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Preface

The electronic properties of semiconductors form the basis of the latest
and current technological revolution, the development of ever smaller and
more powerful computing devices, which affect not only the potential of
modern science but practically all aspects of our daily life. This dramatic
development is based on the ability to engineer the electronic properties
of semiconductors and to miniaturize devices down to the limits set by
quantum mechanics, thereby allowing a large scale integration of many
devices on a single semiconductor chip.

Parallel to the development of electronic semiconductor devices, and no
less spectacular, has been the technological use of the optical properties of
semiconductors. The fluorescent screens of television tubes are based on
the optical properties of semiconductor powders, the red light of GaAs light
emitting diodes is known to all of us from the displays of domestic appli-
ances, and semiconductor lasers are used to read optical discs and to write
in laser printers. Furthermore, fiber-optic communications, whose light
sources, amplifiers and detectors are again semiconductor electro-optical
devices, are expanding the capacity of the communication networks dra-
matically.

Semiconductors are very sensitive to the addition of carriers, which can
be introduced into the system by doping the crystal with atoms from an-
other group in the periodic system, electronic injection, or optical excita-
tion. The electronic properties of a semiconductor are primarily determined
by transitions within one energy band, i.e., by intraband transitions, which
describe the transport of carriers in real space. Optical properties, on the
other hand, are connected with transitions between the valence and con-
duction bands, i.e., with interband transitions. However, a strict separation
is impossible. Electronic devices such as a p-n diode can only be under-
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stood if one considers also interband transitions, and many optical devices
cannot be understood if one does not take into account the effects of in-
traband scattering, carrier transport and diffusion. Hence, the optical and
electronic semiconductor properties are intimately related and should be
discussed jointly.

Modern crystal growth techniques make it possible to grow layers of
semiconductor material which are narrow enough to confine the electron
motion in one dimension. In such quantum-well structures, the electron
wave functions are quantized like the standing waves of a particle in a square
well potential. Since the electron motion perpendicular to the quantum-
well layer is suppressed, the semiconductor is quasi-two-dimensional. In this
sense, it is possible to talk about low-dimensional systems such as quantum
wells, quantum wires, and quantum dots which are effectively two, one and
zero dimensional.

These few examples suffice to illustrate the need for a modern textbook
on the electronic and optical properties of semiconductors and semiconduc-
tor devices. There is a growing demand for solid-state physicists, electri-
cal and optical engineers who understand enough of the basic microscopic
theory of semiconductors to be able to use effectively the possibilities to
engineer, design and optimize optical and electronic devices with certain
desired characteristics.

In this fourth edition, we streamlined the presentation of the mate-
rial and added several new aspects. Many results in the different chapters
are developed in parallel first for bulk material, and then for quasi-two-
dimensional quantum wells and for quasi-one-dimensional quantum wires,
respectively. Semiconductor quantum dots are treated in a separate chap-
ter. The semiconductor Bloch equations have been given a central position.
They have been formulated not only for free particles in various dimensions,
but have been given, e.g., also in the Landau basis for low-dimensional elec-
trons in strong magnetic fields or in the basis of quantum dot eigenfunctions.
The Bloch equations are extended to include correlation and scattering ef-
fects at different levels of approximation. Particularly, the relaxation and
the dephasing in the Bloch equations are treated not only within the semi-
classical Boltzmann kinetics, but also within quantum kinetics, which is
needed for ultrafast semiconductor spectroscopy. The applications of these
equations to time-dependent and coherent phenomena in semiconductors
have been extended considerably, e.g., by including separate chapters for
the excitonic optical Stark effect and various nonlinear wave-mixing config-
urations. The presentation of the nonequilibrium Green’s function theory
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has been modified to present both introductory material as well as appli-
cations to Coulomb carrier scattering and time-dependent screening. In
several chapters, direct comparisons of theoretical results with experiments
have been included.

This book is written for graduate-level students or researchers with gen-
eral background in quantum mechanics as an introduction to the quantum
theory of semiconductors. The necessary many-particle techniques, such as
field quantization and Green’s functions are developed explicitly. Wherever
possible, we emphasize the motivation of a certain derivation and the phy-
sical meaning of the results, avoiding the discussion of formal mathematical
aspects of the theory. The book, or parts of it, can serve as textbook for
use in solid state physics courses, or for more specialized courses on elec-
tronic and optical properties of semiconductors and semiconductor devices.
Especially the later chapters establish a direct link to current research in
semicoductor physics. The material added in the fourth edition should
make the book as a whole more complete and comprehensive.

Many of our colleagues and students have helped in different ways to
complete this book and to reduce the errors and misprints. We especially
wish to thank L. Banyai, R. Binder, C. Ell, I. Galbraith, Y.Z. Hu, M. Kira,
M. Lindberg, T. Meier, and D.B. Tran-Thoai for many scientific discus-
sions and help in several calculations. We appreciate helpful suggestions
and assistance from our present and former students S. Benner, K. El-
Sayed, W. Hoyer, J. Müller, M. Pereira, E. Reitsamer, D. Richardson, C.
Schlichenmaier, S. Schuster, Q.T. Vu, and T. Wicht. Last but not least we
thank R. Schmid, Marburg, for converting the manuscript to Latex and for
her excellent work on the figures.

Frankfurt and Marburg Hartmut Haug
August 2003 Stephan W. Koch
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Chapter 1

Oscillator Model

The valence electrons, which are responsible for the binding of the atoms
in a crystal can either be tightly bound to the ions or can be free to move
through the periodic lattice. Correspondingly, we speak about insulators
and metals. Semiconductors are intermediate between these two limiting
cases. This situation makes semiconductors extremely sensitive to imper-
fections and impurities, but also to excitation with light. Before techniques
were developed allowing well controlled crystal growth, research in semi-
conductors was considered by many physicists a highly suspect enterprise.

Starting with the research on Ge and Si in the 1940’s, physicists learned
to exploit the sensitivity of semiconductors to the content of foreign atoms
in the host lattice. They learned to dope materials with specific impuri-
ties which act as donors or acceptors of electrons. Thus, they opened the
field for developing basic elements of semiconductor electronics, such as
diodes and transistors. Simultaneously, semiconductors were found to have
a rich spectrum of optical properties based on the specific properties of the
electrons in these materials.

Electrons in the ground state of a semiconductor are bound to the ions
and cannot move freely. In this state, a semiconductor is an insulator. In
the excited states, however, the electrons are free, and become similar to the
conduction electrons of a metal. The ground state and the lowest excited
state are separated by an energy gap. In the spectral range around the
energy gap, pure semiconductors exhibit interesting linear and nonlinear
optical properties. Before we discuss the quantum theory of these optical
properties, we first present a classical description of a dielectric medium
in which the electrons are assumed to be bound by harmonic forces to the
positively charged ions. If we excite such a medium with the periodic trans-
verse electric field of a light beam, we induce an electrical polarization due

1
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to microscopic displacement of bound charges. This oscillator model for
the electric polarization was introduced in the pioneering work of Lorentz,
Planck, and Einstein. We expect the model to yield reasonably realistic
results as long as the light frequency does not exceed the frequency corre-
sponding to the energy gap, so that the electron stays in its bound state.

We show in this chapter that the analysis of this simple model already
provides a qualitative understanding of many basic aspects of light–matter
interaction. Furthermore, it is useful to introduce such general concepts as
optical susceptibility, dielectric function, absorption and refraction, as well
as Green’s function.

1.1 Optical Susceptibility

The electric field, which is assumed to be polarized in the x-
direction, causes a displacement x of an electron with a charge
e � −1.6 10−16 C � −4.8 10−10 esu from its equilibrium position. The re-
sulting polarization, defined as dipole moment per unit volume, is

P =
P

L3
= n0ex = n0d , (1.1)

where L3 = V is the volume, d = ex is the electric dipole moment, and
n0 is the mean electron density per unit volume. Describing the electron
under the influence of the electric field E(t) (parallel to x) as a damped
driven oscillator, we can write Newton’s equation as

m0
d2x

dt2
= −2m0γ

dx

dt
−m0ω

2
0x+ eE(t) , (1.2)

where γ is the damping constant, andm0 and ω0 are the mass and resonance
frequency of the oscillator, respectively. The electric field is assumed to be
monochromatic with a frequency ω, i.e., E(t) = E0 cos(ωt). Often it is
convenient to consider a complex field

E(t) = E(ω)e−iωt (1.3)

and take the real part of it whenever a final physical result is calculated.
With the ansatz

x(t) = x(ω)e−iωt (1.4)
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we get from Eq. (1.2)

m0(ω2 + i2γω − ω2
0)x(ω) = −eE(ω) (1.5)

and from Eq. (1.1)

P(ω) = −n0e
2

m0

1
ω2 + i2γω − ω2

0

E(ω) . (1.6)

The complex coefficient between P(ω) and E(ω) is defined as the optical
susceptibility χ(ω). For the damped driven oscillator, this optical suscep-
tibility is

χ(ω) = − n0e
2

2m0ω
′
0

(
1

ω − ω′
0 + iγ

− 1

ω + ω′
0 + iγ

)
. (1.7)

optical susceptibility

Here,

ω′
0 =

√
ω2
0 − γ2 (1.8)

is the resonance frequency that is renormalized (shifted) due to the damp-
ing. In general, the optical susceptibility is a tensor relating different vector
components of the polarization Pi and the electric field Ei. An important
feature of χ(ω) is that it becomes singular at

ω = −iγ ± ω′
0 . (1.9)

This relation can only be satisfied if we formally consider complex frequen-
cies ω = ω′ + iω′′. We see from Eq. (1.7) that χ(ω) has poles in the lower
half of the complex frequency plane, i.e. for ω′′ < 0, but it is an analytic
function on the real frequency axis and in the whole upper half plane. This
property of the susceptibility can be related to causality, i.e., to the fact
that the polarization P(t) at time t can only be influenced by fields E(t−τ)
acting at earlier times, i.e., τ ≥ 0. Let us consider the most general linear
relation between the field and the polarization

P(t) =
∫ t

−∞
dt′χ(t, t′)E(t′) . (1.10)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

4 Quantum Theory of the Optical and Electronic Properties of Semiconductors

Here, we take both P(t) and E(t) as real quantities so that χ(t) is a real
quantity as well. The response function χ(t, t′) describes the memory of the
system for the action of fields at earlier times. Causality requires that fields
E(t′) which act in the future, t′ > t, cannot influence the polarization of the
system at time t. We now make a transformation to new time arguments
T and τ defined as

T =
t+ t′

2
and τ = t− t′ . (1.11)

If the system is in equilibrium, the memory function χ(T, τ) depends only
on the time difference τ and not on T , which leads to

P(t) =
∫ t

−∞
dt′χ(t− t′)E(t′)

=
∫ ∞

0

dτχ(τ)E(t − τ). (1.12)

Next, we use a Fourier transformation to convert Eq. (1.12) into frequency
space. For this purpose, we define the Fourier transformation f(ω) of a
function f(t) through the relations

f(ω) =
∫ ∞

−∞
dtf(t)eiωt

f(t) =
∫ ∞

−∞

dω

2π
f(ω)e−iωt . (1.13)

Using this Fourier representation for x(t) and E(t) in Eq. (1.2), we find for
x(ω) and E(ω) again the relation (1.5) and thus the resulting susceptibility
(1.7), showing that the ansatz (1.3) – (1.4) is just a shortcut for a solution
using the Fourier transformation.

Multiplying Eq. (1.12) by eiωt and integrating over t , we get

P(ω) =
∫ ∞

0

dτχ(τ)eiωτ
∫ +∞

−∞
dtE(t − τ)eiω(t−τ) = χ(ω)E(ω) , (1.14)

where

χ(ω) =
∫ ∞

0

dτχ(τ)eiωτ . (1.15)
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The convolution integral in time, Eq. (1.12), becomes a product in Fourier
space, Eq. (1.14). The time-dependent response function χ(t) relates two
real quantities, E(t) and P(t), and therefore has to be a real function itself.
Hence, Eq. (1.15) implies directly that χ∗(ω) = χ(−ω) or χ′(ω) = χ′(−ω)
and χ′′(ω) = −χ′′(−ω). Moreover, it also follows that χ(ω) is analytic for
ω′′ ≥ 0, because the factor e−ω′′τ forces the integrand to zero at the upper
boundary, where τ →∞.

Since χ(ω) is an analytic function for real frequencies we can use the
Cauchy relation to write

χ(ω) =
∫ +∞

−∞

dν

2πi
χ(ν)

ν − ω − iδ , (1.16)

where δ is a positive infinitesimal number. The integral can be evaluated
using the Dirac identity (see problem (1.1))

lim
δ→0

1
ω − iδ = P

1
ω
+ iπδ(ω) , (1.17)

where P denotes the principal value of an integral under which this relation
is used. We find

χ(ω) = P

∫ +∞

−∞

dν

2πi
χ(ν)
ν − ω +

1
2

∫ +∞

−∞
dνχ(ν)δ(ν − ω) . (1.18)

For the real and imaginary parts of the susceptibility, we obtain separately

χ′(ω) = P

∫ +∞

−∞

dν

π

χ′′(ν)
ν − ω (1.19)

χ′′(ω) = −P
∫ +∞

−∞

dν

π

χ′(ν)
ν − ω . (1.20)

Splitting the integral into two parts

χ′(ω) = P

∫ 0

−∞

dν

π

χ′′(ν)
ν − ω + P

∫ +∞

0

dν

π

χ′′(ν)
ν − ω (1.21)

and using the relation χ′′(ω) = −χ′′(−ω), we find

χ′(ω) = P

∫ +∞

0

dν

π
χ′′(ν)

(
1

ν + ω
+

1
ν − ω

)
. (1.22)

Combining the two terms yields
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χ′(ω) = P

∫ +∞

0

dν

π
χ′′(ν)

2ν

ν2 − ω2
. (1.23)

Kramers–Kronig relation

This is the Kramers–Kronig relation, which allows us to calculate the real
part of χ(ω) if the imaginary part is known for all positive frequencies. In
realistic situations, one has to be careful with the use of Eq. (1.23), because
χ′′(ω) is often known only in a finite frequency range. A relation similar
to Eq. (1.23) can be derived for χ′′ using (1.20) and χ′(ω) = χ′(−ω), see
problem (1.3).

1.2 Absorption and Refraction

Before we give any physical interpretation of the susceptibility obtained
with the oscillator model we will establish some relations to other important
optical coefficients. The displacement field D(ω) can be expressed in terms
of the polarization P(ω) and the electric field1

D(ω) = E(ω) + 4πP(ω) = [1 + 4πχ(ω)]E(ω) = ε(ω)E(ω) , (1.24)

where the optical (or transverse) dielectric function ε(ω) is obtained from
the optical susceptibility (1.7) as

ε(ω) = 1 + 4πχ(ω) = 1− ω2
pl

2ω′
0

(
1

ω−ω′
0+iγ

− 1
ω+ω′

0+iγ

)
.

(1.25)

optical dielectric function

Here, ωpl denotes the plasma frequency of an electron plasma with the mean
density n0 :

1We use cgs units in most parts of this book.
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ωpl =

√
4πn0e2

m0

. (1.26)

plasma frequency

The plasma frequency is the eigenfrequency of the electron plasma density
oscillations around the position of the ions. To illustrate this fact, let us
consider an electron plasma of density n(r, t) close to equilibrium. The
equation of continuity is

e
∂n

∂t
+ div j = 0 (1.27)

with the current density

j(r, t) = en(r, t)v(r, t) . (1.28)

The source equation for the electric field is

divE = 4πe(n− n0) (1.29)

and Newton’s equation for free carriers can be written as

m0
∂v
∂t

= eE . (1.30)

We now linearize Eqs. (1.27) – (1.29) around the equilibrium state where
the velocity is zero and no fields exist. Inserting

n = n0 + δn1 +O(δ2)
v = δv1 +O(δ2)
E = δE1 +O(δ2) (1.31)

into Eqs. (1.27) – (1.30) and keeping only terms linear in δ, we obtain

∂n1
∂t

+ n0divv1 = 0 , (1.32)

divE1 = 4πen1 , (1.33)
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and

m0
∂v1
∂t

= eE1. (1.34)

The equation of motion for n1 can be derived by taking the time derivative
of Eq. (1.32) and using Eqs. (1.33) and (1.34) to get

∂2n1
∂t2

= −n0div∂v1
∂t

= −n0e
m0

divE1 = −ω2
pln1 . (1.35)

This simple harmonic oscillator equation is the classical equation for charge
density oscillations with the eigenfrequency ωpl around the equilibrium den-
sity n0.

Returning to the discussion of the optical dielectric function (1.25), we
note that ε(ω) has poles at ω = ±ω′

0 − iγ, describing the resonant and the
nonresonant part, respectively. If we are interested in the optical response in
the spectral region around ω0 and if ω0 is sufficiently large, the nonresonant
part gives only a small contribution and it is often a good approximation
to neglect it completely.

In order to simplify the resulting expressions, we now consider only
the resonant part of the dielectric function and assume ω0 >> γ, so that
ω0 � ω′

0 and

ε(ω) = 1− ω2
pl

2ω0
1

ω − ω0 + iγ
. (1.36)

For the real part of the dielectric function, we thus get the relation

ε′(ω)− 1 = − ω
2
pl

2ω0
ω − ω0

(ω − ω0)2 + γ2
, (1.37)

while the imaginary part has the following resonance structure

ε′′(ω) =
ω2
pl

4ω0
2γ

(ω − ω0)2 + γ2
. (1.38)

Examples of the spectral variations described by Eqs. (1.37) and (1.38) are
shown in Fig. 1.1. The spectral shape of the imaginary part is determined
by the Lorentzian line-shape function 2γ/[(ω − ω0)2 + γ2]. It decreases
asymptomatically like 1/(ω−ω0)2, while the real part of ε(ω) decreases like
1/(ω − ω0) far away from the resonance.
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Fig. 1.1 Dispersion of the real and imaginary part of the dielectric function, Eq. (1.37)
and (1.38), respectively. The broadening is taken as γ/ω0 = 0.1 and ε′′max = ω2

pl/2γωo.

In order to understand the physical information contained in ε′(ω) and
ε′′(ω), we consider how a light beam propagates in the dielectric medium.
From Maxwell’s equations

curlH(r, t) =
1
c

∂

∂t
D(r, t) (1.39)

curlE(r, t) = −1
c

∂

∂t
B(r, t) (1.40)

we find with B(r, t) = H(r, t), which holds at optical frequencies,

curl curlE(r, t) = −1
c

∂

∂t
curlH(r, t) = − 1

c2
∂2

∂t2
D(r, t) . (1.41)

Using curl curl = grad div − ∆, we get for a transverse electric field with
divE(r, t) = 0, the wave equation

∆E(r, t) − 1
c2

∂2

∂t2
D(r, t) = 0 . (1.42)

Here, ∆ ≡ ∇2 is the Laplace operator. A Fourier transformation of
Eq. (1.42) with respect to time yields

∆E(r, ω) + ω2

c2
ε′(ω)E(r, ω) + i

ω2

c2
ε′′(ω)E(r, ω) = 0 . (1.43)
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For a plane wave propagating with wave number k(ω) and extinction coef-
ficient κ(ω) in the z direction,

E(r, ω) = E0(ω)ei[k(ω)+iκ(ω)]z , (1.44)

we get from Eq. (1.43)

[k(ω) + iκ(ω)]2 =
ω2

c2
[ε′(ω) + iε′′(ω)] . (1.45)

Separating real and imaginary part of this equation yields

k2(ω)− κ2(ω) = ω2

c2
ε′(ω) , (1.46)

2κ(ω)k(ω) =
ω2

c2
ε′′(ω) . (1.47)

Next, we introduce the index of refraction n(ω) as the ratio between the
wave number k(ω) in the medium and the vacuum wave number k0 = ω/c

k(ω) = n(ω)
ω

c
(1.48)

and the absorption coefficient α(ω) as

α(ω) = 2κ(ω) . (1.49)

The absorption coefficient determines the decay of the intensity I ∝ |E|2 in
real space. 1/α is the length, over which the intensity decreases by a factor
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1/e. From Eqs. (1.46) – (1.49) we obtain the relations

n(ω) =

√
1

2

[
ε′(ω) +

√
ε′2(ω) + ε′′2(ω)

]
(1.50)

index of refraction

and

α(ω) =
ω

n(ω)c
ε′′(ω) . (1.51)

absorption coefficient

Hence, Eqs. (1.38) and (1.51) yield a Lorentzian absorption line, and
Eqs. (1.37) and (1.50) describe the corresponding frequency-dependent in-
dex of refraction. Note that for ε′′(ω) << ε′(ω), which is often true in
semiconductors, Eq. (1.50) simplifies to

n(ω) �
√
ε′(ω) . (1.52)

Furthermore, if the refractive index n(ω) is only weakly frequency-
dependent for the ω-values of interest, one may approximate Eq. (1.51)
as

α(ω) � ω

nbc
ε′′(ω) =

4πω
nbc

χ′′(ω) , (1.53)

where nb is the background refractive index.
For the case γ → 0, i.e., vanishing absorption line width, the line-shape

function approaches a delta function (see problem 1.3)

lim
γ→0

2γ
(ω − ω0)2 + γ2

= 2πδ (ω − ω0) . (1.54)

In this case, we get

ε′′(ω) = π
ω2
pl

2ω0
δ(ω − ω0) (1.55)
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and the real part becomes

ε′(ω) = 1− ω2
pl

2ω0
1

ω − ω0 . (1.56)

1.3 Retarded Green’s Function

An alternative way of solving the inhomogeneous differential equation

m0

(
∂2

∂t2
+ 2γ

∂

∂t
+ ω2

0

)
x(t) = eE(t) (1.57)

is obtained by using the Green’s function of Eq. (1.57). The so-called
retarded Green’s function G(t − t′) is defined as the solution of Eq. (1.57),
where the inhomogeneous term eE(t) is replaced by a delta function

m0

(
∂2

∂t2
+ 2γ

∂

∂t
+ ω2

0

)
G(t− t′) = δ(t− t′) . (1.58)

Fourier transformation yields

G(ω) = − 1
m0

1
ω2 + i2γω− ω2

0

= − 1
2m0ω′

0

(
1

ω − ω′
0 + iγ

− 1
ω + ω′

0 + iγ

)
, (1.59)

retarded Green’s function of an oscillator

where ω′
0 is defined in Eq. (1.8). In terms of G(t − t′), the solution of

Eq. (1.57) is then

x(t) =
∫ +∞

−∞
dt′G(t− t′)eE(t′) , (1.60)

as can be verified by inserting (1.60) into (1.57). Note, that the general solu-
tion of an inhomogeneous linear differential equation is obtained by adding
the solution (1.60) of the inhomogeneous equation to the general solution
of the homogeneous equation. However, since we are only interested in the
induced polarization, we just keep the solution (1.60).
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In general, the retarded Green’s function G(t− t′) has the properties

G(t− t′) =
[
finite

0

]
for

[
t ≥ t′

t < t′

]
(1.61)

or

G(τ) ∝ θ(τ) ,

where θ(τ) is the unit-step or Heavyside function

θ(τ) =
[
1
0

]
for

[
τ ≥ 0
τ < 0

]
. (1.62)

For τ < 0 we can close in (1.60) the integral by a circle with an infinite
radius in the upper half of the complex frequency plane since

lim
|ω|→∞

ei(ω
′+iω′′)|τ | = lim

|ω|→∞
eiω

′τe−ω′′|τ | = 0 . (1.63)

As can be seen from (1.59), G(ω) has no poles in the upper half plane
making the integral zero for τ < 0. For τ ≥ 0 we have to close the contour
integral in the lower half plane, denoted by C, and get

G(τ) = − 1
2m0ω′

0

θ(τ)
∫
C�

dω

2π
e−iωτ

(
1

ω − ω′
0 + iγ

− 1
ω + ω′

0 + iγ

)

= iθ(τ)
1

2m0ω′
0

[e−(iω′
0+γ)τ − e(iω′

0−γ)τ ] . (1.64)

The property that G(τ) = 0 for τ < 0 is the reason for the name retarded
Green’s function which is often indicated by a superscript r, i.e.,

Gr(τ) = 0 for τ < 0←→ Gr(ω) = analytic for ω′′ ≥ 0 . (1.65)

The Fourier transform of Eq. (1.60) is

x(ω) =
∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiω(t−t′)G(t− t′)eiωt′eE(t′)

= eG(ω)E(ω) . (1.66)

With P(ω) = en0x(ω) = χ(ω)E(ω) we obtain

χ(ω) = n0e
2G(ω) (1.67)
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χ(ω) = − n0e
2

2mω′
0

(
1

ω − ω′
0 + iγ

− 1
ω + ω′

0 + iγ

)
(1.68)

in agreement with Eq. (1.7).
This concludes the introductory chapter. In summary, we have dis-

cussed the most important optical coefficients, their interrelations, analytic
properties, and explicit forms in the oscillator model. It turns out that this
model is often sufficient for a qualitatively correct description of isolated
optical resonances. However, as we progress to describe the optical proper-
ties of semiconductors, we will see the necessity to modify and extend this
simple model in many respects.
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PROBLEMS

Problem 1.1: Prove the Dirac identity

1
r ∓ iε = P

1
r
± iπδ(r) , (1.69)

where ε→ 0 and use of the formula under an integral is implied.
Hint: Write Eq. (1.69) under the integral from −∞ to +∞ and integrate
in pieces from −∞ to −ε, from −ε to +ε and from +ε to +∞.

Problem 1.2: Derive the Kramers–Kronig relation relating χ′′(ω) to the
integral over χ′(ω).

Problem 1.3: Show that the Lorentzian

f(ω) =
1
π

γ

(ω − ω0)2 + γ2
(1.70)
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approaches the delta function δ(ω − ω0) for γ → 0.

Problem 1.4: Verify Eq. (1.56) by evaluating the Kramers–Kronig trans-
formation of Eq. (1.55). Note, that only the resonant part of Eq. (1.22)
should be used in order to be consistent with the resonant term approxi-
mation in Eq. (1.36).

Problem 1.5: Use Eq. (1.13) to show that∫ ∞

−∞
dω eiωt = 2πδ(t).
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Chapter 2

Atoms in a Classical Light Field

Semiconductors like all crystals are periodic arrays of one or more types
of atoms. A prototype of a semiconductor is a lattice of group IV atoms,
e.g. Si or Ge, which have four electrons in the outer electronic shell. These
electrons participate in the covalent binding of a given atom to its four
nearest neighbors which sit in the corners of a tetrahedron around the given
atom. The bonding states form the valence bands which are separated by an
energy gap from the energetically next higher states forming the conduction
band.

In order to understand the similarities and the differences between op-
tical transitions in a semiconductor and in an atom, we will first give an
elementary treatment of the optical transitions in an atom. This chap-
ter also serves to illustrate the difference between a quantum mechanical
derivation of the polarization and the classical theory of Chap. 1.

