
Pironio, and Acín (2008) for a number of examples]. A
criterion has been introduced by Navascues, Pironio, and Acín
(2008) to determine when this happens and to reconstruct
from the moment matrix Γ a quantum realization of this
optimal solution in terms of an explicit state jψi and operators

Majx and Mbjy. Optimality at a finite step in the hierarchy can
also be determined by comparing the SDP upper bound with a
lower bound obtained by searching over explicit families of
quantum Bell operators. Pal and Vértesi (2009), for instance,
determined the optimal quantum value Sq of 221 Bell
expressions in this way at the third step of the hierarchy.
Even if they do not always provide an optimal bound,
numerical examples show that low-order steps of the hierarchy
usually already approximate very well the quantum bound.
Kempe, Regev, and Toner (2010) proved that for a certain
particular family of Bell scenarios, known as unique games
(see Sec. II.B.4.c), the first step of the hierarchy always
provides a good approximation of the quantum set. We also
note that, for correlation inequalities, the first step of the
hierarchy always provides the optimal solution as it is
equivalent to the SDP approaches based on Tsirelson results
mentioned earlier.
In the Δ ¼ 2, m ¼ 2 case, the set Q1 corresponding to the

first step of the hierarchy was analytically characterized by
Navascues, Pironio, and Acín (2007). A behavior p belongs to
Q1 if and only if hAii2 ¼ 1 or hBji2 ¼ 1 for some i, j ¼ 1, 2
or if it satisfies the inequality

jasinhD11i þ asinhD12i þ asinhD21i − asinhD22ij ≤ π (34)

together with the inequalities obtained from this one by
permuting the Dij, where

Dij ¼
hAiBji − hAiihBjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − hAii2Þð1 − hBji2Þ

q : (35)

The nonlinear inequalities (34) thus form a necessary con-
dition for a behavior to be quantum. They strengthen the
inequalities (33) to which they reduce when hAii ¼ hBji ¼ 0.

2. No-signaling bounds

We now consider the problem of computing bounds on Bell
expressions for no-signaling correlations. Contrary to the case
of local and quantum correlations, this turns out to be a rather
easy task. To understand why note that, as mentioned, once
the no-signaling constraints (7) are taken into account, e.g., by
introducing a parametrization of the relevant affine subspace
Rt, the set NS of no-signaling behaviors is uniquely
determined by the set of Δ2m2 positivity inequalities
pðabjxyÞ ≥ 0. Deciding whether a behavior belongs to NS
can thus easily be verified by checking that all positivity
inequalities are satisfied. Since there are Δ2m2 such inequal-
ities, this is a problem whose complexity scales polynomially
with the number of inputs and outputs. More generally, linear
programming can be used to efficiently determine the no-
signaling bound Sns of an arbitrary Bell expression s, as used,
e.g., by Toner (2009). Especially in the case of multipartite
correlations it is sometimes convenient to compute Sns to
obtain a (crude) bound for Sq.
Finally, we remark that since NS is defined by a finite

number of linear inequalities, it is, as the local set, a polytope
and can also be described as the convex hull of a finite
set of vertices. These can be obtained from the list of facets

FIG. 3 (color online). Hierarchy of sets Qν generated by the
hierarchy of SDPs defined by Navascues, Pironio, and Acín
(2007) (see Sec. II.C.1.d). Each set in the hierarchy better
approximates the set of quantum correlations Q. In the CHSH
scenario, the set Q1 already achieves the maximum quantum
value of the CHSH inequality, i.e., Tsirelson's bound.
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[the inequalities pðabjxyÞ ≥ 0] using the same polytope
algorithms that allow one to list the facets of L given its
vertices. The vertices of L, the local deterministic points dλ,
are clearly also vertices ofNS (since they cannot be written as
a convex combination of any other behavior). All other
vertices of NS are nonlocal.
The geometry of the no-signaling set and its relation to L is

particularly simple for the Δ ¼ 2, m ¼ 2 Bell scenario. In this
case, the no-signaling behaviors form an 8-dimensional sub-
space of the full probability space P. The local polytope
consists of 16 vertices, the local deterministic points, and 24
facets. Sixteen of these facets are positivity inequalities and
eight are different versions, up to relabeling of the inputs and
outputs, of the CHSH inequality. The no-signaling polytope,
on the other hand, consists of 16 facets, the positivity
inequalities, and 24 vertices. Sixteen of these vertices are
the local deterministic ones and eight are nonlocal vertices, all
equivalent up to relabeling of inputs and outputs to the
behavior

pðabjxyÞ ¼
�
1=2; if a⊕b ¼ xy;
0; otherwise;

(36)

which is usually referred to as a PR box. It is easily verified
that the PR box violates the CHSH inequality (4) up to the
value s · p ¼ 4 > 2, the algebraic maximum. In the language
of games, this means that the CHSH game can be won with
probability pCHSH

win ¼ 1. There exists a one-to-one correspon-
dence between each version of the PR box and of the CHSH

inequality, in the sense that each PR box violates only one of
the CHSH inequalities. The PR box was introduced by
Khalfin and Tsirelson (1985), Rastall (1985), and Popescu
and Rohrlich (1994). Since the maximal quantum violation of
the CHSH inequality is 2

ffiffiffi
2

p
, it provides an example of a no-

signaling behavior that is not quantum, implying that in
general Q ≠ NS. The relation between L, Q, and NS in
the Δ ¼ 2, m ¼ 2 case is represented in Fig. 4.
The complete list of all no-signaling vertices is also known

in the case of two inputs (m ¼ 2) and an arbitrary number of
outputs (Barrett, Linden et al., 2005) and in the case of two
outputs (Δ ¼ 2) and an arbitrary number of inputs (Jones and
Masanes, 2005; Barrett and Pironio, 2005). In both cases, the
corresponding nonlocal vertices can be seen as straightfor-
ward generalizations of the PR box.

D. Multipartite correlations

Although we focused for simplicity in the preceding
sections on Bell scenarios involving n ¼ 2 systems, most
of the above definitions and basic results extend straightfor-
wardly to the case of an arbitrary number n > 2 of systems.
For instance, in the tripartite case a behavior pðabcjxyzÞ is no
signaling when

X
c

pðabcjxyzÞ¼
X
c0
pðabc0jxyz0Þ ∀ a;b;x;y;z;z0 (37)

and similar relations obtained from permutations of the
parties; a behavior is local if it can be written as a convex
combination of a finite number of deterministic behaviors
dλðabcjxyzÞ; Bell inequalities correspond to faces of the
corresponding polytope, and so on. Next we discuss a few
notable results obtained in the multipartite case. Note that
many references cited in the previous sections also contain
results for more than two parties.
As in the bipartite case, one can consider Bell inequalities

that involve only full correlators in the case where all
measurements have binary outcomes. In the n ¼ 3 case, for
instance, such an inequality would involve only terms of the
form hAxByCzi ¼

P
a;b;c¼�1abcpðabcjxyzÞ, and similarly

for more parties. All correlation Bell inequalities with
m ¼ 2 inputs have been derived by Werner and Wolf
(2001b) and Zukowski and Brukner (2002) for an arbitrary
number n of parties. There are 22

n
such inequalities (with

redundancies under relabeling) which can be summarized in a
single, but nonlinear inequality. Notable inequalities that are
part of this family are the inequalities introduced by Mermin
(1990a) and further developed by Ardehali (1992) and
Belinskii and Klyshko (1993). In the case n ¼ 3, the
Mermin inequality takes the form

jhA1B2C2i þ hA2B1C2i þ hA2B2C1i − hA1B1C1ij ≤ 2: (38)

It is associated with the Greenberger-Horne-Zeilinger (GHZ)
paradox (see Sec. II.E) in the sense that correlations that
exhibit the GHZ paradox violate it up to the algebraic bound
of 4. Werner and Wolf (2001b) also investigated the structure
of the quantum region in the full correlation space. In
particular, it was shown that the quantum bound of all

FIG. 4 (color online). A two-dimensional section of the no-
signaling polytope in the CHSH scenario (m ¼ Δ ¼ 2). The
vertical axis represents the CHSH value S, while the horizontal
axis represents the value of a symmetry of the CHSH expression
S0 (where inputs have been relabeled). Local correlations satisfy
jSj ≤ 2 and jS0j ≤ 2. The PR box is the no-signaling behavior
achieving the maximum CHSH value S ¼ 4. Tsirelson's bound
corresponds to the point where S ¼ 2

ffiffiffi
2

p
, i.e., the maximum

CHSH value that a quantum behavior can achieve.
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inequalities introduced by Werner and Wolf (2001b) and
Zukowski and Brukner (2002) is achieved by the n-partite
GHZ state ðj00 � � � 0i þ j11 � � � 1iÞ= ffiffiffi

2
p

.
Sliwa (2003) derived all facet Bell inequalities (in the full

probability space) for three parties in the case Δ ¼ 2, m ¼ 2.
There are 46 inequivalent such inequalities. All of these are
violated in quantum mechanics, except for the inequality
considered by Almeida, Bancal et al. (2010). Pironio, Bancal,
and Scarani (2011) listed all vertices of the no-signaling
polytope corresponding to the same Bell scenario.
Interestingly, they are also 46 inequivalent classes of no-
signaling vertices. Fritz (2012b) showed that there actually
exists a bijection between facet Bell inequalities and no-
signaling vertices for every Bell scenario with two inputs and
outputs, independent of the number of parties.
Evidently, the structure of nonlocal correlations is much

richer (and less understood) in the multipartite case than in the
bipartite one. In particular, there exist different definitions of
nonlocality that refine the straightforward extension of the
bipartite definition. This question and others that are more
specific to the multipartite scenario are discussed in Sec. VI.

E. Nonlocality without inequalities

To demonstrate that some quantum correlations p are
nonlocal it is sufficient, as discussed in Sec. II.B, to exhibit
a Bell inequality that is violated by p. In certain cases,
however, it is possible to directly show that quantum pre-
dictions are incompatible with those of any local model via a
simple logical contradiction that does not involve any inequal-
ity (although such arguments can obviously always be
rephrased as the violation of a Bell inequality). Here we
present two examples of such “Bell's theorem without inequal-
ities,” namely, the Greenberger-Horne-Zeilinger paradox and
a construction due to Hardy.
The situation considered by Greenberger, Horne, and

Zeilinger (1989) [see also Greenberger et al. (1990) and
Mermin (1990b)] involves three players Alice, Bob, and
Charlie. Each player receives a binary input, denoted by Ai,
Bi, and Ci, with i ¼ 1, 2. For each input, players should
provide a binary output �1. With a slight abuse of notation,
we denote by Ai ¼ �1 the answer to the question Ai and so
on. Suppose that the players share a state of the form
jGHZi ¼ ð1= ffiffiffi

2
p Þðj000i þ j111iÞ, and upon receiving input

“1” (“2”) they perform a local Pauli measurement σx (σy).
It is not difficult to see that their measurement outcomes

will always satisfy the following relations:

A1B1C1 ¼ þ1; A1B2C2 ¼ −1;
A2B1C2 ¼ −1; A2B2C1 ¼ −1: (39)

We contrast these quantum predictions with those of a local
model, where the answer of each party depends only on the
question he receives and on some shared random data λ. Since
the correlations in Eq. (39) are perfect (i.e., exactlyþ1 or −1),
each answer must clearly be a deterministic function of the
local question and of λ. For fixed λ, a local model thus
amounts to assigning a definite value�1 to all of the variables
Ai, Bi, and Ci. But then this is in direct contradiction with

Eqs. (39). To see this, consider the product of all four
left-hand-side terms. Since A2

i ¼ B2
i ¼ C2

i ¼ 1, this product
is necessary equal to 1, but the product of the right-hand side is
−1. This argument demonstrates in a simple way the incom-
patibility between the predictions of quantum theory and those
of any local model.
Note that the above GHZ paradox can be recast as the

violation of Mermin's inequality, given in Eq. (38), i.e., the
GHZ correlations (39) violate the inequality (38) up to its
algebraic maximum 4. In the language of nonlocal games, it
provides an example of a game for which there exists a
quantum strategy that wins it with probability pwin ¼ 1 (see
Sec. II.B.4). GHZ paradoxes of the above types are also
known as “pseudotelepathy” games (Brassard, Broadbent, and
Tapp, 2005) or “Kochen-Specker” games (Mermin, 1993;
Renner and Wolf, 2004). Other multipartite GHZ-type para-
doxes, as well as a more detailed discussion of the nonlocal
correlations of GHZ states, can be found in Sec. VI.D.2.
Notable examples of nonlocality proofs without inequalities
of the GHZ type but in the bipartite case have been presented
by Cabello (2001), Aravind (2002), and Aolita, Gallego, Acín
et al. (2012).
Another interesting demonstration of quantum nonlocality

without inequalities was given by Hardy (1993). Consider a
bipartite Bell test, in which each observer chooses between
two dichotomic measurements. Hardy considered a situation
in which the joint probability distribution satisfies the follow-
ing relations:

pðþ1;þ1jA1; B1Þ ¼ 0;

pðþ1;−1jA2; B1Þ ¼ 0;

pð−1;þ1jA1; B2Þ ¼ 0:

(40)

For any distribution that is local, it then follows that

pHardy ≡ pðþ1;þ1jA2; B2Þ ¼ 0: (41)

Hardy realized that this logical implication does not hold in
quantum mechanics.
Consider an entangled state of two qubits of the form

jψi ¼ αðj01i þ j10iÞ þ βj00i; (42)

where 2jαj2 þ jβj2 ¼ 1. Both parties perform the same mea-
surements. The first measurement is in the computational
basis, with result þ1 for state j0i, and −1 for state j1i. For the
second measurement, the result þ1 corresponds to a projec-
tion on the qubit state jϕi ¼ cos θj0i þ sin θj1i, while the
result −1 is associated with the orthogonal projector. Setting
α ¼ β tan θ, one obtains Hardy's paradox: all three equa-
tions (40) are satisfied, but we obtain pHardy ¼ 2β sin2 θ > 0 if
0 < jβj < 1. An interesting aspect of this construction is that
the paradox occurs for any entangled state of two qubits, with
the notable exception of the maximally entangled state
(β ¼ 0). This represents one of the first hints that entangle-
ment and nonlocality are not monotonically related (see
Sec. III.A.7).
The strongest demonstration of Hardy's paradox gives

pHardy ¼ ð5 ffiffiffi
5

p − 11Þ=2 ≈ 9% (Hardy, 1993), which results
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in the maximal possible value in quantum theory (Rabelo, Zhi,
and Scarani, 2012). That is, Hardy's paradox cannot be
strengthened by using higher-dimensional quantum entangled
states. For interesting extensions of Hardy's paradox, see Fritz
(2011), and references therein.

F. Quantifying nonlocality

So far, we have mainly discussed the problem of detecting
nonlocal correlations, i.e., determining whether given corre-
lations p belong to L or not. Another relevant question is how
to quantify nonlocality.
A common choice for quantifying nonlocality is through

the amount of violation of a Bell inequality, i.e., p is more
nonlocal than q if s · p > s · q for some Bell expression s. The
problem with this approach is that there can be another Bell
expression s0 such that s0 · q > s0 · p. Another problem is that
a given Bell inequality can be written in many equivalent ways
using the normalization conditions 1 · p ¼ P

abxypðabjxyÞ ¼
m2 (recall that m denotes the number of possible inputs x and
y). For instance, let s be the CHSH expression (4), for which
Sl ¼ 2 and Sq ¼ 2

ffiffiffi
2

p
. Consider the Bell expression sα ¼

αsþ ½ð1 − αÞ=2�1 obtained from the CHSH expression
through irrelevant rescaling and addition of an offset. For
any p, we thus have sα · p ¼ αs · p − 2αþ 2, which implies
that the local bound Sαl ¼ 2 of the new Bell expression is
identical to the one of the original CHSH expression, but now
its maximal quantum violation Sαq ¼ 2þ 2ð ffiffiffi

2
p − 1Þα can

(artificially) be made arbitrarily large by increasing α.
If the amount of violation of Bell inequalities is used to

quantify nonlocality, this amount of violation must thus first
be normalized in some proper way. If this normalization is
well chosen, one can then often relate the amount of violation
of Bell inequalities to an operational measure of nonlocality.
Possible operational measures of nonlocality are simply

given by the tolerance of nonlocal correlations to the addition
of noise, such as white noise (Kaszlikowski et al., 2000; Acín
et al., 2002), local noise (Pérez-Garcia et al., 2008; Junge
et al., 2010), or detection inefficiencies (Massar, 2002;
Massar et al., 2002). In particular, it was shown by
Pérez-Garcia et al. (2008) (see also Sec. III.B.2) that the
tolerance of p to any local noise, defined as the minimal value
of r such that rpþ ð1 − rÞq∉L for all q ∈ L, is given by
r ¼ 2=ðνþ 1Þ, where ν is the maximal possible violation by p
of a Bell inequality, defined in the following way:

ν ¼ max
s

js · pj
maxq∈Ljs · qj

: (43)

Note that taking the ratio and the absolute value is crucial for a
meaningful definition of this amount of violation. If instead of
the ratio one takes for instance the difference, a change of
scale s → γswould lead to arbitrary violations. If one removes
instead the absolute value, the same happens via an offset, as
in the example discussed above.
Another operational measure of the nonlocality of corre-

lations p is given by the amount of classical communication
between the twowings of the Bell experiment by which a local
model has to be supplemented for reproducing these

correlations. This approach was adopted by Maudlin
(1992), Brassard, Cleve, and Tapp (1999), Steiner (2000),
Bacon and Toner (2003), and Toner and Bacon (2003) (see
also the discussion in Sec. III.C). Pironio (2003)showed that
any Bell expression s can be rewritten in a normalized form
s�, through an appropriate change of scale and an offset, such
that the minimal average amount of classical communication
CðpÞ necessary to reproduce p is given by CðpÞ ¼
maxs�s � ·p. Techniques for estimating the communication
complexity of arbitrary no-signaling correlations and their
relation to Bell violations were further developed by Degorre
et al. (2011).
Finally, a third proposed approach to measure nonlocality is

through its “statistical strength” (van Dam, Grunwald, and
Gill, 2005): that is, the amount of confidence that the
measurement outcomes of n independent Bell experiments
governed by a behavior p could not have been reproduced by a
local behavior. Indeed, statistical fluctuations on a finite
sample allow for the possibility of apparent Bell inequality
violations even by a local model (this issue for the interpre-
tation of experimental results of a Bell test is specifically
discussed in Sec. VII.B.3). In an experiment, the goal is to test
in a finite number of trials whether the system obeys a Bell
local model (hypothesis LOC) or whether it is governed by
some quantum model that is nonlocal (hypothesis QM). The
statistical tool that quantifies the asymptotic average amount
of support in favor of QM against LOC per independent trial is
the Kullback-Leibler (KL) (or relative entropy) divergence
(van Dam, Grunwald, and Gill, 2005). This quantity can be
seen as a distance DðpÞ between a given behavior p and the
set of local behaviors.
The statistical strength of the most common nonlocality

tests have been estimated by Acín, Gill, and Gisin (2005) and
van Dam, Grunwald, and Gill (2005) and are summarized here
in Table I. It is worth noting that the CHSH scenario is the
strongest test among bipartite Bell tests involving qubits (van
Dam, Grunwald, and Gill, 2005). Considering higher-
dimensional systems, optimal tests (Acín, Gill, and Gisin,
2005) involve partially entangled states (rather than maxi-
mally entangled ones), illustrating the astonishing relation
between entanglement and nonlocality (see Sec. III.A.7).
Finally, the Mermin-GHZ test (see Sec. II.D), involving three
qubits, appears to be much stronger than the considered
bipartite Bell tests (van Dam, Grunwald, and Gill, 2005).

G. Multiple rounds and parallel repetition

So far, we have characterized the predictions p ¼
fpða; bjx; yÞg of local, quantum, or no-signaling systems in
single-round Bell experiments where a single choice of input

TABLE I. Kullback-Leibler (KL) divergence for the most common
quantum Bell tests. ME stands for maximally entangled.

Bell inequality Quantum state KL divergence (bits)

CHSH ME 2-qubit 0.046
CGLMP ME 2-qutrit 0.058
CGLMP Optimal 2-qutrit 0.077
Mermin GHZ GHZ 3-qubit 0.208
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pair ðx; yÞ is made and the two devices produce a single output
pair ða; bÞ. More generally, we also consider multiple-round
Bell experiments in which a sequence ðx1; y1Þ;…; ðxn; ynÞ of
input pairs is used in the two devices, resulting in a sequence
ða1; b1Þ;…; ðan; bnÞ of output pairs. A physical model for
such an experiment will thus be characterized by the joint
probabilities pn ¼ fpða1b1 � � � anbnjx1y1 � � � xnynÞg. The
motivation for considering such multiple-round Bell scenarios
is clear: it corresponds to the situation of real experimental
tests of Bell inequalities in which the two quantum devices are
probed many times to gather sufficient measurement statistics.
Three general multiple-round scenarios can be distin-

guished (Barrett et al., 2002). First, the n output pairs
can be obtained by measuring n independent6 systems.
Effectively, this means that the measurement settings are
applied sequentially, i.e., the next input pair is introduced in
the two devices after outcomes have been produced for the
previous round, and furthermore the devices have no memory
of the previous round. In this scenario, we say that pn is local,
which we denote pn ∈ LI

n, if

pða1b1 � � � anbnjx1y1 � � � xnynÞ
¼

X
λ

qλp1ða1b1jx1y1; λÞ × � � � × pnðanbnjxnyn; λÞ

(similar definitions apply to the quantum and no-
signaling cases).
In the second scenario, the measurement settings are also

applied sequentially, but the devices' behavior in a given round
can depend on the previous measurement settings and outputs,
i.e., the devices have a memory of the previous rounds.7 In this
case, we say that pn is local, which we denote pn ∈ LM

n , if we
write

pða1b1 � � � anbnjx1y1 � � � xnynÞ
¼

X
λ

qλp1ða1b1jx1y1; λÞp2ða2b2jx2y2; w1; λÞ

× � � � × pnðanbnjxnyn; wn−1; λÞ;

wherewi ¼ ða1b1 � � � aibi; x1y1 � � � xnynÞdenotes all inputs and
outputs up to round i. This situation is themost general one that
characterizes usual experimental tests of Bell inequality.
Finally, we also consider a third scenario in which Alice and

Bob apply all their n inputs at the same time, and then, at a
later time, the device produces all n outputs. We then say that
pn is local, which we denote pn ∈ LS

n, if

pða1b1 � � � anbnjx1y1 � � � xnynÞ
¼

X
λ

qλpða1b1 � � � anbnjx1y1 � � � xnyn; λÞ.

In this case, the devices can exhibit a collective behavior
where the outputs ai of Alice's device at round i depend on the
values of inputs and outputs of her device at any other round,
and similarly for Bob's device. This multiple-round model is
formally equivalent to a single-round model with “big” inputs
x ¼ x1 � � � xn and y ¼ y1 � � � yn and outputs a ¼ a1 � � � an
and b ¼ b1 � � � bn.
The memory model LM

n and the simultaneous model LS
n are

strictly more powerful than the independent model LI
n. It is

easy to see though that local strategies exploiting such
memory or collective effects cannot reproduce nonlocal
correlations (Barrett et al., 2002), which necessarily require
some genuine nonlocal resource, such as an entangled
quantum state.
Another potential problem though is that in experimental

tests the correlations pn, which characterize the probabilities
with a different set of events, are not directly observable.
Instead one observes a finite number of events, representing
only one particular realization of the set of possibilities
encoded in pn. If the local models LI

n, LM
n , or LS

n cannot
reproduce nonlocal correlations on average, it could never-
theless be possible that clever choices of such multiple-round
strategies, in particular, exploiting memory or collective
effects, could increase the chance of a statistical fluctuation
resulting in an apparent violation of a Bell inequality. In the
cases of the independent and memory models, which are the
most relevant to experimental tests and applications of
quantum nonlocality, such statistical fluctuations are harmless
and can easily be controlled (Barrett et al., 2002; Gill, 2003).
(See Sec. VII.B.3 for a more detailed discussion.) This is due
to the fact that at any given round i, independent and memory
local models are constrained to satisfy the Bell inequalities,
even when conditioning on events up to round i − 1. That is, if
pijwi−1 denote the correlations at round i conditioned on the
past variables wi−1, we necessarily have s · pijwi−1 ≤ Sl for
every i, wi−1, and Bell expression s.
This last property can be nicely rephrased in the language of

nonlocal games. It implies that to win n instances of a game,
there is no better strategy than using each time the strategy that
is optimal for a single round. This is not the case in the
simultaneous model, where all inputs are given at the same
time and all output produced at the same time. In this case,
which is known as a parallel repetition of the game in
computer science, there may exist collective strategies to
win n instances of the games that are better than using each
time the optimal single-round strategy. It is, in fact, known
that, for example, the CHSH game can be played better locally
over many rounds [see Barrett et al. (2002) for an explicit
example in the case n ¼ 2]; that is, when playing the CHSH
game many times in parallel the gap between the local and
quantum bounds shrinks.
The question of whether there exists a better strategy for

parallel repetition of the game is particularly interesting
from the perspective of computer science (Cleve et al.,
2007). However, it also tells us something about the

6Note that we allow some correlations between the different
systems through some global shared randomness λ; see the definition
of LI

n later in the text. The n systems are only independent with
respect to sharing the inputs and outputs.

7Formally, we consider here two-sided memory models, where
each device has a memory of every previous input and output,
including those of the other devices. One can also consider one-sided
memory models, where each device has only a memory of the inputs
and outputs relative to his side of the Bell experiment but not the
other one (Barrett et al., 2002).
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strength of correlations between physical systems when
Alice and Bob hold many particles to be measured
simultaneously.
Note that if there exists a strategy that lets the players win

with probability pwin in a single round, then they can win with
probability pn

win when playing the game n times. The question
is then whether there exists a strategy that beats this value. We
speak of (strong) parallel repetition if there exists a nontrivial
q such that the winning probability when playing the game
n times is always upper bounded by qn. The term perfect
parallel repetition refers to the case where q ¼ pwin. It is
known that for classical strategies, i.e., local models, parallel
repetition holds (Raz, 1998). More precisely, if pwin ¼ 1 − ϵ,
then for all games pn

win ¼ ð1 − ϵcÞΩðn=sÞ for some c ≥ 2,
where s is the length of the answers (Raz, 1998;
Holenstein, 2007). A strong parallel repetition theorem has
c ¼ 1. It is furthermore known that for unique games, pn

win ¼ð1 − ϵ2ÞΩðnÞ (Rao, 2008). However, for the so-called odd cyle
gamewe require c ≥ 2, and thus strong parallel repetition does
not always hold (Raz, 2008).
For no-signaling strategies, it is known (Holenstein, 2007)

that parallel repetition also holds. As quantum and classical
theory obey the no-signaling principle this also gives a bound
for quantum and classical correlations. Yet, since for many
games (e.g., unique games) we have pwin ¼ 1 in the no-
signaling case, this bound is not always insightful. For
quantum correlations, it is known that for XOR games
(two-outcome correlation Bell inequalities), perfect parallel
repetition holds (Cleve et al., 2007). Again, this also gives a
bound for classical correlations, but already for the CHSH
game it is not known how tight this bound actually is. Parallel
repetition in the quantum setting also holds for unique games
(Kempe, Regev, and Toner, 2010). A more general result is
known for quantum correlations (Kempe and Vidick, 2011);
however, it requires the game to be modified slightly to
include “check” rounds. A similar construction can be made
for local correlations (Feige and Kilian, 2000).