2.1 Atomic Optical Susceptibility

The stationary Schrödinger equation of a single electron in an atom is

H0ψn(r) = �εnψn(r) , (2.1)

where �εn and ψn are the energy eigenvalues and the corresponding eigen-
functions, respectively. For simplicity, we discuss the example of the hy-
drogen atom which has only a single electron. The Hamiltonian H0 is then
given by the sum of the kinetic energy operator and the Coulomb potential
in the form

H0 = −�
2∇2

2m0
− e2

r
. (2.2)

17
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An optical field couples to the dipole moment of the atom and introduces
time-dependent changes of the wave function

i�
∂ψ(r, t)
∂t

= [H0 +HI(t)]ψ(r, t) (2.3)

with

HI(t) = −exE(t) = −dE(t) . (2.4)

Here, d is the operator for the electric dipole moment and we assumed that
the homogeneous electromagnetic field is polarized in x-direction. Expand-
ing the time-dependent wave functions into the stationary eigenfunctions
of Eq. (2.1)

ψ(r, t) =
∑
m

am(t)e−iεmtψm(r) , (2.5)

inserting into Eq. (2.3), multiplying from the left by ψ∗
n(r) and integrating

over space, we find for the coefficients an the equation

i�
dan
dt

= −E(t)
∑
m

e−iεmnt〈n|d|m〉am , (2.6)

where

εmn = εm − εn (2.7)

is the frequency difference and

〈n|d|m〉 =
∫
d3rψ∗

n(r)dψm(r) ≡ dnm (2.8)

is the electric dipole matrix element. We assume that the electron was
initially at t→ −∞ in the state |l〉, i.e.,

an(t→ −∞) = δn,l . (2.9)

Now we solve Eq. (2.6) iteratively taking the field as perturbation. For this
purpose, we introduce the smallness parameter ∆ and expand

an = a(0)n +∆a(1)n + . . . (2.10)

and

E(t)→ ∆E(t) . (2.11)
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Inserting (2.10) and (2.11) into Eq. (2.6), we obtain in order ∆0

da
(0)
n

dt
= 0 , (2.12)

which is satisfied by

a(0)n = δn,l . (2.13)

In first order of ∆, we have

i�
da

(1)
n

dt
= −E(t)dnle−iεlnt . (2.14)

For n = l there is no field-dependent contribution, i.e., a(i)l ≡ 0 for i ≥ 1,
since dll = 0. Integrating Eq. (2.14) for n �= l from −∞ to t yields

a(1)n (t) = − 1
i�

∫ t

−∞
dt′E(t′)dnle−iεlnt

′
, (2.15)

where a(1)n (t = −∞) = 0 has been used. This condition is valid since we
assumed that the electron is in state l without the field, Eq. (2.9).

To solve the integral in Eq. (2.15), we express the field through its
Fourier transform

E(t) = lim
γ→0

∫
dω

2π
E(ω)e−iωteγt . (2.16)

Here, we introduced the adiabatic switch-on factor exp(γt), to assure that
E(t)→ 0 when t→ −∞. We will see below that the switch-on parameter γ
plays the same role as the infinitesimal damping parameter of Chap. 1. The
existence of γ makes sure that the resulting optical susceptibility has poles
only in the lower half of the complex plane, i.e., causality is obeyed. For
notational simplicity, we will drop the limγ→0 in front of the expressions,
but it is understood that this limit is always implied. Inserting Eq. (2.16)
into Eq. (2.15) we obtain

a(1)n (t) = −dnl
�

∫
dω

2π
E(ω) e

−i(ω+εln)t

ω + εln + iγ
, (2.17)

where we let γ → 0 in the exponent after the integration.
If we want to generate results in higher-order perturbation theory, we

have to continue the iteration by inserting the first-order result into the
RHS of (2.6) and calculate this way a(2) etc. These higher-order terms
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contain quadratic and higher powers of the electric field. However, we are
limiting ourselves to the terms linear in the field, i.e. we employ linear
response theory.

The total wave function (2.5) is now

ψ(r, t) = e−iεlt

[
ψl(r)

−
∑
m �=l

dlm
�
ψm(r)

∫
dω

2π
E(ω) e−iωt

ω + εlm + iγ

]
+O(E2) . (2.18)

The field-induced polarization is given as the expectation value of the
dipole operator

P(t) = n0

∫
d3rψ∗(r, t)dψ(r, t) , (2.19)

where n0 is the density of the mutually independent (not interacting) atoms
in the system. Inserting the wave function (2.18) into Eq. (2.19), and keep-
ing only terms which are first order in the field, we obtain the polarization
as

P(t) = −n0
∑
m

|dlm|2
�

∫
dω

2π

[
E(ω) e−iωt

ω + εlm + iγ
+ E∗(ω) eiωt

ω + εlm − iγ
]
.

(2.20)

In the integral over the last term, we substitute ω → −ω and use E∗(−ω) =
E(ω), which is valid since E(t) is real. This way we get

P(t) = −n0
∑
m

|dlm|2
�

∫
dω

2π
E(ω)e−iωt

[
1

ω + εlm + iγ
− 1
ω − εlm + iγ

]

=
∫

dω

2π
P(ω)e−iωt . (2.21)
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This equation yields P(ω) = χ(ω)E(ω) with the optical susceptibility

χ(ω) = −n0

�

∑
m

|dlm|2
(

1

ω + εlm + iγ
− 1

ω − εlm + iγ

)
. (2.22)

atomic optical susceptibility

2.2 Oscillator Strength

If we compare the atomic optical susceptibility, Eq. (2.22), with the result
of the oscillator model, Eq. (1.7), we see that both expressions have similar
structures. However, in comparison with the oscillator model the atom is
represented not by one but by many oscillators with different transition
frequencies εln. To see this, we rewrite the expression (2.22), pulling out
the same factors which appear in the oscillator result, Eq. (1.7),

χ(ω) =
n0e

2

2m0

∑
n

fnl
εnl

(
1

ω − εln + iγ
− 1
ω + εln + iγ

)
. (2.23)

Hence, each partial oscillator has the strength of

fnl =
2m0

�
|xnl|2εnl . (2.24)

oscillator strength

Here, we used |dnl|2 = e2|xnl|2. Adding the strengths of all oscillators by
summing over all the final states n, we find

∑
n

fnl =
2m0

�

∑
n

〈n|x|l〉〈l|x|n〉(εn − εl) . (2.25)

Using the Schrödinger equation H0|n〉 = �εn|n〉, we can write

〈l|x|n〉(εn − εl) = 1
�
〈l|[x,H0]|n〉 = −1

�
〈l|[H0, x]|n〉 , (2.26)
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where [H0, x] = xH0−H0x is the commutator of x andH0. Inserting (2.26)
into (2.25) and using the completeness relation

∑
n |n〉〈n| = 1 we get

∑
n

fnl = −2m0

�2
〈l|[H0, x]x|l〉 . (2.27)

Alternatively to (2.26), we can also manipulate the first term in Eq. (2.25)
by writing

〈n|x|l〉(εn − εl) = 〈n|[H0, x]|l〉 , (2.28)

so that

∑
n

fnl =
2m0

�2
〈l|x[H0, x]|l〉 . (2.29)

Adding Eqs. (2.27) and (2.29) and dividing by two shows that the sum over
the oscillator strength is given by a double commutator

∑
n

fnl =
m0

�2
〈l|[x, [H0, x]]|l〉 = m0

�2
〈l|[[x,H0], x]|l〉 . (2.30)

The double commutator can be evaluated easily using

[x,H0] = − �
2

2m0

(
x
d2

dx2
− d2

dx2
x

)
=

�
2

m0

d

dx
=

i�

m0
px (2.31)

and

[px, x] = −i� (2.32)

to get

∑
n

fnl = 1 . (2.33)

oscillator strength sum rule

Eq. (2.33) is the oscillator strength sum rule showing that the total tran-
sition strength in an atom can be viewed as that of one oscillator which is
distributed over many partial oscillators, each having the strength fnl.
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Writing the imaginary part of the dielectric function of the atom as
ε′′(ω) = 4πχ′′(ω), using χ(ω) from Eq. (2.23) and employing the Dirac
identity, Eq. (1.69), we obtain

ε′′(ω) = ω2
pl

π

2

∑
n

fnl
εnl

[δ(ω − εnl)− δ(ω − εln)] , (2.34)

with ω2
pl = 4πn0e2/m0. Since |l〉 is the occupied initial state and |n〉 are

the final states, we see that the first term in Eq. (2.34) describes light
absorption. Energy conservation requires

�εn = �ω + �εl , (2.35)

i.e., an optical transition from the lower state |l〉 to the energetically higher
state |n〉 takes place if the energy difference �εnl is equal to the energy �ω

of a light quantum, called a photon. In other words, a photon is absorbed
and the atom is excited from the initial state |l〉 to the final state |n〉. This
interpretation of our result is the correct one, but to be fully appreciated it
actually requires also the quantum mechanical treatment of the light field.

The second term on the RHS of Eq. (2.34) describes negative absorption
causing amplification of the light field, i.e., optical gain. This is the basis of
laser action. In order to produce optical gain, the system has to be prepared
in a state |l〉 which has a higher energy than the final state |n〉, because the
energy conservation expressed by the delta function in the second term on
the RHS of (2.34) requires

�εl = �ω + �εn . (2.36)

If the energy of a light quantum equals the energy difference �εln, stimulated
emission occurs. In order to obtain stimulated emission in a real system,
one has to invert the system so that it is initially in an excited state rather
than in the ground state.

2.3 Optical Stark Shift

Until now we have only calculated and discussed the linear response of an
atom to a weak light field. For the case of two atomic levels interacting
with the light field, we will now determine the response at arbitrary field
intensities. Calling these two levels n = 1, 2 with

ε2 > ε1 , (2.37)
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we get from Eq. (2.6) the following two coupled differential equations:

i�
da1
dt

= −E(t)e−iε21td12a2 , (2.38)

i�
da2
dt

= −E(t)e−iε21td21a1 , (2.39)

where we used dii = 0. Assuming a simple monochromatic field of the form

E(t) = 1
2
E(ω)(e−iωt + c.c.) (2.40)

yields

i�
da1
dt

= −d12 E(ω)2

[
e−i(ω+ε21)t + ei(ω−ε21)t

]
a2 , (2.41)

i�
da2
dt

= −d21 E(ω)2

[
e−i(ω−ε21)t + ei(ω+ε21)t

]
a1 , (2.42)

where ε12 = −ε21 has been employed. These two coupled differential equa-
tions are often called the optical Bloch equations. If we are interested only
in the light-induced changes around the resonance,

ω � ε2 − ε1 , (2.43)

we see that the exponential factor exp[i(ω − ε21)t] is almost time-
independent, whereas the second exponential exp[i(ω+ε21)t] oscillates very
rapidly. If we keep both terms, we would find that exp[i(ω− ε21)t] leads to
the resonant term proportional to

1
(ω − ε21) + iγ

→ P
1

ω − ε21 − iπδ(ω − ε21) (2.44)

in the susceptibility, whereas exp[i(ω+ ε21)t] leads to the nonresonant term
proportional to

1
(ω + ε21) + iγ

→ P
1

ω + ε21
− iπδ(ω + ε21) . (2.45)

For optical frequencies satisfying (2.43), the δ-function in (2.45) cannot be
satisfied since ε2 > ε1, and the principal value gives only a weak contribution
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to the real part. Hence, one often completely ignores the nonresonant parts
so that Eqs. (2.41) and (2.42) simplify to

i�
da1
dt

= −d12E(ω)
2

ei(ω−ε21)ta2 , (2.46)

i�
da2
dt

= −d21E(ω)
2

e−i(ω−ε21)ta1 . (2.47)

This approximation is also called the rotating wave approximation (RWA).
This name originates from the fact that the periodic time development
in Eqs. (2.46) and (2.47) can be represented as a rotation of the Bloch
vector (see Chap. 5). If one transforms these simplified Bloch equations
into a time frame which rotates with the frequency difference ω − ε21, the
neglected term would be ω out of phase and more or less average to zero
for longer times.

To solve Eqs. (2.46) and (2.47), we first treat the case of exact resonance,
ω = ε21. Differentiating Eq. (2.47) and inserting (2.46) we get

d2a2
dt2

= i
d21E(ω)

2�

da1
dt

= −
∣∣∣∣d12E(ω)2�

∣∣∣∣
2

a2 = −ω
2
R

4
a2 , (2.48)

where we used d21 = d∗12 and introduced the Rabi frequency as

ωR =
|d21E|

�
. (2.49)

Rabi frequency

The solution of (2.48) is of the form

a2(t) = a2(0)e±iωRt/2 . (2.50)

For a1(t) we get the equivalent result. Inserting the solutions for a1 and a2
back into Eq. (2.5) yields

ψ(r, t) = a1(0)e−i(ε1±ωR/2)tψ1(r) + a2(0)e−i(ε2±ωR/2)tψ2(r) , (2.51)

showing that the original frequencies ε1 and ε2 have been changed to ε1 ±
ωR/2 and ε2 ± ωR/2, respectively. Hence, as indicated in Fig. 2.1 one
has not just one but three optical transitions with the frequencies ε21, and
ε21 ± ωR, respectively. In other words, under the influence of the light



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

26 Quantum Theory of the Optical and Electronic Properties of Semiconductors

�2

�1

� �2 R+ 2/

� �� R+ 2/

� �2 R- 2/

� �� R- 2/

Fig. 2.1 Schematic drawing of the frequency scheme of a two-level system without
the light field (left part of Figure) and light-field induced level splitting (right part of
Figure) for the case of a resonant field, i.e., zero detuning. The vertical arrows indicate
the possible optical transitions between the levels.

field the single transition possible in two-level atom splits into a triplet,
the main transition at ε21 and the Rabi sidebands at ε21 ± ωR. Eq. (2.49)
shows that the splitting is proportional to the product of field strength and
electric dipole moment. Therefore, Rabi sidebands can only be observed
for reasonably strong fields, where the Rabi frequency is larger than the
line broadening, which is always present in real systems.

The two-level model can be solved also for the case of a finite detuning
ν = ε21 − ω. In this situation, Eqs. (2.46) and (2.47) can be written as

da1
dt

= ie−iνt d12E(ω)
2�

a2 (2.52)

da2
dt

= ieiνt
d21E(ω)

2�
a1 . (2.53)

Taking the time derivative of Eq. (2.52)

d2a1
dt2

= e−iνt d21E(ω)
2�

(
a2ν + i

da2
dt

)
, (2.54)

and expressing a2 and da2/dt in terms of a1 we get

d2a1
dt2

= −iν da1
dt
− ω2

Ra1
4

(2.55)

with the solution

a1(t) = a1(0)eiΩt (or a1(t) = a1(0)e−iΩt) , (2.56)
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where

Ω = −ν
2
± 1

2

√
ν2 + ω2

R . (2.57)

Similarly, we obtain

a2(t) = a2(0)e−iΩt (or a2(t) = a2(0)eiΩt) . (2.58)

Hence, we again get split and shifted levels

ε2 → Ω2 ≡ ε2 + Ω = ε2 − ν

2
± 1

2

√
ν2 + ω2

R (2.59)

ε1 → Ω1 ≡ ε1 − Ω = ε1 +
ν

2
± 1

2

√
ν2 + ω2

R . (2.60)

The coherent modification of the atomic spectrum in the electric field of a
light field resembles the Stark splitting and shifting in a static electric field.
It is therefore called optical Stark effect. The modified or, as one also says,
the renormalized states of the atom in the intense light field are those of
a dressed atom. While the optical Stark effect has been well-known for a
long time in atoms, it has been seen relatively recently in semiconductors,
where the dephasing times are normally much shorter than in atoms, as
will be discussed in more detail in later chapters of this book.
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PROBLEMS

Problem 2.1: To describe the dielectric relaxation in a dielectric medium,
one often uses the Debye model where the polarization obeys the equation

dP
dt

= −1
τ
[P(t)− χ0E(t)] . (2.61)

Here, τ is the relaxation time and χ0 is the static dielectric susceptibility.
The initial condition is

P(t = −∞) = 0 .

Compute the optical susceptibility.

Problem 2.2: Compute the oscillator strength for the transitions between
the states of a quantum mechanical harmonic oscillator. Verify the sum
rule, Eq. (2.33).
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Chapter 3

Periodic Lattice of Atoms

After our discussion of the basic optical properties of a single atom in
Chap. 2, we now analyze how the atomic energy spectrum is modified in
a solid. As our model solid, we take a perfect crystal, where the ions are
arranged in a periodic lattice. In the spirit of a Hartree–Fock or mean field
theory, we assume that the influence of this periodic arrangement of ions on
a given crystal electron can be expressed in the form of an effective periodic
lattice potential which contains the mean field of the nuclei and all the other
electrons.

For simplicity, we consider only ideal crystals, which consist of a perfect
ionic lattice and some electrons which experience the lattice periodic poten-
tial. We are interested in the wave functions and allowed energy states of a
single electron moving in the effective lattice potential V0(r). Many-electron
effects will be discussed in later chapters of this book.

3.1 Reciprocal Lattice, Bloch Theorem

For the valence electrons in a crystal, the lattice potential V0(r) is an at-
tractive potential due to the superposition of the Coulomb potentials of the
nuclei and the inner electrons of the ions. However, for our considerations
we never need the explicit form of V0(r). We only utilize some general
features, such as the symmetry and periodicity properties of the potential
which reflect the structure of the crystal lattice.

The periodicity of the effective lattice potential is expressed by the trans-
lational symmetry

V0(r) = V0(r+Rn) , (3.1)

29
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where Rn is a lattice vector, i.e., a vector which connects two identical
sites in an infinite lattice, which are n lattice cells apart. It is convenient
to expand the lattice vectors

Rn =
∑
i

niai , (3.2)

where ni are integers and ai are the basis vectors which span the unit cells.
Note, that the basis vectors are not unit vectors and they are generally not
even orthogonal. They point into the directions of the three axes of the
unit cell, which may have e.g. a rhombic or more complicated shape. The
basis vectors are parallel to the usual Cartesian unit vectors only in the
case of orthogonal lattices such as the cubic one.

To make use of the fact that the potential acting on the electron has
the periodicity of the lattice, we introduce a translation operator Tn

Tnf(r) = f(r+Rn) , (3.3)

where f is an arbitrary function. Applying Tn to the wave function ψ of
an electron in the periodic potential V0(r), we obtain

Tnψ(r) = ψ(r +Rn) = tnψ(r) , (3.4)

where tn is a phase factor, because the electron probability distributions
|ψ(r)|2 and |ψ(r +Rn)|2 have to be identical. Since the Hamiltonian

H =
p2

2m0
+ V0(r) (3.5)

has the full lattice symmetry, the commutator of H and Tn vanishes:

[H, Tn] = 0 . (3.6)

Under this condition a complete set of functions exists which are simulta-
neously eigenfunctions to H and Tn:

Hψλ(k, r) = Eλψλ(k, r) (3.7)

and

Tnψλ(k, r) = ψλ(k, r+Rn) = tnψλ(k, r) . (3.8)
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Here, we introduced k as the quantum number associated with the trans-
lation operator. As discussed above, tn can only be a phase factor with the
properties

|tn| = 1 , (3.9)

and

tntm = tn+m (3.10)

since

Tn+m = TnTm , (3.11)

stating the obvious fact that a translation by Rn + Rm is identical to a
translation byRm followed by another translation byRn. A possible choice
to satisfy Eqs. (3.8) – (3.11) is

tn = ei(k·Rn+2πN) , (3.12)

where 2πN is an allowed addition because

ei2πN = 1 , for N = integer . (3.13)

We now define a reciprocal lattice vector g through the relation

eik·Rn ≡ ei(k+g)·Rn (3.14)

so that g ·Rn = 2πN . Expanding g in the basis vectors bi of the reciprocal
lattice

g =
3∑

i=1

mibi, mi = integer , (3.15)

we find

g ·Rn =
∑
ij

minjbi · aj = 2πN , (3.16)

if

bi · aj = 2πδij , i, j = 1, 2, 3 . (3.17)
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Consequently, bi is perpendicular to both aj and ak with i �= k, j and can
be written as the vector product

bi = c aj × ak . (3.18)

To determine the proportionality constant c, we use

ai · bi = c ai · (aj × ak) = 2π , (3.19)

which yields

c =
2π

ai · (aj × ak) . (3.20)

Hence,

bi = 2π
aj × ak

ai · (aj × ak) . (3.21)

Similarly, we can express the ai in terms of the bi.
In summary, we have introduced two lattices characterized by the unit

vectors ai and bi, respectively, which are reciprocal to one another. Since
the ai are the vectors of the real crystal lattice, the lattice defined by the
bi is called the reciprocal lattice. The unit cells spanned by the ai are
called theWigner–Seitz cells, while the unit cells spanned by the bi are the
Brillouin zones. One can think of a transformation between the real and
reciprocal lattice spaces as a discrete three-dimensional Fourier transform.

For the example of a cubic lattice, we have

|bi| = 2π
|ai| . (3.22)

Consequently, the smallest reciprocal lattice vector in this case has the
magnitude

gi =
2π
ai

. (3.23)

Going back to Eq. (3.14), it is clear that we can restrict the range of k
values to the region

−gi
2
≤ ki ≤ gi

2
, (3.24)
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since all other values of k can be realized by adding (or subtracting) multiple
reciprocal lattice vectors. This range of k-values is called the first Brillouin
zone.

Considerations along the lines of Eqs. (3.1) – (3.14) led F. Bloch to
formulate the following theorem, which has to be fulfilled by the electronic
wave functions in the lattice:

eik·Rnψλ(k, r) = ψλ(k, r + Rn) . (3.25)

Bloch theorem

To satisfy this relation, we make the ansatz

ψλ(k, r) =
eik·r

L3/2
uλ(k, r) , (3.26)

Bloch wave function

where L3 is the volume of the crystal and λ is the energy eigenvalue. k
is the eigenvalue for the periodicity (crystal momentum). The function
uλ(k, r) is often called Bloch function. The ansatz (3.26) fulfills the Bloch
theorem (3.25), if the Bloch function uλ is periodic in real space

uλ(k, r) = uλ(k, r+Rn) , (3.27)

i.e. the Bloch function uλ(k, r) has the lattice periodicity.
The Schrödinger equation for a crystal electron is

Hψλ(k, r) =
[
p2

2m0
+ V0(r)

]
ψλ(k, r) = Eλ(k)ψλ(k, r) , (3.28)

where m0 is the free electron mass. Inserting Eq. (3.26) into (3.28) and
using the relation

∑
j

∂2

∂x2j
ψλ = −k2ψλ + 2i

∑
j

kj
eik·r

L3/2

∂uλ
∂xj

+
eik·r

L3/2

∑
j

∂2uλ
∂x2j

=
eik·r

L3/2
(∇+ ik)2uλ , (3.29)
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we obtain[
− �

2

2m0
(∇+ ik)2 + V0(r)

]
uλ(k, r) = Eλ(k)uλ(k, r) . (3.30)

With p = −i�∇ Eq. (3.30) can be written in the form[
− �

2

2m0
∇2 +

�

m0
k·p+ V0(r)

]
uλ(k, r) =

[
Eλ(k)− �

2k2

2m0

]
uλ(k, r), (3.31)

which will be the starting point for the k · p analysis in Sec. 3.3.
Before we describe some approximate solutions of Eq. (3.31), we first dis-

cuss in the remainder of this section further general properties of the Bloch
wave function. The wave functions (3.26) are complete and orthonormal,∫

L3
d3rψ∗

λ(k, r)ψλ′(k′, r) = δλ,λ′δk,k′ , (3.32)

since they are eigenfunctions of the crystal Hamiltonian, Eq. (3.5). In
Eq. (3.32), we normalized the Bloch functions to the crystal volume L3, so
that∫

L3
d3r|ψλ(k, r)|2 = 1 =

1
L3

∫
L3
d3r|uλ(k, r)|2 . (3.33)

The convenient normalization of the wave functions to the volume L3

needs some comments, since all real crystals with finite volume have sur-
faces and thus they do not have the full translational symmetry which we as-
sumed above. However, the problems related to the surfaces can be avoided
through a trick, i.e., the introduction of periodic boundary conditions. Let
us assume the crystal has an end face in z direction at z = L = N3|a3|. Pe-
riodic boundary conditions imply that one assumes the crystal end face to
be connected with the front face at z = 0. Generalizing this concept to all
space dimensions, the electron wave functions have to satisfy the condition

ψλ(k, r+Niai) = ψλ(k, r) , (3.34)

where Ni is the total number of unit vectors in the direction i. These
periodic boundary conditions are convenient since they eliminate the surface
but keep the crystal volume finite.

Using the periodic boundary conditions in the plane wave factor of
Eq. (3.26) implies

eik·(Rm+Niai) = eik·Rm , (3.35)
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which is satisfied if Ni k · ai = 2πM , where M is an integer. In a cubic
lattice,

− π
ai
≤ k ≤ π

ai
(3.36)

and M is therefore restricted:

|M | = |k · ai|Ni

2π
≤ Ni

2
or − Ni

2
≤M ≤ Ni

2
. (3.37)

The Bloch form of the electron wave function in a crystal, Eq. (3.26),
consists of an envelope function and a Bloch function uλ. The envelope
function for an infinite crystal, or a crystal with periodic boundary condi-
tions, has the form of a plane wave, exp(ik·r). While the Bloch function
varies spatially on an atomic scale, the envelope function varies for small
k-values only on a much longer, mesoscopic scale. Here we say mesoscopic
scale rather than macroscopic scale, because in a real crystal the quantum
mechanical coherence is usually not maintained over macroscopic distances.

Coming back to the normalization integral in Eq. (3.33), we notice that
since the Bloch functions uλ have the periodicity of the lattice, the integral
over the crystal volume can be evaluated as∫

L3
→
∑
N

∫
l3
, (3.38)

where l3 is the volume of an elementary cell, so that L3 = Nl3 when N is
the number of elementary cells. Substituting Eq. (3.27) into Eq. (3.33) we
obtain

N∑
n=1

1
N

∫
l3

d3r

l3
|uλ(k, r)|2 = 1

l3

∫
l3
d3r|uλ(k, r)|2 = 1 , (3.39)

showing that the Bloch functions are normalized within an elementary cell.
Furthermore one can show that the Bloch functions are a complete set for
any fixed momentum value∑

λ

u∗λ(k, r)uλ(k, r
′) = l3δ(r− r′) . (3.40)

Sometimes it is useful to introduce localized functions as expansion set
instead of the delocalized Bloch functions uλ. An example of such localized
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functions are the Wannier functions wλ(r−Rn). The Wannier functions
are related to the Bloch functions via

wλ(r−Rn) =
1√
L3N

∑
k

eik·(r−Rn)uλ(k, r) (3.41)

and

uλ(k, r) =

√
L3

N

∑
n

e−ik·(r−Rn)wλ(r−Rn) . (3.42)

It may be shown that the Wannier functions are concentrated around a
lattice point R. They are orthogonal for different lattice points∫

d3rw∗
λ(r)wλ′ (r −Rn) = δλ,λ′δn,0 , (3.43)

see problem 3.2. Particularly in spatially inhomogeneous situations it is
often advantageous to use Wannier functions as the expansion set. The full
electron wave function expressed in terms of Wannier functions is

ψλ(k, r) =
1√
N

∑
n

eik·Rnwλ(r−Rn) . (3.44)

3.2 Tight-Binding Approximation

After these symmetry considerations, we discuss simple approximations for
calculating the allowed energies and eigenfunctions of an electron in the
crystal lattice. First we treat the so-called tight-binding approximation
which may serve as elementary introduction into the wide field of band
structure calculations. In Sec. 3-3 and 3-4, we then introduce more quan-
titative approximations which are useful to compute the band structure in
a limited region of k-space.

In the tight-binding approximation, we start from the electron wave
functions of the isolated atoms which form the crystal. We assume that the
electrons stay close to the atomic sites and that the electronic wave func-
tions centered around neighboring sites have little overlap. Consequently,
there is almost no overlap between wave functions for electrons that are
separated by two or more atoms (next-nearest neighbors, next-next near-
est neighbors, etc). The relevant overlap integrals decrease rapidly with
increasing distance between the atoms at sites m and l, so that only a few
terms have to be taken into account.



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Periodic Lattice of Atoms 37

The Schrödinger equation for a single atom located at the lattice point
l is

H0φλ(r −Rl) = Eλφλ(r−Rl) (3.45)

with the Hamiltonian

H0 = −�
2∇2

2m0
+ V0(r−Rl) , (3.46)

where V0(r−Rl) is the potential of the l-th atom. The full problem of the
periodic solid is then[

−�
2∇2

2m0
+
∑
l

V0(r −Rl)− Eλ(k)

]
ψλ(k, r) = 0 . (3.47)

The total potential is the sum of the single-atom potentials. To solve
Eq. (3.47), we make the ansatz

ψλ(k, r) =
∑
n

eik·Rn

L3/2
φλ(r−Rn) , (3.48)

tight-binding wave function

which obviously fulfills the Bloch theorem, Eq. (3.25). With the periodic
boundary conditions (3.34) we obtain

ψ(k, r) =
1

L3/2

∑
n

eik·Rnφλ(r−Rn)

=
1

L3/2

∑
n

eik·Rnφλ(r+Niai −Rn) . (3.49)

Denoting Rn −Niai = Rm, we can write the last line as

ψ(k, r) =
1

L3/2

∑
m

eik·(Rm+Niai)φλ(r−Rm) . (3.50)

In order to compute the energy, we have to evaluate

Eλ(k) =
∫
d3rψ∗

λ(k, r)Hψλ(k, r)∫
d3rψ∗

λ(k, r)ψλ(k, r)
=
N
D , (3.51)
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where the numerator can be written as

N =
1
L3

∑
n,m

eik·(Rn−Rm)

∫
d3rφ∗λ(r−Rm)Hφλ(r−Rn) (3.52)

and the denominator is

D =
1
L3

∑
n,m

eik·(Rn−Rm)

∫
d3rφ∗λ(r−Rm)φλ(r−Rn) . (3.53)

Since we assume strongly localized electrons, the integrals decrease rapidly
with increasing distance between site n and m. The leading contribution is
n = m, then n = m± 1, etc. In our final result, we only want to keep the
leading order of the complete expression (3.51). Therefore, it is sufficient
to approximate in the denominator:∫

d3rφ∗λ(r−Rm)φλ(r−Rn) � δn,m , (3.54)

so that

D =
∑
n,m

δn,m
L3

=
∑
n

1
L3

=
N

L3
. (3.55)

We denote the integral in the numerator as

I =
∫
d3rφ∗λ(r−Rm)

[
−�

2∇2

2m0
+
∑
l

V0(r−Rl)

]
φλ(r−Rn) .

It can be approximated as follows

I = δn,m


∑

l

δl,nEλ +
∑
l �=n

∫
d3rφ∗λ(r−Rn)V0(r−Rl)φλ(r−Rn)




+ δn±1,m

∑
l

∫
d3rφ∗λ(r+Rn±1)V0(r−Rl)φλ(r +Rn) + . . .

≡ δn,mE ′λ + δn±1,mBλ + . . . , (3.56)

where E ′λ is the renormalized (shifted) atomic energy level and Bλ is the
overlap integral. Energy shift and overlap integral for the states λ usually
have to be determined numerically by evaluating the integral expressions
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in Eq. (3.56). The resulting numerical values and signs depend on details
of the functions φλ and the lattice periodic potential V0.

If we neglect the contributions of the next nearest neighbors in
Eq. (3.56), we can write the total numerator as

N � 1
L3

∑
n,m

eik·(Rn−Rm)(δn,mE ′λ + δn±1,mBλ) . (3.57)

Inserting Eqs. (3.55) and (3.57) into Eq. (3.51), we obtain

Eλ(k) = E ′λ +
Bλ

N

∑
n,m

δm,n±1e
ik·(Rn−Rm) . (3.58)

To analyze this result and to gain some insight into the formation of
energy bands, we now restrict the discussion to the case of an ideal cubic
lattice with lattice vector a, so that

Rn±1 = Rn ± a . (3.59)

Using Eq. (3.59) to evaluate the m summation in (3.58), we see that the
exponentials combine as

eik·a + e−ik·a = 2 cos(k · a)

so that the n-summation simply yields a factor N and the final result for
the energy is

Eλ(k) = E ′λ + 2Bλ cos(k · a) . (3.60)

Eq. (3.60) describes the tight-binding cosine bands. Schematically two such
bands are shown in Fig. 3.1, one for Bλ > 0 (lower band) and one for Bλ < 0
(upper band).

To evaluate the detailed band structure, we need the values of Eλ and
Bλ. Without proof, we just want to mention at this point that for an
attractive potential V0 (as in the case of electrons and ions) and p-type
atomic functions φ, Bλ > 0, whereas for s-type atomic functions, Bλ < 0.
Between the allowed energy levels, we have energy gaps, i.e., forbidden
energy regions.

In summary, we have the following general results:
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E

k

Fig. 3.1 Schematic drawing of the energy dispersion resulting from Eq. (3.60) for the
cases of Bλ > 0 (lower band) and Bλ < 0 (upper band). The effective mass approxima-
tion results, Eq. (3.61), are shown as the thick lines.

(i) The discrete atomic energy levels become quasi-continuous energy re-
gions, called energy bands, with a certain band width.

(ii) There may be energy gaps between different bands.

(iii) Depending on the corresponding atomic functions, the bands Eλ(k)
may have positive or negative curvature around the band extrema.

(iv) In the vicinity of the band extrema, one can often make a parabolic
approximation

Eλ(k) � Eλ,0 +
�
2k2

2mλ,eff
, mλ,eff =

�
2

∂2Eλ(k)
∂k2

∣∣∣
k=0

. (3.61)

In the regimes where the parabolic approximation is valid, the electrons
can be considered quasi-free electrons but with an effective mass meff ,
which may be positive or negative, as indicated in Fig. 3.1. A large value
of the overlap integral Bλ results in a wide band and corresponding small
effective mass mλ,eff .

(v) Ignoring possible electronic correlation effects and other band structure
subtleties, i.e., at the mean field level, one can assume that the states
in the bands are filled according to the Pauli principle, beginning with
the lowest states. The last completely filled band is called valence band.
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The next higher band is the conduction band.

There are three basic cases realized in nature:

(i) The conduction band is empty and separated by a large band gap from
the valence band. This defines an insulator. The electrons cannot be
accelerated in an electric field since no empty states with slightly dif-
ferent Ek are available. Therefore, we have no electrical conductivity.

(ii) An insulator with a relatively small band gap is called a semiconductor.
The definition of small band gap is somewhat arbitrary, but a good op-
erational definition is to say that the band gap should be on the order
of or less than an optical photon energy. In semiconductors, electrons
can be moved relatively easily from the valence band into the conduc-
tion band, e.g., by absorption of visible or infrared light.

(iii) If the conduction band is partly filled, we have a finite electrical con-
ductivity and hence a metal.

3.3 k·p Theory

In this section, we describe two approximate methods, the k · p perturba-
tion theory and Kane’s k · p theory. This k · p approximation forms the
basis for relatively simple, phenomenological band structure calculations
(Sec. 3-4), which yield a quantitative description for states in the vicinity
of the band gap.

The basic idea behind k · p approximations is to assume that one has
solved the band structure problem at some point k0 with high symmetry.
Here, we will take this point as k0 = 0, which is called the Γ-point of the
Brillouin zone. In particular, we assume that we know all energy eigenvalues
Eλ(0) and the corresponding Bloch functions uλ(k0 = 0, r) = uλ(0, r). In
order to compute the Bloch functions uλ(k, r) and the corresponding energy
eigenvalues Eλ(k) for k in the vicinity of the Γ-point, we expand the lattice
periodic function uλ(k, r) in terms of the function uλ′(0, r), which form a
complete set.

We write Eq. (3.31) in the form of

[
H0 +

�

m0
k · p

]
uλ(k, r) = Eλ(k)uλ(k, r) , (3.62)
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where

H0 =
p2

2m0
+ V0(r) (3.63)

and

Eλ(k) = Eλ(k) − �
2k2

2m0
. (3.64)

In second-order nondegenerate perturbation theory, we get

Eλ(k) = Eλ(0) +
∑
η �=λ

�
2

m2
0

(k · 〈λ|p|η〉)(k · 〈η|p|λ〉)
Eλ(0)− Eη(0)

(3.65)

and

|k, λ〉 = |λ〉+ �

m0

∑
η �=λ

|η〉k · 〈η|p|λ〉
Eλ(0)− Eη(0)

. (3.66)

There is no first-order energy correction in Eq. (3.65), since by parity

〈λ|p|λ〉 = 0 . (3.67)

We use here the Dirac notation with the state vectors |k, λ〉 and |k = 0, λ〉 ≡
|λ〉. The corresponding Bloch functions are the real space representations of
these vectors, i.e., uλ(k, r) = 〈r|k, λ〉. We consider as the simplest example
two states called |0〉 and |1〉 with the energies E0 = Eg and E1 = 0. With
〈0|pi|1〉 = pi we find

E0,1(k) = E0,1 +
�
2k2

2m0
±
∑
i,j

�
2kikj
2m0

2p∗i pj
m0Eg

, (3.68)

where the + (−) sign is for E0(E1). The energy has a quadratic k-
dependence, so that it is meaningful to introduce the effective mass tensor(

1
meff

)
ij

=
1
m0

(
δij ± 2p∗i pj

m0Eg

)
. (3.69)

In isotropic cases, such as in cubic symmetry, the effective masses are scalar
quantities

mi =
m0

1± 2p2

m0Eg

with i = c, v . (3.70)
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For a sufficiently large momentum matrix element, the effective mass of the
lower (valence) band can become negative, as is the case for the example
shown in Fig. 3.1, while the effective mass of the conduction band becomes
much smaller than the free electron mass.

Eq. (3.70) shows that the effective masses are determined by the inter-
band matrix element of the momentum operator and by the energy gap. Be-
cause the effective masses can be measured experimentally, one frequently
uses this relation to express the interband momentum matrix element in
terms of the effective electron massme = mc and the hole massmh = −mv.
Eq. (3.70) allows one to express p2 in terms of the reduced electron–hole
mass mr:

1
mr

=
1
me

+
1
mh

=
4p2

m2
0Eg

. (3.71)

This result is often used to estimate the value of p2.
Next, we have to consider the case that some of the bands are degener-

ate. In the element semiconductors of group IV, the four electrons in the
outer shell of the atoms populate the sp3 orbitals. The same is true for the
isoelectronic compound semiconductors of the groups III–V and II–VI. In
a cubic symmetry, the valence band states at k = 0 are made up of three
degenerate p-like states. The conduction band at k = 0 consists of an s-like
state. Thus, at the center of the Brillouin zone we can approximate the
cubic symmetry, which is the only case we consider here, by a spherical
one and use in the following the eigenfunctions of the angular momentum
operator as basis states. These four states are |l = 0,ml = 0〉 = |0, 0〉 , |l =
1,ml = ±1〉 = |1,±1〉 and |l = 1,ml = 0〉 = |1, 0〉. Following Kane, we
diagonalize the Hamiltonian H = H0 + �k · p/m0 in the basis of these four
states. A linear combination of these states at a finite wave vector k is

|ψ(k)〉 =
∑

l′=0,1,|m′
l′ |≤l′

cl′,m′
l′
(k)|l′,m′

l′〉 . (3.72)

From the stationary Schrödinger equation (3.62) we get

〈l,ml|H0 +
�

m0
(k · p)− E(k)|ψ(k)〉 = 0 . (3.73)

With the selection rules (see problem 3.4)

〈l,ml|k · p|l′,m′
l′〉 = kpδl,l′±1δml,m′

l′
(3.74)
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we find the secular equation



E0 − E 0 Ak 0

0 E1 − E 0 0
Ak 0 E1 − E 0
0 0 0 E1 − E


 = 0 (3.75)

with A = �p/m0. Rows one through four of (3.75) correspond to the angular
momentum quantum numbers (l,ml) in the order (0,0), (1,1), (1,0), and
(1,-1), respectively.

Evaluation of the determinant (3.75) yields the fourth-order equation

(E1 − E)(E1 − E)
[
(E0 − E)(E1 − E)−A2k2

]
= 0 , (3.76)

which has the two unchanged solutions

E = E1 +
�
2k2

2m0
, (3.77)

and the two modified solutions

E =
�
2k2

2m0
+
Eg

2

(
1±

√
1 +

4A2k2

E2
g

)
, (3.78)

where E0 = Eg and E1 = 0 has been used. Expanding the nonparabolic
dispersion (3.78) up to second order, we find again the effective masses of
Eq. (3.70).

Eq. (3.77) shows that two degenerate valence bands still have a positive
curvature with effective masses equal to the free-electron mass. Hence, this
result cannot describe the situation found in direct-gap semiconductors
where all valence bands have a negative effective mass around the Γ-point.
This failure is due to the omission of all states other than the sp3 states.

Furthermore, in crystals with cubic symmetry only two bands are de-
generate at k = 0, while the third band is shifted to lower energies. It turns
out that the spin–orbit interaction, which has not been considered so far, is
responsible for this split-off. To fix these shortcomings, we introduce in the
next section a method which takes into account the spin and the spin–orbit
interaction and, at least phenomenologically, the influence of other bands.
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3.4 Degenerate Valence Bands

For a more realistic treatment of the semiconductor valence bands around
the Γ-point, we now take also the spin into account. In the presence of
spin–orbit interaction, only the total angular momentum, i.e. the sum of
the orbital and spin angular momentum, is a conserved quantity. From
the three valence band states |l = 1,ml = ±1〉 = 1/

√
2|X ± iY 〉 and

|l = 1,ml = 0〉 = |Z〉 and the spin states | ↑〉 and | ↓〉 one can form the
eigenstates of the total angular momentum operator

J = L+ s . (3.79)

Since |l − s| ≤ j ≤ l + s, the six eigenstates of J, which result from the
states with l = 1 and s = 1/2, have the quantum numbers j = 3/2,mj =
±3/2,±1/2 and j = 1/2, mj = ±1/2. The state with j = 3/2 and mj =
±3/2 can be expressed in terms of the product states

|3/2,±3/2〉 = |ml = ±1,
(↑
↓
)
〉 , (3.80)

where the upper (lower) sign and the upper (lower) spin orientation belong
together. From these states, one gets by applying the flip-flop operators
(see problem 3.5) the states with mJ = ±1/2:

|3/2,±1/2〉 = 1√
3

(√
2|ml = 0,

(↑
↓
)
〉+ |ml = ±1,

(↓
↑
)
〉
)

. (3.81)

The states with j = 1/2 and mj = ±1/2 are the antisymmetric combina-
tions of the two states in Eq. (3.81), so that an orthogonal state results

|1/2,±1/2〉 = 1√
3

(
−|ml = 0,

(↑
↓
)
〉+√2|ml = ±1,

(↓
↑
)
〉
)

. (3.82)

The spin–orbit interaction, which can be obtained from relativistic quantum
mechanics, splits the two j = 1/2 states off to lower energies. For simplicity,
we neglect these two split-off states in the following.

The remaining task is to diagonalize the Hamiltonian by forming a linear
combination of the four j = 3/2 states. If we simply apply Kane’s diago-
nalization concept to these four states coupled to an s state, we would still
get a valence band with positive curvature, because the influence of the
other bands has not yet been incorporated. To overcome this difficulty,
one often uses a phenomenological Hamiltonian for the four j = 3/2 states
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which are degenerate at the Γ-point with E(0) = 0. The general form of a
Hamiltonian which is quadratic in k, invariant under rotations, and which
can be constructed with the two vectors k and J is

H =
�
2

2m0

[(
γ1 +

5

2
γ2

)
k2 − 2γ2(k · J)2

]
. (3.83)

Hamiltonian for heavy- and light-hole bands in
spherical approximation

Here, the energy is counted as hole energy (Eh = −Ev) with the origin at
the top of the valence bands. For later comparison, the constants which
appear in front of the invariant scalars k2 and k ·J2 in (3.83) have been
expressed in terms of the phenomenological Luttinger parameters γi,

α = γ1 +
5γ2
2
and β = 2γ2 . (3.84)

Because of the spherical symmetry, the result has to be independent of the
direction of the k-vector.

If we take the wave vector as k= kez, the Hamiltonian (3.83) is already
diagonal for the four J = 3/2 states and has the two twofold degenerate
energy eigenvalues

E =
�
2k2

2m0

(
γ1 +

5
2
γ2 − 2γ2m2

j

)
, (3.85)

where mj is the eigenvalue of Jz. The two resulting energy eigenvalues are

Ehh = (γ1 − 2γ2)
�
2k2

2m0
for mj = ±3

2

and

Elh = (γ1 + 2γ2)
�
2k2

2m0
for mj = ±1

2
. (3.86)

Ehh and Elh are the energies of the heavy-hole and light-hole valence bands,
respectively. These two bands are still degenerate at the Γ-point, but the
degeneracy is lifted at finite k-values due to the different effective hole
masses

1
mhh

=
1
m0

(γ1 − 2γ2) (3.87)
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and

1
mlh

=
1
m0

(γ1 + 2γ2) . (3.88)

The two Luttinger parameters, γ1 and γ2, can be adjusted so that
Eqs. (3.87) and (3.88) yield the heavy and light-hole mass which are mea-
sured experimentally.

Luttinger considered a more general Hamiltonian acting on the four
j = 3/2 states, which is invariant only under the symmetry operations of
the cubic symmetry group:

H = γ1

2m0
�
2k2 − �

2

9m0

∑
i,j [γ3 − (γ3 − γ2)δij ]KijJij , (3.89)

Luttinger’s hole band Hamiltonian for cubic symmetry

where

Kij = 3kikj − δijk2 (3.90)

and

Jij =
3
2
(JiJj + JjJi)− δijJ2. (3.91)

The traces of the two tensors K and J vanish. If the two Luttinger param-
eters γ3 and γ2 are equal, the Luttinger Hamiltonian reduces again to the
form (3.83) with the only difference that k cannot be oriented arbitrarily in
cubic symmetry. The x and y components of the total angular momentum
operators are Jx = (J+ + J−)/2 and Jy = (J+ − J−)/2i. J+ and J− are
the flip-flop operators which raise or lower the quantum number mj of Jz
by one, see also problem 3.5. Note, that the eigenvalue of the operator
〈J2〉 = j(j + 1). Therefore, in general, the operators Ji connect the four
j = 3/2 states, and the Luttinger Hamiltonian has to be diagonalized by a
linear combination of the four states. After some algebraic work one gets
the energy eigenvalues

E(k) = E(0) +
1

2m0

[
Ak2 ±

√
B2k4 + C2(k2xk2y + k2yk

2
z + k2zk

2
x)
]
. (3.92)

The constants are given in terms of the Luttinger parameters γi by

A = γ1 , B = 2γ2 , C2 = 12(γ23 − γ22) . (3.93)
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The Luttinger parameters for many semiconductor materials can, e.g., be
found in Landolt–Börnstein. Typical values for some III–V semiconductors
are

γ1 γ2 γ3

GaAs 6.85 2.1 2.9
InAs 19.67 8.37 9.29
InP 6.35 2.08 2.76 .

(3.94)

It is almost always true that

γ1 > γ2 � γ3 . (3.95)

So one sees again that the assumption of spherical symmetry is a good
approximation.
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PROBLEMS

Problem 3.1: Energy bands in a solid may be discussed in the framework
of a one-dimensional model with the potential

V (x) = −V0
∞∑

n=−∞
δ(x+ na) , (3.96)

where V0 > 0 , n is an integer, and a is the lattice constant.

a) Determine the most general electron wave function ψ first in the region
0 < x < a and then, using Bloch’s theorem, also in the region a < x < 2a.

b) Derive the relation between dψ/dx at x1 = a+ε and dψ/dx at x2 = a−ε
for ε→ 0 by integrating the Schrödinger equation from x1 to x2.

c) Use the result of b) and limε→0 ψ(x1) = limε→0 ψ(x2) to show that the
energy eigenvalue E(k) of an electron in the potential (3.96) satisfies the
equation

cos(ka) = cos(κa)− maV0
�2

sin(κa)
κa

, (3.97)

where κ =
√
2mE/�2.

d) Expand

f(κa) = cos(κa)− maV0
�2

sin(κa)
κa

(3.98)

around κa = nπ−δ, δ > 0, up to second order in δ assumingmaV0/�2 << 1
and determine the regimes in which Eq. (3.97) has no solutions (energy
gaps).
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e) Solve Eq. (3.97) graphically and discuss the qualitative features of the
electron dispersion E(k).

Problem 3.2: a) Prove the orthogonality relation, Eq. (3.43), for the
Wannier functions.

b) Show that the Wannier function wλ(r−R) is localized around the lattice
point R.
Hint: Use the Bloch form Eq. (3.26) around the band edge,

ψλ(k, r) � eik·r

L3/2
uλ(k = 0, r) , (3.99)

to expand wλ.

Problem 3.3: In the so-called nearly free electron model, the free-electron
wave function is used as

φ(k, r) =
1

L3/2
eik·r (3.100)

and the unperturbed energies are

E(k) =
�
2k2

2m0
. (3.101)

Changing k to k + g where g is a reciprocal lattice vector, one arrives at
an identical situation. Hence

E(k+ g) =
�
2(k + g)2

2m0
(3.102)

is another allowed unperturbed energy dispersion, as is E(k + 2g), etc.
The resulting total energy dispersion has many crossing points, indicating
energy degeneracy. This degeneracy is lifted due to the presence of the
ionic potential V (r), which has the full lattice periodicity. Expanding V (r)
as the Fourier series

V (r) =
∑
n

Vne
ign·r , (3.103)

allows one to write the Hamiltonian

H =
p2

2m0
+ V0 +

∑
m �=0

Vme
igmr ≡ H0 +W . (3.104)
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To investigate the effect of the ionic potential on a degenerate state near
the boundary of the Brillouin zone, one may use the wave functions of the
unperturbed problem

H0φ(k, r) =
(

p2

2m0
+ V0

)
φ(k, r) = E0(k)φ(k, r) , (3.105)

with

E0(k) = E(k) + V0 .

a) Take two nearly degenerate states k, k′ at the zone boundary as basis
states and write the total wave function as

Φ(r) = akφ(k, r) + ak′φ(k′, r) . (3.106)

Insert (3.106) into the Schrödinger equation with the Hamiltonian (3.102)
and derive coupled equations for ak and ak′ .

b) The coupled equations for ak and ak′ have a solution only if the coef-
ficient determinant vanishes. Use this condition to derive the new energy
dispersion relation showing that the degeneracy at k = k′ is lifted through
the finite interaction matrix element.

d) Discuss the resulting dispersion curve and the development of energy
bands and band gaps.

Problem 3.4: Verify the selection rule (3.74)

〈l,ml|k · p|l′,m′
l′〉 = kpδl,l′±1δml,m′

l′
.

Hint: The operator p transforms like r. The scalar product is k · p =
kp cos θ, and cos θ ∝ Y1,0(θ, φ). Derive the selection rule using the addition
theorem for the spherical harmonics Yl,ml

(θ, φ):

Y1,0Yl,ml
= AYl+1,ml

+ B Yl−1,ml
. (3.107)

Problem 3.5: Calculate the states (3.81) by applying the flip-flop opera-
tors J∓ = L∓ + s∓ to the left- and right hand side of the states (3.80).
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The action of J± = Jx ± iJy on |J,mJ〉 is defined by the relation

J±|j,mj〉 =
√
j(j + 1)−mj(mj ± 1)|j,mj ± 1〉 . (3.108)

Equivalent relations hold for the action of L± on |l,ml〉 and s± on |s,ms〉.
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Chapter 4

Mesoscopic Semiconductor Structures

In recent years, advances in crystal growth techniques made it possible to
realize semiconductor microstructures, which are so small that their elec-
tronic and optical properties deviate substantially from those of bulk mate-
rials. In these microstructures, the energetically low-lying electron and hole
states are confined in one or more directions to a region of length Lc, which
is still considerably larger than the lattice constant but so small that the
electron envelope wave functions become quantized. Structures of this size
are called mesoscopic because the confinement length Lc is intermediate
between the microscopic lattice constant and the macroscopic extension of
a bulk crystal.

The best known examples of such mesoscopic semiconductor structures
are quantum wells, where the electrons are confined in one space dimension.
The translational motion in the plane perpendicular to the confinement di-
rection is unrestricted. Such a quantum well, e.g. of the III–V compound
semiconductor GaAs, can be realized by using molecular beam epitaxy to
deposit several GaAs layers in between layers of a material with a wider
band gap, such as GaxAl1−x As, with 0 < x < 0.4. For substantially larger
Al concentrations, the barrier material becomes an indirect-gap semicon-
ductor.

In most cases, the quantum-well structures are designed in such a way
that the lowest electron and hole states are confined in the well material.
These type-I structures will be discussed in more detail in this and later
chapters of this book. To complete this classification, we mention here
also the type-II quantum wells, where electrons and holes are confined in
different parts of the structure, e.g. holes in the wells and electrons in the
barriers, as in GaAs/AlAs. Type-II quantum wells will not be covered in
this book.

53
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If the free electronic motion is confined in two dimensions, the struc-
ture is called a quantum wire, and if the confinement exists in all three
space dimensions, we speak of a quantum dot. The electronic and optical
properties of these mesoscopic semiconductor microstructures will be ana-
lyzed throughout this book. After a general discussion of some basic quan-
tum confinement effects, we discuss in this chapter the confinement-induced
modifications of the electronic band structure in semiconductor quantum
wells, which are currently the best studied quantum confined structures
and can serve as a paradigm for others.

In later chapters, where we discuss elementary excitations and optical
properties of semiconductors, we present the derivations and results as much
as possible in parallel for three-, two- and one-dimensional systems in order
to gain some insight into the dimensional dependence of the various effects.
Because in quantum dots the translational motion is completely suppressed,
a separate chapter is devoted to the optical properties of quantum dots.

4.1 Envelope Function Approximation

In this section, we discuss the situation of a perfect and symmetric quantum
well, where the optically excited electrons are completely confined inside the
well material. In this idealized case, the envelope wave function of these
electrons has to vanish at the interface between well and barrier. In the
Bloch wave function, Eq. (3.26), the slowly varying plane-wave envelope
for the motion perpendicular to the well has to be replaced by a quantized
standing wave ζn(z):

ψ(r) = ζn(z)
ei(kxx+kyy)

L
uλ(k �0, r) . (4.1)

In terms of the localized Wannier functions (3.44), the envelope approxi-
mation is

ψ(r) =
∑
m

ζn(Rz,mz )
ei(kxRx,mx+kyRy,my )

L
wλ(r−Rm) . (4.2)

The energies of these quantized envelope states are very similar to those
of a particle in a box. These energies are proportional to n/L2

c, where
n = 1, 2, . . . and Lc is the width of the well. A reduction of the size of the
microstructure shifts all energies to higher values, showing clearly that the
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electron levels and thus the optical properties can be changed through the
design of the structure.

Because of the additional translational motion within the layer, each
of the energy levels forms a subband. If the electrons populate only the
lowest subband, the translational degree of freedom perpendicular to the
well is completely quantized. As far as the translational electron motion
is concerned, the quantum well can be approximated as a two-dimensional
system under these conditions. However, in these mesoscopic structures
the Bloch functions and the band structure are in first approximation still
those of a bulk semiconductor. Refinements of this statement with respect
to the degenerate valence bands will be given later in this chapter.

It is important to note that the Coulomb interaction in most mesoscopic
systems remains essentially three-dimensional. Because the dielectric prop-
erties of the materials of the microstructure and of the barrier are nor-
mally very similar, the Coulomb field lines between two charged particles
also penetrate the barrier material. This situation of a kinetically two-
dimensional structure where, however, the interaction potential is basically
three-dimensional, is often denoted as quasi-two-dimensional.