III. NONLOCALITY AND QUANTUM THEORY

In this section, we analyze the quantum resources (in terms
of entanglement or Hilbert space dimension) that are neces-
sary to produce nonlocal correlations by performing local
measurements on quantum states.8 Here we focus on the case
of bipartite states, whereas the nonlocal correlations of
multipartite quantum states will be discussed in Sec. VI.

A. Nonlocality versus entanglement

In order to obtain nonlocal correlations from measure-
ments on a quantum state, it is necessary that the latter is
entangled. That is, the state cannot be written in the
separable form

ρAB ¼
X
λ

pλρ
λ
A ⊗ ρλB: (44)

Indeed, if a state is of the above form, the correlations
obtained by performing local measurements on it are
given by

pðabjxyÞ ¼ tr

�X
λ

pλðρλA ⊗ ρλBÞMajx ⊗ Mbjy

�

¼
X
λ

pλtrðρλAMajxÞtrðρλBMbjyÞ

¼
X
λ

pλpðajx; λÞpðbjy; λÞ; (45)

which is of the local form (11). Hence the observation of
nonlocal correlations implies the presence of entanglement.
It is interesting to investigate whether this link can be

reversed. That is, do all entangled states lead to nonlocality? In
the case of pure states, the answer is positive. Specifically, for
any entangled pure state, it is possible to find local measure-
ments such that the resulting correlations violate a Bell
inequality,9 in particular, the CHSH inequality. This was
shown for the case of two-qubit states by Capasso,
Fortunato, and Selleri (1973) and for bipartite states of
arbitrary Hilbert space dimension by Gisin (1991) and
Home and Selleri (1991).10 Therefore, all pure entangled
states are nonlocal. The only pure states that do not violate
Bell inequalities are the product states jΨi ¼ jψiA ⊗ jϕiB.
For mixed states, it turns out that the relation between

entanglement and nonlocality is much more subtle, and in fact
not yet fully understood. First, Werner (1989) discovered a
class of mixed entangled states which admits a local model
[i.e., of the form (11)] for any possible local measurements.
Hence the resulting correlations cannot violate any Bell
inequality. While Werner considered only projective measure-
ments, his results were later extended to the case of general
measurements (POVMs) by Barrett (2002).
The situation is complicated by the fact that directly

performing measurements on a mixed state ρ is not always
the best way to reveal its nonlocality. For instance, it may be
necessary to perform joint measurements on several copies of
the state, that is, considering the state ρ ⊗ ρ ⊗ � � � ⊗ ρ
(Palazuelos, 2012a). Alternatively one may need to apply a
judicious preprocessing to ρ, for instance, a filtering, before
performing the measurements (Popescu, 1995). Therefore,
there exist different possible scenarios for revealing the
nonlocality of mixed entangled states, some examples of
which are represented in Fig. 5 and are discussed in more
detail below. Importantly a state may lead to nonlocal
correlations in a given scenario but not in others. It is also
worth mentioning that when many copies of a state can be
jointly preprocessed before the measurements, the problem
becomes closely related to entanglement distillation. Indeed,
any state from which pure bipartite entanglement can be
distilled will lead to nonlocality. For undistillable (or bound)

8Another resource that can be considered is the time required to
achieve a certain Bell inequality violation, given the range of energy
available during the measurements (Doherty and Wehner, 2011).

9Note that this result also holds for all multipartite pure entangled
states (Popescu and Rohrlich, 1992), as discussed in more detail in
Sec. VI.

10This result was also stated, without giving an explicit con-
struction, by Werner (1989).
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bipartite entangled states, it is not yet known whether Bell
inequality violations can be obtained, or whether these states
admit a local model, as conjectured by Peres (1999).
Nevertheless, recent results suggest that nonlocality might
in fact be generic for all entangled states (Masanes, Liang, and
Doherty, 2008).

1. Single-copy nonlocality

The simplest possibility to reveal nonlocality of an
entangled state ρ is to find suitable local measurements such
that the resulting correlations violate a Bell inequality. In the
case of pure states this is always sufficient to reveal non-
locality. In particular, as mentioned above, all pure entangled
states violate the CHSH inequality (Gisin, 1991; Home and
Selleri, 1991). For mixed states, a necessary and sufficient
condition for any two-qubit state to violate the CHSH inequal-
ity was given by Horodecki, Horodecki, and Horodecki
(1995). This criterion works as follows. Associate with any
two-qubit state ρ a correlation matrix Tρ with entries tij ¼
tr½ρðσi ⊗ σjÞ� for i, j ¼ 1, 2, 3, where σi are the Pauli matrices.
The maximum CHSH value S for ρ (considering the most
general measurements) is then simply given by

Sρ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

11 þm2
22

q
; (46)

where m2
11 and m2

22 are the two largest eigenvalues of the
matrix TρTT

ρ (TT
ρ denotes the transpose of Tρ). Using the above

criterion, it is possible to relate the entanglement of ρ, as
measured by its concurrence, to its maximal violation of
CHSH (Verstraete and Wolf, 2002).
From the above criterion it is straightforward to see that not

every entangled two-qubit mixed state violates the CHSH
inequality. However, contrary to the case of pure states, it is
here not enough to focus on the CHSH inequality. In
particular, there exist two-qubit states which do not violate

CHSH, but violate a more sophisticated Bell inequality [I3322,
see Eq. (21)] involving three measurement settings per party
(Collins and Gisin, 2004). Another example is the two-qubit
Werner state, given by a mixture of a maximally entangled
state jϕþi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

and the maximally mixed
state, i.e.,

ρW ¼ pjϕþihϕþj þ ð1 − pÞ 1
4
: (47)

This state is separable for p ≤ 1=3 (and thus does not violate
any Bell inequality) and entangled otherwise. Using the
criterion (46) one finds that S ¼ p2

ffiffiffi
2

p
, which leads to a

violation of CHSH for p > 1=
ffiffiffi
2

p
≈ 0.707. However, it was

shown by Vértesi (2008) that the state (47) violates a Bell
inequality involving 465 settings per party for p ≳ 0.7056.
If explicit Bell inequality violations yield upper bounds on

the critical value of p necessary to reveal the nonlocality of the
state (47), it is also possible to obtain lower bounds by
constructing explicit local models. Werner (1989) showed that
the correlations resulting from projective measurements on the
state (47) admit a local model if p ≤ 1=2, even though the
state is entangled for p > 1=3. Entangled states admitting a
local model are usually termed local states. Here we describe
Werner's model, following the presentation of Popescu
(1994). Note first that it is sufficient to construct a local
model for p ¼ 1=2, since then the model can be extended for
any p < 1=2 by mixing with completely uncorrelated and
random data. Let Alice and Bob measure the spin polarization
of their particles in the n̂A and n̂B directions, respectively,
where vectors describe the measurements on the Bloch sphere.
The probability that both Alice and Bob get the outcome “0” is
given by

pð00jn̂A; n̂BÞ ¼ 1
4
ð1 − 1

2
cos αÞ; (48)

(a)

(c)

(b)

(d)

FIG. 5 (color online). The nonlocality of a quantum state ρ can be revealed in different scenarios. (a) The simplest scenario: Alice
and Bob directly perform local measurements on a single copy of ρ. (b) The hidden nonlocality scenario: Alice and Bob first apply a
filtering to the state; upon successful operation of the filter, they perform the local measurements for the Bell test. (c) Many-copy
scenario: Alice and Bob measure collectively many copies of the state ρ. (d) Network scenario: several copies of ρ are distributed in a
quantum network, where each observer performs local measurements.
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where α is the angle between n̂A and n̂B. Now we give a local
hidden variable model that gives the same statistics. Here the
hidden variable, shared by Alice and Bob, is a vector on the
Bloch sphere λ̂ ¼ ðsin θ cosϕx̂þ sin θ sinϕŷþ cos θẑÞ. In
each run of the experiment a different λ̂ is sent, chosen
according to the uniform distribution dqðλ̂Þ ¼ sin θdθdϕ=4π.
After receiving λ̂, Alice gives the outcome 0 with probability

pAð0; n̂A; λ̂Þ ¼ cos2ðαA=2Þ; (49)

where αA is the angle between n̂A and λ̂. At the same time, Bob
gives the outcome 0 with probability

pBð0jn̂B; λ̂Þ ¼
�
1; if 2 cos2ðαB=2Þ < 1;
0; if 2 cos2ðαB=2Þ > 1;

(50)

where αB is the angle between n̂B and λ̂. Now one can check
that the joint probability distribution obtained by Alice and
Bob using this local model is given by

pLHVð00jn̂A; n̂BÞ ¼
Z

dqðλ̂ÞpAð0; n̂A; λ̂ÞpBð0; n̂B; λ̂Þ; (51)

which is indeed equal to Eq. (48). It is straightforward to
check that the above model reproduces the desired correla-
tions for all measurement outcomes.
Later on, it was proven that two-qubit Werner states are

local for p ≲ 0.66 by Acín, Gisin, and Toner (2006), using a
connection to the Grothendieck constant (see Sec. III.B.2).
Furthermore, Barrett (2002) extended the result of Werner to
the most general (nonsequential) quantum measurements (so-
called POVMs), where a local model is given for p ≤ 5=12.
For the interval 0.66≲ p ≲ 0.7056 (or 5=12 < p ≲ 0.7056 if
considering POVMs) it is not known whether the nonlocality
of the state (47) can be revealed by performing measurements
on a single copy of the state at a time.
Werner and Barrett also derived a local model for a family

of states generalizing the two-qubit state (47) to arbitrary
Hilbert space dimension d. These are called Werner states,
given by

ρW ¼ p
2Panti

dðd − 1Þ þ ð1 − pÞ 1
d2

; (52)

where 1 is a d × d identity matrix, and Panti denotes the
projector on the antisymmetric subspace. These states have a
particular symmetry, being invariant under unitary operations
of the form U ⊗ U. The values of α for which ρW is entangled
and admits a local model (for projective or general measure-
ments) are summarized in Table II.
The local models discussed above were further extended by

Almeida et al. (2007) and Wiseman, Jones, and Doherty
(2007) to another family of states generalizing the two-qubit
state (47), namely, the isotropic states

ρiso ¼ pjΦþihΦþj þ ð1 − pÞ 1
d2

; (53)

where jΦþi ¼ ð1= ffiffiffi
d

p ÞPd−1
i¼0 jiii is a maximally entangled

state of local dimension d. Again, for such states there exist a

range of the parameter p for which ρiso is entangled but admits
a local model (see Table II). Note also that ρiso violates the
CGLMP inequality [see Eq. (22)] when p is above a critical
value pNL that decreases with the local dimension d. In
particular, pNL → 0.67 when d → ∞ (Collins, Gisin, Linden
et al., 2002) (see Fig. 6).
More generally, the approach of Almeida et al. (2007)

allows one to construct a local model for general states, of the
form ρ ¼ pjψihψ j þ ð1 − pÞ1=d2, where jψi is an arbitrary
entangled pure state in Cd ⊗ Cd. It is found that for p ≤
Θ½logðdÞ=d2� the state ρ admits a local model for projective
measurements. Interestingly there is a logðdÞ gap in the
asymptotic limit between the above bound and the separability
limit, which is given by p ≤ Θð1=d2Þ. An upper bound on p
follows from the result of Acín et al. (2002), where it is shown
that a state of the form

ρ ¼ pjϕþihϕþj þ ð1 − pÞ 1
d2

(where jϕþi denotes a two-qubit maximally entangled state)
violates the CHSH inequality for

p ≥ Θ
�

4

ð ffiffiffi
2

p − 1Þd

�
;

which tends to zero when d → ∞. This shows that there exist
entangled states embedded in Cd ⊗ Cd which are highly
robust against white noise.

TABLE II. Separability and locality bounds for Werner states (52)
and for isotropic states (53). For Werner states, bounds for projective
measurements were derived by Werner (1989) and by Barrett (2002)
for POVMs. For isotropic states, bounds were derived by Almeida
et al. (2007) and by Wiseman, Jones, and Doherty (2007) for
projective measurements.

Werner state (52) Isotropic state (53)

Separable p ≤ 1
d−1 p ≤ 1

dþ1

Local for general
measurements

p ≤ ðd−1Þðd−1Þð3d−1Þ
ðdþ1Þdd p ≤ ðd−1Þðd−1Þð3d−1Þ

ðdþ1Þdd

Local for projective
measurements

p ≤ d−1
d p ≤ ð−1þPd

k¼1
1=kÞ

d−1

0 1
p

Bell violation 

p

k-copy nonlocalSeparable

Local

pp

Super-activation

s L NL

FIG. 6. Nonlocal properties of the isotropic state (53). The state
is separable for p ≤ ps ¼ 1=ðdþ 1Þ, admits a local model for
p ≤ pL (Almeida et al., 2007), and violates a Bell inequality for
pL < pNL < p (Collins, Gisin, Linden et al., 2002). In the
interval pL < p < pNL, it is not known whether the state admits
a local model or, on the contrary, violates a Bell inequality.
Finally, when several copies of the isotropic state can be
measured jointly, nonlocality is obtained whenever a single copy
of the state is entangled, that is, if p > ps (D. Cavalcanti et al.,
2013). In the gray region, superactivation of quantum nonlocality
occurs (Palazuelos, 2012a).
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Finally, it is worth pointing out the connection (Werner,
1989) between the fact that a quantum state admits a local
model and the existence of a symmetric extension (Doherty,
Parrilo, and Spedalieri, 2002) for this state. A bipartite state
ρAB has a k-symmetric extension (with respect to part B) if
there exists a quantum state of kþ 1 parties, ρ0AB1���Bk

, such that
ρ0ABi

¼ ρAB for every i ¼ 1;…; k, where ρ0ABi
denotes the

reduced state of subsystems A and Bi. Terhal, Doherty, and
Schwab (2003) showed that if Alice and Bob share a state ρAB
that has a k-symmetric extension, every experiment where
Bob uses at most k measurement settings (independently of
the number of outputs) can be simulated by a local model.
Note that there is no restriction on the number of measurement
settings for Alice. This result can be understood as follows:
consider a Bell scenario where Alice chooses among m
measurements, represented by operators Majx with x ¼
1;…; m and Bob among k measurements, given by Mbjy
with y ¼ 1;…; k. Since ρAB has a k-symmetric extension, for
each measurement x of Alice, the joint probability distribution
pða; b1 � � � bkjx; y1 ¼ 1 � � � yk ¼ kÞ is well defined via the
Born rule11

pða; b1 � � � bkjx; y1 ¼ 1 � � � yk ¼ kÞ
¼ tr½ρ0AB1���Bk

ðMajx ⊗ Mb1j1 ⊗ � � � ⊗ MbkjkÞ�: (54)

From these distributions one can then define a joint
probability distribution for all possible measurements as

pða1 � � � am; b1 � � � bkjx ¼ 1 � � � x ¼ m; y1 ¼ 1 � � � yk ¼ kÞ

¼
Q

m
i¼1 pðaib1 � � � bkjxiy1 ¼ 1 � � � yk ¼ kÞ
pðb1 � � � bkjy1 ¼ 1 � � � yk ¼ kÞm−1 : (55)

This joint probability distribution provides the local model.12

Note that if a state has a∞-symmetric extension it is separable
(Doherty, Parrilo, and Spedalieri, 2004).

2. Hidden nonlocality

Popescu (1995) proposed a more general way of obtaining
nonlocal correlations from an entangled quantum state.
Instead of performing a single measurement (in each run of
the test), each observer now performs a sequence of mea-
surements. For instance, the observers may first perform a
local filtering to their systems before performing a standard
Bell test, as in Fig. 5(b). That is, they each apply some

physical operation (e.g., a measurement) to their system and
proceed with the standard Bell test only if that physical
operation yields a desired outcome. If one (or both) local
operations do not yield the desired outcome, the parties
discard this run of the test. Popescu demonstrated the power
of this sequential scenario by showing explicitly that certain
entangled states admitting a local model can display non-
locality if a judicious local filtering is performed. Hence, the
filtering reveals the “hidden nonlocality” of the state. In
particular, Popescu showed that this occurs for Werner states
[see Eq. (52)] of local dimension d ≥ 5.
One can intuitively understand hidden nonlocality in the

following way. Alice and Bob share a mixed entangled state ρ.
Importantly, even if ρ is local, it may be viewed as a statistical
mixture involving one (or more) nonlocal states. In order to
extract nonlocality from ρ, Alice and Bob first apply a local
measurement for which a given outcome can occur only (or
most likely) for a nonlocal state in the mixture. Hence, by
postselecting those events in which this particular measure-
ment outcome occurs, Alice and Bob can filter out the
nonlocal state. Finally, by performing appropriate local
measurements, they can violate a Bell inequality.
In order to exclude the existence of a local model repro-

ducing this sequential measurement scenario, it is essential
that Alice and Bob choose the measurement basis of the final
measurement after a successful operation of the filter. If this is
not the case, a local strategy could fake Bell inequality
violation by adapting the outcome of the first measurement
based on the knowledge of which basis has been chosen for
the second measurement. A formal account of this argument
can be found in Teufel et al. (1997) and Zukowski et al.
(1998). A general framework for Bell tests with sequential
measurements was discussed by Teufel et al. (1997) and
Gallego et al. (2013).
A question left open in the work of Popescu (1995) is

whether hidden nonlocality can also be demonstrated for an
entangled state admitting a local model for the most general
nonsequential measurements. Note that Popescu (1995) con-
sidered Werner states, which admit a local model for projec-
tive measurements, but are not known to be local when
POVMs are considered. This question was answered recently
by Hirsch et al. (2013), where it is shown that there exist
entangled states featuring genuine hidden nonlocality, that is,
states which admit a local model for nonsequential POVMs,
but violate a Bell inequality using judicious filtering.
Other examples of hidden nonlocality were reported. Gisin

(1996) showed that there exist two-qubit states which do not
violate the CHSH inequality, but do violate CHSH after a
judicious local filtering is applied. Peres (1996) demonstrated
that five copies of a two-qubit Werner state (47) admitting a
local model for projective measurements display hidden
nonlocality. It is worth noting that these works on hidden
nonlocality eventually lead to the concept of distillation of
entanglement, a central notion in quantum information theory.
Finally, an important question in this area is whether all

entangled states feature nonlocality when local filtering is
considered. Although this question is yet to be answered,
important progress was recently achieved. Masanes, Liang,
and Doherty (2008) showed that for every entangled state ρ,
there exists another state σ which does not violate the CHSH

11Note that the same argument holds if, instead of a k-symmetric
extension, ρAB has a k-symmetric quasiextension, where, instead of a
state of kþ 1 parties ρ0AB1���Bk

, one has an entanglement witness of
kþ 1 parties WAB1���Bk

, with unit trace and such that the reduced
states satisfy WABi

¼ ρAB for all i.
12Indeed, it is easy to see that the existence of a joint distribution

for all possible measurements that Alice and Bob can make is
equivalent to the existence of a local model (Fine, 1982). Simply
think of λ ¼ ða1 � � � am; b1 � � � ; bkÞ as the hidden variable instructing
which outcome every party must output for any measurements
that they perform and the joint probability pða1 � � � am;
b1 � � � bkjx ¼ 1 � � � x ¼ m; y1 ¼ 1 � � � yk ¼ kÞ as the distribution
qðλÞ's over hidden variables.
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inequality, such that ρ ⊗ σ violate CHSH after local filtering
(Liang, Masanes, and Rosset, 2012). In particular, if one
chooses ρ such that it does not violate CHSH, a phenomenon
of “activation” of CHSH nonlocality occurs.

3. Multicopy nonlocality

Another relevant scenario consists of allowing the parties to
perform measurements on several copies of the state ρ in each
run of the Bell test. However, here no initial filtering is
allowed, contrary to the scenario of hidden nonlocality. In the
multicopy scenario, represented in Fig. 5(c), Alice and Bob
can perform measurements on k copies of the state ρ, that is,
they measure effectively a state of the form ρ⊗k ¼ ρ ⊗ ρ ⊗
� � � ⊗ ρ (k times). The key point here is that the parties can
now perform joint measurements on their k subsystems, that
is, measurements featuring eigenstates which are entangled.
Remarkably, the maximal violation of the CHSH inequality
for certain states can be increased if several copies of the state
are jointly measured (Liang and Doherty, 2006). In fact, there
exist states ρ which do not violate the CHSH inequality, but
ρ⊗2 does (Navascués and Vértesi, 2011).
In more general terms, the possibility of performing

measurements on several copies of a state leads to a phe-
nomenon of activation of nonlocality. Notably, it was recently
demonstrated that quantum nonlocality can be superactivated
(Palazuelos, 2012a), that is, the combination of a number of
local quantum states can become nonlocal. This demonstrates
that nonlocality is not an additive quantity. Specifically, it was
shown by Palazuelos (2012a) that by performing joint
measurements on many copies of a local isotropic state ρiso
[see Eq. (53)] of local dimension d ¼ 8 it is possible to violate
a Bell inequality, without involving any preprocessing. This is
remarkable given that the initial state ρiso admits a local model
for the most general measurements (i.e., including POVMs).
More recently, it was shown that for every state

ρ ∈ Cd ⊗ Cd, with singlet fidelity13 larger than 1=d, there
exist a number of copies k of ρ such that ρ⊗k is nonlocal
(D. Cavalcanti et al., 2013). This result implies that every
entangled isotropic state (53) is a nonlocal resource and
establishes a direct connection between the usefulness of a
state in quantum teleportation and its nonlocality (see
Sec. III.A.6). Whether superactivation of nonlocality is
possible for any entangled state admitting a local model is
an interesting open question.

4. More general scenarios

It is also relevant to investigate the case in which several
copies of a bipartite entangled state ρ are distributed in a
network of n observers, as shown in Fig. 5(d). It turns out that
here a phenomenon of activation of nonlocality can also occur.
That is, by judiciously placing several copies of a state ρ
admitting a local model, nonlocal correlations among the n
observers can be obtained. The state ρ is then termed a
“nonlocal resource.” Again, activation of nonlocality is

possible here due to the fact that one (or more) observer
can perform a joint measurement on several subsystems (see
Sec. III.A.3).
Examples of activation of nonlocality in networks were

reported. First, by concatenating many copies of a state which
does not violate the CHSH inequality in an entanglement
swapping scenario one obtains a state which violates CHSH
(De et al., 2005; Klobus et al., 2012). Second, it was shown
that many copies of a two-qubit Werner state (47) distributed
in a star network violate a Bell inequality for p≳ 0.64, hence
for states which admit a local model for projective measure-
ments (De et al., 2005; Cavalcanti, Almeida et al., 2011). The
cases of isotropic states, as well as other examples of
activation of nonlocality, were discussed by Cavalcanti,
Rabelo, and Scarani (2012).

5. Entanglement distillation and nonlocality

As mentioned in Sec. III.A.2, the notion of hidden non-
locality is intimately related to entanglement distillation. For
instance, in Peres (1996), the local filtering that is applied on
several copies of a state can be used to distill entanglement.
Hence the protocol of Peres (1996) can be decomposed as
entanglement distillation followed by a standard (single-copy)
Bell test. In this sense, every entangled state that is distillable
can be used to obtain nonlocal correlations.
An interesting question then arises concerning bound

entangled states, i.e., states from which no entanglement
can be distilled (Horodecki, Horodecki, and Horodecki,
1998). In fact, a long-standing open conjecture—referred to
as the Peres conjecture—is that every state with a positive
partial transposition (PPT), hence undistillable, admits a local
model (Peres, 1999). More generally, the goal is to understand
the link between distillability and nonlocality. Notably, several
works established a partial link between both concepts,
showing that important classes of Bell inequalities cannot
be violated by any PPT state (Werner and Wolf, 2000; Salles,
Cavalcanti, and Acín, 2008). For instance, the violation of the
CHSH (and more generally of all Mermin inequalities)
certifies that the state can be distilled (Acín, 2001; Acín,
Scarani, and Wolf, 2003; Masanes, 2006). More recently, a
method for upper bounding the possible violation of a given
Bell inequality for PPT states (in arbitrary Hilbert space
dimension) was presented by Moroder et al. (2013), from
which it can be shown that many bipartite Bell inequalities
cannot be violated by PPT states. Finally, note that in the case
of more parties, it is proven that nonlocality does not imply
distillability of entanglement (Vértesi and Brunner, 2012),
hence disproving the Peres conjecture in the multipartite case.

6. Nonlocality and teleportation

Quantum teleportation (Bennett et al., 1993) is another
“nonlocal phenomenon” based on quantum entanglement. As
is the case with nonlocality, it turns out that not every
entangled state is useful for teleportation, in the sense of
outperforming classical strategies (Horodecki, Horodecki, and
Horodecki, 1999). It is then natural to ask if the fact that a state
is useful for teleportation is related to its nonlocality.
This question was first raised by Popescu (1994), who

noticed that certain two-qubit entangled Werner states

13The singlet fidelity (or equivalently entanglement fraction) of a
state ρ is defined as the maximal fidelity SF of ρ with a maximally
entangled state (MES), i.e., SFðρÞ ¼ maxjψi∈MEShψ jρjψi.
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admitting a local model can nevertheless be useful for
teleportation. This led to the conclusion that usefulness in
teleportation and nonlocality are unrelated. Interestingly, this
difference vanishes when considering more general scenarios
for revealing nonlocality. In particular, it was recently shown
that in the multicopy scenario, where several copies of the
state can be jointly measured, any state that is useful for
teleportation is a nonlocal resource (D. Cavalcanti et al.,
2013). Hence, this work establishes a direct link between
teleportation and nonlocality.
Note also that a more qualitative relation between the

amount of CHSH violation and usefulness for teleportation
was derived by Horodecki, Horodecki, and Horodecki (1996).
Specifically, the maximal violation Sρ of the CHSH inequality
of a two-qubit state ρ is shown to lower bound its average
fidelity for teleportation as follows:

Ftelep ≥
1

2

�
1þ S2ρ

12

�
: (56)

Note that the optimal classical strategy achieves Ftelep ¼ 2=3
in the qubit case. For a device-independent version, see Ho,
Bancal, and Scarani (2013).

7. More nonlocality with less entanglement

As discussed previously, the relation between entanglement
and nonlocality is subtle. Another interesting question is to see
whether a quantitative link can be established between both
concepts. Astonishingly, it turns out that in certain cases, and
depending on which measure of nonlocality is adopted, less
entanglement can lead to more nonlocality.
An example is provided by certain Bell inequalities, whose

maximal violation can be achieved only with partially
entangled states (Acín et al., 2002) (considering states of a
given Hilbert space dimension). More importantly, there exist
simple Bell inequalities, the maximal violation of which
cannot be obtained from maximally entangled states of any
dimension, but requires partially entangled states (Liang,
Vértesi, and Brunner, 2011; Vidick and Wehner, 2011).
Also, it is known that there exist Bell inequalities for which
partially entangled states give violations which are arbitrarily
larger compared to maximally entangled states (Junge and
Palazuelos, 2011; Regev, 2012) (see Sec. III.B.2).
Interestingly it turns out that this phenomenon, sometimes

referred to as an anomaly of nonlocality [see Méthot and
Scarani (2007) for a short review], occurs for other measures
of nonlocality as well. Notably, this effect was discovered by
Eberhard (1993), who showed that weakly entangled two-
qubit states are more resistant to the detection loop-
hole compared to maximally entangled states (see
Sec. VII.B.1.c). Moreover, the anomaly of nonlocality was
also shown to occur when considering the statistical strength
of Bell tests (Acín, Gill, and Gisin, 2005), and the simulation
of quantum correlations with nonlocal resources (Brunner,
Gisin, and Scarani, 2005).

B. Nonlocality versus Hilbert space dimension

In this section, we consider the link between nonlocality and
another property of quantum systems: the dimension of the
Hilbert space in which the quantum state and measurements
are defined. Indeed, the Hilbert space dimension generally
represents a resource, in the sense that higher-dimensional
Hilbert spaces contain more complex quantum states.
Formally, we say that the correlations pðabjxyÞ have a

d-dimensional representation if there exists a state ρAB in
Cd ⊗ Cd, and measurement operatorsMajx andMbjy acting on
Cd, such that

pðabjxyÞ ¼ trðρABMajx ⊗ MbjyÞ: (57)

In some cases, it is also admitted that pðabjxyÞ has a
d-dimensional representation if pðabjxyÞ can be written as
a convex combination of correlations of Eq. (57).
In the following, we discuss two natural questions. First,

what is the minimal dimension d necessary to reproduce a
given set of correlations pðabjxyÞ? This question is closely
related to the concept of “dimension witnesses.” Second, how
much nonlocality can correlations of Eq. (57) contain as a
function of d?

1. Minimal Hilbert space dimension and dimension witnesses

Here the general question is to determine what quantum
resources, in terms of Hilbert space dimension, are necessary
to reproduce certain quantum correlations. For instance, if we
consider a Bell scenario with a given number of inputs and
outputs, what is the minimal dimension d such that all
quantum correlations (i.e., all correlations attainable in quan-
tum mechanics) can be reproduced? This is in general a very
difficult problem. In the case of binary inputs and outputs, we
know that qubits (d ¼ 2) are sufficient, if convex combina-
tions are taken into account (Cirel'son, 1980). However,
beyond this simple case, very little is known. In fact, we
do not even know if a finite d is sufficient for a scenario
involving a finite number of measurements and outcomes.
Actually, recent work suggests that this might not be the case
(Pál and Vértesi, 2010), giving evidence that the maximal
violation of the I3322 Bell inequality (see Sec. II.B.3) can be
attained using only a quantum state of infinite dimension.
A related question is the following. Given some correlations

originating from measurements on a quantum system, can we
place a lower bound on the Hilbert space dimension of the
state and measurements necessary to reproduce them? That is,
can we show that certain correlations are impossible to obtain
with arbitrary quantum states and measurements of a given
dimension? The concept of a dimension witness allows one to
address this question. Specifically, a dimension witness for
quantum systems of dimension d is a linear function of the
probabilities pðabjxyÞ described by a vector w of real
coefficients wabxy, such that

W ≡ X
a;b;x;y

wabxypðabjxyÞ ≤ wd (58)

for all probabilities of Eq. (57) with ρAB in Cd ⊗ Cd, and such
that there exist quantum correlations for which W > wd
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(Brunner, Pironio et al., 2008). When some correlations
violate Eq. (58), they can thus be established only by
measuring systems of local dimension strictly larger than d.
The simplest examples of dimension witnesses involve Bell
inequalities featuring measurements with ternary outcomes,
the maximal violation of which cannot be reached with qubits,
but requires qutrits (Brunner, Pironio et al., 2008). Other
examples are discussed in Sec. III.B.2.
It is also possible to devise entropic dimension witnesses

(Wehner, Christandl, and Doherty, 2008), which were dis-
cussed in the context of information-theoretic tasks. Finally,
the dimension of a single system can be witnessed in a prepare
and measure scenario (Gallego et al., 2010). Note however
that, since this approach is not based on nonlocal correlations,
it is not possible to separate quantum and classical behavior in
general; indeed, any quantum behavior can be simulated
classically by using systems of high enough dimension.

2. Grothendieck's constant and Bell inequalities with unbounded
violation

As mentioned in Sec. II.F, there exist several possible
measures of nonlocality. A natural option consists of quanti-
fying the strength of a given nonlocal correlation q through
the following quantity:

νðqÞ≡ sups
jhs;qij

supp∈Ljhs;pij
: (59)

This represents the ratio between the maximal quantum value
for a Bell expression s (i.e., jhs;qij) and its local bound (i.e.,
supp∈Ljhs;pij), maximized over all possible Bell expressions
s. Note that the absolute value is important here, otherwise the
quantity could be ill defined. This quantity quantifies how
much local noise (considering any possible local noise) must
be added to q such that the global distribution becomes local
(Pérez-Garcia et al., 2008; Junge et al., 2010). An interesting
feature of this quantity is that it provides a unified measure
of nonlocality, allowing one to compare the violations of
different Bell inequalities.
Tsirelson (1987) pointed out a connection between

Grothendieck's inequality, which arose in the study of tensor
norms, and the quantum violation of certain Bell inequali-
ties. Tsirelson showed that νðqÞ is upper bounded by
Grothendieck's constant KG for any two-outcome correlation
Bell inequality (i.e., XOR games). Although the exact value of
the latter is not known, it is proven that

1.6769 ≤ KG ≤
π

2 logð1þ ffiffiffi
2

p Þ ≈ 1.7822.

Importantly, this bound holds for quantum systems of
arbitrary dimension.
Moreover, Tsirelson showed that, when restricting

to qubits, one has that νðQÞ ≤ K3, where K3 is
Grothendieck's constant of the order of 3. Since it is known
that K3 < KG, it follows that there exist two-outcome corre-
lation Bell inequalities which are dimension witnesses for
qubits (Brunner, Pironio et al., 2008). Explicit examples have
been constructed by Vértesi and Pal (2008). Moreover, it was

proven that dimension witnesses for any Hilbert space
dimension d can be obtained from XOR games (Vértesi
and Pál, 2009; Briët, Buhrman, and Toner, 2011).
Tsirelson also raised the question of whether it would be

possible to have unbounded violations of Bell inequalities.
That is, does there exist a family of Bell scenarios for which
the quantity νðQÞ is unbounded?
The first result in this direction is due to Mermin (1990a),

who considered a multipartite scenario. Specifically, he
introduced a family of Bell inequalities for an arbitrary
number of parties n (now referred to as the Mermin inequal-
ities, see Sec. II.D), and showed that by performing mea-
surements on an n-party GHZ state one obtains a violation of
these inequalities that grows exponentially with n, while the
local bound remains constant.
A natural question is then whether unbounded Bell viola-

tions can also occur in the case of a fixed number of parties.
This is however a very hard problem, mainly because of the
difficulty of finding Bell inequalities and to estimate their
quantum violations. It was discovered recently that the
abstract concepts of operator space theory and tensor norms
provide a useful framework for the study of violations of Bell
inequalities in quantum mechanics [see Junge et al. (2010) for
an introduction]. This line of research was started by Pérez-
Garcia et al. (2008), where the existence of tripartite corre-
lation Bell inequalities with unbounded quantum violations
was proven. Later they showed that similar results hold for
(noncorrelation) bipartite Bell inequalities (Junge et al.,
2010). More formally, these studies focus on the quantity
νðQÞ [see Eq. (59)], i.e., the maximal quantum violation of
any Bell inequality s, as a function of the number of
measurement settings, outcomes, and Hilbert space dimen-
sion. Remarkably they showed that νðQÞ can be upper and
lower bounded by ratios of different norms of the Bell
expression s (here viewed as a functional), which have been
studied in operator space theory.
While the works mentioned above give nonconstructive

proofs of the existence of Bell inequalities with unbounded
violations, explicit examples have also been found. The
strongest result is due to Junge and Palazuelos (2011) who
explicitly constructed (up to random choices of signs) a
bipartite Bell inequality featuring a violation of the order offfiffiffi
k

p
= log k, where each party has k possible measurements

with k outcomes, considering quantum systems of dimen-
sion d ¼ k. Notably, this constructions appears to be close
to optimal, as a separation between this violation and known
upper bounds is only quadratic in k (Junge et al., 2010;
Junge and Palazuelos, 2011). Recently, an explicit and
simplified presentation of these Bell inequalities was given
by Regev (2012), based on standard quantum information
techniques. Other explicit examples of Bell inequalities with
unbounded violations have been presented (Buhrman et al.,
2011). Note that, while the construction of Buhrman et al.
(2011) uses maximally entangled states, the works of
Junge and Palazuelos (2011) and Regev (2012) considered
entangled states with low entanglement. Finally, an upper
bound on the maximum Bell violation (for any possible
Bell inequality) of a given quantum state was derived by
Palazuelos (2012b).
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C. Simulation of quantum correlations

So far we examined which quantum resources are necessary
to produce nonlocal correlations, in terms of entanglement or
Hilbert space dimension of quantum states. Here we discuss
the converse question. How can we use nonlocal resources to
characterize and quantify the nonlocality of entangled quan-
tum states? If a state violates a Bell inequality, we know that
its measurement statistics cannot be reproduced by a local
model. However, we can simulate its correlations if we have
access to a nonlocal resource, such as classical communica-
tion or nonlocal resources such as the PR box. The minimal
amount of nonlocal resources required can then be considered
as a measure of the nonlocality of the state. Here we give a
brief review of progress in this direction.

1. Simulating the singlet state

A classical simulation protocol of a given quantum state jψi
aims at reproducing the correlations obtained from local
measurements on jψi, using only shared randomness and
classical communication. For definiteness, we focus here on
the singlet state of two qubits, i.e., jψi ¼ ðj01i − j10iÞ= ffiffiffi

2
p

,
which is also the most studied case.
Alice and Bob first receive as input a unit vector on the

Bloch sphere, i.e., n̂A, n̂B ∈ R3, representing projective
measurements n̂A · σ⃗ and n̂B · σ⃗, where σ⃗ is the vector of
Pauli matrices. Then they are allowed to exchange classical
communication. Finally, they must produce binary out-
comes a, b ¼ �1 reproducing the expected statistics,
i.e., pðabjn̂An̂BÞ ¼ 1=4ð1 − abn̂A · n̂BÞ.
It is then interesting to look for the model using the least

classical communication, since the smallest number of bits
required to simulate jψi can be considered as a measure of the
nonlocality of jψi. This approach was proposed independently
by Maudlin (1992), Brassard, Cleve, and Tapp (1999), and
Steiner (2000). These first partial results were superseded by
Toner and Bacon (2003), where it is shown that a single bit of
communication is sufficient to exactly simulate the correla-
tions of local projective measurements on a singlet state. Note
that in this model Alice and Bob use infinite shared random-
ness, which is proven to be necessary for models with finite
communication (Massar et al., 2001).
It is also interesting to investigate simulation models using

only nonsignaling resources, such as the PR box (see
Sec. II.C.2). Remarkably, a single PR box is enough to
simulate the singlet correlations (Cerf et al., 2005). The latter
model is even more economical than the model of Toner and
Bacon (2003), since a PR box is a strictly weaker nonlocal
resource; indeed, while it is possible to get a PR box from one
bit of communication, the opposite is impossible since the PR
box is nonsignaling.
Finally, it is also possible to devise a simulation model of

the singlet state in which postselection is allowed (Gisin and
Gisin, 1999); that is, the parties are not required to provide an
output in all runs of the protocol. Indeed postselection should
be considered as a nonlocal resource, giving rise to the
detection loophole (see Sec. VII.B.1).
A unified presentation of all above models can be found in

Degorre, Laplante, and Roland (2005).

2. Other quantum states

The simulation of quantum correlations of arbitrary bipar-
tite entangled quantum states has also been investigated.
Notably, Regev and Toner (2007) showed that the correlations
obtained from local measurements with binary outputs on any
ρAB ∈ Cd ⊗ Cd can be simulated with only two bits of
communication, which is proven to be necessary in general
(Vértesi and Bene, 2009). Note, however, that this model
focuses on the correlations between the outcomes of Alice and
Bob and does not, in general, reproduce the expected quantum
marginals.
A case of particular interest is that of partially entangled

qubit states, i.e., jψθi ¼ cos θj00i þ sin θj11i. While it is
shown that its correlations (including marginals) can be
perfectly simulated with two bits of communication for any
θ (Toner and Bacon, 2003), it is not known whether a single bit
of communication would suffice. It is, however, proven that a
simulation model using a single PR box does not exist
(Brunner, Gisin, and Scarani, 2005) for weakly entangled
states (θ ≤ π=7.8). Thus it appears that less entangled states
require more nonlocal resources to be simulated compared to
maximally entangled ones, illustrating the subtle relation
between entanglement and nonlocality (see Sec. III.A.7). A
simulation model for states jψθi using only nonsignaling
resources has also been presented (Brunner, Gisin et al., 2008).
Moreover, Brassard, Cleve, and Tapp (1999) established the

fact that the simulation of measurements with d outcomes on a
maximally entangled state in Cd ⊗ Cd requires classical
communication of order d bits. Therefore, there exist families
of quantum nonlocal correlations requiring an arbitrarily large
amount of classical communication for being simulated. Much
less is known on the simulation of multipartite entangled
states. Branciard and Gisin (2011) presented a simulation
model for equatorial measurements on the three-qubit GHZ
state which requires three bits of communication, or eight PR
boxes. The simulation of the protocol of entanglement
swapping, which combines entangled states and entangled
measurements, was also discussed (Branciard, Brunner
et al., 2012).
More generally the problem of simulating quantum non-

local correlations is intimately related to the field of commu-
nication complexity. Thus, many results on communication
complexity are relevant in the context of nonlocality. For more
details on communication complexity and on the procedure
for converting communication complexity problems into
nonlocal tasks, see Buhrman et al. (2010).

3. Elitzur-Popescu-Rohrlich decomposition

A different perspective on simulating quantum correlations
was presented by Elitzur, Popescu, and Rohrlich (1992), often
referred to as the EPR2 approach. They proposed decompos-
ing a quantum probability distribution pqðabjxyÞ into local
and nonlocal parts. Formally, that means writing pq as a
convex combination of a local distribution (pl) and a nonlocal
one (pns):

pqðabjxyÞ ¼ wplðabjxyÞ þ ð1 − wÞpnsðabjxyÞ; (60)

with 0 ≤ w ≤ 1. Note that, since pq and pl are no-signaling
distributions, pns is also no signaling (hence the subscript

444 Brunner et al.: Bell nonlocality

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



“ns”). Clearly, any distribution can be written in this way
(take, for instance, w ¼ 0 and pq ¼ pns). To find the EPR2
decomposition, one then finds the maximum of w among all
possible decompositions of Eq. (60). This quantity, denoted
wmax, defines the local content of the distribution pq. The
EPR2 decomposition can be understood as a simulation of the
distribution pq where, with probability wmax a local distribu-
tion is used, and with probability 1 − wmax a nonlocal
(no-signaling) distribution is used. Note that qmax can also
be considered as a measure of the nonlocality of the
distribution pq: if wmax ¼ 1, pq is local; if wmax < 1, pq is
nonlocal; if wmax ¼ 0, pq is fully nonlocal.
One can bound wmax, for a given distribution pq, through

the violation of a Bell inequality s · p ≤ Sl (Barrett, Kent, and
Pironio, 2006). Denote Q, the Bell value of distribution pq. It
is straightforward to see that

wmax ≤
Sns −Q
Sns − Sl

; (61)

where Sns is the maximal value of the Bell expression s for any
no-signaling distribution. Notice that if pq reaches the
maximal value allowed by no signaling (i.e., Q ¼ Sns), then
wmax ¼ 0. This means that the quantum distribution is
maximally nonlocal according to the EPR2 decomposition;
hence no local part can be extracted.
It is also possible to define the local content of a quantum

state. To do this, consider all possible measurements that can
be applied to a quantum state and then derive the local content
for the distribution obtained from these measurements.
Originally, Elitzur, Popescu, and Rohrlich (1992) showed
that the maximally entangled state of two qubits has zero local
content, i.e., it is fully nonlocal. This result was then
generalized to any bipartite maximally entangled state
(Barrett, Kent, and Pironio, 2006), via a generalization of
the chained Bell inequality (see Sec. II.B.3), showing that
such states can provide maximally nonlocal and monogamous
correlations, which is relevant for instance in quantum
cryptography.
The local content of other quantum states has also been

discussed. In particular, for the case of two-bit entangled pure
states jψθi ¼ cos θj00i þ sin θj11i, with θ ∈ ½0; π=4�, it was
proven that qmax ¼ 1 − cosð2θÞ (Portmann, Branciard, and
Gisin, 2012). The EPR2 decomposition of pure entangled
two-qutrit states was also sketched by Scarani (2008).
Finally, note that these ideas were generalized to the

multipartite case by Almeida, Cavalcanti et al. (2010).

IV. APPLICATIONS OF QUANTUM NONLOCALITY

When considering nonlocality as a potential resource for
information processing, two intuitive ideas immediately come
to mind. First, since the existence of nonlocal correlations
between the two wings of a Bell experiment seems to imply
some connection between these two distant wings, one can
hope to exploit this connection to communicate, and, in
particular, to communicate faster than light. Second, since
a local model for a Bell experiment is equivalent, as seen in
Sec. II.B, to a deterministic model in which a definite outcome
aðxÞ and bðyÞ is assigned in advance to every measurement x

and to every measurement y, nonlocality then suggests, in
contrast, that these measurement outcomes are fundamentally
undetermined and thus that they could be used to establish
cryptographic keys. Both ideas are partly true and partly
misleading. In both cases, the no-signaling principle plays a
fundamental role.

A. Communication complexity

In the first example discussed previously, no signaling acts
as a limitation: we have already seen that the no-signaling
conditions (7), which are satisfied by any set of correlations
arising from measurement on quantum systems, imply that
Bob's outcome does not reveal any information about Alice's
input x and the other way around. Thus, no signaling prevents
the use of nonlocal correlations as a substitute for direct
communication between Alice and Bob. It may then come as a
surprise that nonlocality can nevertheless be exploited to
reduce the amount of communication in certain distributed
computing tasks, in both information theory and the study of
communication complexity. In the setting of communication
complexity, Alice receives an n-bit string x and Bob receives
an n-bit string y and the aim is for Bob to compute some
function fðx; yÞ with as little communication between Alice
and Bob. This can always be achieved if Alice sends her n-bit
string x to Bob, but for certain functions less communication
is sufficient. The minimum number of bits that must be
exchanged between Alice and Bob for Bob to determine
fðx; yÞ is known as the communication complexity of f. Cleve
and Buhrman (1997) realized that if Alice and Bob share
systems exhibiting nonlocal correlations, then they can
compute certain functions with less communication than
would be required without such nonlocal systems. This
phenomenon does not violate the no-signaling principle
because the knowledge that Bob obtains about Alice's input
through fðx; yÞ is no greater than what is already conveyed by
Alice's communication. The field of communication complex-
ity is an active field of research in computer science, in which
strong connections with nonlocality have been discovered
since Cleve and Buhrman (1997). For more details, see
Buhrman et al. (2010).

B. Information theory

Nonlocal correlations can also enhance communication
power in the context of information theory. Consider two
parties, Alice and Bob, communicating via a noisy commu-
nication channel. If we care only about the rate at which
information is transmitted from Alice to Bob such that the
error rate goes to zero in the large block length limit, then this
transmission rate cannot be increased using entanglement
(Bennett et al., 2002) or even no-signaling correlations (Cubitt
et al., 2011). However, the situation changes when we care
about the rate at which information can be sent without any
error at all (Cubitt et al., 2011). The maximum such rate is
known as the zero-error capacity of a noisy-communication
channel. For example, it is known that if Alice and Bob share
certain no-signaling correlations, zero-error transmission
becomes possible through a noisy channel, even if that
channel's zero-error capacity is zero without the ability to
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use such correlations (Cubitt et al., 2010). Notably, even
certain quantum correlations are useful in this context, in
particular, those achieving a unit winning probability in a
pseudotelepathy game (see Sec. II.B.4).

C. Quantum cryptography

In our second intuition discussed previously, in which the
violation of Bell inequalities guarantees the presence of
randomness, the no-signaling principle is no longer a limitation,
but a prerequisite. Indeed, in the same way that every local
model can be seen to be equivalent to a local deterministic
model, every nonlocal model is equivalent to a nonlocal
deterministic model where, for each run of the Bell test, definite
outputs aðx; yÞ and bðx; yÞ are assigned to every pair of inputs
ðx; yÞ. In full generality, the violation of Bell inequalities does
not therefore guarantee by itself any indeterminacy in the
outcomes a and b (as already stressed in the Introduction,
nonlocality is—as its name indicates—about the violation of
locality, not about the violation of determinism). However,
every nonlocal deterministic model is necessarily signaling: if
aðx; yÞ depends nontrivially on both x and y, then Alice can
recover some information about Bob's input y from the
knowledge of the output a and her choice x. In a model that
reproduces nonlocal correlations and which is intrinsically no
signaling, the measurement outcomes cannot therefore be fully
determined in each run of the Bell test and theymust necessarily
exhibit some randomness. This intuition is at the basis of
device-independent cryptography in which the violation of a
Bell inequality, which can be asserted without any detailed
physical assumptions on the working of the devices, guarantees
the production of cryptographic keys that are genuinely random
and secure to any adversary limited by quantum theory or, more
generally, by the no-signaling principle.

1. Initial developments

One of the earliest connections between nonlocality and
cryptography is due to Herbert (1975), who interpreted the 0
and 1 outcomes produced by two distant quantum devices as
correlated binary random messages. By considering the
error rates in such messages, he presented an elementary
derivation of Bell's theorem, but he did not go as far as
deducing that quantum nonlocality could be exploited for a
secure cryptographic scheme.
The practical application of Bell nonlocality to cryptography

was first realized by Ekert in his celebrated paper (Ekert, 1991),
which represents more generally one of the founding articles of
quantum cryptography. The problem of establishing a secure,
encrypted communication between two parties can be reduced
to the problem of generating a secure, cryptographic key, i.e.,
sufficiently long strings of random bits that are shared between
Alice and Bob, but unknown to any potential eavesdropper Eve.
Ekert presented a protocol for this key distribution problem
which is based on the CHSH inequality and uses a source of
two-qubit maximally entangled states jϕþi; here we present a
slight variation of this protocol introduced byAcín,Massar, and
Pironio (2006). Each party repeatedly receives one qubit from
the source and performs a measurement on it. In each run, Alice
chooses among three possible measurements x ¼ 0, 1, 2 and

obtains an outcome bit a; Bob chooses among two possible
measurements y ¼ 0, 1 and obtains an outcome bit b. Once all
states have been measured, Alice and Bob publicly announce
the settings they have chosen for each particular measurement
and divide their results into two groups. The subset of the results
corresponding to the measurements x ¼ 1, 2 and y ¼ 0, 1 is
used to evaluate the CHSH inequality violation. Hence these
measurements are chosen such as to maximize this violation
(see Sec. I.A): for instance, Alice measures in the direction 0,
π=2 in the x-z plane of the Bloch sphere for x ¼ 1, 2 and Bob in
the directions−π=4, π=4 for y ¼ 0, 1 (also in the x-z plane). The
subset of results corresponding to the choices x ¼ 0 and y ¼ 0

are used to generate the shared key. Hence the measurement
x ¼ 0 is chosen in the same direction −π=4 as Bob's meas-
urement y ¼ 0, in such a way that the key bits a and b are
perfectly correlated.
The CHSH violation guarantees, as discussed earlier, that

the key bits are undetermined and, in particular, that Eve could
not have fixed them in advance. More generally, Eve could
attempt to obtain information about the values of a and b by
performing delayed measurements (after the public disclosure
of Alice and Bob's settings) on a system of her own correlated
with Alice and Bob's systems. As remarked by Ekert, the
protocol is also secure against such attacks as a maximal
CHSH violation guarantees that the state shared by Alice and
Bob is (essentially equivalent) to a pure entangled jϕþi state,
which cannot be correlated to any system in Eve's possession.
In a realistic implementation, Alice and Bob's key bits will not
be perfectly correlated and the CHSH violation will not be
maximal, implying that Eve can obtain some finite informa-
tion on these key bits. But provided that these imperfections
are not too important, it should be possible to distill a shared
secret key from the raw data of Alice and Bob by applying
error-correction and privacy amplification protocols.
The intuition for security in the Ekert protocol is based on the

violation of a Bell inequality which can be assessed independ-
ently of the protocol's implementation, but this aspect was not
fully recognized at the time. When assuming that Alice and
Bob's devices perform measurements on qubits in comple-
mentary bases, Ekert's protocolwas found to be equivalent to an
entanglement-based version of the Bennett-Brassard 1984
protocol (Bennett, Brassard, and Mermin, 1992). This was
important in establishing entanglement as a central concept for
quantum key distribution (QKD), but it also implied that the
subsequent security proofs used “qubits” and “complementary
bases” as implicit assumptions.14 One crucial point was (under-
standably) missed in those early days: the fact that the implicit
qubits and complementary base assumptions requires a very
good control of, and ultimately some trust for, the physical
implementation.15

14Quantitative relations between security bounds and the violation
ofBell inequalitieswere pointed out (Scarani andGisin, 2001); but this
link turned out to be an artifact of the assumption called “individual
attacks” and did not survive in stricter security proofs, which were
rather derived from the notion of entanglement distillation.