If one creates an additional lateral confinement in a quantum well, e.g.
by etching, one can obtain a quasi-one-dimensional quantum wire. In a
rectangular quantum wire, e.g., the plane-wave envelopes for the transla-
tional motion in the two directions perpendicular to the wire axis have to
be replaced by quantized standing waves, leaving only a plane-wave fac-
tor for the motion along the wire axis. Therefore, the quantum wire is a
quasi-one-dimensional system, and

ψ(r) = ζn(x)ζm(y)
eikzz√
L
uλ(k �0, r) . (4.3)

Finally, in a mesoscopic quantum dot the electronic quantum confine-
ment suppresses the translational motion completely, so that

ψ(r) = ζn(x)ζm(y)ζp(z)uλ(k �0, r) . (4.4)

It is obvious from the wave functions (4.1) – (4.4), that the free trans-
lational motion in these microstructures is described by a D-dimensional
wave vector k. The sum over this wave vector is thus

∑
k

=
∑
k

(∆k)D

(∆k)D
→

(
L

2π

)D ∫
dkD . (4.5)
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If we evaluate the integral in polar coordinates we get

∑
k

=
(
L

2π

)D ∫
dΩD

∫ ∞

0

dk kD−1 , (4.6)

where ΩD is the space angle in D dimensions. If the integrand is isotropic
the space angle integral yields ΩD which equals 4π in 3D, 2π in 2D, and
2 in 1D, respectively. The k integral is usually transformed in an energy
integral with �

2k2

2m = E and �
2

2m2k dk = dE so that

∑
k

=
(
L

2π

)D 1
2

∫
dΩD

(
2m
�2

)D
2
∫ ∞

0

dE E
D
2 −1 . (4.7)

The integrand in Eq. (4.7) is called the density of states, ρD(E) ∝ E
D
2 −1.

Eq. (4.7) shows that ρD(E) differs strongly in various dimensions ρ3(E) ∝√
E, ρ2(E) = θ(E), and ρ1(E) = 1/

√
E. Because the absorption in the free-

carrier model follows the density of states (see Chap. 5), this is a further
source for the strong modifications of the optical properties resulting from
the reduction of the dimensionality. To summarize, the optical properties
can be changed strongly by quantum confinement which introduces an extra
localization energy and changes of the density of states. Later in the book
we will see that also the effects due to many-body interactions are strongly
dependent on the dimensionality.

4.2 Conduction Band Electrons in Quantum Wells

In this section, we extend the discussion of elementary properties of elec-
trons in a semiconductor quantum well, whose thickness in the z direction
we denote as Lc. In a type I quantum well, the energy difference ∆Eg

between the larger band gap of the barrier and the smaller band gap of
the well material causes a confinement potential both for the electrons in
the conduction band and for the holes in the valence band. In a GaAs-
GaAlAs quantum well, e.g., the resulting well depths are ∆V e � 2∆Eg/3
and ∆V h � ∆Eg/3, respectively. The potential jump occurs within one
atomic layer so that one can model the quantum well as a one-dimensional
potential well with infinitely steep walls. Simple analytic results are ob-
tained if one assumes that the well is infinitely deep, so that the confinement
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potential can be written as

Vcon(z) =
{
0 for − Lc/2 < z < Lc/2
∞ for |z| > Lc/2

. (4.8)

For the x − y plane there is no quantum confinement and the carriers can
move freely. For the electrons in the nondegenerate conduction band, one
can easily calculate the envelope function using the effective mass approx-
imation for the low lying states. We shift the treatment of holes to the
next section, because the symmetry reduction in a quantum well causes a
mixing of the degenerate valence bands.

The Schrödinger equation for the electron in the idealized quantum well
is

[He(r) + Vcon(z)]ψ(r) = E ψ(r) . (4.9)

Following the arguments of the preceding section, we write

ψ(r) =
1
L
ζ(z)eikxx+kyyuc(k � 0, r) , (4.10)

where ζ(z) is the mesoscopically slowly varying envelope function. We
assume that the electron Hamiltonian without the confinement potential
leads to the energiesEe(k) = Eg+�

2(k2⊥+k
2
z)/2me, whereme is the effective

mass of the electrons in the conduction band. Replacing �kz → −i�∂/∂z
we find the following equation for the standing-wave envelope ζ(z):[
− �

2

2me

∂2

∂z2
+ Vcon(z)

]
ζ(z) = Ezζ(z) . (4.11)

This one-dimensional Schrödinger equation is that of a particle in a box
with the eigenfunctions

ζ(z) = A sin(kzz) +B cos(kzz) , (4.12)

where A and B are constants, which still have to be determined, and

k2z = 2me
Ez

�2
. (4.13)

The boundary conditions for the wave functions are

ζ(Lc/2) = ζ(−Lc/2) = 0 . (4.14)
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Because of the inversion symmetry of the confinement potential around
z = 0, the wave functions (4.12) can be classified into even and odd states.
For the even states, A = 0, and the odd states, B = 0, one gets the
normalized envelope functions

ζeven(z) =
√

2
Lc

cos(kzz)

ζodd(z) =
√

2
Lc

sin(kzz) . (4.15)

The boundary condition (4.14) yields

kz,even =
π

Lc
(2n− 1)

kz,odd =
π

Lc
2n for n = 1, 2, 3, . . . , (4.16)

so that

Ez,even =
π2�2

2meL2
c

(2n− 1)2

Ez,odd =
π2�2

2meL2
c

(2n)2 for n = 1, 2, 3 . . . ,

or

Ez =
π2�2

2meL2
c

n̄2 , (4.17)

with n̄ = 2n − 1 (for even states) and n̄ = 2n(for odd states). Equations
(4.15) – (4.17) show that the quantum confinement inhibits the free electron
motion in z-direction. Only discrete kz values are allowed, leading to a series
of quantized states. We see that the lowest energy state (ground state) is
even, n̄ = 1 in Eq. (4.17), followed by states with alternating odd and
even symmetry. The energy of the ground state is nothing but the zero-
point energy (∆pz)2/2me which arises because of Heisenberg’s uncertainty
relation between the localization length ∆z = Lc and the corresponding
momentum uncertainty ∆pz .

Adding the energies of the motion in plane and in z-direction we find
the total energy of the electron subject to one-dimensional quantum con-
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finement as

E =
�
2

2me

(
n2π2

L2
c

+ k2⊥

)
, n = 1, 2, 3, . . . (4.18)

indicating a succession of energy subbands, i.e., energy parabola �
2k2⊥/2me

separated by �
2π2/2meL

2
c . The different subbands are labeled by the quan-

tum numbers n.
In order to have a more realistic description, one has to use a finite

confinement potential

Vcon(z) =
{
0 for − Lc/2 < z < Lc/2
Vc for |z| > Lc/2

. (4.19)

The analysis closely follows that of the infinite potential case, however,
the energies can no longer be determined analytically. The Schrödinger
equation for the x − y motion is unchanged but the equation for the z-
motion now has to be solved separately in the three regions: i) |z| < Lc/2,
ii) z > Lc/2, and iii) z < −Lc/2. In region i), the solution is given by
(4.13) and in regions ii) and iii) by

ζ(z) = C±e±Kzz (4.20)

with

K2
z =

2me

�2
(Vc − Ez) . (4.21)

The normalization of the wave functions requires that we have to choose the
exponentially decaying solutions in (4.20). Furthermore, we have to match
the wave functions and their derivatives at the interfaces ±zc/2. This yields
for the even states

ζeven(z) =



B cos kzz for − Lc/2 < z < Lc/2
C e−Kzz for z > Lc/2
C eKzz for z < −Lc/2

(4.22)

with the condition (see problem 4.2)

√
Ez tan

(√
me

Ez

2�2
Lc

)
=
√
Vc − Ez . (4.23)

The solution of this equation gives the energy eigenvalues Ez for the even
states.
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The same procedure for the odd states yields

ζodd(z) =



A sin kzz for − Lc/2 < z < Lc/2
C e−Kzz for z > Lc/2
−C eKzz for z < −Lc/2

(4.24)

with

−
√
Ez cot

(√
me

Ez

2�2

)
Lc =

√
Vc − Ez . (4.25)

The roots of the transcendental equations (4.23) and (4.25) have to be de-
termined numerically. The number of bound states in the well depends
on the depth of the potential well Vc. As long as Vc is positive, there is
always at least one bound even state, the ground state. If more than one
bound quantum confined state exists, the symmetry between the successive
higher states alternates, until one reaches the highest bound state. The en-
ergetically still higher states are unbound and not confined to the quantum
wells.

4.3 Degenerate Hole Bands in Quantum Wells

We have seen in the previous section, that multiple subbands occur due
to the quantization of the electron motion in z-direction. For degenerate
bands, one has to expect modifications of the band structure for the in-
plane motion of the carriers, since the quantum confinement generally leads
to a reduction of the original spherical or cubic symmetry, and thus to a
removal of band degeneracies and to band mixing. We assume here — as
implicitly done before — perfectly lattice matched conditions between the
barrier and the well material. Generally, however, perfect lattice matching
is not a necessary requirement for the epitaxial growth of heterostructures.
A small mismatch of the lattice constants can often be accommodated by
elastically straining one or both of the components leading to strained layer
structures.

As for the electrons, we assume that an effective bulk Hamiltonian for
the holes can be used for the determination of the envelope functions if
one replaces �kz → pz = −i�∂/∂z. The matrix of the hole-band Hamil-
tonian (3.83) for the four degenerate eigenstates J = 3/2 states with
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mJ = 3/2, 1/2,−1/2,−3/2 is given by (see problem 4.3)

〈m′
J |H|mJ〉 = Hm′m =



Hlh b c 0
b∗ Hhh 0 c

c∗ 0 Hhh −b
0 c∗ −b∗ Hlh


 = 0 , (4.26)

with

Hhh =
1

2m0
〈p2z〉(γ1 − 2γ2) +

�
2(k2x + k2y)

2m0
(γ1 + γ2) , (4.27)

Hlh =
1

2m0
〈p2z〉(γ1 + 2γ2) +

�
2(k2x + k2y)

2m0
(γ1 − γ2) , (4.28)

b = −
√
3

�

m0
γ2〈pz〉(kx − iky) , (4.29)

c = − �
2

m0

√
3
2
γ2(kx − iky)2 . (4.30)

Here, we introduced

〈pz〉 =
∫ +Lc/2

−Lc/2

dzζ(z)∗
(
−i� ∂

∂z

)
ζ(z) (4.31)

and

〈p2z〉 =
∫ +Lc/2

−Lc/2

dzζ(z)∗
(
−i� ∂

∂z

)2

ζ(z) (4.32)

as expectation values with the envelope functions ζ. For a symmetric well,
〈pz〉 vanishes between states of equal symmetry. Thus, if we neglect inter-
subband mixing, b = 0.

Note, that the light-hole Hamiltonian Hlh has, due to the finite local-
ization energy 〈p2z〉/2m0, a higher energy than the heavy-hole Hamiltonian.
Consequently, the degeneracy at k⊥ = 0 of the bulk semiconductor material
is lifted. However, according to these simple arguments, the unperturbed
bands in the quantum well would cross at a finite k⊥ value. Interchanging
the first and last row and successively the first and last column in (4.26)
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k/kz

E
/E

0

Fig. 4.1 The full lines show the mixing of the heavy and light-hole valence bands in
a GaAs quantum well according to Eq. (4.36). The thin lines show the bands without
band mixing.

yields the following eigenvalue problem

det



Hlh − E c∗ 0 0

c Hhh − E 0 0
0 0 Hhh − E c∗

0 0 c Hlh − E


 = 0 . (4.33)

Since the matrix is block diagonal, one is left with the diagonalization of a
two-by-two matrix

det
(Hlh − E c∗

c Hhh − E
)
= 0 . (4.34)

The corresponding eigenvalues are given by

(Hlh − E)(Hhh − E)− |c|2 = 0 . (4.35)

The solutions are

E1,2 =
1
2

[
(Hhh +Hlh)±

√
(Hhh −Hlh)2 + 4|c|2

]
. (4.36)
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The resulting dispersion is shown in Fig. 4.1 for c = 0 and c �= 0. We see
the typical level repulsion and the state mixing in the momentum region
where the dispersion cross for c = 0.
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PROBLEMS

Problem 4.1: Use the effective mass approximation to calculate the elec-
tron energies.
a) for a square quantum wire with finite barrier height in two dimensions,

b) for a square quantum dot (quantum box), in which the electrons are
confined in all three dimensions.

Show that increasing quantum confinement causes an increasing zero-point
energy due to the Heisenberg uncertainty principle.

Problem 4.2: Solve the Schrödinger equation for the motion of an elec-
tron in a finite potential well. Derive the transcendental equations (4.23)
and (4.25) for the energy eigenvalues using the conditions of continuity of
the wave function and its derivative at the boundary of the confinement
potential.

Problem 4.3: Calculate the matrix 〈m′
J |H|mJ〉 for the J = 3/2 states
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using the Hamiltonian (3.83).

a) Show that J2 − J2z = 1
2 (J+J− + J−J+).

b) Express the Hamiltonian (3.83) in terms of the operators J± = Jx± iJy,
Jz, and J2. Derive the form

2m0

�2
H =

[
γ1 +

5
2
γ2 − γ2(J2 − J2z )

]
(k2x + k2y) +

(
γ1 +

5
2
γ2 − 2γ2J2z

)
k2z

−2γ2kz [{J+, Jz}(kx − iky) + h.c]− γ2
2
[
J2+(kx − iky)2 + h.c.

]
,

(4.37)

where {Jz, J+} = 1
2 (JxJ++J+Jz) and h.c. means the hermitian conjugate

of the preceding term, and �kz = 〈pz〉.
c) Calculate the matrix elements (4.26) – (4.31) using Eq. (3.108) for the
action of J± on the states |J,mJ〉. Note, that 〈J2〉 = J(J + 1).
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Chapter 5

Free Carrier Transitions

In a typical semiconductor, the gap between the valence band and the con-
duction band corresponds to the energy �ω of infrared or visible light. A
photon with an energy �ω > Eg can excite an electron from the valence
band into the conduction band, leaving behind a hole in the valence band.
The excited conduction-band electron and the valence-band hole carry op-
posite charges and interact via the mutually attractive Coulomb potential.
This electron–hole Coulomb interaction will naturally influence the optical
spectrum of a semiconductor. However, in order to obtain some qualitative
insight, in a first approximation we disregard all the Coulomb effects and
treat the electrons and holes as quasi-free particles.

5.1 Optical Dipole Transitions

Generally, electrons in the bands of a semiconductor are not in pure states
but in so-called mixed states. Therefore, we have to extend the quantum
mechanical method used to calculate the optical polarization in comparison
to the treatment presented in Chap. 2. While pure states are described by
wave functions, mixed states are described by a density matrix. In this
chapter, we again use the technique of Dirac state vectors |λk〉 with the
orthogonality relation

〈λ′k′|λk〉 = δλ′,λδk′,k (5.1)

and the completeness relation

∑
λk

|λk〉〈λk| = 1 . (5.2)

65
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The state vectors |λk〉 are eigenstates of the crystal Hamiltonian (3.5),
which we now denote by H0:

H0|λk〉 = Eλ(k)|λk〉 = �ελ,k|λk〉 . (5.3)

As usual, Eq. (5.3) is transformed into the Schrödinger equation in real-
space representation by multiplying (5.3) from the left with the vector 〈r|.
The Schrödinger wave function ψλ(k, r) for the state |λk〉 is just the scalar
product

ψλ(k, r) = 〈r|λk〉 , (5.4)

i.e., the Bloch wave function (3.26) for the band λ.
The Hamiltonian of electrons in a crystal can be obtained in this repre-

sentation by multiplying Ho from the left and right with the completeness
relation (5.2)

H0 =
∑
λ′k′
|λ′k′〉〈λ′k′|H0

∑
λk

|λk〉〈λk| . (5.5)

Using Eqs. (5.3) and (5.1), we find the diagonal representation

H0 = �

∑
λk

ελ,k|λk〉〈λk| . (5.6)

The action of the Hamiltonian (5.6) on an arbitrary state vector can easily
be understood. The “bra-vector” 〈λk| projects out that part which contains
the state with the quantum numbers λ,k represented by the “ket-vector”
|λk〉.

As discussed in Chap. 2, the dipole interaction with the light is described
by

HI = −er E(t) = −d E(t) , (5.7)

where er = d is the projection of the dipole moment in the direction of the
electromagnetic field. Using the completeness relation twice yields

HI = −e E(t)
∑

k,k′,λ,λ′
rλλ′ (k′,k)|λ′k′〉〈λk| , (5.8)

with

rλ′λ(k′,k) = 〈λ′k′|r|λk〉 . (5.9)
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To compute the dipole matrix element, we assume only interband transi-
tions, λ �= λ′, and use the same trick as in Eqs. (2.26) and (2.31) to get

rλ′λ(k′,k) =
1

Eλ(k)− Eλ′(k′)
〈λ′k′|[r,H0]|λk〉

=
i

m0(ελ,k − ελ′,k′)
〈λ′k′|p|λk〉 . (5.10)

Inserting

1 =
∫
L3
d3r|r〉〈r|

and using the fact that the momentum operator is diagonal in the r-
representation, we get

〈λ′k′|p|λk〉 =
∫
L3
d3r ψ∗

λ′(k′, r)pψλ(k, r) . (5.11)

As in Sec. 3.3, we expand the Bloch functions uλ(k, r) into the complete
set uη(0, r). Using only the leading term of the k · p-result, Eq. (3.66), we
get

ψλ(k, r) � eik·r
uλ(0, r)
L3/2

. (5.12)

Inserting (5.12) into (5.11) yields

〈λ′k′|p|λk〉 � 1
L3

∫
L3
d3r e−i(k′−k)·ru∗λ′(0, r)(�k + p)uλ(0, r) , (5.13)

where the additive �k results from commuting p and exp(ik · r). Now we
split the integral over the entire crystal into the unit-cell integral and the
sum over all unit cells, Eq. (3.38), replace r→ r+Rn, and use Eq. (3.27),
to get

〈λ′k′|p|λk〉 �
N∑
n=1

e−i(k′−k)·Rn

N

∫
l3
d3r

e−i(k′−k)·r

l3
u∗λ′(0, r)(�k+p)uλ(0, r) .

(5.14)
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E

k

Fig. 5.1 Schematic drawing of conduction and valence bands and an optical dipole
transition connecting identical k-points in both bands.

Since the unit-cell integral yields the same result for all unit cells, we can
take it out of the summation over the unit cells, which then yields δk,k′ ,
and Eq. (5.14) becomes

〈λ′k′|p|λk〉 = δk,k′

l3

∫
l3
d3r u∗λ′(0, r)puλ(0, r) ≡ δk,k′pλ′λ(0) , (5.15)

where the term ∝ �k disappeared because of the orthogonality of the lattice
periodic functions and our λ �= λ′ requirement.

The δ-function in Eq. (5.15) shows that the optical dipole matrix ele-
ment couples identical k-states in different bands, so that optical transi-
tions are “perpendicular” if plotted in an energy–wave–number diagram, as
in Fig. 5.1. The dipole approximation is equivalent to ignoring the photon
momentum in comparison to a typical electron momentum in the Brillouin
zone.

Collecting all contributions to the dipole matrix element, we get

erλ′λ(k′,k) =
ie

m0(ελ′,k − ελ,k)δk,k
′pλ′λ(0) (5.16)

or
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erλ′λ(k′, k) = dλ′λ(k′, k) = δk,k′dλ′λ(0)
ελ′,0 − ελ,0

ελ′,k − ελ,k
, (5.17)

optical dipole matrix element

where we used Eq. (5.16) for k = k′ = 0 to lump all parameters into

dλ′λ(0) =
iepλ′λ(0)

m0(ελ′,0 − ελ,0) . (5.18)

For the cases of two parabolic bands with effective masses mλ and mλ′ and
dispersions

�ελ′,k = Eg +
�
2k2

2mλ′
and �ελ,k =

�
2k2

2mλ
, (5.19)

the optical dipole matrix element is

dλ′λ(k′,k) = δk,k′dλ′λ(0)
Eg

Eg + �2k2

2

(
1
mλ

+ 1
mλ′

) . (5.20)

Except for the δ-function the k-dependence of the dipole matrix element
can often be neglected in the spectral region around the semiconductor band
edge. The k-dependence is usually important only if the variation over the
whole first Brillouin zone is needed, as in Kramers–Kronig transformations
or computations of refractive index contributions.

5.2 Kinetics of Optical Interband Transitions

In order to keep the following treatment as simple as possible, we now make
a two-band approximation by restricting our treatment to one valence band
v and one conduction band c out of the many bands of a real semiconductor,
i.e., λ = c, v. This two-band model is a reasonable first approximation to
calculate the optical response of a real material if all the other possible
transitions are sufficiently detuned with regard to the frequency region of
interest. We will treat first quasi-D-dimensional semiconductors, followed
by an extension to quantum confined semiconductors with several subbands.
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5.2.1 Quasi-D-Dimensional Semiconductors

To simplify our analysis even further, we ignore the k-dependence of the
dipole matrix element and write the interaction Hamiltonian in the form

HI = −E(t)
∑

k,{λ�=λ′}={c,v}
dλ′λ|λ′k〉〈λk| ≡

∑
k

HI,k , (5.21)

showing that different k-states are not mixed as long as we ignore the
Coulomb interaction between the carriers.

Evaluating the summation over the band indices yields

HI,k = −E(t)( dcv |ck〉〈vk| + d∗cv|vk〉〈ck|) , (5.22)

where d∗cv = dvc has been used. For our subsequent calculations it is advan-
tageous to transform the Hamiltonian into the interaction representation

Hint
I,k(t) = exp

(
i

�
H0t

)
HI,k exp

(
− i

�
H0t

)

= −E(t)
[
ei(εc,k−εv,k)tdcv|ck〉〈vk| + h.c.

]
, (5.23)

where h.c. denotes the Hermitian conjugate of the preceding term.
The single-particle density matrix ρk(t) of the state k can be expanded

into the eigenstates |λk〉

ρk =
∑
λ′,λ

ρλ′,λ(k, t)|λ′k〉〈λk| . (5.24)

single-particle density matrix for the state k

The equation of motion for the density matrix is the Liouville equation

d

dt
ρk(t) = − i

�
[Hk , ρk(t)] (5.25)

which is written in the interaction representation as

d

dt
ρintk (t) = − i

�
[Hint

I,k , ρintk (t)] (5.26)
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with

ρintk (t) = exp
(
i

�
H0t

)
ρk(t) exp

(
− i

�
H0t

)
. (5.27)

Inserting Eqs. (5.23) and (5.27) into (5.26), we get

d

dt
ρintk (t) =

i

�
E(t)

∑
λ′,λ

ρintλ′λ(k, t)

×
[
ei(εc,k−εv,k)tdcv (|ck〉〈vk|λ′k〉〈λk| − |λ′k〉〈λk|ck〉〈vk|)

+e−i(εc,k−εv,k)td∗cv (|vk〉〈ck|λ′k〉〈λk| − |λ′k〉〈λk|vk〉〈ck|)
]
.

(5.28)

Taking the matrix element

ρintcv (k, t) = 〈ck|ρintk (t)|vk〉 (5.29)

of Eq. (5.28) yields

d

dt
ρintcv (k, t) =

i

�
dcvE(t)ei(εc,k−εv,k)t[ρvv(k, t)− ρcc(k, t)] , (5.30)

where we used

ρintλλ = ρλλ .

Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
ρcc(k, t) =

i

�
E(t)

[
dcve

i(εc,k−εv,k)tρintvc (k, t) − c.c.
]
, (5.31)

d

dt
ρvv(k, t) =

i

�
E(t)

[
d∗cve

i(εv,k−εc,k)tρintcv (k, t) − c.c.
]

= − d

dt
ρcc(k, t) . (5.32)
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In Eqs. (5.31) and (5.32), we used ρcv = ρ∗vc, which follows from Eq. (5.30).

5.2.2 Quantum Confined Semiconductors
with Subband Structure

In the Wannier function representation (4.2), the electron state is charac-
terized by a band index i and by an envelope index ν in which we collect
the quantum number n of the confined part of the envelope, and the D-
dimensional wave vector k of the plane wave part of the envelope. For a
quantum well, e.g., the envelope ζµ(r) would stand for ζµ(z) exp(ik‖ · r‖)/L.
The optical matrix element is

di,ν;j,µ = 〈i, ν|er|j, µ〉
=

1
N

∑
n,m

ζ∗i,ν(Rn)ζj,µ(Rm)
∫
d3rw∗

i (r−Rn)erwj(r−Rm) . (5.33)

With the substitution r → (r−Rn) + Rn the integral over the Wannier
functions yields approximately

δn,m

(
rij +Rnδi,j

)
,

where rij =
∫
d3rw∗

i (r)rwj(r) is the matrix element between Wannier func-
tions localized at the same lattice site. Approximating the sum over all
lattice sites by an integral 1

NV0

∑
n V0 → 1

V

∫
d3r, where V0 is the volume

of a unit cell, we finally get

di,ν;j,µ =
erij
V

∫
d3rζ∗i,ν (r)ζj,µ(r) +

1
V

∫
d3rζ∗i,ν(r)erζi,µ(r)δi,j . (5.34)

This result holds if the envelope function is much more extended than the
Wannier function. The first term represents the optical matrix element of
the interband transitions i �= j, usually for transitions between states of one
of the valence bands and the conduction band. For a quantum well, the
integral over the envelope functions would yield the momentum selection
rule k‖ = k′‖ and the subband selection rule. Often the equal subband
contributions n = m are dominant. The second term describes the matrix
element of the infrared intersubband transitions.
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The density matrix for a mesoscopic semiconductor structure with sev-
eral subbands is

ρ(t) =
∑
i,j,ν,µ

ρi,ν;j,µ(t)|iν〉〈jµ| . (5.35)

From the Liouville equation we obtain the equation of motion as

[
d

dt
+ i(εi,ν − εj,µ)

]
ρi,ν;j,µ =

iE(t)
�

∑
l,σ

(di,ν;l,σρl,σ;j,µ − ρi,ν;l,σdl,σ;j,µ) ,

(5.36)

where di,ν;j,µ is the projection of the dipole matrix element in field direction.
In order to study a specific system, one has to insert the appropriate dipole
matrix element, Eq. (5.34), for the optical transitions of interest.

Equations (5.30) – (5.32) for the two-band system, and Eq. (5.36) for
the multi-band system, describe the interband kinetics of the free carrier
model. In later chapters of this book, many-body effects due to the interac-
tion between the excited carriers will be incorporated into these equations.
However, before we discuss the interaction processes in detail, we analyze
two important limiting cases of the noninteracting system in this chapter: i)
coherent optical interband transitions and ii) the case of a quasi-equilibrium
electron–hole plasma.

Coherent optical interband transitions are realized at least approxi-
mately in experiments using ultra-short optical pulses. Here, the carriers
follow the laser field coherently, i.e., without significant dephasing. Exam-
ples of such coherent optical processes are the optical Stark effect, ultrafast
adiabatic following, photon echo, and the observation of quantum beats.

A quasi-equilibrium situation is typically reached in experiments which
use stationary excitation, or at least excitation with optical pulses which are
long in comparison to the carrier scattering times. Under these conditions
the excited carriers have sufficient time to reach thermal quasi-equilibrium
distributions within their bands. “Quasi-equilibrium” means that the car-
riers are in equilibrium among themselves, but the total crystal is out of
total thermodynamic equilibrium. In total equilibrium, there would be no
carriers in the conduction band of the semiconductor.
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5.3 Coherent Regime: Optical Bloch Equations

In this section, we discuss the interband kinetics for semiconductor systems
for the coherent regime assuming a two-band system. The extensions to
microstructures with several subbands is straightforward, using the results
of the last subsection.