15It is interesting to notice, though, the note added to the Bennett,
Brassard, and Mermin (1992) paper, which comes close to explicitly
recognizing the device-independent aspect of the Ekert scheme.
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However, the violation of Bell inequalities can be estab-
lished without such knowledge. Therefore, a cryptography
protocol based on nonlocality requires fewer assumptions: the
devices can in principle be tested and the security of
the protocol certified without any detailed characterization
of the devices; to some extent, the devices could even be
malicious and have been prepared by the eavesdropper. This is
called a device-independent (DI) assessment.
The idea of DI quantum cryptography was first made

explicit by Mayers and Yao (1998, 2004), who called it
self-testing. Although their analysis is not directly based on
Bell inequalities, it obviously exploits correlations that are
nonlocal. The breakthrough that pushed the recent develop-
ment of device-independent quantum key distribution
(DIQKD) came from Barrett, Hardy, and Kent who introduced
a QKD protocol based on the chained Bell inequality (see
Sec. II.B.3) and proved it to be secure against “superquantum”
eavesdroppers that may violate the law of quantum physics
but which are constrained by the no-signaling principle
(Barrett, Hardy, and Kent, 2005). A practical protocol based
on the CHSH inequality was then introduced by Acín, Gisin,
and Masanes (2006) (although it was proved secure only
against a restricted family of attacks), where it was also
noticed that proving security assuming only the no-signaling
principle implies, in particular, that one can do away with the
“device-dependent” assumptions of standard QKD. The DI
potential of such a QKD scheme based on Bell inequalities
was then fully perceived by Acín et al. (2007), who introduced
a DI security proof for collective attacks of the variation of
Ekert's protocol presented above against an eavesdropper
constrained by the entire quantum formalism and not only
the no-signaling principle.
Finally, the ideas from DIQKD have been adapted to the

simpler task of DI randomness generation (DIRNG) by
Colbeck (2007) and Pironio et al. (2010) and to distrustful
quantum cryptography by Silman et al. (2011), where a
scheme for the device-independent implementation of (imper-
fect) bit commitment and coin tossing was introduced.
In the following we discuss in more detail the status of

current security proofs for DIQKD and DIRNG, the assump-
tions on the devices that underlie them, and the prospects for
experimental implementations. We first briefly discuss the
quantitative aspects of the relation between randomness and
nonlocality since it is at the basis of many security proofs and
protocols. Note that the development of DIQKD and the
recent attacks on standard QKD protocols such as Lydersen
et al. (2010) have led to a series of feasible proposals for QKD
that are intermediate between device-dependent and device-
independent schemes; see, for instance, Lydersen et al.
(2010), Pawlowski and Brunner (2011), Branciard,
Cavalcanti et al. (2012), Braunstein and Pirandola (2012),
Lo, Curty, and Qi (2012), Tomamichel et al. (2012), and Lim
et al. (2013). We do not review this work here, as it does not
directly rely on nonlocality as a resource.

2. Randomness versus nonlocality

a. Quantitative measures of randomness

Imagine Alice holds a measurement device that produces
outcomes a when performing a measurement, where we let RA

denote the random variable of the outcome. When can we say
that a is random? One way to think about randomness is by
means of introducing an observer Eve, who tries to guess
Alice's measurement outcome a—the better the guess the less
random a is. In order to guess a, Eve may perform an arbitrary
measurement on a system E, which is possibly correlated with
the one of Alice. We use z to label her measurement setting and
e to label her measurement outcome. For any given z, Eve's
best guess for a corresponds to the most probable outcome, the
one maximizing pðajezÞ. The guessing probability of Eve is
then defined as her average probability to correctly guess a,
maximized over all her possible measurements

pguessðRAjEÞ≔max
z

X
e

pðejzÞmax
a

pðaje; zÞ: (62)

This guessing probability can also be expressed as the
minimum entropy HminðRAjEÞ ¼ −log2pguessðRAjEÞ (König,
Renner, and Schaffner, 2009). It takes on values between 0 and
log jRAj, corresponding to the cases where Eve can guess
perfectly, and where Eve's probability of guessing is no better
than for the uniform output distribution 1=jRAj, respectively.
The minimum entropy is a good measure of how random

Alice's measurement outputs are because it tells us exactly
how many uniform classical random bits l can in principle be
obtained from a classical string a ∈ RA by applying some
function fr∶RA → f0; 1gl. It is easy to see that if we have a
guarantee only about the min entropy of the so-called source
RA, then no randomness can be obtained using just one
deterministic function f. However, if we are willing to invest
some perfect randomness labeled R ¼ r from an initial seed,
and choose a function fr depending on it, then we can obtain
randomness. This process is known as randomness extraction
and enjoys a long history in computer science [see Vadhan
(2012) for a survey]. Formally, a (strong) extractor produces
an output ρFðRAÞE that is close to uniform and uncorrelated
from Eve ∥ρFðRAÞER − 12l=2

l ⊗ ρER∥1 ≤ ϵ for some small ϵ,
even if Eve later learns which function fr we applied. In the
context of cryptography, this is also called privacy amplifi-
cation. If Eve holds only classical side information about
Alice's system it is known that randomness extraction is
possible, where the maximum output size obeys l ≈
HminðRAjEÞ (Impagliazzo, Levin, and Luby, 1989). This is
also true if Eve holds quantum side information (Renner,
2008; De et al., 2009; Ta-Shma, 2009). More generally the full
quantum minimum entropy (König, Renner, and Schaffner,
2009) has been shown to exactly characterize how much
randomness can be obtained by making measurements on A
by Berta, Fawzi, and Wehner (2012). However, no such
general result is known if Eve holds arbitrary no-signaling
(i.e., supraquantum) side information (Hänggi and Renner,
2010); see Sec. IV.C.4 for a more detailed discussion.

b. Randomness and Bell violations

In order to discuss quantitative links between randomness
and the violations of Bell inequalities, it is useful, as in the
previous discussion, to introduce an additional observer and
thus consider nonlocal correlations shared between Alice,
Bob, and Eve. In such a tripartite setting, the correlations are
characterized by the probabilities pðabejxyzÞ. If Eve
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measures z and obtains e, then Eve's characterization of
Alice's device is now given by the conditional probability
distributions pðajxezÞ. If Eve learns x, then for any given z her
best guess for a corresponds to the most probable outcome
maximizing pðajxezÞ. Maximizing over z thus means that Eve
can guess a with probability pguessðRAjEX ¼ xÞ. In the case
where a can take on two values and Alice and Bob's devices
are characterized by a CHSH expectation value S, it was
shown by Pironio et al. (2010) [see also Masanes, Pironio, and
Acín (2011) for an alternative derivation] that independently
of the devices' behaviors and Eve's strategy

pguessðRAjEX ¼ xÞ ≤ 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − S2=4

q
Þ: (63)

In particular, when S ¼ 2
ffiffiffi
2

p
, we get as expected

PguessðAjEX ¼ xÞ ≤ 1=2 corresponding to 1 bit of minimum
entropy HminðRAjEX ¼ xÞ, implying that Alice's output is
fully random. When the CHSH expectation achieves the local
bound S ¼ 2, we get the trivial bound pguessðAjEX ¼ xÞ ≤ 1.
Using the SDP hierarchy (Navascues, Pironio, and Acín,
2007, 2008) (see Sec. II.C.1.d) it is possible to derive
analogous bounds for arbitrary Bell inequalities; see
Pironio et al. (2010) for details. One can also compute upper
bounds on the guessing probability not only for the local
randomness (corresponding to the output a alone), but also of
the global randomness (corresponding to the pair of outcomes
a and b). At the point of maximal CHSH violation,
for instance, one finds pguessðRARBjEX ¼ xY ¼ yÞ ≤ 1=4þffiffiffi
2

p
=8≃ 0.427 corresponding to 1.23 bits of minimum

entropy (Pironio et al., 2010; Acín, Massar, and Pironio,
2012), where the random variable RB corresponds to Bob's
outcome.
The above bounds on the guessing probability are obtained

by assuming that the devices and the eavesdropper obey
quantum theory. Similar bounds can be obtained assuming
only the no-signaling principle. In this case, one obtains the
following tight bound for the CHSH inequality (Barrett, Kent,
and Pironio, 2006; Masanes et al., 2009; Pironio et al., 2010):

pguessðRAjEX ¼ xÞ ≤ 3

2
− S
4
: (64)

At the point S ¼ 2
ffiffiffi
2

p
of maximal quantum violation, one

finds pguessðAjEX ¼ xÞ ≤ 0.79 which is, as expected, less
constraining than the quantum bound (63). Maximal random-
ness pguessðAjEX ¼ xÞ ≤ 1=2 is obtained now only at the
maximal no-signaling violation S ¼ 4 of the CHSH inequal-
ity, corresponding to a PR box. The above bound has also
been generalized for the Δ-output–m-input chained inequality
(see Sec. II.B.3) by Barrett, Kent, and Pironio (2006)

pguessðRAjEX ¼ xÞ ¼ 1

d
þ d

4
SðΔ;mÞ
chained. (65)

For m → ∞ the maximal quantum violation of the chained
inequality tends to the maximal no-signaling violation
Schained ¼ 0; note that the Bell inequality is written as
SðΔ;mÞ ≥ Δ − 1, and thus a “high” violation means a lower
value for SðΔ;mÞ

chain . In this limit, one thus gets

pguessðRAjEX ¼ xÞ ≤ 1=Δ, i.e., the outcome can be certified
to be fully random even assuming no signaling alone. This
property is central to the security of the QKD protocol
introduced by Barrett, Hardy, and Kent (2005) and was further
developed by Colbeck and Renner (2008, 2011) to show that
some extensions of quantum theory cannot have improved
predictive power.
Naively one would expect that less nonlocality in a Bell-

type experiment implies less randomness. In the quantum
setting, this intuition is not always correct. In the case of two-
output Bell scenarios, the maximal amount of local random-
ness (characterizing the single outcome a) corresponds to 1 bit
of minimum entropy and the maximal amount of global
randomness (characterizing the joint outcome pair a, b)
corresponds to 2 bits. Acín, Massar, and Pironio (2012)
showed that, through a family of (nonfacet) two-input–two-
output Bell inequalities, that such values can be attained with
nonlocal correlations that are arbitrarily close to the local
region or which arise from states with arbitrarily little
entanglement. This work suggests that while nonlocality is
necessary to certify the presence of randomness, its quanti-
tative aspects are related to the extremality of nonlocal
correlations. Extremality was already identified by Franz,
Furrer, and Werner (2011) as a key property for characterizing
the behaviors which are independent of any measurement
results of an eavesdropper. This work also presents different
tools to certify and to find extremal behaviors for particular
Bell scenarios. Finally, Dhara, Prettico, and Acín (2013)
showed that maximal global randomness can be obtained in
a variety of scenarios (including multipartite ones) from the
violation of certain Bell inequalities.

3. Device-independent randomness generation

The above relations between nonlocality and randomness
immediately suggest using Bell-violating devices to certify the
generation of random numbers in a DI manner (Colbeck,
2007). This idea was further developed by Pironio et al.
(2010), where a practical protocol for randomness genera-
tion was introduced, the first quantitative bounds on the
randomness produced where shown, and a proof-of-principle
experimental demonstration was performed.
The bounds that we presented above relate only the

randomness and expected Bell violation of a pair of quantum
devices for a single use of the devices. In an actual protocol for
DIRNG, however, the devices are used n times in succession.
A typical protocol consists of three main steps (Colbeck,
2007; Pironio et al., 2010; Colbeck and Kent, 2011): a
measurement step, where the successive pairs of inputs
ðx1; y1Þ;…; ðxn; ynÞ are used in the devices, yielding a
sequence of outputs ða1; b1Þ;…; ðan; bnÞ; an estimation step,
where the raw data are used to estimate a Bell parameter
(if this parameter is too low, the protocol may abort); and a
randomness extraction step, where the raw output string is
processed to obtain a smaller final string r ¼ r1;…; rm which
is uniformly random and private with respect to any potential
adversary. In addition to the Bell-violating devices, the
protocol may also consume some initial random seed for
choosing the inputs in the measurement step and for process-
ing the raw data in the randomness extraction step. If more
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randomness is generated than is initially consumed, one has
then achieved DI randomness expansion.
Pironio et al. (2010) introduced a generic family of

protocols based on arbitrary Bell inequalities and achieving
quadratic expansion. These protocols are robust to noise and
generate randomness for any amount of violation (up to
statistical errors). The analysis of the randomness that is
produced is based on an extension of the single-copy bounds
of Eqs. (63) and (64) to the n-copy case. A proof-of-principle
implementation using two entangled atoms separated by about
1 m was also reported (see Sec. VII). The security of these
protocols has been proven against quantum or no-signaling
adversaries with classical-side information. The technical
tools for proving security were already introduced by
Pironio et al. (2010), but this was rigorously established only
by Fehr, Gelles, and Schaffner (2013) and Pironio and Massar
(2013). In these later works, it was further shown how to
achieve superpolynomial randomness expansion by repeat-
edly using the randomness of a pair of devices as input for
another pair. A scheme based on the CHSH inequality secure
against adversaries with quantum-side information and
achieving superpolynomial expansion with a single pair of
quantum devices was obtained by Vazirani and Vidick
(2012a). This scheme, though, requires a high violation of
the CHSH inequality and is not noise tolerant.
The security of the above protocols relies on a series of

minimal assumptions. First, the devices and the eavesdropper
are constrained by quantum theory or at least by the no-
signaling principle. Second, the initial randomness seed is
independent and uncorrelated from the devices' behavior.
Third, the two quantum devices are noninteracting during
each successive measurement.16 Fourth, it is also implicit of
course that the devices can be secured, in the sense that they
do not directly leak unwanted information to the adversary.
Apart from these basic requirements, the devices are mostly
uncharacterized. In particular, no assumptions are made on the
specific measurements that they implement, on the quantum
state that is being measured, on the Hilbert space dimen-
sion, etc.
The level of confidence in the realization of the above

assumptions in an actual implementation or the measures that
must be taken to enforce them may vary depending on the
adversary model that one is considering. For instance, it
depends on whether the devices are considered to be outright
malicious and programmed by a dishonest provider (i.e., the
adversary itself) or whether the manufacturer of the device is
assumed to be honest and the concept of DI is merely used to
account for limited control of the apparatus or unintentional

flaws in the devices (Pironio and Massar, 2013). In the latter
case, in particular, a weak source of randomness, such as a
pseudorandom generator, may be sufficient for all practical
purposes to generate the initial seed (in which case the
protocol, which produces strong cryptographically secure
randomness, is best viewed as a randomness generation
protocol than an expansion one). Note that, in the honest-
provider scenario, the adversary may be considered to be
disentangled from the quantum devices, implying that proving
security against classical-side information as in Fehr, Gelles,
and Schaffner (2013) and Pironio and Massar (2013) is
already sufficient.
Recently, protocols and security analysis have also been

introduced where some of the above assumptions are relaxed.
In Silman, Pironio, and Massar (2013), the separation
assumption is relaxed and a small amount of cross talk
between the devices is allowed. This opens up the possibility
of using existent experimental systems with high data rates,
such as Josephson phase qubits on the same chip.
Colbeck and Renner (2012) introduced the problem of

randomness amplification, which aims at extracting perfect
(or arbitrarily close to perfect) randomness from an initial
source that is partly correlated with the devices and the
adversary. It was shown that if one is given access to certain
so-called Santha-Vazirani (SV) sources, then randomness
amplification against an adversary limited only by the no-
signaling principle is possible for certain parameters of the
source. Improving on this first result, Gallego, Masanes et al.
(2013) showed that an arbitrarily SV source can be amplified
using certain multipartite quantum correlations. Finally, less
stringent models of a compromised random seed than SV have
been considered (Hall, 2011) and the conditions for Bell-
based randomness expansion against an adversary preparing
independent and identically distributed correlations have been
studied by Koh et al. (2012).

4. Device-independent quantum key distribution

The protocols, the underlying assumptions, and the security
proofs for DIQKD are similar in spirit to DIRNG with the
added complication that DIQKD involves two remote parties
that must communicate over a public channel to establish the
shared secret key. A typical DIQKD protocol consists of the
following steps: a measurement step, where Alice and Bob
measure a series of entangled quantum systems; an estimation
step, in which Alice and Bob publicly announce a fraction of
their measurement results to estimate the violation of a
Bell inequality and the error rate in their raw data; an
error-correction step, in which these errors are corrected using
a classical protocol that involves public communication; and
finally, a privacy-amplification step in which a shorter, secure
key is distilled from the raw key based on a bound on the
eavesdropper's information deduced from the Bell violation
estimation.
The first DIQKD protocol proven secure against general

attacks by a no-signaling eavesdropper was introduced by
Barrett, Hardy, and Kent (2005). The protocol is based on the
chained Bell inequality (23) and produces a single secure key
bit. It represents mostly a proof-of-principle result as the
protocol is inefficient and unable to tolerate reasonable levels

16Note that this does not necessarily imply that the measurements
should be spacelike separated in the relativistic sense. This spacelike
separation is required to close the locality loophole in fundamental
tests of Bell inequalities, where the aim is to rule out alternative
models of nature that can go beyond present-day physics. In the
context of DIRNG, we assume however from the beginning the
validity of quantum theory and use Bell inequalities as a tool to
quantify in a DI way the randomness of quantum theory. Once we
assume quantum theory, there are many ways to ensure that the two
systems are not interacting other than placing them in spacelike
intervals, e.g., by shielding the devices (Pironio et al., 2010).
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of noise. In Barrett, Hardy, and Kent (2005) security is proven
assuming that each of the n entangled pairs measured in the
protocol is isolated from the other pairs. The protocol thus
requires that Alice and Bob have n separate pairs of devices,
rather than a single pair of devices that they use repeatedly n
times. The no-signaling conditions are required to hold
between each of the 2n systems of Alice and Bob. This
assumption was removed by Barrett, Colbeck, and Kent
(2012), where security is proven in the situation where
Alice and Bob have only one device each, which they
repeatedly use. Instead of full no-signaling correlations among
the 2n systems of Alice and Bob, the security is thus based on
time-ordered no-signaling conditions, where no signaling is
required only from future inputs to previous inputs, but where
later outputs can depend arbitrarily on previous inputs.
Efficient and noise-tolerant protocols were introduced by

Acín, Gisin, and Masanes (2006) and Scarani et al. (2006)
[see also Acín, Massar, and Pironio (2006)], where however
the security analysis was restricted to individual attacks
against no-signaling eavesdroppers. General security against
no-signaling eavesdroppers was later proven by Masanes
(2009), Masanes et al. (2009), and Hänggi, Renner, and
Wolf (2010) under the assumption, as in Barrett, Hardy, and
Kent (2005), that Alice and Bob use n separated pairs of
devices constrained by full no-signaling conditions. The
question of whether it is possible to prove the security of
an efficient and noise-tolerant protocol in the case where Alice
and Bob repeatedly use a single pair of devices constrained by
time-ordered no-signaling conditions is still open. One of the
difficulties in obtaining such a result is related to the
possibility of performing privacy amplification against a
no-signaling eavesdropper. Hänggi, Renner, and Wolf
(2009) showed that if no signaling is imposed between only
Alice's device and Bob's, but signaling within each device is
allowed (so that the output of a device can depend on the
inputs of other devices used later in the protocol), then privacy
amplification is not possible for protocols based on the CHSH
inequality. This result was further extended by Arnon-
Friedman, Hänggi, and Ta-Shma (2012) for a set of more
general conditions, but still less restrictive than the desired
time-ordered no-signaling conditions. Recently, Arnon-
Friedman and Ta-Shma (2012) showed that superpolynomial
privacy amplification for protocols based on the chained
inequality is impossible under the assumption of time-ordered
no-signaling conditions. This work still leaves open the
question of exponential privacy amplification for protocols
based on a different Bell inequality or whether linear privacy
amplification is possible.
Another line of results, concerned with security against

eavesdroppers that are constrained by the entire quantum
formalism and not only the no-signaling principle, was
initiated by Acín et al. (2007) . The advantage in this case
is that better key rates and noise resistance can be expected
[as illustrated by the difference between the randomness
bounds (63) and (64)] and that privacy amplification is
possible and well studied. The work of Acín et al. (2007)
and Pironio et al. (2009) proved the security of the CHSH-
based protocol introduced by Acín, Massar, and Pironio
(2006) against collective attacks by a quantum eavesdropper.
This proof was extended to a slightly more general setting by

McKague (2010b). General security proofs of protocol based
on arbitrary Bell inequalities under the assumption that the
devices of Alice and Bob are memoryless (or equivalently
that they use n noninteracting pairs of devices instead of a
single one) were introduced by Hänggi and Renner (2010)
and Masanes, Pironio, and Acín (2011). The memory
assumption on the device was removed by Pironio et al.
(2013), but security was proven only against quantum
adversaries with classical-side information, a condition that
is satisfied if the eavesdropper has access only to short-term
quantum memories. The key rates in Hänggi and Renner
(2010), Masanes, Pironio, and Acín (2011), and Pironio et al.
(2013) are simple expressions expressed in term of single-
copy bounds on the randomness of the form (63). The
general security of a CHSH-based protocol with no memory
assumptions on the devices or the eavesdropper was reported
by Reichardt, Unger, and Vazirani (2012, 2013), albeit
polynomially inefficient and does not tolerate noisy devices.
The security is obtained as a corollary of a more general
strong testing result that allows the shared quantum state and
operators of the two untrusted devices to be completely
characterized. Finally, a complete DI proof of security of
QKD that tolerates a constant noise rate and guarantees the
generation of a linear amount of key was given by Vazirani
and Vidick (2012b) for a protocol that is a slight variant of
Ekert's protocol. It is an open question whether this approach
can lead to trade-offs between the noise rate and the key rate
as good as the ones that have been shown to be achievable
under additional memory assumptions on the devices or the
eavesdropper.
The general assumptions that underlie the above proofs are

similar to the ones for DIRNG: the validity of quantum theory
or the no-signaling principle, access to a random seed
independent of the devices and the eavesdropper, a separation
assumption on the behavior of the devices, and the implicit
assumption that the devices do not directly leak out unwanted
information to the eavesdropper. Apart from that, the devices
are mostly uncharacterized and no assumptions are made on
the Hilbert space dimension, the specific measurements that
are implemented, etc.
Note that in the dishonest-provider scenario, where the

devices are outright malicious and assumed to have been
prepared by the eavesdropper, repeated implementations of a
protocol using the same devices can render an earlier
generated key insecure due to device-memory-based attacks
(Barrett, Colbeck, and Kent, 2013). In such attacks, untrusted
devices may record their inputs and outputs and reveal
information about them via publicly announced outputs
during later implementations of the protocol. See Barrett,
Colbeck, and Kent (2013) for a thorough discussion of the
general scope of such attacks, including the possibilities of
countering them by refined protocols. A countermeasure
relying on an encryption scheme which allows Alice and
Bob to exchange data without the devices leaking information
about previously generated keys to Eve was presented by
McKague and Sheridan (2012).
Finally, we say a few words about experimental perspec-

tives for DIQKD. The implementation of a DIQKD protocol
requires a genuine Bell violation over large distances. Genuine
here means with the detection loophole closed (at least if one
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is considering complete DI with no further assumptions on the
devices); see Sec. VII.B.1. Transmission losses in optical
fibers, however, represent a fundamental limitation for the
realization of a detection-loophole free Bell test on any
distance relevant for QKD. Approaches to circumvent the
problem of transmission losses have been proposed based on
heralded qubit amplifiers (Gisin, Pironio, and Sangouard,
2010; Pitkanen et al., 2011) and standard quantum relays
based on entanglement swapping with linear optics (Curty and
Moroder, 2011), but an experimental demonstration still
represents a great challenge. Quantum repeaters may also
provide a possible solution. More recently, another approach
based on spin-photon interactions in cavities was also
discussed (Brunner et al., 2013; Mattar, Brask, and Acin,
2013). Improved data postprocessing has also been proposed
to increase the tolerance to lost photons (Ma and
Lütkenhaus, 2012).

D. Other device-independent protocols

In a quantum experiment, the violation of a Bell inequality
reveals the presence of entanglement in a device-independent
way. In fact, in some cases a much stronger statement can be
made. Certain quantum correlations can be reproduced only
by performing specific local measurements on a specific
entangled state. Hence the observation of such correlations
allows one to characterize an unknown source of quantum
states, as well as the measurement devices, in a device-
independent manner. For instance, the observation of the
maximal violation of the CHSH inequality implies that the
underlying quantum state is necessarily equivalent to a two-
qubit singlet state (Cirel'son, 1980). Moreover, the measure-
ment settings of both Alice and Bob must anticommute
(Braunstein, Mann, and Revzen, 1992; Popescu and
Rohrlich, 1992). Another method, developed by Mayers
and Yao (2004), allows one to reach the same conclusion.
Such procedures are termed self-testing of the singlet state.
More formally, these works show the following. Consider

an experiment involving a state jψi and measurement oper-
ators Mi

A and Mj
B, with i, j ¼ 1, 2. If a CHSH value of S ¼

2
ffiffiffi
2

p
is achieved, then the state is equivalent (up to local

isometries) to a singlet state jψ−i and the measurement are to
anticommuting Pauli operators σiA for Alice with fσiA; σkAg ¼
2δik1 (and similarly for Bob σjB), in the sense that

ΦðjψiÞ ¼ jjunki ⊗ jψ−i; (66)

ΦðMi
AM

j
BjψiÞ ¼ jjunki ⊗ σiAσ

j
Bjψ−i; (67)

where Φ ¼ ΦA ⊗ ΦB is a local isometry, and jjunki is a state
shared by Alice and Bob.
For a self-testing protocol to be practical it should be robust

to small deviations from the ideal case, due for instance to
experimental imperfections. The first proof of the robustness
of the Mayers-Yao scheme was derived by Magniez et al.
(2006), and later considerably simplified by McKague and
Mosca (2011). McKague, Yang, and Scarani (2012) presented
a framework for studying the robust self-testing of the singlet
state, which can be used to device independently certify the

entanglement fraction of a source (Bardyn et al., 2009). More
generally, it was shown in the ground-breaking work of
Reichardt, Unger, and Vazirani (2012, 2013) that self-testing
can be achieved in the CHSH scenario even if the devices
feature a quantum memory. Loosely speaking, this means that
the only way to achieve a violation of the CHSH inequality
close to 2

ffiffiffi
2

p
is if the measured bipartite states are close to the

tensor product of singlet states, and the measurements are the
optimal CHSH measurements.
Self-testing of other quantum states was also discussed. In

particular, the case of partially entangled bipartite states was
addressed by Yang and Navascues (2013). In the multipartite
setting, the case of graph states was discussed by McKague
(2010a), while Miller and Shi (2012) considered self-testing in
XOR games. Also, the device-independent certification of
“entangled measurements” was investigated (Rabelo et al.,
2011; Vértesi and Navascues, 2011).
An interesting development of these ideas is the possibil-

ity of self-testing a quantum computation. This consists of
self-testing a quantum state and a sequence of operations
applied to this state. This approach was introduced by
Magniez et al. (2006). A full analysis of such a protocol,
with a reduced set of assumptions compared to Magniez
et al. (2006), was recently given by Reichardt, Unger, and
Vazirani (2013).
Moving away from self-testing, an interesting development

is the device-independent assessment of multipartite quantum
entanglement. Notably, techniques for devising device-
independent witnesses of genuine multipartite entanglement
(Bancal, Gisin et al., 2011) were developed. Moreover,
Brunner, Sharam, and Vértesi (2012) discussed how the
structure of multipartite entangled states can be characterized
using Bell inequalities; that is, how different classes of
multipartite entangled states can be distinguished from each
other from their nonlocal correlations.

V. INFORMATION-THEORETIC PERSPECTIVE ON
NONLOCALITY

As seen in Sec. IV, nonlocality can be seen as a resource for
information processing and communication tasks and the no-
signaling principle plays a fundamental role in this respect.
We have also seen in Sec. II that there exist no-signaling
correlations that are more nonlocal than those of quantum
theory, as pointed out by Popescu and Rohrlich (1994). If
Alice and Bob had access to such PR boxes they could
implement many of the protocols discussed earlier, from
communication complexity to cryptography, often with much
higher efficiency than what quantum correlations allow (van
Dam, 2005). No-signaling nonlocal correlations can thus be
viewed as information-theoretic resources and investigated as
such (Barrett, Linden et al., 2005). This new perspective raises
two general questions: Can we develop a resource theory of
nonlocality, similar to the resource theory of entanglement?
What distinguishes quantum correlations from more general
no-signaling correlations in this information-theoretic con-
text? To answer them it is first useful to identify the physical
properties which are generic to all no-signaling nonlocal
theories.
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A. Properties of no-signaling correlations

Remarkably, it turns out that many features of quantum
mechanics, usually thought of as counterintuitive and genu-
inely quantum, are in fact general features of any no-signaling
theory featuring nonlocality (Masanes, Acín, and Gisin, 2006;
Barrett, 2007). These include a no-cloning theorem, the
monogamy of correlations, a disturbance versus information
gain trade-off in measurements, the inherent randomness of
measurement outcomes, the complementarity of measure-
ments, and uncertainty relations. These physical properties
are clearly relevant from an information-theoretic point of
view; consider for instance the role that the no-cloning
theorem or the monogamy of entanglement plays in quantum
information science. The fact that such properties are generic
to all no-signaling nonlocal theories thus already suggests that
such theories offer interesting possibilities for information
processing.
We already gave the intuition in Sec. IV.C of why

measurement outcomes must be random in any nonlocal
no-signaling theory. We now illustrate some of the other
above properties with simple examples based on Popescu-
Rohrlich–type correlations. Consider that Alice and Bob share
a PR box, i.e., correlations of the form

pðabjxyÞ ¼
�

1
2
; a⊕b ¼ xy;

0; otherwise;
(68)

where⊕ is addition mod 2, and x; y ∈ f0; 1g denote the inputs
and a; b ∈ f0; 1g the outputs. The impossibility of having a
perfect cloning machine is here easily derived here by
contradiction. Assume such a machine exists. Then Bob
could apply it to its subsystem, resulting in a tripartite
probability distribution pðab1b2jxy1y2Þ satisfying

a⊕b1 ¼ xy1; a⊕b2 ¼ xy2; (69)

with a, b1, and b2 locally uniformly distributed. Combining
Eqs. (69) leads to

b1⊕b2 ¼ xðy1⊕y2Þ; (70)

showing that Bob's marginal probability distribution directly
depends on x, the input of Alice, when Bob uses inputs such
that y1⊕y2 ¼ 1. Thus, Alice can signal to Bob, which
contradicts our basic hypothesis that the theory is nonsignal-
ing. Therefore, we concluded that a perfect cloning machine
cannot exist in a theory featuring PR-box correlations. General
and rigorous proofs can be found in Masanes, Acín, and Gisin
(2006) and Barrett (2007). The impossibility of broadcasting
no-signaling nonlocal correlations has been discussed by
Barnum et al. (2007) and Joshi et al. (2013).
The above simple example also indicates that no-signaling

correlations are constrained by monogamy relations (see
Sec. VI.C). In particular, a PR box being an extremal point
of the no-signaling set must be decoupled from any other
system (Barrett, Linden et al., 2005; Masanes, Acín, and
Gisin, 2006).
For the last example, we illustrate the existence of a notion

of complementarity of measurements in generalized

nonsignaling theories (Masanes, Acín, and Gisin, 2006).
Considering again PR-box correlations, the two possible
measurements on Bob's side (corresponding to y ¼ 0 and
y ¼ 1) cannot be compatible; that is, there cannot be a single
joint measurement Y returning outcomes b0 and b1 corre-
sponding, respectively, to y ¼ 0 and y ¼ 1. Indeed, this
implies the existence of a distribution Pðab0b1jxYÞ satisfying
b0⊕b1 ¼ x (since a⊕b0 ¼ 0 and a⊕b1 ¼ x), thus violating
no signaling as in the above example.

B. Nonlocality measures, interconversion, and distillation

If nonlocal boxes can be viewed as an information-theoretic
resource, can we define a theoretical framework, analogous,
e.g., to the framework that has been developed for the study of
entanglement, that would allow us to answer unambiguously
questions such as can two given sets of nonlocal correlations
be considered equivalent resources or what is a good measure
of nonlocality?
A prerequisite for addressing these issues is to understand

interconversion between nonlocal boxes, that is, the simu-
lation of a given nonlocal box using a supply of other nonlocal
boxes. In this context, separated parties are allowed to perform
local operations on their boxes. They can relabel the inputs
and outputs, and also “wire” several boxes, using for instance
the output of one box as the input for another box.
Importantly, classical communication is not allowed, as it
represents a nonlocal resource, which allows trivially for the
simulation of any nonlocal box.
The interconversion of bipartite boxes has been studied by

Barrett, Linden et al. (2005), Jones and Masanes (2005), and
Forster and Wolf (2011) and is by now relatively well
understood. The main conclusion to be drawn from these
works is that the PR box represents a good unit of bipartite
nonlocality (much like the singlet in the case of entanglement)
in the sense that any bipartite no-signaling box can be
simulated to an arbitrary precision using a supply of PR
boxes (Forster and Wolf, 2011). In the multipartite case, the
situation is more complicated. On the one hand, several
classes of extremal nonlocal boxes can be simulated exactly
using PR boxes (Barrett, Linden et al., 2005; Barrett and
Pironio, 2005). On the other hand, there exist nonsignaling
boxes which can be proven to not be approximated using an
arbitrarily large supply of PR boxes (Barrett and Pironio,
2005; Pironio, Bancal, and Scarani, 2011). In particular, there
exist quantum nonlocal correlations with this property (Barrett
and Pironio, 2005). It is still an open question whether there
exists a unit of multipartite nonlocality; in fact, even proposing
a good candidate is challenging given the complexity of the set
of multipartite nonsignaling correlations (see Sec. II.D).
Another relevant issue is whether nonlocality can be

distilled. That is, from a supply of weakly nonlocal boxes
is it possible to obtain via local operations (i.e., relabelings and
wirings) one copy of a box featuring more nonlocality, in the
sense that it violates more a given Bell inequality than the
original boxes? Interestingly, nonlocality distillation is pos-
sible for certain classes of nonlocal boxes (Forster, Winkler,
and Wolf, 2009). Moreover, maximally nonlocal PR-box
correlations can be distilled out of certain boxes with
arbitrarily weak nonlocality (Brunner and Skrzypczyk,
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2009), i.e., violating a Bell inequality by an arbitrarily small
amount. The existence of such distillation protocols has
important consequences from an information-theoretic point
of view. For instance, if a certain class of boxes can be distilled
to a PR box, then all boxes in this class inherit the information-
theoretic power of the PR box. Note also a series of negative
results, concerning, in particular, the impossibility of distilling
isotropic nonlocal correlations. Such correlations (mixtures of
PR box and white noise) are of particular importance, since
any nonlocal box can be “depolarized” to an isotropic without
decreasing its nonlocality (Masanes, Acín, and Gisin, 2006).
Partial no-go theorems have been derived (Dukaric and Wolf,
2008; Short, 2009; Forster, 2011), but a full proof is still
missing.
These developments have opened novel possibilities

for defining natural measures of nonlocality, such as the
“distillable nonlocality” (Forster, Winkler, and Wolf, 2009;
Brunner et al., 2011) of a nonlocal box, the maximal amount
of nonlocality that can be extracted from an arbitrarily large
supply of such boxes. The first steps toward establishing a
more general resource theory of nonlocality have recently
been taken (Brunner et al., 2011; Gallego, Würflinger
et al., 2012).
Finally, it is interesting to look for sets of correlations which

are invariant under local operations. A set is said to be closed
under wirings if, by combining correlations of this set via local
operations, it is impossible to generate correlations outside the
set. The study of such sets was initiated by Allcock, Brunner,
Linden et al. (2009). Clearly the sets of local, quantum, and
no-signaling correlations are all closed under wirings. Finding
other closed sets appears to be a nontrivial problem. An
interesting open problem is whether there exists, in the CHSH
scenario, a strict subset of the no-signaling polytope that is
closed under wirings and features more nonlocality than
quantum mechanics (i.e., violating Tsirelson's bound).

C. Consequences of superstrong nonlocality

The existence of no-signaling correlations stronger than
quantum mechanical ones raises fundamental questions. Why
is nonlocality limited in quantum theory? Would there be
unlikely consequences from a physical or information-
theoretical point of view if supraquantum correlations were
available? Can we identify reasonable principles that allow us
to characterize the boundary that separates quantum from
supraquantum correlations? The work discussed next
addresses such questions. We first deal with information-
theoretic consequences of supraquantum nonlocality and then
use more physical concepts.

1. Information-theoretic consequences

a. Communication complexity and nonlocal computation

The first result showing a sharp difference between quan-
tum and superquantum correlations in their capability of
performing information-theoretic tasks was given by van
Dam (2005) in the context of communication complexity.
As discussed in Sec. IV.A, communication complexity deals
with the problem of determining the number of bits that Alice
and Bob need to exchange to compute the value fðx; yÞ of a

function whose inputs x and y are distributed among Alice and
Bob. The amount of communication that is required depends
on the particular function f and the resources that are available
to Alice and Bob. Consider binary (or boolean) functions
fðx; yÞ∶f0; 1gn × f0; 1gn → f0; 1g taking n-bit strings x ¼
x1 � � � xn and y ¼ y1 � � � yn as inputs. It was proven that some
of these functions have high communication complexity,
basically Alice must send her entire bit string x to Bob, even
if Alice and Bob are allowed to share unlimited prior
entanglement. An example of such a function is the inner
product function fðx; yÞ ¼ x · y ¼ P

ixiyi (Cleve et al.,
1999). In contrast, if unlimited PR boxes were available to
Alice and Bob, then a single bit of classical communication
from Alice to Bob is sufficient for Bob to evaluate any binary
function, that is, communication complexity collapses.
Consider again the inner product function. Suppose that

Alice and Bob share n PR boxes and receive inputs x and y.
They input xi and yi in box i, and then get outcomes ai and bi
satisfying ai⊕bi ¼ xiyi. The inner product function can be
expressed as

fðx; yÞ ¼
X
i

xiyi ¼
X
i

ai⊕bi ¼
X
i

ai
|fflffl{zfflffl}

Alice's side

⊕
X
i

bi
|fflffl{zfflffl}
Bob's side

:

Thus Alice can compute locally c ¼ P
iai, and send the single

bit c to Bob who then outputs c⊕b, where b ¼ P
ibi, which is

indeed the inner product. The inner product function is of
particular importance, since any binary function f can be
decomposed into inner products, from which the result of
van Dam follows.
This idea was later generalized to the context of probabi-

listic communication complexity where Alice and Bob must
compute f with a minimum probability of success (Brassard
et al., 2006). It was shown that certain noisy PR boxes, with
CHSH value S > 4

ffiffiffiffiffiffiffiffi
2=3

p
≈ 3.266, make communication

complexity trivial in this scenario. Finally, using nonlocality
distillation, it can be shown that (nonquantum) boxes with an
arbitrarily small amount of nonlocality can never-
theless collapse communication complexity (Brunner and
Skrzypczyk, 2009).
Linden et al. (2007) introduced a task closely related to

communication complexity, termed nonlocal computation.
The binary function f that Alice and Bob must compute
has the special form fðx; yÞ ¼ gðx⊕yÞ ¼ gðzÞ where gðzÞ is a
boolean function taking as input an n-bit string z (with zi ¼
xi⊕yi and xi uniform for i ¼ 1; ::; n). Thus each party has
locally no information about the function's input z. Alice and
Bob are asked to output one bit, respectively, a and b, such
that a⊕b ¼ fðx; yÞ ¼ gðzÞ. The figure of merit is then the
average success probability of Alice and Bob. While strategies
based on quantum correlations offer no advantage over
classical ones for the nonlocal computation of an arbitrary
function, it turns out that certain superquantum correlations
provide an advantage. Remarkably, if one considers as a
function the nonlocal AND of two bits gðz1; z2Þ ¼ z1z2, then
the limit at which noisy PR boxes stop providing an advantage
over classical and quantum correlations corresponds exactly to
Tsirelson's bound. Note, however, that when the distribution
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of inputs is not perfectly uniform, i.e., when Alice and Bob
have partial knowledge (even arbitrarily small) about the
function's input z, quantum correlations provide an advantage
over classical ones (Allcock, Buhrman, and Linden, 2009).

b. Information causality

Suppose Alice sends an m-bit message to Bob. How much
information is potentially available to Bob? A natural guess is
that the amount of information potentially available to Bob is
equal to what he receives, that is, m bits. This is in essence the
principle of information causality: the amount of information
potentially available to Bob about Alice's data is not higher
than the amount of information Alice sends to him (Pawlowski
et al., 2009). While information causality is satisfied in both
classical and quantum physics, this is not the case in general, if
supraquantum correlations are available. Hence information
causality can be viewed as a strengthening of the no-signaling
principle.
To see how superquantum correlations can violate infor-

mation causality, suppose that Alice is given two classical bits
x0 and x1, uniformly distributed. Bob is interested in learning
one of these two bits, but Alice does not know which one. To
make the task nontrivial, Alice is allowed to send only one bit
to Bob. Can they devise a protocol such that Bob can always
retrieve the desired bit? In a scenario where Alice and Bob
share only classical or quantum correlations, the answer is no.
However, if Alice and Bob share a PR box, the task becomes
possible (Wolf and Wullschleger, 2005). Alice first inputs
x0⊕x1 in her end of the PR box and gets outcome a. She then
sends the one-bit message to Bob: m ¼ a⊕x0. Bob, who is
interested in bit xk of Alice, inputs k on his end of the PR box
and gets outcome b. Upon receiving Alice's message m, Bob
makes his guess G ¼ b⊕m ¼ xk. Hence, Bob's guess is
always correct.
The principle of information causality allows one to recover

part of the boundary between quantum and superquantum
correlations (Allcock, Brunner, Pawlowski, and Scarani,
2009; Pawlowski et al., 2009). Notably, any theory that
allows for the violation of Tsirelson's bound violates
information causality.
Finally, note that an extension of information causality

was recently formulated for quantum information (Pitalua-
Garcia, 2013).

c. Limitations on multipartite correlations

The principles discussed previously focus on bipartite
correlations. A nonlocal game termed guess your neighbor's
input was introduced by Almeida, Bancal et al. (2010), which
reveals an intriguing separation between quantum and super-
quantum correlations in a multipartite context. Consider n
distant parties placed on a ring. Each party i is given an input
bit xi according to a joint prior probability distribution
pðx1 � � � xnÞ. As the name of the game suggests, each party
is then asked to give a guess ai of his right neighbor's input,
i.e., such that ai ¼ xiþ1 for all i ¼ 1;…; n. Since a high
probability of success at this game would lead to signaling, it
is not surprising that quantum resources provide no advantage
over classical ones, for any distribution of the inputs.
However, it turns out that certain no-signaling superquantum

correlations outperform classical and quantum strategies for
certain distributions of the inputs. Remarkably, some of these
games correspond to facet Bell inequalities. Hence “guess
your neighbor's input” identifies a portion of the boundary of
the quantum set which is of maximal dimension. Moreover,
this quite innocuous game has several rather surprising
applications, related to generalizations of Gleason's theorem
(Acín et al., 2010; Barnum et al., 2010) and to unextendible
product basis (Augusiak et al., 2011).
The motivation for many of the results discussed previously

is to identify general properties or a set of principles that
potentially single out quantum correlations. Gallego et al.
(2011) showed that any such principles must be genuinely
multipartite. More specifically, there exist tripartite super-
quantum correlations which are local among every possible
bipartition (even if many copies of them are available and
wirings are performed) (Gallego et al., 2011; Yang et al.,
2012). Thus, no bipartite principle can ever rule out these
correlations. Such superquantum correlations can nevertheless
be ruled out by a novel principle termed “local orthogonality”
(Fritz et al., 2013), inspired from the game of “guess your
neighbor's input.”

2. Physical consequences

a. Macroscopic locality

Loosely speaking, macroscopic locality is a principle
requiring that nonlocal correlations admit a classical limit.
More specifically, in a Bell test involving a large number of
pairs of particles, the statistics of coarse-grained measure-
ments (not resolving discrete particles) should admit an
explanation in terms of a local model, i.e., should not violate
any Bell inequality (Navascués andWunderlich, 2010). This is
the case in quantum mechanics (Bancal et al., 2008;
Navascués and Wunderlich, 2010), but not in general no-
signaling theories. Notably, the set of correlations satisfying
macroscopic locality can be completely characterized. It
corresponds to the set Q1, the first approximation to the set
of quantum correlations in the hierarchy of semidefinite
programs (Navascues, Pironio, and Acín, 2007) discussed
in Sec. II.C.1.d. This set is, however, strictly larger than the
quantum set. Thus, there are superquantum correlations that
still satisfy macroscopic locality. Yang et al. (2011) showed
that analytical quantum Bell inequalities can be derived from
macroscopic locality. Finally, note that there exist correlations
satisfying macroscopic locality which nevertheless violate
information causality (Cavalcanti, Salles, and Scarani, 2010).

b. Uncertainty and information

Wehner, Christandl, and Doherty (2008) showed that one
can reformulate any Bell inequality in the language of
information, which for projection nonlocal games (see
Sec. II.B.4.c) works as follows. For every question x and
answer a of Alice, one can write down a string

sx;a ¼ ðsð1Þx;a;…; sðmÞ
x;a Þ, where sðyÞx;a ¼ b is the answer that

Bob must return for question y in order for them to win
the game. Written in this way, one can think of the state of
Bob's system conditioned on Alice measuring x and obtaining
outcome a as an encoding of the string sx;a from which Bob

must retrieve entry sðyÞx;a correctly. Oppenheim and Wehner
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(2010) furthermore showed that for any physical theory
uncertainty relations can be understood as imposing limits
on how well we can retrieve information from an encoding.
This information-theoretic perspective is the essential idea
behind the relation between nonlocality and uncertainty found
in Oppenheim and Wehner (2010), which holds for any
physical theory. It should be noted that the aim of
Oppenheim and Wehner (2010) was not to derive limits on
nonlocality by appealing to intuitive notions on how we
expect information to behave, but rather to link it to another
concept already existing within quantum mechanics.

c. Local quantum mechanics

Acín et al. (2010) and Barnum et al. (2010) showed that the
correlations of bipartite systems that can be described locally
by quantum mechanics cannot be stronger than quantum
correlations. More precisely, if the no-signaling principle
holds, and Alice and Bob are locally quantum, then all
possible correlations between them admit a quantummechani-
cal description. However, the situation is different in the
multipartite case. There exist tripartite correlations which are
locally quantum, which are nevertheless stronger than any
quantum correlations (Acín et al., 2010).

D. Nonlocality in generalized probabilistic theories

The idea of investigating the information-theoretic power of
nonlocal correlations more general than quantum ones led,
following Hardy (2001) and Barrett (2007), to a very active
line of research in which information processing has been
considered in the broader framework of “general probabilistic
theories” (GPT) or “convex-operational” formalism. This
framework allows one to define full-fledged theories (i.e.,
that include notions of states, evolution, measurements, and
not only “correlations”) in which classical and quantum
theories are merely two special cases. Given such a formalism,
one can compare and contrast quantum theory with other
alternative theoretical models. The hope is to better under-
stand quantum theory and identify in what ways it is special.
To date, much work has focused on information processing in
GPT, investigating for instance cloning, broadcasting, tele-
portation, or entanglement swapping. Even if these works
connect and partly overlap with many of the issues mentioned
above, we do not review this fruitful work here as it does not
directly take nonlocality as a starting point. We refer the
interested reader instead to Barnum and Wilce (2012) for a
short review. In what follows, we only mention work that
explicitly considers Bell nonlocality in the context of GPT.
Steeg and Wehner (2009) showed that superstrong random

access encodings exist in certain theories that violate the
CHSH inequality beyond Tsirelson's bound. A quantum
random access code is an encoding of an n-bit string x ¼
x1;…; xn ∈ f0; 1gn into a quantum state ρx ∈ BðHÞ such that
each bit xj can be retrieved from ρx with some probability pj.
Nayak (1999) showed that if the state has dimension at most
dimðHÞ ¼ d, then the success probabilities are bounded asP

x½1 − hðpjÞ� ≤ log d, where hðpÞ ¼ −p log2 p − ð1 −
pÞ log2ð1 − pÞ is the binary entropy. Steeg and Wehner
(2009) showed that this inequality can be violated for some

theories that allow stronger than quantum correlations, i.e.,
superstrong random access encodings exist in such theories. In
particular, there exists generalized “states” in a Hilbert space
of dimension d which effectively contains more than d bits of
information.
Janotta et al. (2011) showed that there is a connection

between the strength of nonlocal correlations in a physical
theory and the structure of the state spaces of individual
systems. In particular, a class of GPTs is presented that allows
one to study the transition between classical, quantum, and
superquantum correlations by varying only the local state
space. It was shown that the strength of nonlocal correlations
depends strongly on the geometry. As the amount of uncer-
tainty in a theory bounds the geometry of the state space, this
provides insight into the work of Oppenheim and Wehner
(2010). An intriguing consequence of these results is the
existence of models that are locally almost indistinguishable
from quantum mechanics, but can nevertheless generate
maximally nonlocal correlations (Janotta et al., 2011).

VI. MULTIPARTITE NONLOCALITY

In the multipartite case, nonlocality displays a much richer
and more complex structure compared to the case of two
parties. This makes the study and the characterization of
multipartite nonlocal correlations an interesting, but challeng-
ing problem. It comes thus to no surprise that our under-
standing of nonlocality in the multipartite setting is much less
advanced than in the bipartite case.
The study of multipartite nonlocality was initiated by the

ground-breaking work of Svetlichny (1987). Svetlichny intro-
duced the concept of genuine multipartite nonlocality, derived
a Bell-type inequality for testing it, and showed that this
strong form of nonlocality occurs in quantum mechanics.
Later, in particular, with the advent of quantum information
science, the concepts and tools introduced by Svetlichny were
further developed.
In this section, we start by defining various notions of

multipartite nonlocality (with a particular focus on genuine
multipartite nonlocality) and discuss the detection of multi-
partite nonlocality. Next, we discuss the notion of monogamy
of nonlocality, which limits nonlocality between different
subsets of parties. Finally, we discuss the nonlocality of
multipartite quantum systems.

A. Defining multipartite nonlocality

The notion of Bell nonlocality that we introduced in Secs. I
and II in the case of two separated observers readily extends to
three or more observers. For simplicity, we consider in this
section the case of three separated observers Alice, Bob, and
Charlie. Their measurement settings are denoted x, y, z and
their outputs by a, b, c, respectively. The experiment is thus
characterized by the joint probability distribution pðabcjxyzÞ.
We say that these correlations are local if they can be written in
the form

pðabcjxyzÞ ¼
Z

dλqðλÞpλðajxÞpλðbjyÞpλðcjzÞ; (71)
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where λ is a shared local random variable and
R
dλqðλÞ ¼ 1,

and that they are nonlocal otherwise. This represents the
natural generalization of Bell's locality condition (3) to the
multipartite case. The set of correlations that can be written in
Eq. (71) is denoted L.
However, in the multipartite case, there exist several

possible refinements of this notion of nonlocality. For
instance, consider a joint distribution of the form
pðabcjxyzÞ ¼ pðabjxyÞ × pðcjzÞ, i.e., Charles is uncorre-
lated to Alice and Bob. These correlations can clearly violate
the locality condition (71) if pðabjxyÞ is nonlocal, although no
nonlocality at all is exhibited between Alice, Bob, and
Charles. In other words, such correlations exibibit only
bipartite nonlocality. In contrast, one can consider a situation
where all three parties are nonlocally correlated. This is
referred to as genuine multipartite nonlocality, which repre-
sents the strongest form of multipartite nonlocality. The main
purpose of this section is to discuss the problem of defining
formally, in the spirit of Bell's definition, this concept of
genuine multipartite nonlocality.

1. Genuine multipartite nonlocality à la Svetlichny

The first definition of genuine multipartite nonlocality was
proposed by Svetlichny (1987). To describe it suppose that
pðabcjxyzÞ can be written in the form

pðabcjxyzÞ ¼
Z

dλqðλÞpλðabjxyÞpλðcjzÞ

þ
Z

dμqðμÞpμðbcjyzÞpμðajxÞ

þ
Z

dνqðνÞpνðacjxzÞpνðbjyÞ; (72)

where
R
dλqðλÞ þ R

dμqðμÞ þ R
dνqðνÞ ¼ 1. This represents

a convex combination of three terms, where in each term at
most two of the parties are nonlocally correlated. For instance,
the term

R
dλqðλÞpλðabjxyÞpλðcjzÞ represents correlations

where Charles is locally correlated (through the hidden
variable λ) with the joint system of Alice and Bob. The
correlations between Alice and Bob, however, are arbitrary,
and, in particular, can be nonlocal. Operationally, we can think
of such correlations as describing a situation where Alice and
Bob are free to share arbitrary nonlocal resources between
themselves or are able to communicate freely, while they are
prevented to do so with Charles. The convex combination (72)
thus represents a situation where only two parties share a
nonlocal resource or communicate in any measurement run.
We say that they are two-way nonlocal. On the other hand, if
pðabcjxyzÞ cannot be written in the above form, then
necessarily the three parties Alice, Bob, and Charles must
share some common nonlocal resource. We then say that they
are three-way nonlocal or genuinely tripartite nonlocal.
Detecting such a form of multipartite nonlocality is an
important issue. As for detecting standard nonlocality, it is
possible to write down Bell inequalities, the violation of which
guarantee that the correlations are genuinely multipartite (see
Sec. VI.B).

Operationally, we define local correlations as those that can
be generated by separated classical observers that have access
to share randomness but who cannot communicate, two-way
correlations as those where arbitrary communication is
allowed between two parties, and three-way as those where
arbitrary communication is allowed between all parties. One
can also consider more refined definitions based on more
general communication patterns (particularly in the multipar-
tite case with a large number of parties). For instance, we can
consider the case where Alice is allowed to communicate to
Bob and to Charles, while Bob and Charles cannot commu-
nicate to anyone. Such generalizations of Svetlichny's
approach were considered by Jones, Linden, and Massar
(2005) and Bancal et al. (2009).
While Svetlichny's notion of genuine multipartite non-

locality is often used in the literature, it has certain drawbacks
discussed next.