We simplify the free-carrier interband kinetic equations (5.30) – (5.32)
by assuming an electromagnetic field in the form

E(t) = E0

2
(eiωt + e−iωt) , (5.37)

where E0 is a slowly varying amplitude. Using

ρcv(k, t) = ρintcv (k, t)e−i(εc,k−εv,k)t (5.38)

and taking into account only the resonant terms (rotating wave approxi-
mation, RWA) proportional to exp[±i(ω − εc,k + εv,k)t], we can write the
interband equations as(

d

dt
+ iνk

)
ρcv(k, t)eiωt = − iωR2 [ρcc(k, t)− ρvv(k, t)] , (5.39)

and

d

dt
ρcc(k, t) = − i2ωR[ρcv(k, t)e

iωt − ρvc(k, t)e−iωt]

= − d

dt
ρvv(k, t) . (5.40)

Here, we introduced the detuning

νk = εc,k − εv,k − ω (5.41)

and the Rabi frequency

ωR =
dcvE0

�
. (5.42)

With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose
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real components are

U1(k, t) = 2 Re[ρcv(k, t)eiωt]

U2(k, t) = 2 Im[ρcv(k, t)eiωt]

U3(k, t) = [ρcc(k, t)− ρvv(k, t)] . (5.43)

From Eqs. (5.39) and (5.40) we obtain the following equations of motion
for the Bloch-vector components

d

dt
U1(k, t) = νkU2(k, t)

d

dt
U2(k, t) = −νkU1(k, t)− ωRU3(k, t)

d

dt
U3(k, t) = ωRU2(k, t) . (5.44)

coherent optical Bloch equations

These coherent Bloch equations can be written as single vector equation

d

dt
U(k, t) = Ω×U(k, t) , (5.45)

where

Ω = ωR e1 − νk e3 (5.46)

is the vector of the rotation frequency, and the ei are Cartesian unit vectors.
It is well known from elementary mechanics that

dr
dt

= ω × r (5.47)

describes the rotation of the vector r around ω, where the direction of ω
is the rotation axis and ω is the angular velocity. Using the analogy of
Eqs. (5.45) and (5.47) one can thus describe the optical interband kinetics
as a rotation of the Bloch vector. The length of the vector remains constant,
and since in the absence of a field

U(k, t) = U3(k, t) e3 = −e3 , (5.48)

the Bloch vector for coherent motion is a unit vector with length one.
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If the system is excited at resonance, νk = 0, then U rotates under the
influence of a coherent field around the e1 axis in the z− y plane. Starting
in the ground state, U3(t = 0) = −1, a light field rotates the Bloch vector
with the Rabi frequency around the -e1 axis. After the time ωRt = π/2
the inversion U3 is zero, and the polarization reaches its maximum U2 = 1.
After ωRt = π the system is in a completely inverted state, U3 = 1, and
it returns after ωRt = 2π to the initial state, U3 = −1. Such a rotation
is called Rabi flopping. A light pulse of given duration turns the Bloch
vector a certain angle. This is the basic idea for the phenomenon of photon
echo. With a finite detuning ν > 0, e.g., a z-component is added to the
rotation axis, so that the rotations no longer connect the points U3 = 1 and
U3 = −1.

For a more realistic description, we have to add dissipative terms to the
Bloch equations. Here, we simply introduce a phenomenological damping
of the polarization, i.e., we assume a decay of the transverse vector compo-
nents U1 and U2 with a transverse relaxation time T2. Additionally, we take
into account that the inversion U3 decays, e.g., by spontaneous emission, to
the ground state U3 = −1. This population decay time is the longitudinal
relaxation time T1. It is an important task of the many-body theory to
derive the relaxation times from the system interactions. Including these
relaxation times, the Bloch equations take the form

d

dt
U1(k, t) = −U1(k, t)

T2
+ νk U2(k, t)

d

dt
U2(k, t) = −U2(k, t)

T2
− νk U1(k, t)− ωRU3(k, t)

d

dt
U3(k, t) = −U3(k, t) + 1

T1
+ ωRU2(k, t) . (5.49)

optical Bloch equations with relaxation

To get a feeling for the decay processes described by the relaxation
rates in Eqs. (5.49), let us assume that a short pulse with the area π/4 has
induced an initial maximum polarization

U(k, t = 0) = U1(k, t = 0) e1 + U2(k, t = 0) e2 . (5.50)

To study the free induction decay, i.e., the decay in the absence of the field,
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Fig. 5.2 Schematic drawing of the rotation of the Bloch vector for excitation with a
rectangular pulse of area π/2 pulse and a finite detuning for T2 � T1.

we take ωR = 0 in (5.49) and obtain

d

dt
U1(k, t) = −U1(k, t)

T2
+ νk U2(k, t)

d

dt
U2(k, t) = −U2(k, t)

T2
− νk U1(k, t) (5.51)

with the solution(
U1(k, t)
U2(k, t)

)
=
(
cos(νkt) sin(νkt)
− sin(νkt) cos(νkt)

)(
U1(k, t)
U2(k, t)

)
e−t/T2 . (5.52)

Eq. (5.52) shows how T2 causes a decay of the polarization while it rotates
with the detuning frequency νk around the z-axis. The polarization spirals
from the initial value to the stable fix point U1 = U2 = 0, if we disregard the
inversion decay. Because of the band dispersion included in νk, the polar-
ization of electron–hole pairs with different k-values rotates with different
rotation frequencies. If one applies after a time τ a second light pulse, which
causes a rotation of the Bloch vector by π around the e1 axis, one keeps the
Bloch vector in the x− y plane (Fig. 5.2). A polarization component which
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had rotated at time τ by an angle α will find itself again separated from the
origin after the π pulse, this time by −α. Since all polarization components
continue to rotate around e3 with νk, they all return to the origin after the
time 2τ . The coherent superposition of all polarization components causes
the emission of a light pulse, the photon echo pulse. Naturally, the intensity
of the photon echo depends on the dephasing time and decreases as

[e−2τ/T2 ]2 = e−4τ/T2 . (5.53)

By varying the time delay τ between the two pulses, one can thus use a
photon echo experiment to measure the dephasing time T2.

5.4 Quasi-Equilibrium Regime:
Free Carrier Absorption

The assumption of quasi-thermal distributions of the electrons in the con-
duction band and of the holes in the valence band provides a significant
shortcut for the analysis of the optical response, since the diagonal ele-
ments of the density matrix do not have to be computed, but are given by
thermal distribution functions. We discuss some aspects of carrier–carrier
scattering and the mechanisms leading to a quasi-equilibrium situation in
later chapters of this book. Here, in the framework of the free carrier
model we simply postulate this situation. As is well known, the thermal
equilibrium distribution for electrons is the Fermi distribution

ρ0λλ =
1

e(ελ,k−µλ)β + 1
≡ fλ,k , (5.54)

where β = 1/(kBT ) is the inverse thermal energy and kB is the Boltzmann
constant. The Fermi distribution and its properties are discussed in more
detail in the following Chap. 6. For the present purposes, it is sufficient to
note that the chemical potential µλ is determined by the condition that the
sum

∑
k fλ,k yields the total number of electrons Nλ in a band λ, i.e.,∑

k

fλ,k = Nλ → µλ = µλ(Nλ, T ) , (5.55)

where we assume that the summation over the two spin directions is in-
cluded with the k-summation. In total equilibrium and for thermal ener-
gies, which are small in comparison to the band gap, the valence band is
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completely filled and the conduction band is empty, i.e.,

Nv = N,Nc = 0 for 1/β << Eg ,

where N is the number of atoms.
The quasi-equilibrium approximation is a significant simplification in

comparison to the full set of Bloch equations, since we do not have to solve
Eqs. (5.31) and (5.32) for the diagonal terms. Inserting the distribution
functions (5.54) into the RHS of Eq. (5.30), expressing the field through its
Fourier transform, Eq. (2.16), and integrating over time yields

ρintcv (k, t) =
∫

dω

2π
dcvE(ω)ei(εc,k−εv,k−ω)t

�(εc,k − εv,k − ω − iγ)(fv,k − fc,k) . (5.56)

The optical polarization is given by

P(t) = tr[ρ(t)d] = tr[ρint(t)dint(t)] , (5.57)

where tr stands for trace, i.e., the sum over all diagonal matrix elements:

P(t) = 1
L3

∑
k

[ρintcv (k, t)dintvc (k, t) + ρintvc (k, t)d
int
cv (k, t)]

=
1
L3

∑
k

∫
dω

2π
|dcv|2(fv,k − fc,k)

�(εc,k − εv,k − ω − iγ)E(ω)e
−iωt + c.c. , (5.58)

and

dintvc (k, t) = dvce
i(εv,k−εc,k)t . (5.59)

Since

χ(ω) = P(ω)/E(ω) (5.60)

and

P(t) =
∫

dω

2π
P(ω)e−iωt , (5.61)
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we obtain the optical susceptibility as

χ(ω) = −
∑
k

|dcv|2
L3

(fv,k − fc,k)
[

1

�(εv,k − εc,k + ω + iγ)
.

− 1

�(εc,k − εv,k + ω + iγ)

]
. (5.62)

optical susceptibility for free carriers

According to Eq. (1.53), the absorption spectrum is determined by the
imaginary part of χ(ω)

α(ω) =
4πω
nbc

χ′′(ω)

=
4π2ω
L3nbc

∑
k

|dcv|2(fv,k − fc,k) δ
[
�(εv,k − εc,k + ω)

]
. (5.63)

Since it is possible to evaluate Eq. (5.63) for different dimensionalities D
of the electron system, we will give the result for the general case. As
discussed in Chap. 3, it is often possible to approximate the band energies
εc,k and εv,k by quadratic functions around the band extrema. Unless noted
otherwise, we always assume that the extrema of both bands occur at the
center of the Brillouin zone, i.e., at k = 0. Such semiconductors are called
direct-gap semiconductors. Introducing the effective masses mc and mv for
electrons in the conduction band and valence band, respectively, we write
the energy difference as

�(εc,k − εv,k) = �
2k2

2mc
− �

2k2

2mv
+ Eg . (5.64)

Since the valence-band curvature is negative, we have a negative mass for
the electrons in the valence band, mv < 0. To avoid dealing with negative
masses, one often prefers to introduce holes as new quasi-particles with a
positive effective mass

mh = −mv . (5.65)

In the electron–hole representation, one discusses electrons in the conduc-
tion band and holes in the valence band. The probability fh,k to have a
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hole at state k is given as

fh,k = 1− fv,k . (5.66)

The charge of the hole is opposite to that of the electron, i.e., +e. Eq. (5.65)
implies that the energy of a hole is counted in the opposite way of the
electron energy, i.e., the hole has minimum energy when it is at the top of
the valence band. To emphasize the symmetry in our results, we rename
the conduction-band mass mc → me, fc → fe, and understand from now
on that the term electron is used for conduction-band electrons and hole
for valence-band holes, respectively. In the electron–hole notation, the free
carrier absorption (5.63) is

α(ω) =
4π2ω
L3nbc

∑
k

|dcv|2(1− fe,k − fh,k) δ
[
�(εv,k − εc,k + ω)

]
. (5.67)

Furthermore, we write the energy difference as

�(εc,k − εv,k) = �(εe,k + εh,k) =
�
2k2

2mr
+ Eg , (5.68)

where

1
mr

=
1
me

+
1
mh

or mr =
memh

me +mh
(5.69)

is the reduced electron–hole mass.
In order to proceed with our evaluation of the absorption coefficient for

electrons with D translational degrees of freedom, it is useful to convert
the sum over k into an integral. Following the steps in Eqs. (4.5) – (4.7)
we evaluate the k-summation in Eq. (5.67) to obtain

α(ω) =
8π2ω|dcv|2
nbcL

3−D
c

1
(2π)D

ΩDSD(ω) . (5.70)

In Eq. (5.70), we have replaced the ratio LD/L3 by 1/L3−D
c , where Lc

denotes again the length of the system in the confined space dimensions,
see Chap. 4. Furthermore, we introduced

SD(ω) =
∫∞
0
dk kD−1δ

(
�
2k2

2mr
+ Eg + E

(D)
0 − �ω

)
(1− fe,k − fh,k) .

(5.71)
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In the energy-conserving δ-function, we included also the zero-point energy,
which for ideal confinement (infinite potential) is

E
(D)
0 =

�
2

2mr

(
π

Lc

)2

(3 −D) (5.72)

for the (3−D) confined directions (see problem 5.2). Taking the electron–
hole–pair reduced-mass energy

�
2k2

2mr
= x (5.73)

as the integration variable, we can evaluate the integral in Eq. (5.71) with

k =
(
2mr

�2

)1/2

x1/2 and dk =
1
2

(
2mr

�2

)1/2
dx

x1/2
(5.74)

as

SD(ω) =
1
2

(
2mr

�2

)D/2 ∫ ∞

0

dxx(D−2)/2 δ(x+ Eg + E
(D)
0 − �ω)

× [1− fe(x) − fh(x)] , (5.75)

where

fi(x) =
1

eβ(xmr/mi−µi) + 1
for i = e, h . (5.76)

The final integral in Eq. (5.75) is easily evaluated yielding

SD(ω) = 1
2

(
2mr

�2

)D/2
(�ω−Eg−E(D)

0 )(D−2)/2Θ(�ω−Eg−E(D)
0 )A(ω) ,

(5.77)

where Θ(x) is again the Heavyside unit-step function and

A(ω) = 1− fe(ω)− fh(ω) (5.78)

with

fi(ω) =
1

eβ[(�ω−Eg−E
(D)
0 )mr/mi−µi] + 1

for i = e, h . (5.79)
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The factor A(ω) in (5.77) is often referred to as band-filling factor. Inserting
the result for S(ω) into Eq. (5.70), we obtain for the absorption coefficient

α(ω) = αD
0

�ω

E0

(
�ω − Eg − E

(D)
0

E0

)D−2
2

Θ(�ω − Eg − E
(D)
0 )A(ω) ,

(5.80)

absorption coefficient for free carriers

where we introduced the energy E0 = �
2/(2mra

2
0) and the length a0 =

�
2ε0/(e2mr) as scaling parameters, and

αD0 =
4π2|dcv|2

�nbc

1
(2πa0)D

ΩD
1

L3−D
c

(5.81)

To discuss the resulting semiconductor absorption, we first consider the
case of unexcited material, where fe(ω) = fh(ω) = 0, i.e., A(ω) = 1.
The absorption spectra obtained from Eq. (5.80) for this case are plotted
in Fig. 5.3. The figure shows that in two-dimensional materials the ab-
sorption sets in at Eg + E

(2)
0 like a step function, while it starts like a

square root
√

�ω − Eg in bulk material with D = 3, and it diverges like

1D

2D
3D

�

h�

Fig. 5.3 Free electron absorption spectra for semiconductors, where the electrons can
move freely in one, two, or three space dimensions.
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1/
√

�ω − Eg − E(1)
0 for D = 1. The function S(ω) is just the density of

states. If we considered not strictly two- or one-dimensional conditions,
but a quantum well or quantum wire with a finite thickness, the density of
states would exhibit steps corresponding to the quantization of the electron
motion in the confined space dimensions. The first step, which is all that
we have taken into account, belongs to the lowest eigenvalue. Further steps
corresponding to higher energy eigenvalues in the confined direction would
belong to higher subbands.

As mentioned earlier, through optical pumping or injection of carriers,
one may realize a situation with a finite number of electrons and holes.
In this case, one speaks about an excited semiconductor, where the band-
filling factor A(ω), Eq. (5.78), differs from one. Using the properties of the
Fermi functions, one can rewrite A(ω) as (see problem 5.1)

A(ω) =
[
(1− fe(ω))(1− fh(ω)) + fe(ω)fh(ω)

]
tanh

[
β
2 (�ω − Eg − µ)

]
,

(5.82)

where we introduced the total chemical potential µ as

µ = µe + µh . (5.83)

�

h�

Fig. 5.4 Absorption/gain spectra for a one-dimensional free carrier system using the
carrier densities N = 0, 3.5, 5.4, 7.4 × 105cm−1, from top to bottom.
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Since

0 ≤ fe/h ≤ 1 , (5.84)

we see that the prefactor of the tanh term in Eq. (5.82) is strictly positive,
varying between 0.5 and 1. However, tanh(x) changes its sign at x = 0.
The band-filling factor, and therefore the optical absorption, can become
negative if µ > 0 and

Eg < �ω < Eg + µ . (5.85)

Examples of the density-dependent absorption spectra for one-, two-, and
three-dimensional free carrier systems are plotted in Figs. 5.4, 5.5, and 5.6,
respectively.

As the electron–hole densities are increased, the carrier distributions
gradually become more and more degenerate with positive chemical poten-
tial µ/kBT . In most semiconductor systems, the effective mass of the holes
is more than three times larger than that of the electrons. Consequently, the
valence band density of states is very large and the holes remain non degen-
erate up to rather large densities. For the highest densities in Figs. 5.4 – 5.6,
the absorption becomes negative in the spectral region above the band gap,
i.e., light with these frequencies is amplified, it experiences gain rather than
loss (absorption).

The appearance of optical gain in the electron–hole system is the basis of
semiconductor lasers, whose basic operational principles are discussed later

h�

�

Fig. 5.5 Absorption/gain spectra for a two-dimensional free carrier system using the
carrier densities N = 0, 5, 8.3, 12 × 1011cm−2, from top to bottom.
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in this book. It is interesting to compare the spectral properties of the gain
for the different effective dimensionalities of the carrier system. Due to the
vanishing density of states at the band gap, in a three-dimensional system
(Fig. 5.6), the gain gradually increases with increasing energy and peaks
at an energy between the band gap and the total chemical potential of the
carrier system. Due to the step-like density of states in a two dimensional
system (Fig. 5.5) we always have the gain maximum directly at the band
gap, only the spectral region of optical gain increases with increasing carrier
density. In the one-dimensional carrier system of Fig. 5.4, we see a very
sharply peaked gain right at the band gap whose amplitude increases with
increasing carrier density.

For many applications one would often prefer the gain properties of the
one-dimensional system unless a broad spectral gain band width is needed,
e.g., for short-pulse generation. Anyway, the strong gain modifications
caused by changing the effective dimensionality of the carrier system are
one of the main motives of the ongoing research and development efforts in
the area of low-dimensional semiconductor structures.

The density-dependent absorption spectra shown in Figs. 5.4 – 5.6 are
the first example of optical nonlinearities which we discuss. The effects
included in our present treatment are usually referred to as band-filling
nonlinearities. Throughout this book we will encounter a variety of different
sources for optical semiconductor nonlinearities.

h�

�

Fig. 5.6 Absorption/gain spectra for a three-dimensional free carrier system using the
carrier densities N = 0, 3.3, 5.8, 9.5 × 1017cm−3, from top to bottom.
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PROBLEMS

Problem 5.1: Solve the coherent Bloch equations (5.44) for the resonant
case, νk = 0, in the form

Ui(t) =
∑
i,j

Aij(t)Uj(0).

Problem 5.2: Show that

1− fe(ω)− fh(ω) =
{[

1− fe(ω)
][
1− fh(ω)

]
+ fe(ω)fh(ω)

}
× tanh

[
β

2
(�ω − Eg − µ)

]
.

Hint: Use tanh(x) = (ex − e−x)/(ex + e−x).

Problem 5.3: Calculate the onset of the absorption due to the second
subband in a quasi-two-dimensional semiconductor well.

Problem 5.4: Use the Liouville equation to derive Eq. (5.36) for the multi-
subband quantum-well structure.
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Chapter 6

Ideal Quantum Gases

As an introduction to the quantum mechanical analysis of many particle
systems, we discuss in this chapter some properties of ideal quantum gases.
An ideal gas is a system of noninteracting particles that is nevertheless in
thermodynamic equilibrium. We analyze these systems in some detail to
get experience in working with creation and destruction operators and also
because we need several of the results obtained in later parts of this book.

An elementary particle with spin s = �(n + 1/2), n = 0, 1, 2, . . . , is
called a Fermion, while a particle with s = �n is called a Boson, see also
Appendix A. The Pauli exclusion principle states that for Fermions it is
forbidden to populate a single-particle state more than once. This feature
is incorporated into the Fermi creation and destruction operators. For
example, if the same Fermi destruction operator acts on the same state
more than once, it always yields zero. Bosons, on the other hand, do not
obey the exclusion principle, so that no limitation of the occupation of any
quantum state exists. We discuss in this chapter, how these differences
result in completely different statistical properties of a gas of Bosons or
Fermions.

The general method of field quantization, the so-called second quantiza-
tion, is summarized in Appendix A both for Fermion and Boson systems.
In this and the following chapter, we put a hat on top of operators in second
quantized form, such as n̂ for the particle number operator, to distinguish
them from the corresponding c-numbers.

In order to describe quantum mechanical systems at finite temperatures,
we need the concept of ensemble averages. Such averages are computed

89
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using the statistical operator ρ̂ which is defined as

ρ̂ =
exp[−β(Ĥ − µN̂)]

tr exp[−β(Ĥ − µN̂)]
. (6.1)

statistical operator for grand-canonical ensemble

Equation (6.1) defines the statistical operator for a grand-canonical ensem-
ble with a variable number of particles. The expectation value 〈Q̂〉 of an
arbitrary operator Q̂ in that ensemble is computed as

〈Q̂〉 = tr ρ̂ Q̂ . (6.2)

The trace of an operator Q̂ can be evaluated using any complete orthonor-
mal set of functions |n〉 or |l〉, since

tr Q̂ =
∑
l

〈l|Q̂|l〉 =
∑
l,n

〈l|n〉〈n|Q̂|l〉 =
∑
n

〈n|Q̂|n〉 . (6.3)

For practical calculations, it is most convenient to choose the functions as
eigenfunctions to the operator Q̂. If this is not possible we want to choose
the functions at least as eigenfunctions of some dominant part of Q̂, so that
the remainder is small in some sense. The precise meaning of small and
how to choose the most appropriate functions to evaluate the respective
traces will be discussed for special cases in later chapters of this book.

6.1 Ideal Fermi Gas

For didactic purposes, we write the spin index explicitly in this chapter.
The Hamiltonian for a system of noninteracting Fermions is

Ĥ =
∑
k,s

Ek â
†
k,sâk,s =

∑
k,s

Ekn̂k,s , (6.4)

where Ek = �
2k2/2m is the kinetic energy. The operators â†k,s and âk,s

are, respectively, the creation and annihilation operators of a Fermion in
the quantum state (k, s). They obey anti-commutation rules

[âk,s , â
†
k′,s′ ]+ = âk,sâ

†
k′,s′ + â†k′,s′ âk,s = δk,k′δs,s′ , (6.5)
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and

[âk,s , âk′,s′ ]+ = [â†k,s , â
†
k′,s′ ]+ = 0 , (6.6)

see Appendix A. The combination

n̂k,s = â†k,sâk,s (6.7)

is the particle number operator with the eigenstates |nk,s〉:

n̂k,s|nk,s〉 = nk,s|nk,s〉 with nk,s = 0, 1 , (6.8)

since each quantum state can be occupied by at most one Fermion.
To obtain the probability distribution function for Fermions, we com-

pute the expectation value of the particle number operator in the state
(k, s), i.e., we compute the mean occupation number

fk,s = 〈n̂k,s〉 = tr e[−β
∑

k′,s′ (Ek′−µ)n̂k′,s′ ]n̂k,s

tr e[−β
∑

k′,s′(Ek′−µ)n̂k′,s′ ]
. (6.9)

To evaluate these expressions, we use

e[−β
∑

k′,s′(Ek′−µ)n̂k′,s′ ] =
∏
k′,s′

e−β(Ek′−µ)n̂k′,s′ . (6.10)

This equation holds since the exponential operators on the LHS of Eq. (6.10)
all commute, which directly follows from the commutation of the number
operators for different states (k, s). Hence, Eq. (6.9) can be written as

fk,s =
tr
∏
k′s′ e

−β(Ek′−µ)n̂k′,s′ n̂k,s

tr
∏
k′s′ e

−β(Ek′−µ)n̂k′,s′
. (6.11)

Since the particle number operator is diagonal in the |nk,s〉 basis, we can
use

tr
∏
k′s′
· · · =

∏
k′s′

tr . . . ,

in Eq. (6.11). It is most convenient to evaluate the trace with the eigen-
functions (6.8) of the particle number operator, so that

tr e−β(Ek−µ)n̂k,s =
1∑

nk,s=0

e−β(Ek−µ)nk,s . (6.12)
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All factors (k′, s′) in the numerator and denominator of Eq. (6.11) cancel,
except for the term with k′ = k and s′ = s. Therefore, Eq. (6.11) simplifies
to

fk,s =

∑1
nk,s=0 e

−β(Ek−µ)nk,snk,s∑1
nk,s=0 e

−β(Ek−µ)nk,s

. (6.13)

Evaluating the sums and rearranging the terms yields the Fermi–Dirac dis-
tribution

fk,s =
1

eβ(Ek−µ) + 1
. (6.14)

Fermi–Dirac distribution

Eq. (6.14) shows that the distribution function depends only on the magni-
tude of k and not on the spin. Therefore, we often denote the Fermi–Dirac
distribution simply by fk. Examples for the Fermi–Dirac distribution func-
tion are plotted in Fig. 6.1 for three different temperatures.

We obtain the total number of particles N by summing the distribution
function fk over all quantum states k, s:

N =
∑
k,s

fk = 2
∑
k

fk . (6.15)

0

0.5

1

0 200 400

10 K
50 K

300 K

E /kk B

fk

Fig. 6.1 Fermi–Dirac distribution function fk as function of Ek/kB for the particle
density n = 1 · 1018cm−3 and three temperatures.
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This relation determines the chemical potential µ = µ(n, T ) as a function
of particle density n and temperature T. In order to evaluate Eq. (6.15), it
is again useful to convert the sum over k into an integral over the energy ε

∑
k

→
∫ ∞

0

dε ρ(D)(ε) , (6.16)

where, comparing to Eq. (4.7), the D-dimensional density of states is iden-
tified as

ρ(D)(ε) = ΩD

(
L

2π

)D 1
2

(
2m
�2

)D/2

ε(D−2)/2 . (6.17)

6.1.1 Ideal Fermi Gas in Three Dimensions

For a system with three dimensions, Eq. (6.15) yields

N =
L3

2π2

(
2m
�2

)3/2 ∫ ∞

0

dε
√
ε

1
eβ(ε−µ) + 1

. (6.18)

Unfortunately, this integral cannot be evaluated analytically. We will there-
fore consider first the low-temperature limit T → 0 or β →∞. If β →∞

fk =
(
1
0

)
for

(
ε < µ

ε > µ

)
or fk = θ(µ− ε) , (6.19)

showing that the Fermi function degenerates into the unit-step function.
The chemical potential of this degenerate Fermi distribution is often denoted
as the Fermi energy EF

µ(n, T = 0) = EF =
�
2k2F
2m

, (6.20)

where we have introduced kF as the Fermi wave number. This is the wave
number of the energetically highest state occupied at T = 0. In this degen-
erate limit, Eq. (6.18) yields

n =
N

L3
=

1
2π2

(
2m
�2

)3/2 2
3
E
3/2
F =

1
3π2

k3F (6.21)

and thus

kF = (3π2n)1/3 . (6.22)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

94 Quantum Theory of the Optical and Electronic Properties of Semiconductors

Inserting this into Eq. (6.20), we get

EF =
�
2

2m
(3π2n)2/3 . (6.23)

In the high-temperature limit, where β → 0, the chemical potential
must grow fast to large negative values

lim
β→0

(−µβ) =∞ (6.24)

in order to keep the integral in Eq. (6.18) finite. The quantity exp(βµ),
called the virial, is thus a small quantity for βEF << 1 and can be used as
an expansion parameter. In lowest approximation, the Fermi function can
be approximated by

fk =
eβ(µ−Ek)

1 + eβ(µ−Ek)
� eβµe−βEk . (6.25)

In this case, Eq. (6.18) yields

n =
eβµ

2π2

(
2m
�2β

)3/2 ∫ ∞

0

dx
√
x e−x . (6.26)

The integral is
√
π/2, so that

n = n0 e
βµ , (6.27)

where

n0 =
1
4

(
2m

�2πβ

)3/2

, (6.28)

or, using Eqs. (6.26) and (6.27),

eβµ = 4n
(

�
2πβ

2m

)3/2

. (6.29)
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Inserting this result into Eq. (6.25) yields the classical nondegenerate, or
Boltzmann distribution

fk = 4n
(

�
2πβ

2m

)3/2
e−βEk . (6.30)

Boltzmann distribution

For the parameters used in Fig. 6.1, the distribution function at T = 300K
is practically indistinguishable from the Boltzmann distribution function
(6.30) for the same conditions.