2. Beyond Svetlichny's model

In Svetlichny's definition of genuine multipartite nonlocal-
ity, parties that are allowed to share nonlocal resources can
display arbitrary correlations. In particular, this includes
signaling probability distributions. For instance, considering
again the above tripartite example, the bipartite probability
distributions, e.g., pλðabjxyÞ, entering decomposition (72) are
unconstrained, apart from normalization. In particular, this
means that we have not imposed the no-signaling constraints:

pλðajxyÞ ¼ pλðajxy0Þ ∀ a; x; y; y0; (73)

pλðbjxyÞ ¼ pλðbjx0yÞ ∀ b; x; x0; y; (74)

where pλðajxyÞ ¼
P

bpλðabjxyÞ is Alice's marginal proba-
bility distribution, and similarly for Bob. These conditions
guarantee that, even given the knowledge of λ, Alice cannot
send a message to Bob by choosing her measurement setting,
and vice versa. If at least one of the above constraints is not
satisfied, then this allows for signaling. Signaling from Alice
to Bob occurs when Eq. (74) is not satisfied. Similarly,
signaling from Bob to Alice occurs when Eq. (73) is not
satisfied.
Such signaling terms in Svetlichny's definition (72) are

inconsistent from a physical perspective (they lead to grand-
father-type paradoxes) as well as from an operational point of
view (Gallego, Würflinger et al., 2012; Barrett, Pironio et al.,
2013). To give a rough idea of why this is so [see Gallego,
Würflinger et al. (2012) and Barrett, Pironio et al. (2013) for
more details], consider, for instance, Svetlichny's definition
from the perspective of classical simulations of quantum
correlations in terms of shared random data and communi-
cation. The decomposition (72) corresponds to simulation
models where all parties receive their measurement setting at
the same time, then there are several rounds of communication
between only two of the parties, say Alice and Bob, and
finally, all parties produce a measurement outcome. During
the communication step, Alice and Bob can establish arbitrary
correlations in Svetlichny's model, in particular, they can
violate the two above no-signaling conditions. But con-
sider now a slightly different simulation model where
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measurements are given to the parties in a sequence that is
arbitrary and not fixed in advance. Upon receiving a meas-
urement setting, a party must produce an output immediately,
as happens when measuring a real quantum state. But then if
Alice received her measurement choice before Bob, she must
determine her output without having received any communi-
cation from Bob and thus Eq. (73), imposing no signaling
from Bob to Alice, cannot be violated. If, in another round, it
is Bob that receives his measurement before Alice, then it is
Eq. (74), imposing no signaling from Alice to Bob, that cannot
be violated.
To address such shortcomings of Sveltichny's definition,

there are two alternatives. The most immediate one is to
require that all bipartite correlations, e.g., pλðabjxyÞ,
appearing in the decomposition (72), satisfy the no-signaling
conditions (Almeida, Cavalcanti et al., 2010; Barrett, Pironio
et al., 2013). The set of correlations that can be written that
admits such a decomposition is denoted Sns

2j1. Correlations that
cannot be written in this form can then be considered to be
genuinely tripartite nonlocal.
However, there is a more interesting definition of genuine

multipartite nonlocality based on time ordering. Basically, one
now requires that in the decomposition (72), all bipartite
correlations are time ordered. Specifically, the set Sto

2j1 of two-
way time-ordered correlations contains all distributions that
can be written in the form

pðabcjxyzÞ ¼
Z

dλqðλÞpTAB
λ ðabjxyÞpλðcjzÞ

þ
Z

dμqðμÞpTAC
μ ðacjxzÞpμðbjyÞ

þ
Z

dνqðνÞpTBC
ν ðbcjyzÞpνðajxÞ; (75)

where pTAB
λ ðabjxyÞ denotes a probability distribution that is

time-order dependent: when Alice measures before Bob, we
have that pTAB

λ ðabjxyÞ ¼ pA<B
λ ðabjxyÞ; when Bob measures

before Alice, we have that pTAB
λ ðabjxyÞ ¼ pB<A

λ ðabjxyÞ. It is
then required that pA<B

λ ðabjxyÞ and pB<A
λ ðabjxyÞ are both (at

most) one-way signaling; pA<B
λ ðabjxyÞ is such that only Alice

can signal to Bob, while pB<A
λ ðabjxyÞ is such that only Bob

can signal to Alice. These requirements avoid the problems
discussed above. According to this definition, a probability
distribution pðabcjxyzÞ that cannot be written in the form (75)
is then said to be genuine multipartite nonlocal.
All three definitions of genuine multipartite nonlocality

introduced in this section are nonequivalent (Gallego,
Würflinger et al., 2012; Barrett, Pironio et al., 2013) and
we have the strict relations

L ⊂ Sns
2j1 ⊂ Sto

2j1 ⊂ SSvet
2j1 . (76)

Thus while violation of Svetlichny's decomposition (72)
always guarantees that the correlations pðabcjxyzÞ are genu-
inely tripartite nonlocal, there exist some correlations whose
tripartite character only manifests itself when considering the
weaker definitions Sns

2j1 and Sto
2j1.

B. Detecting genuine multipartite nonlocality

After having defined the concept of genuine multipartite
nonlocality, we now briefly discuss how one can detect it
through the violation of appropriate Bell inequalities.

1. Svetlichny's inequality

The first inequality for detecting genuine multipartite
nonlocality was introduced by Svetlichny (1987). Focusing
on a tripartite system, Svetlichny derived a Bell-type inequal-
ity which holds for any distribution of Eq. (72). Thus a
violation of such inequality implies the presence of genuine
tripartite nonlocality. It should be noted that this in turn
implies the presence of genuine tripartite entanglement.
We focus now on the case where each party j performs one

out of two possible measurements denoted xj and x0j. All
measurements are dichotomic, hence their results are denoted
by aj ¼ �1 and a0j ¼ �1. Svetlichny then proved that the
inequality

S3 ¼ a1a2a03 þ a1a02a3 þ a01a2a3 − a01a
0
2a

0
3þa01a

0
2a3 þ a01a2a

0
3

þ a1a02a
0
3 − a1a2a3 ≤ 4 (77)

holds for any probability distribution of Eq. (72). Note that the
above polynomial should be understood as a sum of expect-
ation values; for instance, a1a2a03 stands for the expectation
value of the product of the measurement outcomes when the
measurements are x1, x2, and x03.
To get more intuition about Svetlichny's inequality, and to

prove that its violation implies the presence of genuine
multipartite nonlocality, we follow the simple approach of
Bancal, Brunner et al. (2011). We first rewrite the inequality
as follows:

S3 ¼ Sa03 þ S0a3 ≤ 4; (78)

where S ¼ a1a2 þ a1a02 þ a01a2 − a01a
0
2 is the CHSH expres-

sion, and S0 ¼ a01a
0
2 þ a01a2 þ a1a02 − a1a2 is one of its

equivalent forms obtained by permuting primed and non-
primed measurements. Now observe that it is the input setting
of Charlie that defines which version of the CHSH game Alice
and Bob are playing. When Charlie gets the input x03, then
Alice and Bob play the standard CHSH game; when Charlie
gets the input x3, Alice and Bob play its symmetry. Hence it
follows that S3 ≤ 4 holds for any bipartition model of
Eq. (72). Consider the bipartition AjBC. Bob knows which
version of the CHSH game he is supposed to play with Alice,
since he is together with Charlie. However, CHSH being a
nonlocal game, Alice and Bob cannot achieve better than the
local bound (i.e., S ¼ 2 or S0 ¼ 2) as they are separated. Thus
it follows that S3 ≤ 4 for the bipartition AjBC. Note that the
same reasoning holds for the bipartition BjAC. Finally, since
the polynomial is symmetric under permutation of the parties,
it follows that S3 ≤ 4 for all bipartitions. The inequality (77)
detects the genuine multipartite nonlocality of important
classes of quantum states, such as GHZ and W (see
Sec. VI.D).
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2. Generalizations to more parties, measurements, and
dimensions

Svetlichny's inequality has been generalized to a scenario
featuring an arbitrary number of parties n (Collins, Gisin,
Popescu et al., 2002; Seevinck and Svetlichny, 2002). By
repeating the procedure which allowed us to build Svetlichny's
inequality from CHSH [see Eq. (78)] we get

Sn ¼ Sn−1a0n þ S0n−1an ≤ 2n−1; (79)

where S0n−1 is obtained from Sn−1 by applying the mapping
a1 → a01 and a01 → a1 (Bancal, Brunner et al., 2011). Note
also that generalizations to the most general scenario, featur-
ing an arbitrary number of parties, measurements, and systems
of arbitrary dimensions, were derived by Bancal, Brunner
et al. (2011); see also Aolita et al. (2012a).
Finally, note that Bell inequalities detecting notions of

genuine multipartite nonlocality more refined than that of
Sveltichny (see Sec. VI.A.2) were presented by Barrett,
Pironio et al. (2013).

C. Monogamy

The monogamy of nonlocal correlations is nicely illustrated
by considering the CHSH inequality in a tripartite scenario.
Let Alice, Bob, and Charlie have two possible dichotomic
measurements, represented by observables Ax, By, and Cz
with x; y; z ∈ f0; 1g. We can now evaluate the CHSH expres-
sion for Alice to Bob and Alice to Charlie. Denote by BAB and
BAC the corresponding Bell operators for the CHSH inequality
as defined in Sec. II.C.1.a. It is important to note that Alice's
measurements are the same for both inequalities. Scarani and
Gisin (2001) showed that, for any three-qubit state shared by
the parties, if hBABi > 2 then hBACi ≤ 2. That is, if the
statistics of Alice and Bob violate the CHSH inequality, then
the statistics of Alice and Charlie will not. More generally,
Toner and Verstraete (2006) showed that for an arbitrary
quantum state shared by the three parties, we have

hBABi2 þ hBACi2 ≤ 8: (80)

Note again that if Alice and Bob violate their CHSH inequal-
ity, then Alice and Charlie do not. Moreover, if Alice and Bob
observe maximal CHSH violation (i.e., a CHSH value of
2

ffiffiffi
2

p
), then hBABi2 ¼ 8 and hence by Eq. (80) the data of A

and C are uncorrelated. Monogamy of correlations, however,
is not specific to the CHSH inequality but applies to
essentially all bipartite Bell inequalities. In the language of
games (Sec. II.B.4), this has been used by Kempe et al. (2008)
and Ito and Vidick (2012) to “immunize” a nonlocal game
against the use of entanglement.
It is interesting to note that even no-signaling correlations

are monogamous (Barrett, Linden et al., 2005; Masanes,
Acín, and Gisin, 2006; Pawlowski and Brukner, 2009)
(see Sec. IV.C). In particular, Toner (2009) showed that
jhBABij þ jhBACij ≤ 4, which is tight if we consider no-
signaling correlations.
The fact that QKD protocols based on nonlocality can be

proven secure (see Sec. IV.C) can also be understood as a
consequence of the monogamy of quantum correlations

among Alice, Bob, and Eve, and was indeed one of the
factors motivating its study.
Underlying the monogamy of correlations in the quantum

setting is an inherent monogamy of entanglement (Terhal,
2004). Understanding the exact relation between both forms
of monogamy is an interesting open problem.

D. Nonlocality of multipartite quantum states

1. Multipartite nonlocality versus multipartite entanglement

In this section we discuss the relation between quantum
nonlocality and entanglement in the multipartite setting.
Similarly to the bipartite case, the two concepts are intimately
related, although precisely understanding the link is a chal-
lenging problem.
Note that all pure entangled n-partite states are nonlocal

(Popescu and Rohrlich, 1992). That is, their measurement
statistics cannot be decomposed in Eq. (71). This follows from
the fact that it is always possible for n − 2 parties to project
(via a local projection) the remaining two parties in a pure
entangled state. Since the latter is nonlocal, the result follows.
It should be stressed that this result does not rely on any form
of postselection.
In entanglement theory, a concept of particular importance

is that of genuine multipartite entanglement. A quantum state
features genuine multipartite entanglement when it cannot be
decomposed as a convex combination of biseparable states
(states which are separable on at least one bipartition of the
parties). Indeed, this notion is somehow analogous to that of
genuine multipartite nonlocality, and it is not surprising that
both are related. In particular, genuine multipartite quantum
nonlocality can be obtained only if measurements on a
genuine multipartite entangled state are made. Thus, the
presence of genuine multipartite nonlocality witnesses the
presence of genuine multipartite entanglement. Importantly
this is achieved in a device-independent way; that is, genuine
multipartite entanglement is here certified without placing any
assumptions about the devices used in the experiment,
contrary to usual methods such as entanglement witnesses
and quantum tomography. Note that it is possible to design
even better device-independent techniques for witnessing
genuine multipartite, the violation of which does not imply
the presence of genuine multipartite nonlocality (Bancal,
Gisin et al., 2011) [see also Nagata, Koashi, and Imoto
(2002) and Uffink (2002)].
It is, however, not known whether all pure genuine

multipartite entangled states are genuine multipartite nonlocal.
It has been shown (Almeida, Cavalcanti et al., 2010) that all
connected graph states are fully genuine nonlocal, in the no-
signaling approach discussed in Sec. VI.A.2. Moreover, it was
also shown that the tangle, a specific measure of multipartite
entanglement, is closely related to the violation of Svetlichny's
inequality (Ghose et al., 2009; Ajoy and Rungta, 2010). In
particular, from this connection it can be shown that there exist
pure entangled states in the GHZ class which do not violate
Svetlichny's inequality.
Finally, it is worth noting that the connection between

genuine multipartite entanglement and nonlocality may
depend on which definition of genuine multipartite

458 Brunner et al.: Bell nonlocality

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



nonlocality is used. Using the definition based on time
ordering [see Eq. (75)], numerical evidence suggests that
all pure genuine tripartite entangled qubit states are genuine
tripartite nonlocal (Barrett, Pironio et al., 2013). More
recently, Yu and Oh (2013) proved that all pure genuinely
tripartite entangled states are tripartite nonlocal with respect to
the definition based on no signaling (see Sec. VI.A.2).
Tripartite nonlocality of Gaussian states was discussed by
Adesso and Piano (2014).

2. Greenberger-Horne-Zeilinger states

GHZ states are today arguably the most studied, and
possibly the best understood, multipartite quantum states
from the point of view of entanglement and nonlocality.
GHZ states display one of the most striking forms of non-
locality in the context of the Mermin-GHZ paradox (see
Sec. II.D). By performing local measurements on a tripartite
GHZ state

jGHZi ¼ 1ffiffiffi
2

p ðj000i þ j111iÞ; (81)

one obtains correlations which are maximally nonlocal, since
the predictions of quantum mechanics are here in full contra-
diction with those of local models. Interestingly, it turns out
however that these particular GHZ correlations do not feature
genuine multipartite nonlocality (Cereceda, 2002; Mitchell,
Popescu, and Roberts, 2004), as they can be reproduced by a
biseparable model of Eq. (72).
It is nevertheless possible to generate genuine multipartite

nonlocal correlations from local measurements on a tripartite
GHZ state (Svetlichny, 1987). In particular, one can get
violation of Svetlichny's inequality (77) of S3 ¼ 4

ffiffiffi
2

p
> 4,

which turns out to be the largest possible violation in quantum
mechanics (Mitchell, Popescu, and Roberts, 2004). This
violation can be intuitively understood by considering again
Eq. (78) of Svetlichny's inequality. Since it is Charlie's
measurement setting that dictates which version of the
CHSH game Alice and Bob are playing, the best strategy
for Charlie consists of remotely preparing (by performing a
measurement on her qubit) a state for Alice and Bob that is
optimal for the violation of the corresponding CHSH game
(Bancal, Brunner et al., 2011).
The nonlocal correlations of generalized GHZ states, of the

form

jGHZd
ni ¼

1ffiffiffi
d

p
Xd−1
j¼0

jji⊗n (82)

featuring n parties and systems of local dimension d, have also
been investigated. First, analogs of the Mermin-GHZ paradox
were reported (Zukowski and Kaszlikowski, 1999; Cerf,
Massar, and Pironio, 2002) for certain combinations of n
and d. More recently, a general construction for arbitrary n
and d was given by Ryu et al. (2013). A Mermin-GHZ–type
paradox was also presented for the case of continuous variable
systems (Massar and Pironio, 2001; van Loock and
Braunstein, 2001).

The genuine multipartite nonlocality of generalized GHZ
states has also been investigated. It was first shown that all
qubit GHZ states (i.e., jGHZ2

ni) violate the generalization (79)
of Svetlichny's inequality for an arbitrary number of parties
and hence display genuine multipartite nonlocal correlations
(Collins, Gisin, Popescu et al., 2002; Seevinck and Svetlichny,
2002). Recently, it was shown that the correlations of any state
of Eq. (82) are fully genuinely multipartite nonlocal, as well as
monogamous and locally random (Aolita et al., 2012b). The
robustness of GHZ nonlocality against local noise was
investigated by Laskowski et al. (2010) and Chaves
et al. (2012).

3. Graph states

Graph states (Hein, Eisert, and Briegel, 2004) form an
important family of multipartite quantum states (including
GHZ and cluster states) useful for applications in quantum
information science. In particular, all code word states used in
the standard quantum error correcting codes correspond to
graph states, and one-way quantum computation uses graph
states as a resource. Here we discuss the nonlocality of graph
states (for GHZ states see Sec. VI.D.2).
Graph states are defined as follows. Let G be a graph

featuring n vertices and a certain number of edges connecting
them. For each vertex i, we define neighðiÞ as the neighbor-
hood of i, which represents the set of vertices which are
connected to i by an edge. Next, one associates with each
vertex i a stabilizing operator

gi ¼ Xi ⊗
j∈neighðiÞ

Zj; (83)

where Xi, Yi, and Zi denote the Pauli matrices applied to qubit
i. The graph state jGi associated with graph G is then the
unique common eigenvector to all stabilizing operators gi, i.e.,
gijGi ¼ jGi for all i ∈ f1;…; ng. From a physical point of
view, the graph G describes all the perfect correlations of the
state, since hGjgijGi ¼ 1 for all i ∈ f1;…; ng. By consider-
ing the set of operators that can be obtained from products of
stabilizer operators (83), one obtains a commutative group
featuring 2n elements. This is the stabilizer group, defined as

SðGÞ ¼ fsjgj¼1;…;2n; where sj ¼
Y

i∈IjðGÞ
si; (84)

where IjðGÞ denotes any of the 2n subsets of the vertices of the
graph G.
Interestingly, this fundamental structure of graph states

underpins a strong form of nonlocality (Gühne et al., 2005;
Scarani et al., 2005). It turns out that all graph states feature
nonlocal correlations (Gühne et al., 2005). In order to prove
this, the main idea consists of constructing Bell inequalities by
adding all elements of the stabilizer group SðGÞ. Thus we
consider the operator

BðGÞ ¼
X2n
i¼1

si ¼
X2n
i¼1

⊗
n

j¼1
Oi

j; (85)

where operators Oi
j ∈ f1; Xj; Yj; Zjg are from the Pauli basis.
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It is then possible to define a Bell inequality based on the
above Bell operator and to compute its local bound

LðGÞ ¼ max
LHV

jhBij. (86)

While the graph state jGi reaches the value of 2n for such Bell
inequality (indeed sijGi ¼ jGi for all i ∈ f1;…; 2ng), it turns
out that LðGÞ < 2n for any graph G. Thus, for all graph states
it is possible to construct a Bell inequality, which the state then
maximally violates. Indeed this demonstrates that nonlocality
is a generic feature of all graph states. Moreover, for certain
families of graph states, basically states based on tree graphs
(featuring no closed loops), the violation of the Bell inequality
grows exponentially with the number of vertices (Gühne et al.,
2005; Toth, Gühne, and Briegel, 2006).
While the generality of the above approach is remarkable, it

is possible for certain important classes of graph states, in
particular, for cluster states, to derive stronger proofs of
nonlocality (Scarani et al., 2005). Cluster states form a
subclass of graph states based on square lattice graphs. For
simplicity and clarity we discuss here the case of a four qubit
cluster state on a one-dimensional lattice,17 which is locally
equivalent to

jCl4i ¼ 1
2
ðj0000i þ j0011i þ j1100i − j1111iÞ: (87)

The state jCl4i is defined by the stabilizer relations

X Z 1 1 ¼ 1 ðE1Þ;
Z X Z 1 ¼ 1 ðE2Þ;
1ZX Z ¼ 1 ðE3Þ;
1 1ZX ¼ 1 ðE4Þ.

(88)

By multiplying certain of these four relations, we get

ðE1Þ × ðE3Þ∶ X 1X Z ¼ 1;

ðE2Þ × ðE3Þ∶ Z Y Y Z ¼ 1;

ðE1Þ × ðE3Þ × ðE4Þ∶ X 1Y Y ¼ 1;

ðE2Þ × ðE3Þ × ðE4Þ∶ Z Y X Y ¼ −1.

(89)

Note that here we used the Pauli algebra, which explains the
emergence of a minus sign in the last relation above. It can be
readily checked that for any deterministic local model, i.e.,
attributing �1 values to each measurement (X, Y, Z), it is
impossible to satisfy simultaneously all four relations above; at
least one of them will not hold. Check, for instance, that by
simply multiplying (using standard multiplication) the first
three relations in Eq. (89), one obtains the fourth relation.
Therefore, we obtain a perfect contradiction between quantum
and classical predictions, in the spirit of the GHZ paradox.
Similar to the Mermin-GHZ case (see Sec. II.D), this

logical contradiction can be rephrased as a Bell inequality.
By considering the four relations in Eq. (89), we get

ja1a03a4 þ a1a3a04 þ a01a2a3a4 − a01a2a
0
3a

0
4j ≤ 2. (90)

Notice that by grouping the first two parties one obtains the
Mermin inequality (38). Performing measurements on the
state jCl4i, the algebraic maximum of 4 can be obtained for
the left-hand side of Eq. (90). Finally note that an interesting
feature of the Bell inequality (90) is that it cannot be violated
by the four-qubit GHZ state. Thus the inequality is a strong
entanglement witness18 for the cluster jCl4i. The above
construction can be generalized to cluster states of an arbitrary
number of qubits and of arbitrary local dimension, as well as
to certain classes of graph states (Scarani et al., 2005).
The nonlocality of graph states can also be revealed by

using sets of local measurements that are not stabilizers
(Gühne and Cabello, 2008). An interesting issue is to under-
stand whether there exists a link between the nonlocality of
cluster states and the computational power they offer.
Although such a connection has not been clearly established
yet, progress has been made (Hoban et al., 2011). Another
important class of graph states is code word states, the
nonlocality of which has been discussed by DiVincenzo
and Peres (1997).
Finally, it is important to note that all nonlocality proofs

discussed in this section concern Bell nonlocality.
Unfortunately much less is known concerning the genuine
multipartite nonlocality of graph states. It is, however, known
that all states based on connected graphs (graphs in which any
two vertices are connected, although not necessarily in a direct
manner) display fully genuine multipartite nonlocality
(Almeida, Cavalcanti et al., 2010).

4. Nonlocality of other multipartite quantum states

In the multipartite case, entanglement displays a rich
structure, with many inequivalent classes of states.
Although we know that all multipartite entangled pure states
are nonlocal, very little is known beyond the case of graph
states.
An important class of multipartite entangled states are

Dicke states, that is, states with a fixed number of excitations
and symmetric under permutation of the parties, which are
central in the context of the interaction of light and matter
(Dicke, 1954). The symmetric state of n particles with a single
excitation, known as the W state, reads

jWni ¼
1ffiffiffi
n

p ðj0 � � � 01i þ � � � þ j10 � � � 0iÞ. (91)

Such states are relevant to the description of various physical
systems, such as quantum memories. One possibility for
detecting the nonlocality of W states consists of having
n − 2 parties performing a measurement in the logical basis
fj0i; j1ig. When all project onto the j0i eigenstate, which
happens with a fairly large probability (increasing with n),
they prepare for the remaining two parties a (two-qubit) Bell

17Note that for two and three qubits, the 1D cluster state is
equivalent to a Bell state and to a GHZ state, respectively.

18Notice however that, as written, the inequality (90) can also be
maximally violated by a three-partite entangled state, since party 2
has only one setting. This deficiency can be overcome by sym-
metrizing the inequality over the parties.
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state, on which the CHSH inequality can then be tested and
violated (Sen(De) et al., 2003). Another manifestation of the
nonlocality of the Dicke states is based on their robustness to
losses. Indeed when k ≪ n particles are lost, the state remains
basically unchanged. For instance, for W states one has that
trkðjWnihWnjÞ ≈ jWn−kihWn−kj, where trk denotes the partial
trace on the k particles which have been lost. TheW state thus
has a high “persistency” of nonlocality (Brunner and Vértesi,
2012), in the sense that a large number of particles must be lost
in order to destroy all nonlocal correlations. This appears to be
a generic feature of Dicke states.
Another relevant problem is whether one can distinguish

different classes of multipartite entangled states via their
nonlocal correlations. This can be done using judiciously
designed Bell inequalities (Schmidt et al., 2008; Brunner,
Sharam, and Vértesi, 2012). For instance, the resistance to
losses of W states can be exploited to distinguish their
nonlocal correlations from those of GHZ states.
The nonlocal properties of more general classes of states

have been discussed. The nonlocality of symmetric qubit
states was first investigated by Wang and Markham (2012).
Exploiting the Majorana representation, they derived Hardy-
type nonlocality proofs (see Sec. II.E) for arbitrary symmetric
pure entangled states. Also, the resistance to noise has been
evaluated numerically for a large class of multipartite quantum
states (Gruca et al., 2010).
The relation between entanglement distillability and non-

locality was also investigated in the multipartite case. Dür
(2001) and Augusiak and Horodecki (2006) showed that a
multiqubit bound entangled state can violate the Mermin
inequalities. However, the states considered in these works
become distillable when several parties can group. In fact,
Acín (2001) showed that the violation of the Mermin inequal-
ities implies that distillability between groups of parties. More
recently, Vértesi and Brunner (2012) presented an example of
a fully bound entangled state (for which no entanglement can
be distilled even when parties are allowed to group) which
violates a Bell inequality. This shows that nonlocality does not
imply the presence of distillable entanglement and refutes the
Peres conjecture in the multipartite case (see Sec. III.A.5).

VII. EXPERIMENTAL ASPECTS

Violations of Bell inequalities have been observed exper-
imentally in a variety of physical systems, giving strong
evidence that nature is nonlocal. Nevertheless, all experiments
suffer from various loopholes, opened by technical imperfec-
tions, which makes it in principle possible for a local model to
reproduce the experimental data, even if in a highly contrived
way. In recent years, an intense research effort has been
devoted to the design and realization of a loophole-free Bell
experiment, which should be within experimental reach in the
near future. Besides its fundamental interest, closing some of
these loopholes (in particular, the detection loophole) is
important from the perspective of practical applications of
nonlocality such as device-independent quantum information
processing. Indeed, while the idea that nature is exploiting
such loopholes to fake nonlocal correlations may sound
conspiratorial, the perspective is entirely different when we

consider the possibility that they are exploited by an adversary
to break a cryptography protocol.
In this section we review the main achievements and

challenges in this area. For a more exhaustive discussion
on Bell experiments, we refer the interested reader to recent
reviews (Genovese, 2005; Pan et al., 2012).

A. Bell experiments

1. Photons

Tremendous experimental progress in quantum optics
during the 1960s opened the door to possible tests of quantum
nonlocality in the laboratory. First, using atomic cascades, it
became possible to create pairs of photons entangled in
polarization. Second, the polarization of single photons could
be measured using polarizers and photomultipliers. Only
3 years after the proposal of CHSH (Clauser et al., 1969),
Freedman and Clauser (1972) reported the first conclusive test
of quantum nonlocality, demonstrating a violation of the
CHSH Bell inequality by 6 standard deviations.
During the following years, other experiments (Fry and

Thompson, 1976; Aspect, Grangier, and Roger, 1981, 1982b)
were performed, giving further confirmation of the predictions
of quantum mechanics. However, the main drawback of all
these experiments was that they were performed with static
setups in which the polarization analyzers were held fixed, so
that all four correlation terms had to be estimated one after the
other. In principle, the detector on one side could have been
aware of the measurement setting chosen on the other side,
thus opening a loophole19 (see Sec. VII.B.2).
Crucial progress came in 1982, when Aspect, Dalibard, and

Roger (1982) performed the first Bell experiment with time-
varying polarization analyzers. The settings were changed
during the flight of the particle and the change of orientation
on one side and the detection event on the other side were
separated by a spacelike interval, thus closing the locality
loophole (see Sec. VII.B.2). It should be noted though that
the choice of measurement settings was based on acousto-
optical switches, and thus governed by a quasiperiodic process
rather thana truly randomone.Nevertheless the twoswitcheson
the two sides were driven by different generators at different
frequencies and it is verynatural toassume that their functioning
was uncorrelated. The experimental data turned out to be in
excellent agreement with quantum predictions and led to a
violation of the CHSH inequality by 5 standard deviations.
The advent of quantum information in the 1990s triggered

renewed interest in experimental tests of quantum nonlocality.
In 1998, violation of Bell inequalities with photons separated
by more than 10 km was reported (Tittel et al., 1998). That
same year, another experiment demonstrated violation of Bell
inequalities with the locality loophole closed and using a
quantum random number generator to generate the measure-
ment settings (Weihs et al., 1998). In turn, both of these

19Moreover, by performing Bell tests with all correlation terms
measured successively with the settings held fixed, it is not unusual to
observe experimentally, because of slow drifts in the setup, apparent
violations of Bell inequalities above Tsirelson's bound or even
violation of the no-signaling conditions (7) (Afzelius, 2011).
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experiments were adapted to implement quantum key dis-
tribution based on nonlocal quantum correlations (Jennewein
et al., 2000; Tittel et al., 2000), following Ekert's idea (see
Sec. IV.C).
Demonstrations of quantum nonlocality in photonic sys-

tems have been reported using various types of encoding apart
from polarization. Bell inequality violations based on phase
and momentum of photons have been achieved (Rarity and
Tapster, 1990). Franson (1989) proposed a test of quantum
nonlocality based on the energy-time uncertainty principle.
This encoding, used for instance in the experiment of Tittel
et al. (1998), led to the concept of time-bin encoding (Tittel
et al., 1999) which turned out to be particularly well suited for
the distribution of entanglement on long distances. Bell
inequality violation has also been demonstrated using photons
entangled in orbital angular momentum (Mair et al., 2001).
An important advantage of both time-bin and orbital angular
momentum encodings is that they allow for the realization of
higher-dimensional quantum systems, whereas polarization is
limited to qubits. Nonlocal correlations of qutrits have been
reported with time bins (Thew et al., 2004), while Bell
violation with orbital angular momentum has recently been
reported using systems of dimensions up to 11 (Dada et al.,
2011). Another possibility for creating higher-dimensional
entanglement consists of generating pairs of photons
entangled in several degrees of freedom, so called hyper-
entangled photons (Kwiat, 1997). Bell experiments have been
performed with such systems (Barreiro et al., 2005; Ceccarelli
et al., 2009), combining polarization, spatial mode, and
energy-time degrees of freedom. Finally, continuous variable
systems have also been investigated. In particular, Babichev,
Appel, and Lvovsky (2004) demonstrated the nonlocality of a
single photon using homodyne measurements.
Other interesting aspects of quantum nonlocality have been

investigated experimentally. Notably, the phenomenon of
hidden nonlocality (see Sec. III.A.3) was observed by
Kwiat et al. (2001), and Hardy's paradox (see Sec. II.E)
was realized by White et al. (1999). It is also worth
mentioning the experiment of Fedrizzi et al. (2009) which
demonstrated violation of the CHSH inequality over a
free-space link of 144 km.
Multipartite quantum nonlocality has also been demon-

strated experimentally. Bell inequality violations were
achieved with three photons, generating both GHZ (Pan
et al., 2000) and W (Eibl et al., 2004) states, and with
four-photon GHZ states (Eibl et al., 2003; Zhao et al., 2003)
and cluster states (Walther et al., 2005). Genuine multipartite
nonlocality of three-photon GHZ states was demonstrated by
Lavoie, Kaltenbaek, and Resch (2009).
Note also that nowadays Bell experiments can even be

envisaged for pedagogical purposes (Dehlinger and Mitchell,
2002). In particular, ready-to-use setups are available
commercially (Qutools, 2005), which are fully operational,
even from the perspective of research (Pomarico, Bancal
et al., 2011).
Finally, it is important to keep in mind that all the Bell

experiments discussed above are plagued by the detection
loophole (see Sec. VII.B.1). This is because the photon
detection efficiency in these experiments is low (typically
10%–20%) which makes it possible, in principle, for a local

model to reproduce the raw data. It is only under the
assumption that the probability of detecting or nondetecting
a photon is independent of the choice of measurement (the so-
called “fair-sampling” assumption, allowing one to discard
inconclusive events) that the experimental data lead to Bell
inequality violations.
Recently though experimental violation of Bell inequalities

with the detection loophole closed were reported by
Christensen et al. (2013) and Giustina et al. (2013). It should
be noted, however, that the data analysis of Giustina et al.
(2013) is affected by the time-coincidence loophole (see
Sec. VII.B.1), and is thus not fully satisfactory. This point
was subsequently addressed by Larsson et al. (2013). Since
both of these experiments are table top, using relatively slow
detectors, they are still plagued by the locality loophole.

2. Atoms

Besides photons, Bell experiments have also been con-
ducted with atomic systems. Such systems offer an important
advantage from the point of view of the detection, with
efficiencies typically close to unity. Therefore, atomic systems
are well adapted for performing Bell experiments free of the
detection loophole. Such an experiment was first realized by
Rowe et al. (2001), using two Beþ ions in a magnetic trap. In
this experiment, the two ions were placed in the same trap,
separated only by 3 μm. The locality loophole was thus left
wide open, since each ion can feel the light field aimed at
measuring the state of the other ion.
More recently, quantum nonlocality was demonstrated

between two Ybþ ions sitting in separated traps, 1 m apart
(Matsukevich et al., 2008). This was further improved to a
distance of 20 m using rubidium atoms (Hofmann et al.,
2012). Although this distance is still insufficient to close the
locality loophole (a distance of 300 m is required using
the fastest procedure to measure the atomic state of the atoms)
the cross talk between the two atoms is now completely
suppressed. Here the entanglement between the distant atoms
is achieved using an “event-ready” scheme (Simon and Irvine,
2003), shown in Fig. 7, which is based on entanglement
swapping (Zukowski et al., 1993). Each atom is first trans-
ferred to an excited state. The ion is deexcited by emitting a
photon. The structure of the atomic levels is chosen such that
the polarization of the emitted photon is maximally entangled
with the state of the atom. The emitted photons are then
collected in single mode optical fibers. Finally a partial Bell
state measurement is performed on the two photons, using a
simple 50:50 beam splitter followed by single photon detec-
tors. A coincidence detection of two photons at the detectors
indicates that the photons were in a given Bell state. In this
case entanglement swapping is achieved, that is, the initial
atom-photon entanglement has been converted to atom-atom
entanglement. Upon successful detection of the photons, local
measurements are performed on the atoms. The procedure is
repeated until enough data have been taken in order to obtain
good statistics. Important advantages of such an event-ready
experiment is its robustness to photon losses and to the
coincidence-time loophole (Larsson and Gill, 2004).
Recently, such an experiment was used to conduct a
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proof-of-principle demonstration of device-independent ran-
domness expansion (Pironio et al., 2010) (see Sec. IV.C.3).

3. Hybrid schemes and other systems

Finally, we mention that Bell inequality violations have also
been reported using atom-photon entanglement (Moehring et
al., 2004) and entanglement between a photon and a collective
atomic excitation (Matsukevich et al., 2005). Nonlocality was
also demonstrated in Josephson phase superconducting
qubits. In particular, violation of the CHSH inequality was
achieved by Ansmann et al. (2009), whereas the GHZ paradox
was demonstrated by DiCarlo et al. (2010) and Neeley
et al. (2010).

B. Loopholes

1. Detection loophole

In a large class of Bell experiments, in particular, those
carried out with photons, measurements do not always yield
conclusive outcomes. This is due either to losses between the
source of particles and the detectors or to the fact that the
detectors themselves have nonunit efficiency. A measurement
apparatus, used, e.g., to test the CHSH inequality, has then
three outcomes instead of two: it can as usual give the
outcomes −1 or þ1, or it can give a “no-click” outcome,
denoted⊥. The simplest way to deal with such “inconclusive”
data is simply to discard them and evaluate the Bell expression
on the subset of “valid” �1 measurement outcomes. As
pointed out by Pearle (1970) and Clauser and Horne
(1974), this way of analyzing the results is consistent only
under the assumption that the set of detected events is a fair
sample, i.e., that the accepted data are representative of the
data that would have been recorded if the detectors had unit
efficiency. More generally, one can consider local models
where this fair-sampling assumption fails and in which the
probability to obtain a no-click outcome ⊥ depends on the
choice of measurement (Pearle, 1970; Clauser and Horne,
1974; Santos, 1992). If the detection efficiency is too low
(below a certain threshold), such local models can completely

reproduce the observed data, opening the so-called detection
loophole. The threshold efficiency required to close this
detection loophole is typically high for practical Bell tests.
As a consequence, most optical realizations of Bell tests
performed so far are plagued by the detection loophole.
Another closely related loophole is the time-coincidence

loophole (Larsson and Gill, 2004). This loophole exploits
timing issues in Bell tests, which in turn can affect detection
efficiency. Christensen et al. (2013) showed how this loophole
can affect real experiments.

a. Faking Bell inequality violations with postselection

Throwing away no-click outcomes and keeping only the
valid outcomes �1 is an example of postselection. In general,
allowing for postselection in a given theory allows one to
achieve tasks which would be impossible without it. In
particular, postselection makes it possible to fake the violation
of a Bell inequality, even in a purely local theory.
To illustrate this idea, we see how it is possible for a local

model to fake maximal violation of the CHSH inequality. In
particular, we show how to generate Popescu-Rohrlich corre-
lations a⊕b ¼ xy, where x; y; a; b ∈ f0; 1g (see Sec. II.C.2),
starting from shared randomness and allowing the detectors on
Alice's side to produce a no-click outcome⊥. The model is the
following. The shared randomness corresponds to two uni-
form random bits xguess and a. Given measurement setting y,
Bob's detector outputs b ¼ a⊕xguessy. Alice's detectors output
a whenever her measurement setting is x ¼ xguess and output
⊥when x ≠ xguess. Focusing on the conclusive outcomes (e.g.,
�1), Alice and Bob have achieved maximally nonlocal PR
correlations, i.e., achieving a CHSH value of S ¼ 4. The
probability for Alice to obtain a conclusive outcome is 1=2,
which is the probability that x ¼ xguess, while Bob always
obtains a conclusive outcome. With additional shared random-
ness, it is possible to symmetrize the above model, such that
Alice and Bob's detection probability is 2=3 (Massar and
Pironio, 2003). Therefore, if the detection efficiency in a
CHSH Bell experiment is below 2=3, no genuine Bell
inequality violation can be obtained, since the above local
strategy could have been used by the measurement appara-
tuses. More generally, the minimum detection efficiency
required for successfully violating a given Bell inequality
depends on the number of parties and measurements involved
(see Sec. VII.B.1.b).
Interestingly, recent experiments demonstrated fake viola-

tions of Bell inequalities using classical optics (Gerhardt et al.,
2011), positive Wigner function states and quadrature
measurements (Tasca et al., 2009), a classical amplifica-
tion scheme (Pomarico, Sanguinetti et al., 2011), and
high-dimensional analyzers (Romero et al., 2013). These
experiments are performed under the same conditions as
standard Bell experiments, but exploit side channels. This
illustrates the importance of closing the detection loophole in
Bell tests, in particular, for the perspective of implementing
device-independent protocols.

b. Taking into account no-click events

The previous discussion shows that in order to close the
detection loophole no-click outcomes cannot be discarded

FIG. 7 (color online). A Bell test based on distant entangled
atoms. Each atom is entangled with an emitted photon. Upon
successful projection of the two photons onto a Bell state, the two
atoms become entangled. The scheme is therefore “event ready,”
which makes it robust to photon losses in the channel. Moreover,
since atomic measurements have an efficiency close to 1, this
scheme is free of the detection loophole. This setup has been
implemented experimentally with a distance of 20 m between the
atoms (Hofmann et al., 2012), and used for device-independent
randomness expansion. From Pironio et al., 2010.
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without making further assumptions. The most general way to
take no-click events into account is simply to treat them as an
additional outcome and instead of a Δ-outcome Bell inequal-
ity (if the number of “conclusive” outcomes is Δ) use a
(Δþ 1)-outcome Bell inequality. A possible way to obtain an
effective (Δþ 1)-outcome Bell inequality from a Δ-outcome
one is simply to merge the no-click outcome with one of the
valid outcomes,20 i.e., systematically assign one of the valid
outcomes to the no-click events. In particular, the Clauser-
Horne inequality (Clauser and Horne, 1974), which is often
used in Bell tests with inefficient detectors, is nothing but the
CHSH inequality where the −1 outcome and the no-click
outcome ⊥ have been merged into one effective −1 outcome.
Assigning one of the valid outcomes to the no-click

outcome ⊥ is often the optimal way to treat no-click events,
although there is no general proof of this and a counterex-
ample exists for no-signaling correlations (Wilms et al.,
2008). In the case where Δ detectors are used to register
the Δ outcomes of a measurement, assigning one of the
conclusive outcomes to the no-click events has also the
technical advantage that the detector associated with that
particular outcome is no longer needed, i.e., only Δ − 1
detectors are sufficient since no distinction is being made
between obtaining the Δth outcome and not detecting
anything.

c. Threshold efficiencies

When treating the no-click outcome as described previ-
ously, one generally finds that a Bell violation is obtained only
if the detector efficiencies are above a certain threshold. The
minimal threshold efficiency η�, required to close the detection
loophole, depends generally on the number of parties,
measurements, and outcomes involved in the Bell test.
Moreover, η� may also vary depending on the exact set of
correlations that is considered. Thus, in quantum Bell tests, η�

may also depend on which entangled state and which
measurement settings are considered. Next we review the
efficiency thresholds for the most important Bell inequalities
and for the most common quantum entangled states.
We start by deriving η� for the CHSH Bell inequality using

a two-qubit maximally entangled state. Performing judicious
local measurement on this state, one obtains a CHSH value of
S ¼ 2

ffiffiffi
2

p
(the maximum value possible in quantum mechan-

ics). Now, we assume that Alice and Bob have imperfect
detectors with efficiency η and that when a no-click result⊥ is
obtained, they assign to it the þ1 outcome. When both
detectors click, which happens with probability η2, Alice
and Bob achieve S ¼ 2

ffiffiffi
2

p
. When only one detector clicks, the

outcomes are completely uncorrelated leading to S ¼ 0.
Finally, when no detectors click, which happens with prob-
ability ð1 − ηÞ2, Alice and Bob both always output þ1, thus
achieving the local bound S ¼ 2. In order to close the

detection loophole, we must ensure that the entire data of
the experiment violate the CHSH inequality, i.e., that

η22
ffiffiffi
2

p
þ ð1 − ηÞ22 > 2. (92)

This leads to the condition that

η > η� ¼ 2

1þ ffiffiffi
2

p ≈ 82:8%: (93)

Therefore, in order to get a detection loophole free CHSH
violation with a two-qubit maximally entangled state, it is
sufficient to have a detection efficiency larger than ∼82:8%
(Mermin, 1986). This efficiency is also necessary: an explicit
local model can be built which reproduces the experimental
data when η < 2=ð1þ ffiffiffi

2
p Þ.

Remarkably, it turns out that this threshold efficiency can be
lowered by considering partially entangled states, of the form
jψθi ¼ cos θj00i þ sin θj11i, as discovered by Eberhard
(1993). In particular, in the limit of a product state (i.e.,
θ → 0) one obtains the fact that η� → 2=3. This astonishing
result was the first demonstration that sometimes less entan-
glement leads to more nonlocality (see Sec. III.A.7).
From an experimental perspective, it is relevant to see how

the previous results are affected by the presence of back-
ground noise. In general this amounts to a considerable
increase of the threshold efficiencies. Even for very low
levels of background noise, the threshold efficiency usually
increases by a few percent. A detailed analysis can be found in
Eberhard (1993). Another point concerns events in which no
detection happened on either side. In certain cases, joint losses
are not detrimental for the demonstration of nonlocality
(Massar et al., 2002).
Beyond the CHSH case, discussed in detail by Branciard

(2011), it is known that lower threshold efficiencies can be
tolerated for Bell inequalities featuring more measurement
settings. A lower bound for the threshold efficiency is given
by

η� ≥
mA þmB − 2

mAmB − 1
; (94)

where mA (mB) denotes the number of settings of Alice (Bob)
(Massar and Pironio, 2003). While it is not known whether
this bound can be obtained in general with quantum corre-
lations, improvements over the threshold efficiencies of the
CHSH inequalities have been obtained by considering Bell
scenarios with more measurement settings. For qubit states
only minor improvements were found (Massar et al., 2002;
Brunner and Gisin, 2008; Pal and Vértesi, 2009). Massar
(2002) showed that, when considering systems of higher
Hilbert space dimension d, the threshold efficiency can
become arbitrarily close to zero. Unfortunately, this result
is of limited practical interest since improvements over the
CHSH case are obtained only for systems with d≳ 1600.
Also, the number of measurements becomes exponentially
large, namely, 2d. More recently a Bell test involving
entangled quqats (d ¼ 4) and four (binary) measurement
settings was shown to tolerate detection efficiencies as
low as ∼61:8% (Vértesi, Pironio, and Brunner, 2010).

20Inequalities obtained in this way are liftings of the original
inequality (Pironio, 2005). If the original inequality is facet defining
for the Δ-outcome Bell polytope, then the lifted inequality is facet
defining for the (Δþ 1)-outcome polytope. However, the (Δþ 1)-
outcome Bell polytope has also in general facets that cannot be
viewed as liftings of Δ-outcome inequalities.
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Such a scheme could be implemented optically using
hyperentanglement.
Threshold efficiencies have also been derived for certain

multipartite Bell tests (with n parties), using qubit GHZ states.
Based on a combinatorial study, Buhrman et al. (2003)
showed that an arbitrarily small efficiency can be tolerated
as n becomes large. Threshold efficiencies approaching 50%
in the limit of a large n were demonstrated for the Mermin
inequalities (Cabello, Rodriguez, and Villanueva, 2008) and
for a multipartite generalization of the CH inequality (Larsson
and Semitecolos, 2001). More recently, multipartite Bell tests
tolerating efficiencies significantly below 50% were reported
by Pal, Vértesi, and Brunner (2012).
Finally, detection efficiencies have also been considered in

asymmetric Bell experiments. Consider first the case in which
Alice and Bob feature different detection efficiencies (ηA and
ηB, respectively). In particular, results have been obtained for
the case where ηA < 1 and ηB ¼ 1, which is relevant for Bell
tests based on atom-photon entanglement (Alice holds the
photon and Bob the atom). It has been shown that for the
CHSH inequality the efficiency of Alice's detector can be
lowered to 50% (Brunner et al., 2007; Cabello and Larsson,
2007). Moreover, this efficiency can be further lowered to
∼43% by considering a three-setting Bell inequality (Brunner
et al., 2007). Considering Bell tests with d measurement
settings and d-dimensional systems, an efficiency as low as
1=d can be tolerated, which is optimal (Vértesi, Pironio, and
Brunner, 2010). Another asymmetric scenario is the case in
which the local measurements have different efficiencies. Let
ηA0

and ηA1
be the efficiencies of Alice's measurements and

ηB0
and ηB1

the efficiencies of Bob's measurements. If one of
the measurements of each party has unit efficiency (say
ηA0

¼ ηB0
¼ 1), then the CHSH inequality can be violated

for an arbitrarily low efficiency for the other measurement,
i.e., ηA1

¼ ηB1
→ 0 (Garbarino, 2010). Such an approach fits

Bell tests using hybrid measurements, such as homodyne
(high efficiency) and photodetection (low efficiency); see
Sec. VII.C for more detail.

2. Locality loophole

The locality condition (3) is motivated by the absence of
communication between the two measurement sites of a Bell
experiment. This seems well justified if the two sites are
sufficiently separated so that the measurement duration is
shorter than the time taken by a signal traveling at the speed of
light, to travel from one site to the other. If this condition is not
satisfied, one could in principle conceive a purely “local”
mechanism (i.e., involving slower-than-light speed signals)
underlying the observed correlations (Aspect, 1975, 1976;
Bell, 1977a).
In addition to the requirement that the two measurement

sites are spacelike separated, it must also be the case that the
measurement setting on one side is not determined by an
earlier event that could be correlated with the measurement
setting on the other side; in particular, it should not be
correlated with the hidden variables λ characterizing the
source of particles. That is, the measurement settings must
correspond to “random” or “free” choices, which are inde-
pendent from the other side and from the hidden state of the

particle pairs (Shimony, Horne, and Clauser, 1976;
Bell, 1977b).
Mathematically, the above requirements correspond to the

following conditions:

pðajx;y;b;λÞ¼pðajx;λÞ; pðbjy;x;a;λÞ¼pðbjy;λÞ; (95)

and

qðλjxyÞ ¼ qðλÞ (96)

from which the locality decomposition (3) follows. Failure to
satisfy them is known as the locality loophole. The failure to
specifically address the independence condition (96) between
measurement choices and hidden variables is sometimes
called the “freedom of choice” (Scheidl et al., 2010) or
“measurement-independence” loophole (Hall, 2010; Barrett
and Gisin, 2011).
The experiment of Aspect, Dalibard, and Roger (1982)

using entangled photons was the first to convincingly address
the locality loophole. It involved on each side a switching
device for the incoming photons followed by two polarizers
aligned along different orientations. A change of direction
occurred approximately every 10 ns. The distance L ¼ 13 m
between the two switches was large enough so that the time of
travel of a signal between the switches at light speed L=c ¼
43 ns was larger than the delay of 10 ns between two
switchings. The switching of the polarizers was done through
a home-built device, based on the acousto-optical interaction
of the incoming light with an ultrasonic standing wave in
water. Using this mechanism it should be noted that not all
photons were submitted to forced switching. In addition, the
switches were not truly random, since the acousto-optical
were driven by periodic generators. The two generators on the
two sides, however, were functioning in a completely
uncorrelated way, since they were operated by different rf
generators at different frequencies with uncorrelated
frequency drifts.
The experiment of Aspect, Dalibard, and Roger (1982) was

the only one involving fast changes of the measurement
settings until the one of Weihs et al. (1998), which used high-
speed electro-optic modulators to switch between two polari-
zation measurement settings on each side. The two modulators
where controlled on a nanosecond time scale by two inde-
pendent quantum random number generators, excluding any
light-speed influence between the two sides, which were
separated by a distance of a few hundred meters. Leaving
aside the possibility that the outputs of the quantum random
number generators are predetermined at some hidden level,
this setup is often regarded as having conclusively closed the
locality loophole. In Scheidl et al. (2010), spacelike separation
was not only enforced between the outputs of the two random
generators, but also between them and the emission of photons
from the laser source generating the entangled particles,
implying that these three processes are independent from
each other, provided that they are not themselves determined
by some earlier events.
At this point, it should be stressed that, contrary to the

detection loophole, the locality loophole can never be “com-
pletely” closed. Strictly speaking, it requires spacelike
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separation between the event determining the choice of
measurement setting on one side and the event corresponding
to the output of the measurement device on the other side. The
first problem is that this requires one to know precisely the
time at which these two events happen. But if we use some
random process that outputs a random value at time, say t ¼ 0,
how do we know that this value was precisely determined at
this time and not at some earlier time t ¼ −δ? Similarly, how
do we know precisely when a measurement is completed
without making some assumptions on the collapse of the wave
function (Kent, 2005)? This last issue was addressed by Salart
et al. (2008), where the violation of Bell inequalities for events
that are spacelike separated according to a simple model of
gravitational collapse has been reported.
The second problem is that we can never be sure that the

choices of measurements are really random or free. For
instance, in the experiments (Weihs et al., 1998; Scheidl
et al., 2010) the measurement choices are decided by processes
that are genuinely random according to standard quantum
theory. But this need not be the case according to some deeper
theory. Some have argued that a better experiment for closing
the locality loophole would be to arrange the choice of
measurement setting to be determined directly by humans or
by photons arriving from distant galaxies from opposite
directions, in which case any local explanation would involve
a conspiracy on the intergalactic scale (Vaidman, 2001).
The point of this discussion is that an experiment “closing”

the locality loophole should be designed in such a way that
any theory salvaging locality by exploiting weaknesses of the
above type should be sufficiently conspiratorial and contrived
that it is reasonably not worth considering it.
Finally, it is worth noting that in device-independent

applications of quantum nonlocality the experimental require-
ments for satisfying conditions (95) and (96) are sensibly
different than in fundamental tests of nonlocality, since one
usually assumes the validity of quantum theory, that the
quantum systems are confined in well-defined measurement
devices that can be shielded from the outside world, that the
inputs are under the control of the users, etc. This stance was
used for instance by Pironio et al. (2010), where the atoms
were separated from each other, although by no means
fulfilling any of the spacelike separation prescriptions
required for a fundamental, locality loophole-free Bell test.

3. Finite statistics

Since it is expressed in terms of the probabilities for the
possible measurement outcomes in an experiment, a Bell
inequality is formally a constraint on the expected or average
behavior of a local model. In an actual experimental test,
however, the Bell expression is estimated only from a finite set
of data and one must take into account the possibility of
statistical deviations from the average behavior. The conclu-
sion that Bell locality is violated is thus necessarily a statistical
one. In most experimental papers reporting Bell violations, the
statistical relevance of the observed violation is expressed in
terms of the number of standard deviations separating the
estimated violation from its local bound. There are several
problems with this analysis, however. First, it lacks a clear
operational significance. Second, it implicitly assumes some

underlying Gaussian distribution for the measured systems,
which is justified only if the number of trials approaches
infinity. It also relies on the assumption that the random
process associated with the kth trial is independent of the
chosen settings and observed outcomes of the previous k − 1

trials. In other words, the devices are assumed to have no
memory, which is a questionable assumption (Accardi and
Regoli, 2000).
A better measure of the strength of the evidence against

local models is given by the probability with which the
observed data could have been reproduced by a local model.
For instance, consider the CHSH test and let haxbyiobs be the
means of the observed products of a and b when measure-
ments x and y are chosen computed over N trials. Gill (2012)
showed that the probability that two devices behaving
according to a local model gives rise to a value

Sobs ¼ ha0b0iobsþha0b1iobsþha1b0iobs− ha1b1iobs > 2þ ε

is

pðSobs > 2þ εÞ ≤ 8e−4Nðε=16Þ2 : (97)

This statement assumes that the behavior of the devices at the
kth trial does not depend on the inputs and outputs in previous
runs. But this memoryless assumption can be avoided and
similar statements taking into account arbitrary memory
effects can be obtained (Gill, 2003). As discussed in
Sec. II.G, it is easy to convince oneself that, in the limit of
infinitely many runs, devices with memory cannot fake the
violation of a Bell inequality (Barrett et al., 2002; Gill, 2003).
Indeed, for any given local variable strategy, there is always at
least one set of settings for which that strategy fails in the
corresponding Bell game. But in any run, the settings are
chosen at random, independently of the source and of the past:
therefore, even taking the past into account, the local variables
cannot avoid the possibility that the wrong settings are chosen.
This reasoning can be extended to the finite statistics case
through the use of martingales (Gill, 2003). A better general
method to deal with memory effects and finite statistics which
is asymptotically optimal in the limit of large trials was
proposed by Zhang, Glancy, and Knill (2011) and Zhang,
Knill, and Glancy (2013).