At this point, we will briefly describe how one can obtain an analytic
approximation for µ(n, T ), which is good for all except very strongly de-
generate situations. Here, we follow the work of Joyce and Dixon (1977)
and Aguilera–Navaro et al. (1988). According to Eq. (6.18), the normalized
density ν = n/n0 can be written as

ν =
n

n0
=

2√
π

∫ ∞

0

dx
√
x

z e−x

1 + ze−x
, (6.31)

where z = exp(βµ). The integral can be evaluated using the series repre-
sentation

ν =
2√
π

∫ ∞

0

dx
√
x

∞∑
n=0

(−1)nzn+1e−x(n+1)

=
∞∑
n=1

(−1)n+1 zn

n3/2
. (6.32)

Clearly, this expansion converges only for µ < 0 or z < 1. However, the
convergence range can be extended using the following resummation. First
we invert Eq. (6.32) to express z in terms of ν

z =
∞∑
n=1

bnν
n (6.33)
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where the comparison with Eq. (6.32) shows that b1 = 1. Taking the
logarithm of Eq. (6.33), we can write βµ as

βµ = ln ν +
∞∑
n=1

Bnν
n . (6.34)

The logarithmic derivative of Eq. (6.34) yields

ν
dβµ

dν
= 1 +

∞∑
n=1

Bnnν
n . (6.35)

Now, we make a Padé approximation by writing the infinite sum on the
RHS of Eq. (6.34) as the ratio of two polynomials of order L and M

ν
dβµ

dν
�
∑L

i=0 piν
i∑M

i=0 qiν
i
= [L/M ](ν) . (6.36)

This approximation is called the L/M -Padé approximation. Comparison
with the fully numerical result shows that the approximation with L = 2
andM = 1 already gives quite accurate estimates. A final integration yields

βµ � ln(ν) +K1 ln(K2ν + 1) +K3ν , (6.37)

with K1 = 4.897, K2 = 0.045, and K3 = 0.133.
The comparison of Eqs. (6.37) and (6.29) shows that the logarithmic

term in Eq. (6.37) is exactly the classical result. The chemical potential

-10

0

10

20

30

-10 -5 0 5

ln(n/n )0

��

Fig. 6.2 Chemical potential µ for a three-dimensional Fermi gas as function of n/n0

where n0 is defined in Eq. (6.28).
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according to Eq. (6.37) is plotted in Fig. 6.2. Within drawing accuracy,
the result is indistinguishable from the exact chemical potential obtained
as numerical solution of Eq. (6.18). Hence, Eq. (6.37) yields a good ap-
proximation for the range −∞ < µβ ≤ 30 .

6.1.2 Ideal Fermi Gas in Two Dimensions

For a two-dimensional system, Eq. (6.15) yields

n =
N

L2
=

1
2π

(
2m
�2β

)∫ ∞

0

dx
1

exe−βµ + 1
, (6.38)

where n = N/L2 now is the two-dimensional particle density and L2 is
the area. Using exp(x) = t as a new integration variable, the integral in
Eq. (6.38) becomes

∫ ∞

1

dt
1

t(te−µβ + 1)
=
∫ ∞

1

dt

(
1
t
− 1
t+ eµβ

)
= ln(1 + eµβ) . (6.39)

Hence, we find the analytical result

n =
m

�2βπ
ln(1 + eβµ) (6.40)

or

βµ(n, T ) = ln
(
e�

2βπn/m − 1
)
. (6.41)

2D Fermion chemical potential

6.2 Ideal Bose Gas

Our discussion of the ideal Bose gas with spin s = 0 proceeds similar to the
analysis of the ideal Fermi gas. The Hamiltonian is

Ĥ =
∑
k

Ek b̂
†
kb̂k =

∑
k

Ekn̂k , (6.42)
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and the Bose commutation relations are

[b̂k , b̂
†
k′ ] = b̂kb̂

†
k′ − b̂†k′ b̂k = δk,k′ , (6.43)

and

[b̂k , b̂k′ ] = [b̂†k , b̂
†
k′ ] = 0 , (6.44)

see Appendix A. The expectation value of the particle number operator is

gk ≡ 〈n̂k〉 = tr e−β(Ek−µ)n̂k n̂k
tr e−β(Ek−µ)n̂k

. (6.45)

As in the Fermi case, the traces in Eq. (6.45) are evaluated choosing the
eigenfunctions |nk〉 of the particle number operator

n̂k|nk〉 = nk|nk〉 , where nk = 0, 1, 2, . . . , N, . . .∞ . (6.46)

In contrast to the Fermi gas, where the Pauli principle allows all quantum
states to be occupied only once, each state can be populated arbitrarily
often in the Bose system. We obtain

tr e−β(Ek−µ)n̂k =
∞∑

nk=0

e−β(Ek−µ)nk

=
∞∑
n=0

an =
1

1− a , (6.47)

where a = exp[−β(Ek−µ)]. It is straightforward to evaluate the numerator
in Eq. (6.45) as derivative of the denominator, showing that Eq. (6.45) yields
the Bose–Einstein distribution function

gk =
1

eβ(Ek−µ) − 1 . (6.48)

Bose–Einstein distribution

Generally, for Bosons we have two possible cases:

i) Particle number not conserved, i.e. N =
∑

k gk �= constant. In this case,
µ cannot be determined from this relation, it has to be equal to zero: µ = 0.



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Ideal Quantum Gases 99

Examples for this class of Bosons are thermal photons and phonons.

ii) Particle number conserved, i.e., N =
∑

k gk = constant. Then µ =
µ(N,T ) is determined from Eq. (6.15) as in the Fermi system. Due to the
minus sign in the denominator of the Bose–Einstein distribution, the sum
in Eq. (6.47) converges only for µ ≤ 0 since the smallest value of Ek is zero.
Examples of this class of Bosons are He atoms.

In the remainder of this chapter, we discuss some properties of the Bose
system with conserved particle number, case ii). As in the Fermi case, βµ
takes on large negative values for high temperatures. Thus, for T → ∞,
we can neglect the -1 in the denominator of Eq. (6.48) as compared to
e−βµ showing that the Bose–Einstein distribution also converges toward
the Boltzmann distribution for high temperatures.

6.2.1 Ideal Bose Gas in Three Dimensions

If we study the chemical potential of the ideal Bose gas for decreasing tem-
peratures, we find that µ is negative and that its absolute value decreases
toward zero. We denote the critical temperature at which µ becomes zero
as Tc :

µ(n, T = Tc) = 0 . (6.49)

To determine the value of Tc, we use Eq. (6.48) with µ = 0 and compute
the total number of Bosons first for the three-dimensional system :

N =
∑
k

gk =
∫ ∞

0

dερ(3)(ε)
1

eβε − 1

=
L3

4π2

(
2m
�2

)3/2 ∫ ∞

0

dε
√
ε

1
eβε − 1

. (6.50)

The series representation

1
ex − 1

=
∞∑
n=1

e−nx (6.51)
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allows us to rewrite Eq. (6.50) as

N =
L3

(2π)2

(
2m
β�2

)3/2 ∞∑
n=1

∫ ∞

0

dx e−nxx1/2 , (6.52)

and the substitution nx = t yields

N =
L3

(2π)2

(
2m
β�2

)3/2
( ∞∑
n=1

1
n3/2

)∫ ∞

0

dt e−tt1/2 , (6.53)

where the sum is the ζ function and the integral is the Γ function, both
with the argument 3/2. Hence, we obtain for the density

N

L3
= n =

1
(2π)2

(
2m
β�2

)3/2

ζ(3/2)Γ(3/2) , (6.54)

showing that n ∝ T 3/2 for µ = 0. Setting T = Tc, i.e., β = βc, we find from
Eq. (6.54) that

kBTc =
�
2

2m
n2/3

[
2π2

Γ(3/2)ζ(3/2)

]2/3
. (6.55)

The result (6.55) implies that Tc is a finite temperature ≥ 0. Now we know
that µ = 0 at T = Tc, but what happens if T falls below Tc? The chemical
potential has to remain zero, since otherwise the Bose–Einstein distribution
function would diverge. All the calculations (6.50) – (6.54) assumed µ = 0
and are therefore also valid for T < Tc. However, from the result (6.54)
we see that N decreases with decreasing temperature yielding the apparent
contradiction

N(T < Tc) < N(T = Tc) = N . (6.56)

The solution of this problem came from the famous physicist Albert Ein-
stein. He realized that the apparently missing particles in (6.56) are in fact
condensed into the state k = 0, which has zero weight in the transformation
from the sum to the integral in Eq. (6.16). Therefore, the term with k = 0
has to be treated separately for Bose systems at T < Tc. This can be done
by writing
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N =
∑
k �=0

nk +N0

=
L3

(2π)2

(
2mkBT

�2

)3/2

ζ(3/2)Γ(3/2) +N0 . (6.57)

This equation shows that all particles are condensed into the state k =
0 at T = 0. This condensation in k-space is called the Bose–Einstein
condensation. It corresponds to a real-space correlation effect in the Bosonic
system leading to superconductivity and superfluidity. For temperatures
between T = 0 K and Tc, the three-dimensional Bose system consists of a
mixture of condensed and normal particles.

6.2.2 Ideal Bose Gas in Two Dimensions

Using the two-dimensional density of states, we get for the total number of
Bosons

N =
L2

4π

(
2m
�2β

)∫ ∞

0

dx
1

ex−βµ − 1
. (6.58)

The resulting expression for the two-dimensional particle density, n =
N/L2, can be evaluated in the same way as the corresponding expression
for Fermions, yielding

n = − 1
4π

(
2m
�2β

)
ln(1 − eβµ) . (6.59)

The argument of the logarithmic term has to be larger than 0, i.e., eβµ <
1 and µ < 0 for any finite β value. Therefore, the chemical potential
approaches zero only asymptotically as T → 0 and there is no Bose–Einstein
condensation in an ideal two-dimensional Bose system.

6.3 Ideal Quantum Gases in D Dimensions

In this section, we summarize some universal results for the temperature
and density dependence of the chemical potential for Fermi, Bose, and
Boltzmann statistics in a D-dimensional ideal quantum gas. In the previous
sections, we have already considered the three- and two-dimensional cases.
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Here, however, we also include the one-dimensional case and formalize the
previous considerations.

As discussed preceding Eq. (6.15), the chemical potential µ is deter-
mined from the relation

n =
2s+ 1
LD

∑
k

f±
k , (6.60)

where n = N/LD is the D-dimensional particle density, 2s + 1 is the spin
degeneracy, with s = 0 or 1 for Bosons and s = 1/2 for Fermions, and k is
the D-dimensional wave vector. The thermal distributions f±

k are defined
as

f±
k =

1
eβ(Ek−µ) ± 1

, (6.61)

with + for Fermions and − for Bosons. As before, we reformulate Eq. (6.60)
with the virial z = eβµ and get

n = (2s+ 1)zID(0)
(
I±D(z)
ID(0)

)
, (6.62)

where

I±D(z) = L−D
∑
k

1
eβEk ± z . (6.63)

The first factor ID(0) in Eq. (6.62) can be evaluated most easily in Cartesian
coordinates:

ID(0) = L−D
∑
k

e−βEk =
D∏
i=1

∫ +∞

−∞

dki
2π

e−β�
2k2

i /2m

=
(

m

2π�2β

)D/2

= n

(
kBT

E0D

)D/2

, (6.64)

where the D-dimensional zero-point energy is

E0D =
2π�

2

m
n2/D . (6.65)

TheD-dimensional integrals of the final normalized expression I±D(z)/ID(0)
in Eq. (6.62) are now evaluated in polar coordinates. Because the integrands
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do not depend on angles, the space angle as well as other normalization
constants drop out and we obtain from Eq. (6.62) :

1 = (2s+ 1)z
(
kBT

E0D

)D/2(
J±
D (z)
JD(0)

)
, (6.66)

where

J±
D (z) =

∫ ∞

0

dk kD−1 1
ek2 ± z and JD(0) = Γ(D/2). (6.67)

The gamma function is given for D = 3, 2, and 1 by the values Γ(3/2) =√
π/2, Γ(1) = 1,Γ(1/2) =

√
π, respectively. In general, the integral J±

D (z)
has to be evaluated numerically for the three- and one-dimensional cases.
We obtain an analytical result only in two dimensions (see Sec. 6-1.2 and
6-2.2):

J±
2 (z) = ∓1

z
ln(1 ± z) . (6.68)

As before, the limiting case of Boltzmann distributions is obtained from
Eq. (6.66) if we approximate the factor J±

D (z)/JD(0) � 1.
In order to compare the particle statistics with each other for different

dimensionalities, we rewrite Eq. (6.66) as

kBT

E0D
=
[
(2s+ 1)z

J±
D(z)
JD(0)

]−2/D

. (6.69)

The ratio of the thermal energy kBT to the zero-point energy E0D is a
measure of the degeneracy of the ideal quantum gas. For ratios larger than
one, quantum effects can be neglected. On the other hand, quantum effects
dominate over thermal ones if kBT/E0D is smaller than one. In Fig. 6.3,
we plot kBT/E0D logarithmically versus the ratio of the chemical potential
to the thermal energy µβ. For better comparison, we have put s = 0 for
all cases. In such a plot, we obtain a straight line with a slope of −2/D for
the Boltzmann limit, as can be seen by taking the logarithm of the RHS of
Eq. (6.69). For Bosons, the figure shows clearly that for D = 3 the chemical
potential becomes zero in the vicinity of kBT � E0D, whereas it approaches
zero only asymptotically for D = 2, 1. This shows again the absence of a
Bose–Einstein condensation in dimensions lower than three. For Fermions,
the chemical potential becomes positive and converges to the Fermi energy
as the degeneracy parameter kBT/E0D → 0.
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Fig. 6.3 Comparison of kBT/E0D plotted logarithmically versus µβ for the Bose, Fermi
and Boltzmann statistics of a 3D, 2D and 1D quantum gas.
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PROBLEMS

Problem 6.1: Consider a linear chain of atoms with masses M and inter-
atomic distance a. The coupling between the atoms is given by a harmonic
force with the force constant K.

a) Show that the Lagrange function is

L =
1
2
M

N∑
r=1

(
dqr
dt

)2

− 1
2
K

N∑
r=1

(qr − qr+1)2
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where qr is the displacement of the r-th atom from its equilibrium position.

b) Compute the canonical momentum pr.

c) The displacements can be expanded into normal coordinates Qk

qr(t) =
1√
N

∑
k

Qk(t)eikar .

Use∑
k

eiar(k−k′) = Nδkk′

and the periodic boundary conditions qr+N = qr to determine the allowed
k-values.

d) The displacements are quantized by introducing the commutation rela-
tions

[p̂r, q̂s] =
�

i
δrs

[p̂r, p̂s] = 0 = [q̂r, q̂s] .

Use the fact that the displacement is a Hermitian operator

q̂†r = q̂r

to show the relations

Q̂†
k = Q̂−k ;

P̂k ≡ ∂L̂
∂(∂Q̂k/∂t)

= P̂ †
−k ;

[Q̂k, P̂k′ ] = −�

i
δkk′ ;

and

Ĥ =
1

2M

∑
k

P̂kP̂−k +K
∑
k

[1− cos(ak)]Q̂kQ̂−k

=
∑
k

�ωk

(
1

2M�ωk
P̂kP̂−k +

Mωk
2�

Q̂kQ̂−k

)
,
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where ω2
k = 2K

M [1− cos(ak)].

e) Introduce the phonon operators âk and â†k through the linear transfor-
mations

â†k =

√
Mωk
2�

Q̂−k − i
√

1
2�Mωk

P̂k

âk =

√
Mωk
2�

Q̂k + i

√
1

2�Mωk
P̂−k .

Verify the phonon commutation relation

[âk, â
†
k′ ] = δkk′

and show that the Hamiltonian becomes

Ĥ =
∑
k

�ωk

(
â†kâk +

1
2

)
.

Hint: Follow the discussion in Appendix A.

Problem 6.2: The Fourier expansion of Â is given by

Â(r, t) =
∑
k

eik·rÂ(k, t) ,

and correspondingly for Π̂(r, t). Prove, that in the Coulomb gauge the
commutator of Â(k, t) and Π̂(k, t) is

[Âl(k, t), Π̂j(k, t)] = i�

(
δlj − klkj

k2

)
.

Problem 6.3: Expand the chemical potential of a nearly degenerate 3D
Fermion system for low temperatures (Sommerfeld expansion).

Problem 6.4: Determine the temperature at which a 2D Fermion system
of a given density has zero chemical potential.

Problem 6.5: Calculate the energy and specific heat of a nearly degenerate
2D Fermion system.
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Chapter 7

Interacting Electron Gas

In this chapter, we discuss a model for the interacting electron gas in a
solid. To keep the analysis as simple as possible, we neglect the discrete
lattice structure of the ions in the solid and treat the positive charges as a
smooth background, called jellium-like jelly.

This jellium model was originally designed to describe the conduction
characteristics of simple metals. However, as we will see in later chapters
of this book, this model is also useful to compute some of the intraband
properties of an excited semiconductor. In such a system, we have to deal
with an electron–hole gas, which consists of the excited electrons in the
conduction band and the corresponding holes, i.e., missing electrons, in the
valence band. In this case, one again has total charge neutrality, since the
negative charges of the electrons are compensated by the positive charges
of the holes.

In the following sections, we discuss the jellium model in such a way that
only very minor changes are required when we want to apply the results to
the case of an excited semiconductor.

7.1 The Electron Gas Hamiltonian

The Hamiltonian of a three-dimensional electron system is the sum of ki-
netic and interaction energy. In the previous chapter on ideal quantum
gases, we discussed the kinetic energy part in great detail. Now we add
the Coulomb interaction part in the jellium model approximation. For this
purpose, we write the Coulomb Hamiltonian in first quantization as

HC =
1
2

∑
α,α′

∫
d3r d3r′ ρα(r) ρα′(r′)W (r− r′) , (7.1)

107
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where W is the interaction potential. Since the detailed form of W is not
needed for our initial considerations, we defer this discussion until the end
of this section. The term r = r′ has to be excluded from the integration
in (7.1) since this is the infinite interaction energy of charges at the same
position (self-energy). For notational simplicity, we keep the unrestricted
integration and subtract the self-energy at the end.

The index α in Eq. (7.1) runs over electrons, α = e, and ions, α = i.
The charge density ρα is

ρe(r) = −|e|
N∑
i=1

δ(r− ri) (7.2)

for the electrons and

ρi(r) = |e|N
L3

(7.3)

for the ions, reflecting our assumption that the ions form a uniform positive
charge background.

Now, we take the Fourier transformation of the charge density and the
interaction potential. For the spatial 3D Fourier transformation, we use
the following conventions

fq =
∫

d3r

L3
f(r)e−iq·r (7.4)

f(r) =
∑
q

fqe
iq·r (7.5)

and∑
q

eiq·(r−r
′) = L3δ(r− r′) (7.6)

∫
d3r

L3
ei(q−q

′)·r = δq,q′ . (7.7)

With these definitions we obtain the Coulomb interaction Hamiltonian (7.1)
as

HC =
L6

2

∑
α,α′,q

Wqρα,−qρα′,q , (7.8)
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where

ρe,q = − |e|
L3

N∑
i=1

e−iq·ri (7.9)

and

ρi,q =
|e|N
L3

δq,0 . (7.10)

Evaluating the sum over electron and ion contributions allows us to write
the total Coulomb Hamiltonian as the sum of three terms:

HC = He−e
C +He−i

C +Hi−i
C . (7.11)

The electron–electron interaction is

He−e
C =

e2

2

∑
i,j,q

Wqe
iq·(ri−rj)

=
e2

2


 ∑

i,j,q �=0

Wqe
iq·(ri−rj) +Wq=0N

2


 , (7.12)

where we separated the contribution with q = 0 in the second line. For the
electron–ion interaction, we get

He−i
C = −e

2

2

∑
j,q

WqNδq,0(eiq·rj + e−iq·rj ) = −e2Wq=0N
2 , (7.13)

and the ion–ion interaction yields

Hi−i
C =

e2

2
Wq=0N

2 . (7.14)

Adding all the contributions (7.12) – (7.14), we obtain for the Coulomb
Hamiltonian in the jellium model

HC =
e2

2

∑
i,j �=i,q �=0

Wqe
iq·(ri−rj) . (7.15)

In the double summation, we now exclude the term with i = j, which is
just the electron self-interaction mentioned in the discussion after Eq. (7.1).
Writing
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∑
i,j �=i
q�=0

Wqe
iq·(ri−rj) =

∑
i,q �=0

Wqe
iq·ri

∑
j �=i

e−iq·rj

=
∑
i,q �=0

Wqe
iq·ri


∑

j

e−iq·rj − e−iq·ri




=
∑

i,j,q �=0

Wqe
iq·(ri−rj) −N

∑
q �=0

Wq , (7.16)

and using (7.9), the Coulomb Hamiltonian becomes

HC =
1

2

∑
q �=0

Wq(L6ρe,−qρe,q − e2N) . (7.17)

Coulomb Hamiltonian for jellium model

The calculations leading to the Hamiltonian (7.17) show that the only,
but extremely important effect resulting from the attractive interaction
of the electrons with the homogeneous positive charge background is to
eliminate the term q = 0 from the sum in the electron–electron interaction
Hamiltonian.

In order to obtain the Coulomb Hamiltonian in second quantization, we
replace the charge density ρe,q in (7.17) by the charge density operator

ρe,−q → ρ̂e,−q , (7.18)

and

N → N̂ , (7.19)

where N̂ is the operator for the total number of electrons, so that

ĤC =
1
2

∑
q �=0

Wq(L6ρ̂e,−qρ̂e,q − e2N̂) . (7.20)

As the next step, we now want to introduce the electron creation and
destruction operators â†k,s and âk,s, which we used already in Chap. 6. For
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this purpose, we write the charge density operator in real space as

ρ̂e(r) = −|e| n̂(r) = −|e|
∑
s

ψ̂†
s(r)ψ̂s(r) , (7.21)

where the field operators ψ̂†
s(r), ψ̂s(r) describe creation and destruction of

an electron at position r with spin s (see Appendix A). Using the plane-wave
expansion

ψ̂s(r) =
1

L3/2

∑
k

âk,se
ik·r , (7.22)

we obtain

ρ̂e(r) = − |e|
L3

∑
k,k′,s

â†k′,sâk,se
i(k−k′)·r . (7.23)

Taking the Fourier transformation of (7.23) yields

ρ̂e,q = − |e|
L3

∑
k,s

â†k−q,sâk,s . (7.24)

After inserting (7.24) into the Hamiltonian (7.20), we obtain

ĤC =
1
2

∑
k,k′

q�=0,s,s′

â†k+q,sâk,sâ
†
k′−q,s′ âk′,s′Vq − 1

2

∑
q �=0

N̂Vq , (7.25)

where we abbreviated

Vq = e2Wq . (7.26)

Reordering the creation and destruction operators using the anti-
commutation relations (6.5) – (6.6) yields

ĤC =
1
2

∑
k,k′
q�=0
s,s′

â†k+q,sâ
†
k′−q,s′ âk′,s′ âk,sVq

+
1
2

∑
k,s

â†k,sâk,s
∑
q �=0

Vq − 1
2

∑
q �=0

N̂Vq . (7.27)
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The last two terms cancel since

N̂ =
∑
k,s

â†k,sâk,s . (7.28)

Adding the kinetic energy part, Eq. (6.4), we obtain the total electron
gas Hamiltonian

Ĥ =
∑

Ekâ
†
k,sâk,s +

1

2

∑
k,k′
q�=0
s,s′

Vqâ
†
k+q,sâ

†
k′−q,s′âk′,s′âk,s . (7.29)

electron gas Hamiltonian

The only missing ingredient is now the detailed form of the interaction
potential Vq. We start from the Coulomb interaction potential in real space

V (r) =
e2

ε0r
, (7.30)

where we include the background dielectric constant ε0 to take into account
the polarizability of the valence electrons and of the lattice. Using Eq. (7.4),
we have

Vq =
∫

d3r

L3
V (r)e−iq·r

=
e2

L3ε0

∫
d3r eiq·r

1
r
=

2πe2

L3ε0

∫ ∞

0

dr r

∫ 1

−1

d cos θ eiqr cos θ

= −i 2πe
2

L3ε0q

∫ ∞

0

dr (eiqr − e−iqr) . (7.31)

To evaluate the remaining integral in Eq. (7.31), we introduce the conver-
gence generating factor exp(−γr) under the integral and take the limit of
γ → 0 after the evaluation. This yields

Vq = −i 2πe
2

ε0L3q
lim
γ→0

∫ ∞

0

dr(eiqr − e−iqr)e−γr

= lim
γ→0

4πe2

ε0L3(q2 + γ2)
, (7.32)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Interacting Electron Gas 113

so that

Vq = V 3D
q =

4πe2

ε0L3

1

q2
. (7.33)

3D Coulomb potential

7.2 Three-Dimensional Electron Gas

Now we use the electron gas Hamiltonian to compute the ground-state
energy (T = 0) in Hartree–Fock approximation. Since we know that at
T = 0 all particles are in states with |k| ≤ kF , the Hartree–Fock ground-
state wave function is

|0〉HF = â†k1,s1
â†k2,s2

. . . â†kN ,sN
|0〉 =

∏
ki≤kF

â†ki,si |0〉 . (7.34)

Due to the anti-commutation relations between the Fermi operators,
Eq. (7.34) automatically has the correct symmetry. The Hartree–Fock
ground state energy is

EHF
0 = HF 〈0|Ĥ|0〉HF = EHF

kin + EHF
pot . (7.35)

First we evaluate the kinetic energy

EHF
kin =

∑
k,s

Ek HF 〈0|â†k,sâk,s|0〉HF . (7.36)

We simply get

HF 〈0|â†k,sâk,s|0〉HF = Θ(kF − k) , (7.37)

since in the Hartree–Fock ground state all states below the Fermi wave
number are occupied and all states above kF are empty. The Θ-function
can also be written as

Θ(kF − k) = Θ(EF − Ek) = fk(T = 0) , (7.38)
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which is just the Fermi distribution at T = 0. Therefore,

EHF
kin = 2

∑
k

EkΘ(EF − Ek) =
L3

π2
�
2

2m

∫ kF

0

dk k4 =
L3

π2
�
2

2m
k5F
5

, (7.39)

where Eq. (4.6) for D = 3 has been used. With the Fermi wave number
kF = (3π2n)1/3, Eq. (6.22), we find

EHF
kin =

�
2L3

10mπ2
(3π2n)5/3 . (7.40)

For the potential energy, we obtain

EHF
pot =

1
2

∑
q�=0

k,k′,s,s′

Vq HF 〈0|â†k+q,sâ†k′−q,s′ âk′,s′ âk,s|0〉HF . (7.41)

This term is nonzero only if

|k|, |k′| ≤ kF and |k+ q|, |k′ − q| ≤ kF , (7.42)

as can be seen by acting with the destruction operators on the Hartree–Fock
ground state to the right, and with the h.c. of the creation operators on the
Hartree–Fock ground state to the left, respectively. To evaluate (7.41), we
now commute â†k′−q,s′ to the right, using the Fermi commutation relations
repeatedly. We obtain

HF 〈0|â†k+q,sâ†k′−q,s′ âk′,s′ âk,s|0〉HF =

−HF 〈0|â†k+q,sâk′,s′(−âk,sâ†k′−q,s′ + δk,k′−qδs,s′)|0〉HF =

−HF 〈0|â†k+q,sâk+q,s|0〉HF δk,k′−qδs,s′ , (7.43)

where q �= 0 and

â†k′−q,s′ |0〉HF = 0 for |k′ − q| ≤ kF (7.44)

has been used. Furthermore,

HF 〈0|â†k+q,sâk+q,s|0〉HF = 1 (7.45)

since all states |k+ q| < kF are occupied. Using (7.42) – (7.45) and insert-
ing into (7.41) yields
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EHF
pot = −1

2

∑
q�=0

k,k′,s

Vq δk+q,k′Θ(EF − Ek)Θ(EF − Ek′)

= −1
2

∑
k,k′ �=k,s

V|k−k′|fk(T = 0)fk′(T = 0) . (7.46)

Explicit evaluation of the sum in the last line and use of Eq. (6.22) gives
(see problem 7.1)

EHF
pot ≡ Eexc = − e2L3

4π3ε0
(3π2n)4/3 . (7.47)

The Hartree–Fock result for the potential energy due to electron–electron
repulsion is just the exchange energy, which increases with density with
a slightly smaller power than the kinetic energy. The exchange energy
is an energy reduction, since the term with q = 0 is omitted from the
Hamiltonian as a consequence of the Coulomb attraction between electrons
and positive jellium background. Adding Eqs. (7.40) and (7.47) we obtain
the total Hartree–Fock energy as

EHF

L3
=

�
2

10mπ2
(3π2n)5/3 − e2

4π3ε0
(3π2n)4/3 . (7.48)

For low densities, the negative exchange energy dominates, while the kinetic
energy is larger at high densities, see Fig. 7.1. For intermediate densities,
there is actually an energy minimum, indicative of the existence of a stable
phase which is the electron–hole–liquid phase. Hence, already at the level
of this relatively simple Hartree–Fock theory, we find signatures of a stable
electron–hole liquid. This famous prediction of Keldysh has been verified
experimentally by the observation of electron–hole liquid droplets, mostly
in indirect gap semiconductors. The density within these droplets is the
stable liquid density. They condense and coexist with the electron–hole
gas, as soon as a critical density is exceeded and the temperature is below
the critical condensation temperature.