C. Toward a loophole-free Bell test

1. Photons

The main drawback of photonic experiments for perform-
ing a loophole-free Bell test is the limited detection efficiency
of single photon detectors. Nevertheless, considerable
progress has been achieved in the past years, in particular,
with the development of detectors based on superconducting
materials, which can achieve detection efficiencies above
95%. Such detectors were recently used in Bell-type experi-
ments. Smith et al. (2012) reported on a detection loophole-
free demonstration of quantum steering (see Sec. VIII.C).
More recently, an experiment demonstrated violation of a
Clauser-Horne Bell inequality with the detection loophole
closed (Christensen et al., 2013; Giustina et al., 2013). Here
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total efficiencies of 75% were achieved for each party. Note,
however, that these experiments are tabletop and did not close
the locality loophole. Since the detection process in super-
conducting detectors is typically slow (of the order of μs),
achieving a loophole-free Bell violation requires a separation
of the order of 300 m.
Another possibility was recently suggested by Cabello and

Sciarrino (2012), which consists of precertifying the presence
of a photon before the choice of local measurement is
performed. This proposal appears, however, challenging from
an experimental point of view.

2. Continuous variable systems

An interesting alternative for achieving high detection
efficiencies using photon consists of using homodyne mea-
surements, which measure a continuous degree of freedom
(often called quadrature) of the optical mode. Such measure-
ments are realized by mixing the optical mode with an intense
reference oscillator on a beam splitter and can reach efficien-
cies close to unity nowadays. The first proposals for using
homodyne measurements in Bell tests were presented by
Grangier, Potasek, and Yurke (1988), Tan, Walls, and Collett
(1991), and Gilchrist, Deuar, and Reid (1998). Since then,
many alternative proposals were discussed. However, their
experimental realization has remained elusive so far.
It is important to mention that a homodyne measurement

has a continuous number of possible outcomes. Since Bell
inequalities have typically a discrete number of outcomes (for
instance, binary outcomes in the case of CHSH), one has to
dichotomize the outcome of the homodyne measurement, a
procedure referred to as binning. For instance, a natural
dichotomization strategy is given by the sign binning, where
one assigns the values þ1 if the measurement returns a
positive outcome, and −1 otherwise.
Homodyne measurements were shown to be able to detect

the nonlocality of certain quantum states. However, all tests
proposed so far present major difficulties for experimental
realizations. First, several schemes consider quantum states
which cannot be produced using current technology (Munro,
1999; Wenger et al., 2003; Cavalcanti et al., 2007; Acín et al.,
2009). Second, the proposals of García-Patron et al. (2004)
and Nha and Carmichael (2004) [see also Garcia-Patron,
Fiurasek, and Cerf (2005)] use states which could be realized
experimentally but lead only to very small Bell inequality
violations, hence requiring an extremely low level of noise,
currently out of reach of an experimental point of view. Note
that an experiment using homodyne measurements demon-
strated a violation of the CHSH inequality (Babichev, Appel,
and Lvovsky, 2004), but postselection was involved which
thus opened the detection loophole.
An interesting alternative consists of devising hybrid

schemes, which make use of homodyne measurements as
well as photodetection. Cavalcanti, Brunner et al. (2011)
showed that relatively high CHSH violations can be achieved
using a state that can be experimentally produced.21 Promising

developments of hybrid schemes were recently discussed by
Araújo et al. (2012), Brask et al. (2012), Brask and Chaves
(2012), Quintino et al. (2012), and Teo et al. (2013).
Finally, several works also considered more complex

measurements, such as parity measurements. In particular,
Banaszek and Wódkiewicz (1998) [see also Banaszek and
Wódkiewicz (1999)] demonstrated that such measurements
can reveal the nonlocality of the famous EPR state, discussed
by Einstein, Podolsky, and Rosen (1935). The use of mea-
surements based on nonlinear local operations was proposed
by Stobińska, Jeong, and Ralph (2007). However, realization
of such measurements is still out of reach from current
technologies.

3. Atom-atom and atom-photon entanglement

A promising avenue toward a loophole-free Bell test is
based on the possibility to generate long-distance entangle-
ment between two trapped atoms (Simon and Irvine, 2003).
The procedure for entangling the two remote atoms consists of
the joint detection of two photons, each coming from one of
the atoms, in an entangled basis. In this way, the initial atom-
photon entanglement is transformed into atom-atom entan-
glement via entanglement swapping.
This scheme was demonstrated experimentally using two

trapped atoms separated by 1 m (Matsukevich et al., 2008;
Pironio et al., 2010) and more recently up to 20 m (Hofmann
et al., 2012). The detection loophole was closed in these
experiments, thanks to the near unit efficiency of atomic
measurements. In order to close the locality loophole, a
distance of the order of 300 m would be required using the
fastest atomic measurement techniques available today
(Rosenfeld et al., 2009). This is still currently challenging
but the perspectives for a loophole-free test are promising.
Bell tests based on the direct observation of atom-photon

entanglement have also been proposed (Brunner et al., 2007;
Cabello and Larsson, 2007). However, the difficulty of
efficiently collecting the photons emitted from the atom,
and the relatively high detection efficiencies required for
the photon detection in order to close the detection loophole,
make this approach more delicate to implement. To overcome
some of these problems, the use of continuous variable
degrees of freedom of the light field combined with efficient
homodyne measurements was recently explored (Sangouard
et al., 2011; Araújo et al., 2012; Teo et al., 2013).
More recently, it was proposed to achieve a loophole-free

Bell test using spin photon interactions in cavities (Brunner
et al., 2013; Sangouard et al., 2013). Here the entanglement of
a pair of photons is mapped to two distant spins (e.g., carried
by a single atom or a quantum dot). Importantly, this mapping
can be achieved in a heralded way. By choosing the meas-
urement settings only after successful heralding, the scheme is
immune from the detection loophole, since spin systems can
usually be measured with high efficiencies.

D. Bell tests without alignment

Bell inequality violations in quantum mechanics require the
parties to perform judiciously chosen measurement settings on
an entangled state. Experimentally, this requires a careful

21Note that the idea of considering hybrid measurements was first
discussed by Ji et al. (2010), although the proposed scheme is not a
proper Bell test (Cavalcanti and Scarani, 2011).
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calibration of the measurement devices and alignment of a
shared reference frame between the distant parties. Although
such assumptions are typically made implicitly in theoretical
works, establishing a common reference frame and aligning
and calibrating measurement devices in experimental situa-
tions are never trivial issues. For instance, in quantum
communications via optical fibers, unavoidable small temper-
ature changes induce strong rotations of the polarization of
photons in the fiber, which makes it challenging to maintain
good alignment. In turn this may considerably degrade the
implementation of quantum protocols, such as Bell tests.
This led several to investigate whether Bell tests, and more

generally quantum communication protocols (Bartlett,
Rudolph, and Spekkens, 2007), could be realized without
the need of a common reference frame. The first approach
proposed was based on decoherence-free subspaces (Cabello,
2003). The experimental realization of such ideas is challeng-
ing as it requires high-dimensional entanglement, although
progress was recently reported (D'Ambrosio et al., 2012).
A more recent approach investigated Bell tests performed

with randomly chosen measurements (Liang et al., 2010).
This first theoretical work considered the CHSH Bell scenario,
with qubit measurements chosen randomly and uniformly
(according to the Haar measure) on the Bloch sphere, on a
maximally entangled state of two qubits. When all four
measurements are chosen at random, the probability that
the obtained statistics will violate the CHSH inequality is
∼28%. When unbiased measurements are used, this proba-
bility increases to ∼42%. More recently it was shown however
that if both parties perform three unbiased measurements (i.e.,
forming an orthogonal triad on the Bloch sphere), the
probability of violating a Bell inequality becomes one
(Shadbolt et al., 2012; Wallman and Bartlett, 2012)). This
scheme was realized experimentally demonstrating the robust-
ness of the effect to experimental imperfections such as losses
and finite statistics (Shadbolt et al., 2012) [see also Palsson
et al. (2012)]. From a more conceptual point of view, these
works are interesting as they show that quantum nonlocality is
much more generic than previously thought.

VIII. RELATED CONCEPTS

This section deals with variations around Bell's theorem, in
which different notions of nonlocality (stronger or weaker
than Bell's) are considered. Note that there also exist math-
ematical relations between local models and noncontextual
models. We do not review this connection here; see Mermin
(1993) for a short review of both concepts and their relation.

A. Bilocality and more general correlation scenarios

In a tripartite Bell scenario, the standard definition of
locality is given by

pðabcjxyzÞ ¼
Z

dλqðλÞpλðajxÞpλðbjyÞpλðcjzÞ; (98)

where λ is a shared local random variable and
R
dλqðλÞ ¼ 1.

This represents the most general model in which the outcome
of each observer is determined by their input and λ. Since λ is

shared between all three parties, arbitrary prior correlations
can be established between the parties.
In certain quantum experiments involving three separated

observers, the distribution pðabcjxyzÞ is obtained by perform-
ing measurements on independent quantum states, originating
from different sources. A typical example is the protocol of
entanglement swapping (Zukowski et al., 1993)—also known
as teleportation of entanglement—in which two systems that
never interacted become entangled. Here one party (say Bob)
shares initially an entangled state with both Alice (denoted
system AB1) and Charlie (system B2C). That is, Alice and Bob
share an entangled pair distributed by a source located
between them, while a second source distributes entanglement
between Bob and Charlie. Importantly, these two sources are
completely independent from each other, hence systems AB1

and B2C share no prior correlations. It is then natural to ask
whether the observed correlations pðabcjxyzÞ can be repro-
duced using a local model with the same feature, that is, in
which systems AB1 and B2C are initially uncorrelated.
Formally such models can be written in the following form:

pðabcjxyzÞ ¼
Z

dλdμqðλÞqðμÞpλðajxÞpλ;μðbjyÞpμðcjzÞ;
(99)

where Alice and Bob share the local random variable λ, while
Bob and Charlie share μ. Since the variables λ and μ are
assumed to be independent, their distribution factorizes, i.e.,
qðλ; μÞ ¼ qðλÞqðμÞ. The above condition is termed bilocality,
and correlations satisfying it are called bilocal. It turns out that
not all local correlations [i.e., of Eq. (98)] can be written in the
bilocal form. Hence the bilocality condition is a strictly
stronger constraint than locality. It is then interesting to ask
how to characterize the set of bilocal correlations, as this will
lead to more stringent tests for revealing nonlocality in an
entanglement swapping experiment.
The first exploratory work investigated this question in the

context of the detection loophole (Gisin and Gisin, 2002;
Zukowski et al., 2008). More recently, a systematic approach
was taken by Branciard, Gisin, and Pironio (2010) and
Branciard, Rosset et al. (2012). In particular, these works
present nonlinear inequalities for testing the bilocality con-
dition, which are much more stringent compared to standard
Bell inequalities. Note that the set of bilocal correlations is not
convex in general, and hence its characterization requires
nonlinear inequalities.
More generally, it is possible to consider an arbitrary

correlation scenario, involving an arbitrary number of sources
and observers, where certain systems can be initially corre-
lated while others are independent. Similar to the previous
discussion, when two systems are assumed to be independent,
they are described by a product distribution (Branciard, Rosset
et al., 2012; Fritz, 2012b). In fact, a typical Bell experiment
can be viewed in this picture, featuring three independent
sources. These are the source that produces the entangled
state, the source generating the measurement settings of Alice,
and the source generating the setting of Bob. Indeed, if these
sources are not independent, the Bell violation is plagued by
the measurement-independence loophole. A related approach
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for considering locality in general correlation scenarios using
the formalism of causal networks was put forward by Wood
and Spekkens (2012).

B. No-go theorems for nonlocal models

The study of no-go theorems for nonlocal models is
reduced to a few examples. On the one hand, it is obvious
that some of these models will reproduce all observed
correlations, so there is no hope of finding a result à la
Bell which would falsify all of them. On the other hand, one
needs to have good motivation in order to propose a specific
example of a nonlocal model. In fact, basically two classes of
models have been considered so far: we review them briefly
here, but refer to the original articles for a detailed justification
of the interest of each model.

1. Models à la Leggett

Pure entangled states are characterized by the fact that the
properties of the pair are well defined, but those of the
individual subsystems are not. Consider for instance a
maximally entangled state of two qubits. Although the global
state has zero entropy, the state being pure, the reduced state of
each qubit is fully mixed thus having maximum entropy. An
interesting question is whether one could devise alternative
no-signaling models, reproducing quantum correlations, in
which the individual properties are well defined, or at least
where the model gives a higher degree of predictability
compared to quantum predictions. The first work in this
direction was presented by Leggett (2003), who discussed a
specific nonlocal model and proved its inability to reproduce
quantum correlations. Leggett's model was first tested exper-
imentally by Gröblacher et al. (2007). A clear discussion of
the scope and limitations of this type of models was given by
Branciard et al. (2008).
In a nutshell, the question is whether the probability

distribution predicted by quantum theory pQ can be seen
as a convex combination of more fundamental distributions
pQ ¼ R

dλpλ. Because of Bell's theorem, for some λ at least,
the distribution pλ must be nonlocal; but we leave the
correlations and their mechanism aside and concentrate on
the marginals: we request that the pλ specify well-defined
individual properties. Focusing on the case of a maximally
entangled qubit pair, Leggett proposed a model in which the
marginals take the forms

pλðajx⃗Þ ¼ 1
2
ð1þ au⃗ · x⃗Þ

and

pλðbjy⃗Þ ¼ 1
2
ð1þ bv⃗ · y⃗Þ.

Here the hidden variables consist of two vectors λ ¼ ðu⃗; v⃗Þ.
The intuition behind this model is the following. Locally, say
on Alice's side, the system behaves as if it had well-defined
polarization given by u⃗. For a measurement direction x⃗, the
marginal distribution is then given by Malus's law. Hence this
model makes more definite predictions for individual proper-
ties compared to quantum theory. It turns out, however, that

Leggett's model is unable to reproduce quantum correlations.
In particular, from the no-signaling condition and the above
marginals, one can derive constraints, in the form of inequal-
ities, on the correlations. Quantum predictions violate these
inequalities. Note that there is no direct relation between
Leggett inequalities and Bell inequalities. In particular, the
tests of Leggett inequalities known to date rely on the
characterization of the measurement parameters and are
therefore not device independent, contrary to Bell inequalities.
Finally, note that more general models were also discussed

and demonstrated to be incompatible with quantum predic-
tions. This shows that quantum correlations cannot be
reproduced using no-signaling theories which make more
accurate predictions of individual properties compared to
quantum theory (Colbeck and Renner, 2008, 2012).

2. Superluminal signaling models

A second class of models addresses the possibility of
explaining quantum correlation using some explicit signaling
mechanism. Of course, this is problematic, because the signal
should propagate faster than light: these models must thus
postulate the existence of a preferred frame in which this
signal propagates. Two cases have been considered.
In the first one, the preferred frame is universal. From Bell's

theorem, it follows that the speed v of the signal must be
infinite. Clearly, one can find a model with v being infinite
which reproduces all quantum correlations. On the other hand,
the predictions of any signaling model where v is finite will
differ from those of quantum mechanics. For instance, in a
bipartite Bell test, nonlocal correlations should vanish when
the distance between the two observers exceeds a certain
bound, since there is then simply not enough time for the
signal to propagate. Experimental investigations could place
lower bounds on v (Salart et al., 2008). For a wide class of
preferred frames, this bound exceeds the speed of light by
several orders of magnitude.
Furthermore, it is in fact possible to rule out theoretically

any communication model in which v is finite using certain
assumptions. Specifically, consider a model that (1) repro-
duces the quantum predictions when there is enough time for a
signal to propagate at speed v between the parties; (2) the
model is no signaling on average, that is, at the level of the
observed statistics the no-signaling conditions (7) are satisfied
(i.e., any explicit signaling happens only at the hidden level).
Then by considering a multipartite arrangement, it was shown
by Bancal, Pironio et al. (2012), building on earlier work by
Scarani and Gisin (2005) and Coretti, Hänggi, and Wolf
(2011), that these two conditions are mutually incompatible.
In other words, under the assumption that the observed
statistics satisfy the no-signaling principle, quantum correla-
tions cannot be reproduced by a model with finite speed
signaling.
In the second type of models, the rest frame of each

measurement device is its own preferred frame. In this case, if
the measurement devices move away from one another, a
before-before configuration can be created, in which each
particle perceives that it is the first one to undergo the
measurement: then, nonlocal correlations should disappear
(Suarez and Scarani, 1997). This prediction has been falsified
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experimentally (Stefanov et al., 2002, 2003; Zbinden
et al., 2001).

C. Steering

One of the most common ways of describing the effect of
entanglement, noticed already in the seminal paper of
Schrödinger (1936), uses the notion of steering: by making
a measurement on her system, Alice can prepare at a distance
Bob's state. More precisely, Alice cannot choose which state
she prepares in each instance, because this would amount to
signaling; however, if she sends to Bob the results of her
measurements, Bob can check that indeed his conditional
states have been steered.
Although often invoked in the field, this notion had not

been the object of detailed studies until the work of Wiseman,
Jones, and Doherty (2007). In this and subsequent work, they
formalized steering as information-theoretic tasks and pointed
out how it differs from nonlocality. Steering can be viewed as
the distribution of entanglement from an untrusted party. Alice
wants to convince Bob that she can prepare entanglement.
Bob trusts his measurement device; hence he knows what
observables he is measuring on his system. However, Bob
does not trust Alice, whose device is then described by a black
box. In this sense the task is intermediate between nonlocality
(in which both Alice and Bob work with black boxes) and
standard entanglement witnessing (in which both parties have
perfect control of the observables which are measured). The
protocol works as follows. Alice sends a quantum system to
Bob, whose state, she claims, is entangled to her system. Upon
receiving his system, Bob chooses a measurement setting
(from a predetermined set of measurements) to perform on it.
He then informs Alice about his choice of measurement and
asks her to provide a guess for his measurement outcome.
After repeating this procedure a sufficiently large number of
times, Bob can estimate how strongly his system is correlated
to that of Alice. If the correlations are strong enough, Bob
concludes that the systems are indeed entangled and that Alice
did indeed steer his state.
Interestingly, it turns out that entanglement is necessary but

not sufficient for steering, while steering is necessary but not
sufficient for nonlocality. Hence, steering represents a novel
form of inseparability in quantum mechanics, intermediate
between entanglement and nonlocality (Wiseman, Jones, and
Doherty, 2007; Saunders et al., 2010). The quantitative
relation between steering, entanglement, and Bell nonlocality
is yet to be fully understood.
Experimentally, steering can be tested using steering

inequalities, similar to Bell inequalities. The first steering
criterion were derived for continuous variable systems, mostly
based on variances of observables (Reid, 1989) and entropic
uncertainty relations (Walborn et al., 2011); see Reid et al.
(2009) for a review. More recently, steering inequalities were
presented for discrete variables (Cavalcanti et al., 2009). All
these tests were investigated experimentally. Similar to Bell
tests, experimental steering tests suffer from loopholes.
Nevertheless, closing these loopholes appears to be less
demanding compared to Bell tests, in particular, in terms of
detection efficiency. A loophole-free steering experiment was
recently reported (Wittmann et al., 2012).

D. Semiquantum games

In the usual Bell test scenario, distant parties share a
quantum state distributed from a source. The local measure-
ments and their outcomes are represented by classical data.
Recently Buscemi (2012) proposed a variant of Bell tests,
termed semiquantum games, in which the inputs of each party
are given by quantum states. That is, each party holds a black
box in which the observer inputs a quantum state. Inside the
box, this quantum input is then jointly measured with the
quantum system coming from the source, and a classical
output is produced. In case the input quantum states are
orthogonal (hence perfectly distinguishable), the setup is
simply equivalent to a standard Bell test with classical inputs.
However, when the states are not mutually orthogonal, the
setup becomes more general. Buscemi showed that, in this
case, for any entangled state ρ there exists a semiquantum
game, the statistics of which cannot be reproduced by a local
model. Hence, semiquantum games highlight a nonlocal
aspect of quantum states, which is however different from
Bell nonlocality. More recently it was shown that semi-
quantum games and entanglement witnesses are intimately
related. In particular, for detecting an entangled state ρ, a
semiquantum game can be constructed directly from an
entanglement witness detecting ρ (Branciard et al., 2013).
Applications of these ideas for the detection of entanglement
(Branciard et al., 2013), steering (Cavalcanti, Hall, and
Wiseman, 2013), and the classical simulation of quantum
correlations (Rosset et al., 2013) were recently discussed.

IX. CONCLUSION

Fifty years after the publication of Bell's theorem (Bell,
1964), Bell nonlocality is still (perhaps more than ever) at the
center of an active and intense research activity that spans the
foundations of quantum theory, applications in quantum
information science, and experimental implementations.
We covered in this review most of the recent developments,

some of them happening while this review was being written.
To give only three examples of recent progress on long-
standing or important questions: Peres's conjecture that no
bound entangled state can give rise to nonlocal correlations is
now disproved in the tripartite case (Vértesi and Brunner,
2012) (but is still open in the bipartite case); it has been shown
that nonlocal correlations can be exploited to perform arbitrary
computations in a device-independent way (Reichardt, Unger,
and Vazirani, 2013); on the experimental side, the detection
loophole has finally been closed in full-optical implementa-
tions (Christensen et al., 2013; Giustina et al., 2013). We hope
that this review will motivate further developments on this
fascinating topic of Bell nonlocality.
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APPENDIX: GUIDE TO BELL INEQUALITIES

The goal of this Appendix is to orientate the reader looking
for a particular type of Bell inequality. Here we classify Bell
inequalities according to the number of parties n, the number
of measurements for each party m, and the number of
outcomes Δ.22 Below, for any Bell test scenario given by
the triple (n, m, Δ), we provide references to articles
presenting relevant Bell inequalities. Note that we do not
give the inequalities explicitly; some of these can nevertheless
be found in parts of this review, in particular, in Secs. II and V.

1. Bipartite Bell inequalities

a. Binary outputs: ð2;m;2Þ

For the casem ¼ 2, CHSH is the only tight Bell inequality.
Note that if one of the parties has more measurement, i.e.,
mA ¼ 2 andmB ¼ m, CHSH is still known to be the only tight
inequality.
For m ¼ 3, one additional tight inequality arises I3322 (see

Sec. 2), discovered independently by Froissard (1981) and
Collins and Gisin (2004).
For m ¼ 4, 5, the complete list of tight Bell inequalities is

unfortunately not known. Incomplete lists can be found in
Brunner and Gisin (2008), Pal and Vértesi (2009), and Bancal,
Gisin, and Pironio (2010). Note that for mA ¼ 4 and mB ¼ 3,
the complete list of tight Bell inequalities was given by Collins
and Gisin (2004).
For m ≥ 6, much less is known. Incomplete lists of facets

could be derived using sophisticated techniques from convex
geometry (Avis et al., 2004).
For arbitrary values of m, the family of inequalities Imm22

introduced by Collins and Gisin (2004) turns out to be tight in
general (Avis and Ito, 2007). It is also worth mentioning the
family of chained Bell inequalities (Pearle, 1970; Braunstein
and Caves, 1990), although these inequalities are not tight
for m ≥ 3.

b. Arbitrary number of outputs: ð2;m;ΔÞ

In the cases m ¼ 2 and Δ ¼ 3, the inequality of CGLMP
(Collins, Gisin, Linden et al., 2002) is the only tight inequality
additional to CHSH. For Δ ≥ 4, the CGLMP inequality is
known to be tight, but there exist additional facets in this case
(Bancal, Gisin, and Pironio, 2010).
Note that the chained Bell inequalities have been general-

ized to this scenario (Barrett, Kent, and Pironio, 2006).
Whether they are tight or not for Δ ≥ 3 is not known.

2. Multipartite Bell inequalities

a. Binary outputs: ðn;m;2Þ

All tight correlation Bell inequalities are known for the case
m ¼ 2 (Werner and Wolf, 2001b; Zukowski and Brukner,
2002). Indeed, this set contains the inequalities of Mermin-
Ardehali-Belinskiõ-Klyshko (Mermin, 1990a; Ardehali,
1992; Belinskii and Klyshko, 1993). For noncorrelation
Bell inequality, the complete set of tight Bell inequalities in
the cases n ¼ 3 and m ¼ 2 was given by Sliwa (2003). For
arbitrary n and m, Laskowski et al. (2004) provided tight Bell
inequalities.

b. Arbitrary number of outputs: ðn;m;ΔÞ

A general family of Bell inequalities based on variance
inequalities was derived by Cavalcanti et al. (2007), and
further developed by He et al. (2009). More generally these
inequalities are particular cases of inequalities discussed by
Salles et al. (2010). Note that these inequalities are not tight as
they are not linear. However, they can be conveniently used for
continuous variables (i.e., Δ → ∞). A generalization of the
Mermin inequalities for the scenario ð3; 2;ΔÞ was presented
by Grandjean et al. (2012); these inequalities are known to be
tight for Δ ≤ 8. For n ¼ 3, m ¼ 2, and Δ ¼ 3, 4, and 5, tight
inequalities were given by Chen et al. (2008).
Note also that there exist functional Bell inequalities which

can be defined for an infinite number of settings (Sen(De),
Sen, and Zukowski, 2002).

c. Bell inequalities detecting genuine multipartite nonlocality

Svetlichny (1987) derived the first inequality for testing
genuine multipartite nonlocality in the case (3,2,2). This
inequality was later generalized to an arbitrary number of
parties, e.g., to the scenario ðn; 2; 2Þ (Collins, Gisin, Popescu
et al., 2002; Seevinck and Svetlichny, 2002). Bancal, Gisin,
and Pironio (2010) also introduced more inequalities for the
simplest case (3,2,2).
Svetlichny's inequality was also generalized to a more

general scenario ðn; 2;ΔÞ by Bancal, Brunner et al. (2011) and
ðn;m;ΔÞ by Bancal, Branciard et al. (2012).
Barrett, Pironio et al. (2013) discussed various definitions

of the concept of genuine multipartite nonlocality and intro-
duced inequalities for testing each of these models in the
scenario (3,2,2).
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