In order to gain more physical insight into electron gas properties and
to understand the energy reduction due to the exchange effects, we now
calculate for the Hartree–Fock ground state the conditional probability to
simultaneously find electrons at the position r with spin s and at r′ with
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Fig. 7.1 Hartree–Fock energy versus density scaled by the Bohr radius a0 = �ε0/(me2)

spin s′. This conditional probability is just the correlation function

Rss′(r, r′) = HF 〈0|ψ̂†
s(r)ψ̂

†
s′ (r

′)ψ̂s′(r′)ψ̂s(r)|0〉HF . (7.49)

Obviously, this correlation function is only finite if the annihilation opera-
tors simultaneously find an electron in (r, s) and (r′, s′). The creation op-
erators simply put the annihilated electrons back into their previous states.

Using (7.22) to express the field operators in terms of the electron cre-
ation and destruction operators allows us to write the electron correlation
function as

Rss′(r, r′) = 1
L6

∑
ei(l

′−k′)·r′+i(l−k)·r
HF 〈0|â†k,sâ†k′,s′ âl′,s′ âl,s|0〉HF .

(7.50)

The sum runs over (l, l′,k,k′) with (|l|, |l′|, |k|, |k′|) < kF . As in our calcu-
lation of EHF

pot , we again commute all creation operators to the right and
use Eq. (7.44). As intermediate step, we obtain

HF 〈0|â†k,sâ†k′,s′ âl′,s′ âl,s|0〉HF =HF 〈0|â†k,sâl,sδk′,l′−â†k,sâl′,s′δk′,lδs,s′ |0〉HF ,

(7.51)

where the first term is the so-called direct term and the second term is the
exchange term. Using the Fermi anti-commutation relations and Eq. (7.44)
one more time yields
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Rss′(r, r′) =
1
L6

∑
ei(l

′−k′)·r′+i(l−k)·r(δk,lδk′,l′ − δk′,lδk,l′δs,s′)

=
1
L6

[(N/2)2 − δss′ |F (r− r′)|2] . (7.52)

The first term in (7.52) results from

kF∑
k

kF∑
k′

1 = (N/2)2 ,

where we have to divide the total electron number N by two since no spin
summations are included, and in the second term we defined

F (ρ) =
kF∑
k

eik·ρ = n
3
2
sin kFρ− ρkF cos kFρ

(kFρ)3
. (7.53)

Here, we used Eq. (6.22) to introduce the factor k3F in terms of the density
n. Inserting Eq. (7.53) into Eq. (7.52), we obtain

Rss′(r, r′)=
n2

4

{
1− 9δss′

[
sin(kF |r− r′|)− |r− r′|kF cos(kF |r− r′|)

(kF |r− r′|)3
]2}

.

(7.54)

This result is plotted in Fig. 7.2. It shows that the conditional probability
to find an electron at r′ with spin s′, given that there is an electron at
r with spin s, depends only on the separation |r− r′| between the two
electrons. Furthermore, if s and s′ are different, the second term on the
RHS of Eq. (7.54) vanishes, and we find that the correlation function is
constant. However, for electrons with equal spin, s = s′, we can convince
ourselves by a Taylor expansion that Rss(ρ → 0) → 0. This result shows
that the electrons with equal spin avoid each other as a consequence of the
Pauli exclusion principle (exchange repulsion). Each electron is surrounded
by an exchange hole, i.e., by a net positive charge distribution.

The existence of the exchange hole expresses the fact that the mean
separation between electrons with equal spin is larger than it would be
without the Pauli principle. This result is correct also for the ideal Fermi
gas, where actually the Hartree–Fock ground state is the exact ground state
of the system. For the interacting electron gas treated in this chapter, the
increased separation between repulsive charges reduces the overall Coulomb
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Fig. 7.2 Pair correlation function Rss′ for the three-dimensional electron plasma,
Eq. (7.54), as function of the dimensionless particle distance kF ρ, where ρ = |r − r′|
and kF is given by Eq. (6.22).

repulsion. One can say that the electron interacts with its own exchange
hole. Since this is an attractive interaction, the total energy is reduced, as
we found in Eq. (7.47).

According to the Hartree–Fock theory, electrons with different spin do
not avoid each other, since the states are chosen to satisfy the exchange
principle but they do not include Coulomb correlations. The exchange
principle is satisfied as long as one quantum number, here the spin, is
different. However, in reality there will be an additional correlation, which
leads to the so-called Coulomb hole. To treat these correlation effects, one
has to go beyond Hartree–Fock theory, e.g., using screened Hartree–Fock
(RPA), see Chap. 9. Generally, one can write the exact ground state energy
E0 as

E0 = EHF
0 + Ecor = EHF

kin + Eexc + Ecor , (7.55)

where the correlation energy is defined as

Ecor = E0 − EHF
0 . (7.56)

An exact calculation of Ecor is generally not possible. To obtain good
estimates for Ecor is one of the tasks of many-body theory.
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7.3 Two-Dimensional Electron Gas

Even in those semiconductor structures which we consider as low-
dimensional, such as quantum wells, quantum wires, or quantum dots, the
Coulomb potential varies as 1/r. The reason is that the electric field lines
between two charges are not confined within these structures. The field
lines also pass through the surrounding material, which is often another
semiconductor material with a very similar dielectric constant.

In this section, we discuss the situation of idealized semiconductor quan-
tum wells, where the electron motion is confined to two dimensions, but
the Coulomb interaction has its three-dimensional space dependence. For
simplicity, we disregard here all modifications which occur for different di-
electric constants in the confinement layer and the embedding material. As
introduced in Chap. 4, we assume that the carriers are confined to the x, y
layer and put the transverse coordinate z = 0. For this case, we need only
the two dimensional Fourier transform of the Coulomb potential:

Vq =
∫

d2r

L2
V (r)eiq·r (7.57)

with V (r) given by Eq. (7.30). Eq. (7.57) yields

Vq =
e2

ε0L2

∫ ∞

0

dr

∫ 2π

0

dφ eiqrcosφ =
2πe2

ε0L2q

∫ ∞

0

d(qr)J0(qr) , (7.58)

where J0(x) is the zero-order Bessel function of the first kind. Since

∫ ∞

0

dxJ0(x) = 1

we obtain

Vq = V 2D
q =

2πe2

ε0L2

1

q
. (7.59)

quasi-2D Coulomb potential

Eq. (7.59) shows that the Coulomb potential in two dimensions exhibits a
1/q dependence instead of the 1/q2 dependence in 3D.
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Using Eq. (7.59) in Eq. (7.46), we obtain the exchange energy as (see
problem 7.1)

E2D
exc = −

L2e2C

3πε0
(2πn)3/2 , (7.60)

where

C =
∑

l=0,2,...,∞

2
l + 2

[
1
2l

(
l

l/2

)]2
. (7.61)

is a numerical constant and n = N/L2.
In order to compare the exchange energy in 2D and 3D, we introduce

the normalized distance rs between particles through the relation

4π
3
r3s =

1
na30

=
L3

Na30
(7.62)

in 3D. Here, a0 is the characteristic length scale given by the Bohr radius
of the bound electron–hole pairs, i.e., excitons (see Chap. 10 for details).
At this point we use the definition of a0 as

a0 =
�
2ε0
me2

(7.63)

in three dimensions. In two dimensions, we have

πr2s =
1
na20

=
L2

N a20
, (7.64)

where a0 now is the 2D Bohr radius, which is half of the 3D Bohr radius.
The 3D exchange energy is seen to vary with the particle distance rs as

E3D
exc ∝ −r−4

s , (7.65)

whereas

E2D
exc ∝ −r−3

s , (7.66)

i.e., in three dimensions the exchange energy falls off more rapidly for larger
distances than in two dimensions. This is a consequence of the larger phase
space volume for D = 3 compared to the D = 2 case.
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In the evaluation of the pair correlation function Rss′(r, r′) for the 2D
electron gas, we obtain formally the same result as in Eq. (7.52), except
now

F (r− r′) = n
J1(kF |r− r′|)
kF |r− r′| (7.67)

with J1 being the first-order Bessel function of the first kind. Here we
have introduced the two-dimensional Fermi wave number kF through the
relation

N = 2
∑
k

fk =
L2

π

∫ kF

0

dk k . (7.68)

Evaluating Eq. (7.68) yields

kF =
√
2πn . (7.69)

The resulting pair correlation function for 2D is plotted in Fig. 7.3.
Schematically, the variations of the correlation function in two-dimensions
resemble those of the three-dimensional result shown in Fig. 7.2. A more
detailed comparison between Figs. 7.2 and 7.3, however, shows that the
oscillatory structures are somewhat more pronounced in the 2D system,
indicating that the exchange correlations of the electrons are stronger in
two than in three dimensions.
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Fig. 7.3 Pair correlation function Rss′ for the quasi-two-dimensional electron plasma,
Eqs. (7.52) and (7.67), as function of the dimensionless particle distance kF ρ, where
ρ = |r − r′| and kF is given by Eq. (7.69).
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7.4 Multi-Subband Quantum Wells

In order to calculate the properties of electron gases in quantum wells with
several subbands, we have to evaluate the matrix elements of the Coulomb
potential between the various envelope eigenfunctions of the quantum well.
It is convenient to start with the 3D Fourier transform of the Coulomb
potential V 3D

q of Eq. (7.33), where L3 has to be replaced by L2Lz with Lz
being the thickness of the quantum well. With this modification, we obtain
the Coulomb potential Vq‖(z), where z is the coordinate perpendicular to
the layer, by a 1D Fourier transform of Eq. (7.33) with respect to the
perpendicular momentum component q⊥ :

Vq‖(z) =
∑
q⊥

V 3D
q eiq⊥z

=
4πe2

ε0L2Lz

∫ +∞

−∞

dq⊥
∆q⊥

eiq⊥z

q2‖ + q2⊥
, (7.70)

where we have split the momentum vector into its components parallel and
perpendicular to the plane. With ∆q⊥ = 2π/Lz we get

Vq‖(z) =
2e2

ε0L2

∫ +∞

−∞
dq⊥

eiq⊥z

q2‖ + q2⊥
=

2πe2

ε0L2q‖
e−q‖|z| = V 2D

q‖ e−q‖|z| . (7.71)

The Coulomb potential of a quasi-2D structure, Eq. (7.59), follows from
this general result in the limit q‖|z|  1 .

The matrix elements of the Coulomb interaction Vq‖(z1 − z2) between
two electrons at the perpendicular positions z1 and z2 described by the



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Interacting Electron Gas 123

envelope functions ζn(zi) are

Vn′,m′;m,n(q‖) =

V 2D
q‖

∫
dz1

∫
dz2ζn′(z2)ζm′(z1)eq‖|z2−z1|ζm(z1)ζn(z2) . (7.72)

Coulomb potential for multi-band quantum wells

The interaction Hamiltonian in the multi-subband situation is

ĤC =
1
2

∑
n′,m′;n,m
k,k′,q,s,s′

Vn′,m′;m,n(q)â
†
n′,k′−q,s′ â

†
m′,k+q,sâm,k,sân,k′,s′ . (7.73)

Here, the vectors k,k′,q are all momentum wave vectors in the plane of
the quantum well. The resulting exchange energy is

Eexc = −1
2

∑
m,n,k,q,s

Vm,n;m,n(q)fm,k−qfn,k , (7.74)

where fm,k is the occupation probability of state m,k and the term q = 0
has to be excluded.

7.5 Quasi-One-Dimensional Electron Gas

Motivated by the success of semiconductor quantum-well structures in per-
mitting the study of quasi-two-dimensional phenomena, there is strong in-
terest in structures with even more pronounced quantum confinement ef-
fects. Examples are the quantum wires where electrons and holes are free to
move in one space dimension, and the quantum dots where the carriers are
confined in all three space dimensions. Quantum dots will be discussed sep-
arately later in this book. In this section, we analyze some of the basic phys-
ical properties of electrons in quantum wires. Quantum wires have been
made in different sophisticated ways, always adding quantum confinement
to restrict the free carrier motion to one dimension. The additional confine-
ment potentials have been generated through various techniques, such as
growth of structures on specially prepared substrates, using grooves, etch-
ing of quantum wells, ion implantation, or with the help of induced stresses
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in the material below a quantum well.
The analysis of the confinement effects in quantum wires has to be

done carefully. If we simply put the transverse coordinates x = y = 0,
we would find that the resulting one-dimensional Coulomb potential has
several pathological features. Loudon showed already in the year 1959 that
the ground-state energy of an electron–hole pair is infinite in one dimension.

In order to obtain a regularized Coulomb potential, we consider a quasi-
one-dimensional quantum wire with a finite but small extension in the
quantum-confined directions. We use the envelope function approximation
for the carrier wave functions and average the Coulomb potential with the
transverse quantized envelope functions. This way, we obtain a mathemati-
cally well-defined, nonsingular interaction potential. The simplest example
is a cylindrical quantum wire of radius R with infinite lateral boundaries.
For this case, the envelope wave function corresponding to the lowest con-
finement energy level is

φ(ρ) =
J0(α0ρ/R)√
πRJ1(α0)

, (7.75)

where Jn(ρ) is the radial Bessel function of order n. The corresponding
confinement energy is

Ee =
α20�

2

2meR2
, (7.76)

and α0 = 2.405 is the first zero of J0(x) = 0. The denominator in Eq. (7.75)
results from the normalization of the wave function (see problem 7.3).

The quasi-one-dimensional (q1D) Coulomb potential between two elec-
trons is obtained by averaging the three-dimensional Coulomb potential
with the radial envelope functions :

V q1D(z1, z2) = e2

ε0π2R4J4
1 (α0)

∫R
0
dρ1ρ1

∫R
0
dρ2ρ2

∫ 2π
0

dθ1
∫ 2π
0

dθ2

× J2
0 (α0ρ1/R)J

2
0 (α0ρ2/R)√

(z1−z2)2+(ρ1 cos θ1−ρ2 cos θ2)2+(ρ1 sin θ1−ρ2 sin θ2)2
. (7.77)

quasi-1D Coulomb potential

This quasi-one-dimensional Coulomb potential is finite at z ≡ z1 − z2 = 0
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and can be approximated quite well by the simple regularized potential

V q1D(z) =
e2

ε0

1
|z|+ γR

, (7.78)

where γ is a fitting parameter which has the value γ � 0.3. As shown in
Fig. 7.4, the potential (7.78) is finite at z = 0, and varies as 1/z for large
distances.
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Fig. 7.4 The quasi-one-dimensional Coulomb potential according to Eq. (7.77) as func-
tion of particle separation z (thick solid line). The dashed curve is a Coulomb potential,
and the thin solid line is the regularized Coulomb potential, Eq. (7.78), for γ = 0.3.

From Eq. (7.46) we see that the quasi-one-dimensional exchange energy
for a thermal electron gas is

Eq1D
exc = −1

2

∑
k,k′,s

V q1D
|k−k′|fk fk′ , (7.79)

where V q1D
k is the Fourier transform with respect to z of (7.77) or its

approximation (7.78). At T = 0, Eq. (7.79) yields

Eq1D
exc = −1

2

∑
k,k′,s

V q1D
|k−k′|θ(EF − Ek) θ(EF − Ek′ ) , (7.80)

and the one-dimensional density is

n =
kF
π

. (7.81)
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PROBLEMS

Problem 7.1: Use the Hamiltonian (7.29) and the Hartree–Fock wave
function (7.34) to compute the ground-state energy with the 3D and the
2D Coulomb interaction potentials, respectively. Hint: Use the expansion
in terms of Legendre polynomials

1
|k− k′|2 =

1
k2

∑
n,n′

(
k′

k

)n+n′

Pn(cos θ)Pn′ (cos θ) for k′ < k

=
1
k′2

∑
n,n′

(
k

k′

)n+n′

Pn(cos θ)Pn′ (cos θ) for k < k′

1
|k− k′| =

1
k

∑
n

(
k′

k

)n

Pn(cos θ) for k′ < k

=
1
k′
∑
n

(
k

k′

)n

Pn(cos θ) for k < k′

and the integrals
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∫ 1

−1

d cos θ Pn(cos θ)Pn′ (cos θ) =
2

2n+ 1
δn,n′

∫ 2π

0

dθ Pn(cos θ) = 2π
[
1
2n

(
n

n/2

)]2
for n even

= 0 for n odd .

Problem 7.2: Compute the pair correlation function (7.50) for the 3D
and 2D case. Prove that Rss(r− r′)→ 0 for r → r′.

Problem 7.3: Evaluate the Coulomb matrix elements for the two lowest
subbands of a infinitely high quantum well confinement potential.

Problem 7.4: Compute the properly normalized envelope wave function
corresponding to the lowest eigenvalue for a quantum wire of radius R and
infinite confinement barriers.
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Chapter 8

Plasmons and Plasma Screening

In this chapter, we discuss collective excitations in the electron gas. As
mentioned earlier, collective excitations are excitations that belong to the
entire system. The collective excitations of the electron gas (= plasma) are
called plasmons. These excitations and their effect on the dielectric con-
stant are discussed in Chap. 1 in the framework of classical electrodynamics.
In this chapter, we now develop the corresponding second-quantized for-
malism, which reveals that electron–electron pair excitations occur which
influence the dielectric constant and other properties in fundamental ways.
The excitations in the electron plasma are responsible for screening of the
Coulomb potential, effectively reducing it to a potential whose interaction
range is reduced with increasing plasma density. A simplified description
of the screening is developed in terms of an effective collective excitation,
and this is referred to as the plasmon pole approximation.

8.1 Plasmons and Pair Excitations

In order to analyze elementary excitations of the electron plasma, we com-
pute the dynamical evolution of a charge density fluctuation. In the for-
malism of second quantization, we evaluate the equation of motion for the
expectation value of the electron charge density operator

〈ρ̂e,q〉 = − |e|
L3

∑
k,s

〈â†k−q,sâk,s〉 (8.1)

defined in Eq. (7.24). In a spatially homogeneous equilibrium system, this
expectation value would vanish for q �= 0, however, we assume here a spa-
tially inhomogeneous charge density distribution.

129
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To simplify the notation in the remainder of this book, we suppress from
now on the superscript ˆ for operators, unless this is needed to avoid mis-
understandings. Furthermore, the spin index is only given where necessary.
In all other cases, it can be assumed to be included in the quasi-momentum
subscript.

In the following, we can also drop the subscript e of the charge den-
sity operator, since we discuss only electrons in this chapter. With this
simplified notation Eq. (8.1) becomes

〈ρq〉 = − |e|
L3

∑
k

〈a†k−qak〉 . (8.2)

To obtain the equation of motion for 〈ρq〉, we use the Heisenberg equation
for a†k−qak

d

dt
a†k−qak =

i

�
[H, a†k−qak] (8.3)

with the electron gas Hamiltonian

H =
∑
k

Eka
†
kak +

1
2

∑
k,k′
q�=0

Vqa
†
k−qa

†
k′+qak′ak . (8.4)

Evaluating the commutators on the RHS of Eq. (8.3), we get for the kinetic
term

i

�

∑
k′
Ek′ [a†k′ak′ , a†k−qak] = i(εk−q − εk)a†k−qak , (8.5)

where we have again introduced the frequencies

εk = Ek/� and εk−q = ε|k−q| = E|k−q|/� . (8.6)

For the Coulomb term, we obtain

∑ iVp
2�

[a†k′−pa
†
p′+pap′ak′ , a†k−qak] =

=
∑ iVp

2�

(
a†k−q−pa

†
p′+pap′ak − a†k′−pa

†
k−q+pak′ak

+a†k−qa
†
k′−pak−pak′ − a†k−qa†p′+pap′ak+p

)
. (8.7)
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After renaming p to - p, using V−p = Vp, and rearranging some operators,
we see that the first and second term and the third and fourth term become
identical.

Collecting all contributions of the commutator in (8.3), and taking the
expectation value, we obtain

d

dt
〈a†k−qak〉 = i(εk−q − εk)〈a†k−qak〉

+
i

�

∑
p′,p

Vp

(
〈a†k−q−pa†p′+pap′ak〉+ 〈a†k−qa†p′−pak−pap′〉

)
. (8.8)

Since we are interested in 〈ρq〉, we have to solve Eq. (8.8) and sum
over k. However, we see from Eq. (8.8) that the two-operator dynamics is
coupled to four-operator terms. One way to proceed therefore would be to
compute the equation of motion for the four-operator term. Doing this we
find that the four-operator equation couples to six-operator terms, which in
turn couple to eight-operator terms, etc. Hence, if we follow this approach
we obtain an infinite hierarchy of equations, which we have to truncate at
some stage in order to get a closed set of coupled differential equations.

Instead of deriving such a hierarchy of equations, we make a factoriza-
tion approximation directly in Eq. (8.8), splitting the four-operator expec-
tation values into products of the relevant two-operator expectation values.
For the one-component plasma under consideration, we choose the combi-
nations

〈a†k−qak〉 and 〈a†kak〉 = fk (8.9)

as relevant, assuming that these terms dominate the properties of our sys-
tem. This approximation scheme is often called random phase approxima-
tion (RPA). In (8.9), fk denotes the carrier distribution function which
is the Fermi–Dirac distribution function for electrons in thermodynamic
equilibrium. However, our approximations are also valid for nonequilib-
rium distributions.

A hand-waving argument for the random phase approximation is to say
that an expectation value 〈a†kak′〉 has a dominant time dependence

〈a†kak′〉 ∝ ei(ωk−ωk′ )t . (8.10)
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These expectation values occur under sums, so that expressions like∑
k,k′

ei(ωk−ωk′)t

have to be evaluated. Since terms with k �= k′ oscillate rapidly they more
or less average to zero, whereas the term with k = k′ gives the dominant
contribution.

Technically, when we make the RPA approximation, we pick specific
combinations of wave numbers from the sums on the RHS of Eq. (8.8),
factorize the four-operator expectation values into the expressions (8.9),
and ignore all other contributions. For example, in the term

T1 =
i

�

∑
p′,p �=0

Vp〈a†k−q−pa†p′+pap′ak〉 (8.11)

we choose p = −q and obtain

T1 � iVq
�

∑
p′
〈a†ka†p′−qap′ak〉 , (8.12)

where Vq = V−q since the Coulomb potential depends only on the absolute
value of q. Now we commute ak in (8.12) to the left:

T1 � iVq
�

∑
p′

(
−〈a†kap′〉δp′−q,k + 〈a†kaka†p′−qap′〉

)
. (8.13)

Factorizing the four-operator expectation value and using (8.9) yields

T1 � iVq
�


−〈a†kak+q〉+ fk

∑
p′
〈a†p′−qap′〉


 . (8.14)

Similarly, for the second Coulomb term in Eq. (8.8),

T2 =
i

�

∑
p′,p �=0

Vp〈a†k−qa†p′−pak−pap′〉 , (8.15)

we select p = q and commute the first destruction operator to the left to
get

T2 � iVq
�

∑
p′

(
〈a†k−qap′〉δp′,k − 〈a†k−qak−qa†p′−qap′〉

)
, (8.16)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Plasmons and Plasma Screening 133

or, after factorization,

T2 � iVq
�


〈a†k−qak〉 − fk−q∑

p′
〈a†p′−qap′〉


 . (8.17)

Inserting the approximation (8.14) and (8.17) into Eq. (8.8) yields

d

dt
〈a†k−qak〉 � i(εk−q − εk)〈a†k−qak〉+

iVq
�

(fk−fk−q)
∑
p′
〈a†p′−qap′〉. (8.18)

In order to find the eigenfrequencies of the charge density, we use the ansatz

〈a†k−qak〉(t) = e−i(ω+iδ)t〈a†k−qak〉(0) , (8.19)

in Eq. (8.18) to obtain

�(ω + iδ + εk−q − εk)〈a†k−qak〉 = Vq(fk−q − fk)
∑
p′
〈a†p′−qap′〉 . (8.20)

Dividing both sides by �(ω+iδ+εk−q−εk), summing the resulting equation
over k, and multiplying by −e/L3, we find

〈ρq〉 = Vq〈ρq〉
∑
k

fk−q − fk
�(ω + iδ + εk−q − εk) . (8.21)

We see that 〈ρq〉 cancels, so that

Vq
∑
k

fk−q − fk
�(ω + iδ + εk−q − εk) = 1 . (8.22)

Introducing the first-order approximation P 1(q, ω) to the polarization func-
tion P (q, ω) as

P 1(q, ω) =
∑
k

fk−q − fk
�(ω + iδ + εk−q − εk) , (8.23)

we can write Eq. (8.22) as

Vq P
1(q, ω) = 1 . (8.24)

The real part of this equation determines the eigenfrequencies ω = ωq:

Vq
∑
k

fk−q − fk
�(ωq + εk−q − εk) = 1 , (8.25)
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where we let δ → 0.
To analyze the solutions of Eq. (8.25), we first discuss the long wave-

length limit for a three dimensional plasma. Long wave length means λ→
∞, and hence q ∝ 1/λ→ 0. We expand Eq. (8.25) in terms of q and drop
higher-order corrections. Using

Ek−q − Ek =
�
2

2m
(k2 − 2k · q+ q2)− �

2k2

2m
� −�

2k · q
m

(8.26)

and

fk−q − fk = fk − q · ∇kfk + · · · − fk � −q · ∇kfk (8.27)

in Eq. (8.25) yields

1 � −Vq
∑
k,i

qi
∂f
∂ki

�ω0 − �2k · q/m

� − Vq
�ω0

∑
k,i

qi
∂f

∂ki

(
1 +

�k · q
mω0

)
, (8.28)

where we have set ωq→0 = ω0. The first term vanishes since, after evaluation
of the sum, it is proportional to the distribution function for k → ∞. So
we are left with

1 = − Vq
�ω0

∑
k,i

qi
∂f

∂ki

�k · q
mω0

. (8.29)

Partial integration gives

1 = Vq
q2

mω2
0

∑
k

fk = Vq
q2N

mω2
0

=
4πe2

ε0q2L3

q2N

mω2
0

, (8.30)

or

ω2
0 =

4πe2n
ε0m

= ω2
pl , (8.31)

showing that in the long wave-length limit, q → 0 , ωq→0 = ωpl, i.e., we
recover the classical result for the eigenfrequency of the electron plasma.
The only difference to the plasma frequency defined in Eq. (1.26) is the
factor of 1/ε0 which results from the fact that we include the background
dielectric constant in the present chapter.
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1
0

Fig. 8.1 Graphical solution of Eq. (8.25). The full lines are a schematic drawing of part
of the LHS of Eq. (8.25) and the line “1” is the RHS of Eq. (8.25).

Next, we discuss the solution of Eq. (8.25) for general wave lengths.
First we write the LHS of Eq. (8.25) in the form

Vq
∑
k

fk−q − fk
�(ωq + εk−q − εk) = Vq

∑
k

fk
�

(
1

ωq + εk − εk+q −
1

ωq + εk−q − εk

)
.

(8.32)

This expression shows that poles occur at

ωq = εk+q − εk =
�kq

m
cos θ +

�q2

2m
(8.33)

and

ωq = εk − εk−q =
�qk

m
cos θ − �q2

2m
, (8.34)

where θ is the angle between k and q. As schematically shown in Fig. 8.1,
we can find the solutions of Eq. (8.25) as the intersections of the LHS of
Eq. (8.25) with the straight line “1”, which is the RHS of Eq. (8.25). From
Fig. 8.1 we see that these intersection points are close to the poles of the
LHS.

For illustration, we discuss in the following the situation of a thermalized
electron plasma at low-temperatures. Here, we know that the extrema of
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the allowed k values are k′ = ±kF . Considering only ωq > 0, we obtain
from Eq. (8.33)

ωmax
q =

�qkF
m

+
�q2

2m
, (8.35)

for cos(θ) = 1 and

ωmin
q = −�qkF

m
+

�q2

2m
, (8.36)

for cos θ = −1. From Eq. (8.34) we get no solution for cos θ = −1 and for
cos θ = 1 we obtain

ωextq =
�qkF
m
− �q2

2m
. (8.37)

0

4

8

12

0 1 2 3 4

q/kF

�
m

/k
h

F

2

Fig. 8.2 The thick lines show the boundary of the continuum of pair excitations at
T = 0K, according to Eqs. (8.35) and (8.36), respectively. The thin line is the result of
Eq. (8.37).

As shown in Fig. 8.2, Eqs. (8.35) and (8.36) define two parabolas that are
displaced from the origin by ±kF . The region between these parabolas for
ωq > 0 is the region where we find the poles. Physically these solutions
represent the transition of an electron form k to k± q, i.e., these are pair
excitations. They are called pair excitations because the pair of states k
and k± q is involved in the transition. The region between the parabolas
is therefore called the continuum of electron–pair excitations. These pair
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excitations are not to be confused with electron–hole pairs, which we discuss
in later chapters of this book. Note, that the pair excitations need an empty
final state to occur, and at low temperatures typically involve scattering
from slightly below the Fermi surface to slightly above.

The lack of empty final states for scattering with small momentum trans-
fer prevents conduction in an insulator, although there is no lack of elec-
trons. When a plasma mode hits the continuum of pair excitations, it gets
damped heavily (Landau damping), causing the collective plasmon excita-
tion to decay into pair excitations. At finite temperatures the boundaries
of the pair-excitation spectrum are not sharp, but qualitatively the picture
remains similar to the T = 0 result.

8.2 Plasma Screening

One of the most important effects of the many-body interactions in an
electron plasma is the phenomenon of plasma screening. To discuss plasma
screening quantum mechanically, we start with the effective single particle
Hamiltonian

H =
∫
d3r ψ†(r)

(
−�

2∇2

2m

)
ψ(r) +

∫
d3r Veff (r)ψ†(r)ψ(r) , (8.38)

where

Veff (r) = V (r) + Vind(r) (8.39)

is the sum of the Coulomb potential V (r) of a test charge and the induced
potential Vind(r) of the screening particles. The effective potential Veff has
to be determined self-consistently. The Fourier transform of Eq. (8.38) is

H =
∑
k

Eka
†
kak +

∑
p

Veff (p)
∑
k

a†k+pak , (8.40)

and the equation of motion for a†k−qak is

d

dt
a†k−qak =

i

�
[H, a†k−qak]

= i(εk−q − εk)a†k−qak
− i

�

∑
p

Veff (p)(a
†
k−qak−p − a†k+p−qak) . (8.41)
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Using the random phase approximation in the last two terms and taking
the expectation value yields

d

dt
〈a†k−qak〉 = i(εk−q − εk)〈a†k−qak〉 −

iVeff (q)
�

(fk−q − fk) . (8.42)

We assume that the test charge varies in time as exp(−i(ω+iδ)t), where ω+
iδ establishes an adiabatic switch-on of the test charge potential. Making
the ansatz that the driven density has the same time dependence

〈a†k−qak〉 ∝ e−i(ω+iδ)t , (8.43)

Eq. (8.42) yields

�(ω + iδ + εk−q − εk)〈a†k−qak〉 = Veff (q)(fk−q − fk) , (8.44)

and therefore

〈a†k−qak〉 = Veff (q)
fk−q − fk

�(ω + iδ + εk−q − εk) , (8.45)

or, after multiplication by −|e|/L3 and summation over k,

〈ρq〉 = − |e|
L3
Veff (q)P 1(q, ω) , (8.46)

where P 1 again is the polarization function defined in Eq. (8.23) and ρq is
defined in Eq. (8.2).

The potential of the screening particles obeys Poisson’s equation in the
form

∇2Vind(r) =
4π|e|ρ(r)

ε0
. (8.47)

Taking the Fourier transform and using (8.46), Poisson’s equation becomes

Vind(q) = −4π|e|
ε0q2

ρq =
4πe2

ε0q2L3
Veff (q)P 1(q, ω)

= Vq Veff (q)P 1(q, ω) . (8.48)

Inserting (8.48) into the Fourier-transform of Eq. (8.39):

Veff (q) = Vq + Vind(q) , (8.49)
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yields

Veff (q) = Vq[1 + Veff (q)P 1(q, ω)] (8.50)

or

Veff (q) =
Vq

1− VqP 1(q, ω)
=

Vq
ε(q, ω)

≡ Vs(q, ω) . (8.51)

Here, we introduced Vs(q, ω) as the dynamically screened Coulomb potential.
The dynamic dielectric function ε(q, ω) is given by

ε(q, ω) = 1− VqP 1(q, ω) , (8.52)

or, using Eq. (8.23)

ε(q, ω) = 1− Vq
∑
k

fk−q − fk

�(ω + iδ + εk−q − εk)
. (8.53)

Lindhard formula for the longitudinal dielectric function

The Lindhard formula describes a complex retarded dielectric function,
i.e., the poles are in the lower complex frequency plane, and it includes
spatial dispersion (q dependence) and temporal dispersion (ω dependence).
Eq. (8.53) is valid both in 3 and 2 dimensions. In the derivation, we some-
times used the 3D expressions, but that could have been avoided without
changing the final result. Note, that the expectation value fk of the par-
ticle density operator is equal to the Fermi–Dirac distribution function fk
for a thermal plasma. However, Eq. (8.53) is valid also for nonequilibrium
distribution functions.

The longitudinal plasma eigenmodes are obtained from

Re[ε(q, ω)] = 0 or 1 = VqRe[P 1(q, ω)] . (8.54)

longitudinal eigenmodes

This equation is identical to the plasma eigenmode equation (8.25). Hence,
our discussion of plasma screening of the Coulomb potential and of the col-
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lective plasma oscillations obtained from ε(q, ω) = 0, shows that screening
and plasmons are intimately related phenomena.

8.3 Analysis of the Lindhard Formula

To appreciate the Lindhard (or RPA) result, we discuss some important
limiting cases in 3D and 2D systems.

8.3.1 Three Dimensions

In the long wave-length limit, q → 0, we repeat the steps described by
Eqs. (8.26) – (8.31) to obtain

ε(0, ω) = 1− ω2
pl

ω2
, (8.55)

the classical (or Drude) dielectric function, which is the same as the result
obtained for the oscillator model in Chap. 1.

In the static limit, ω + iδ → 0, Eq. (8.53) yields

ε(q, 0) = 1− Vq
∑
k

fk−q − fk
Ek−q − Ek

. (8.56)

Using the expansions (8.26) and (8.27) again and assuming a thermal equi-
librium Fermi–Dirac carrier distribution, we can write

∑
i

qi
∂fk
∂ki

= −
∑
i

qi
∂fk
∂µ

∂εk
∂ki

= −
∑
i

qi ki
�
2

m

∂fk
∂µ

. (8.57)

This way we find

ε(q, 0) = 1 +
4πe2

ε0q2
∂

∂µ

1
L3

∑
k

fk

= 1 +
4πe2

ε0q2
∂n

∂µ
≡ 1 +

κ2

q2
. (8.58)
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Here, we introduced

κ =

√
4πe2

ε0

∂n

∂µ
(8.59)

3D screening wave number

as the inverse screening length, i.e., the screening wave number. Using
(8.58) in (8.51) we find the statically screened potential

Vs(q) =
4πe2

ε0L3

1
q2 + κ2

=
Vq

ε(q, 0)
. (8.60)

3D statically screened Coulomb potential

This result shows nicely how the plasma screening removes the divergence
at q → 0 from the Coulomb potential. Taking the Fourier transformation
of Eq. (8.60) yields

Vs(r) =
∑
q

4πe2

ε0L3(q2 + κ2)
eiq·r =

e2

ε0r
e−κr , (8.61)

compare Eqs. (7.31) – (7.32) without the limit γ → 0. The statically
screened Coulomb potential is plotted in Fig. 8.3 together with the bare
potential. The comparison shows that the long-ranged bare Coulomb po-
tential is screened to a distance 1/κ. The statically Coulomb potential,
Eq. (8.61) is often called Yukawa potential.

The inverse screening length given by Eq. (8.59) can be evaluated ana-
lytically for the two limiting cases of i) a degenerate electron gas where the
Fermi function is the unit-step function and ii) for the nondegenerate case
where the distribution function is approximated as Boltzmann distribution.
In the literature, the theory of screening in the degenerate (T = 0) electron
gas is often referred to as Thomas–Fermi screening. In Chap. 6, where we
discussed some properties of the degenerate electron gas, we found that the
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Fig. 8.3 Statically screened (thin line) and unscreened (thick line) Coulomb potential
for a three-dimensional system.

density can be written as

n =
1

2π2

(
2m
�2

)3/2 2
3
E
3/2
F , (8.62)

where the Fermi energy EF ≡ µ(T = 0). From Eq. (8.62) we obtain

∂n

∂µ
=

3
2
n

EF
, (8.63)

so that the screening wave number (8.59) in this case becomes

κ =

√
6πe2n

ε0EF

. (8.64)

3D Thomas–Fermi screening wave number

The theory of screening in the nondegenerate limit is known as Debye–
Hückel screening. For this case, we approximate the Fermi distribution by
the Boltzmann distribution and use Eq. (6.27) to obtain the derivative of
the chemical potential as

∂µ

∂n
=

1
βn

. (8.65)
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Inserting this into Eq. (8.59) yields

κ =

√
4πe2nβ

ε0
. (8.66)

3D Debye–Hückel screening wave number

8.3.2 Two Dimensions

To investigate the long wave-length limit of the Lindhard formula for a
two-dimensional system, we again insert the expansions (8.26) – (8.28) into
Eq. (8.53) to obtain

ε(q → 0, ω)− 1 = Vq
L2

mω2
2
∫

d2k

(2π)2
∑
i,j

qiqjkj
∂fk
∂ki

, (8.67)

where the factor 2 comes from the spin summation implicitly included in∑
k. Partial integration on the RHS of Eq. (8.67) yields with

2
∫

d2k

(2π)2
kj
∂fk
∂ki

= −2
∫

d2k

(2π)2
fk
∂kj
∂ki

= −n δij

the Drude result

ε(q → 0, ω) = 1− ω2
pl(q)
ω2

, (8.68)

where n is the 2D particle density N/L2. In Eq. (8.68), we introduced the
2D plasma frequency

ωpl(q) =

√
2πe2n

ε0m
q . (8.69)

2D plasma frequency

To study the static limit, ω = 0, of the Lindhard formula, we use the 2D
Coulomb potential, Eq. (7.59), and obtain

ε(q, 0) = 1 + Vq
∂n

∂µ
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so that

ε(q, 0) = 1 +
κ

q
, (8.70)

2D static dielectric function

where the inverse screening length in quasi-two dimensions is

κ =
2πe2

ε0

∂n

∂µ
. (8.71)

Hence, the statically screened 2D Coulomb potential is

Vs(q) =
2πe2

ε0L2

1
q + κ

. (8.72)

For the chemical potential of the two-dimensional Fermi gas, we have the
explicit result given in Eq. (6.41):

βµ(n, T ) = ln
(
e�

2βπn/m − 1
)
. (8.73)

Hence, we obtain

∂µ

∂n
=

�
2π

m

1
1− e−�2βπn/m

(8.74)

and thus

κ =
2me2

ε0�2
(1− e−�

2βπn/m) . (8.75)

Using the explicit expression for the 2D chemical potential, it is easy to
verify that

1− e−�
2βπn/m = fk=0 , (8.76)
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where fk is the Fermi–Dirac distribution of the carriers. Combining (8.75)
and (8.76), the 2D screening wave number assumes the simple form

κ =
2me2

ε0�2
fk=0 . (8.77)

2D screening wave number

This expression is correct for all densities and temperatures. It is interesting
to note that the screening wave number in 2D becomes independent of the
density for low temperature and high densities, whereas the corresponding
3D result always remains density-dependent.

8.3.3 One Dimension

One could continue along the lines of the three- and two-dimensional anal-
ysis and discuss the RPA screening also for quantum wires. However, we
prefer not to describe these developments, but rather point out a general
trend of the dimensionality dependence of screening. Let us consider for
example two electrons. In a bulk material, all field lines between these
two charges can be screened by other optically excited charged particles.
In quantum wells, already some of the field lines pass through the barrier
material. Since the optically excited electrons of holes are confined to the
quantum well, the lines in the barrier material cannot be screened. Si-
multaneously, the density of states is reduced in 2D as compared to 3D.
Correspondingly, the influence of screening in 2D is considerably weaker
than in 3D, whereas the effects of state filling become more pronounced.
This trend continues if one passes from 2D quantum wells to quasi-one-
dimensional quantum wires as illustrated in Fig. 8.4.

Obviously, only the field lines very close to the wire axis can be screened.
Considering at the same time the further reduced density of states, one can
conclude that screening effects may often be neglected in comparison with
the dominating state filling effects. In Chap. 13, we present an example
where we compute the nonlinear optical properties of quantum wires, clearly
showing that the results are influenced only weakly by screening.
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+ +- -

Fig. 8.4 Schematic drawing of the field lines in a quantum wire.

8.4 Plasmon–Pole Approximation

Equations (8.55) and (8.68) show that in the long wave-length limit, both
in 3D and 2D, the inverse dielectric function

1
ε(q → 0, ω)

=
ω2

(ω + iδ)2 − ω2
pl

= 1 +
ω2
pl

(ω + iδ)2 − ω2
pl

(8.78)

has just one pole. We use this observation to construct an approximation
for the full dielectric function ε(q, ω), which tries to replace the continuum
of poles contained in the Lindhard formula by one effective plasmon pole
at ωq :

1

ε(q, ω)
= 1 +

ω2
pl

(ω + iδ)2 − ω2
q

. (8.79)

plasmon–pole approximation

The effective plasmon frequency ωq is chosen to fulfill certain sum rules
(Mahan, 1981) which can be derived from the Kramers–Kronig relation,
Eq. (1.23),

ε′(q, ω)− 1 =
2
π
P

∫ ∞

0

dω′ω
′ε′′(q, ω′)
ω′2 − ω2

. (8.80)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Plasmons and Plasma Screening 147

We make use of the static long wave-length limit, which for 3D is given by
Eq. (8.58),

ε′(q, 0)− 1 =
κ2

q2
=

2
π
lim
q→0

P

∫ ∞

0

dω′ ε
′′(q, ω′)
ω′ . (8.81)

This is the so-called conductivity sum rule. According to Eq. (8.79), we
have

ε(q, ω) =
ω2 − ω2

q

(ω + iδ − Ωq)(ω + iδ +Ωq)
(8.82)

where

Ω2
q = ω2

q − ω2
pl . (8.83)

Using the Dirac identity in Eq. (8.82) and inserting the result into the RHS
of Eq. (8.81), we find

κ2

q2
=
ω2
pl

Ω2
q

, (8.84)

where limq→0 is implied. Eq. (8.84) yields

lim
q→0

ω2
q = ω2

pl

(
1 +

q2

κ2

)
. (8.85)

Following Lundquist (1967), we therefore choose the form

ω2
q = ω2

pl

(
1 +

q2

κ2

)
+ ν2q . (8.86)

3D effective plasmon frequency

The last term ν2q in this equation is added in order to simulate the contri-
bution of the pair continuum. Usually we take

ν2q = C q4 , (8.87)

where C is a numerical constant. Practical applications show that it is often
sufficient to use the much simpler plasmon–pole approximation instead of
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the full RPA dielectric function to obtain reasonable qualitative results for
the effects of screening.

Similarly, one gets for two-dimensional systems (see problem 8.2)

ω2
q = ω2

pl(q)
(
1 +

q

κ

)
+ ν2q (8.88)

as the effective 2D plasmon frequency.
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PROBLEMS

Problem 8.1: Use the quasi-2D Coulomb potential

Vk =
2πe2

L2ε0k

and apply the classical theory outlined in Chap. 1 to verify that the 2D
plasma frequency is given by Eq. (8.69).

Problem 8.2: Derive the effective plasmon frequency, Eq. (8.88), of the
2D plasmon–pole approximation.
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Chapter 9

Retarded Green’s Function for
Electrons

In the treatment of the classical oscillator model in Chap. 1, we have seen
how a retarded Green’s function determines the response of the oscillator
to a driving field. In this chapter, we will now discuss how a retarded
Green’s function can also be introduced for quantum-mechanical many-
body systems, such as the electron gas of Chap. 7. The retarded Green’s
function contains information about the spectral properties of the system,
i.e., about the changes of the single-particle energies which occur due to the
interactions with other particles of fields. Furthermore, retarded Green’s
functions of many-body systems determine the linear response to external
fields in the same way as for the classical oscillator.

9.1 Definitions

We define the retarded Green’s function for electrons as

Gr
ss′ (rt, r

′t′) = − i
�
θ(t− t′)〈[ψs(r, t) , ψ†

s′(r
′, t′)]+〉 . (9.1)

The average 〈. . . 〉 stands for tr (ρ . . . ), the statistical operator ρ being
taken at some fixed initial time, e.g., t = −∞. Due to the step function
θ(t− t′), Gr is retarded with Gr(t, t′) = 0 for t′ > t.

Let us express the retarded Green’s function in terms of its two operator
products

Gr
ss′ (rt, r

′t′) = θ(t− t′)
[
− i

�
〈ψs(r, t)ψ†

s′(r
′, t′)〉 − i

�
〈ψ†

s′ (r
′, t′)ψs(r, t)〉

]
≡ θ(t− t′)

[
G>
ss′ (rt, r

′t′)−G<
ss′ (rt, r

′t′)
]
. (9.2)

149
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Here, we have defined two new Green’s functions G> (speak G greater)
and G< (speak G lesser). They can be considered as generalizations of the
reduced density matrix for a two-time-dependent correlation function. In
particular G< is called the particle propagator. Its equal time limit is up
to the factor i/� identical to the single-particle reduced density matrix. It
describes the kinetics in nonequilibrium systems, where one has to calculate
not only the spectral properties contained in (9.1), but also the evolution of
the particle distribution over these renormalized states, as will be outlined
further in the appendix.

The following manipulations show that, as its classical counterpart, the
quantum mechanical Green’s function Gr also obeys a differential equation
with an inhomogeneity given by delta functions in space and time. The
equation of motion for the retarded Green’s function is

i�
∂

∂t
Gr
ss′ (rt, r

′t′) =
∂θ(t− t′)

∂t
〈[ψs(r, t), ψ†

s′ (r
′, t′)]+〉

− i
�
θ(t− t′)〈

[
i�
∂ψs(r, t)

∂t
, ψ†

s′(r
′, t′)

]
+

〉

= δ(t−t′)〈[ψs(r, t), ψ†
s′ (r

′, t)]+〉
− i

�
θ(t−t′)〈[[ψs(r, t),H(t)], ψ†

s′ (r
′, t′)]+〉 , (9.3)

where the Heisenberg equation i� ∂ψ/∂t = [ψ,H] has been used. The equal
time anti-commutator in the first term of Eq. (9.3) is

[ψs(r, t), ψ
†
s′(r

′t)]+ = δ(r − r′)δs,s′ , (9.4)

so that a differential equation for the Green’s function results which has a
singular inhomogeneity in space and time:
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i�
∂

∂t
Gr

ss′(rt, r′t′) = δ(t − t′)δ(r− r′)δs,s′

− i

�
θ(t − t′)〈[[ψs(r, t),H(t)], ψ†

s′(r′, t′)
]
+

〉 . (9.5)

equation of motion for retarded Green’s function

Let us first consider the ideal Fermi gas with the Hamiltonian (6.4). Evalu-
ating the commutator in the second term on the RHS of Eq. (9.5) we obtain
the equation of motion for this simple case as

(
i�
∂

∂t
+

�
2∇2

2m

)
Gr
0,ss′ (rt, r

′t′) = δ(t− t′)δ(r− r′)δs,s′ . (9.6)

Here, we introduced the subscript 0 to indicate that we are dealing with
the noninteracting situation. Eq. (9.6) shows that Gr

0 is diagonal in the
spin indices and depends only on the relative coordinates ρ = r− r′ and
τ = t− t′. Taking the Fourier transform of Eq. (9.6) with respect to ρ and
τ and introducing the notation

Gr
0,ss′(ρ, τ) =

∑
k

∫
dω

2π
ei(k·ρ−ωτ)Gr

0,ss′(k, ω) , (9.7)

the Green’s function equation for the ideal Fermi gas becomes

(
�ω − �

2k2

2m

)
Gr
0,ss′ (k, ω) = δs,s′ , (9.8)

or

Gr
0,ss′(k, ω) = δs,s′

1
�(ω − εk + iδ)

, (9.9)

with �εk = �
2k2/2m. In Eq. (9.9), we included the infinitesimal imaginary

part +iδ which shifts the poles to the lower half of the complex frequency
plane. As discussed in Chap. 1, this shift guarantees the correct retardation,
i.e., Gr(τ < 0) = 0. It is seen from Eq. (9.9) that the poles of the retarded
Green’s function give the single-particle energies �εk.
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It is worthwhile to look at the time variation of the free particle retarded
Green function by taking the Fourier transform of (9.9)

Gr
0,ss′(k, t− t′) =

∫
dω

2π
Gr
0,ss′(k, ω)e

−iω(t−t′)

=
∫

dω

2π
δs,s′

e−iω(t−t′)

�(ω − εk + iδ)

= −iδs,s′θ(t− t′)e−iεk(t−t′) . (9.10)

Here, we used the same complex integration arguments as discussed in the
context of Eq. (1.63). From the resulting expression in Eq. (9.10) we see
that the retarded free-electron Green’s function oscillates in time simply
with the kinetic energy of the electron.

9.2 Interacting Electron Gas

Writing the electron gas Hamiltonian of Chap. 7 in terms of field creation
and destruction operators, we obtain

H =
∑
s

∫
d3rψ†

s(r)
(
−�

2∇2

2m

)
ψs(r) (9.11)

+
1
2

∑
s,s′

∫
d3r d3r′ψ†

s(r)ψ
†
s′(r

′)
e2

ε0|r− r′|ψs
′(r′)ψs(r)

−
∑
s

∫
d3r d3r′ψ†

s(r)
e2n(r′)
ε0|r− r′|ψs(r) +

e2

2

∫
d3r d3r′

n(r)n(r′)
ε0|r− r′| ,

where n(r) is the background charge distribution, which is not treated as
an operator in the jellium approximation. With the Hamiltonian (9.11), we
evaluate the commutator in Eq. (9.5):

[ψs(r, t),H(t)] = −�
2∇2

2m
ψs(r, t)

+
∑
s′′

∫
d3r′′V (r − r′′)ψ†

s′′ (r
′′, t)ψs′′(r′′, t)ψs(r, t)

−
∫
d3r′′V (r− r′′)n(r′′)ψs(r, t) . (9.12)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Retarded Green’s Function for Electrons 153

Inserting Eq. (9.12) into Eq. (9.5), we see that the Coulomb interaction
gives rise to two additional terms in the equation of motion:

− i
�
θ(t− t′)

∫
d3r′′V (r− r′′)

{∑
s′′
〈[ψ†

s′′ (r
′′, t)ψs′′(r′′, t)ψs(r, t) , ψ

†
s′(r

′, t′)]+〉

−n(r′′)〈[ψs(r, t), ψ†
s′ (r

′, t′)]+〉
}
. (9.13)

Hence, as a consequence of the interaction, higher order Green’s functions
with more than two electron operators also appear. The simplest possible
approximation is to factorize the four-operator expectation values in the
first term of Eq. (9.13) into products of two-operator expectation values.
These can be arranged into two terms, each containing a retarded Green’s
function:

− i

�
θ(t− t′)〈[ψ†

s′′ (r
′′, t)ψs′′ (r′′, t)ψs(r, t) , ψ

†
s′(r

′, t′)]+〉 (9.14)

� 〈ψ†
s′′ (r

′′, t)ψs′′(r′′, t)〉Gr
ss′ (rt, r

′t′)− 〈ψ†
s′′ (r

′′, t)ψs(r, t)〉Gr
s′′s(r

′′t, r′t′) .

The minus sign in the second term arises because we had to commute
two electron annihilation operators before taking the expectation values.
Inserting Eq. (9.14) into Eq. (9.13) yields

∫
d3r′′ V (r− r′′)

{[∑
s′′
〈ψ†

s′′ (r
′′, t)ψs′′(r′′, t)〉 − n(r′′)

]
Gr
ss′(rt, r

′t′)

−
∑
s′′
〈ψ†

s′′ (r
′′, t)ψs(r, t)〉Gr

s′′s′(r
′′t, r′t′)

}
. (9.15)

The first term, also called the Hartree term, contributes only if charge
neutrality is locally disturbed, i.e., if∑

s′′
〈ψ†

s′′ (r
′′, t)ψs′′(r′′, t)〉 �= n(r′′) . (9.16)

However, the second term, also called Fock or exchange term, always yields
an energy reduction due to the exchange-hole around each Fermion, as
discussed in Chap. 7.

Generally, the Green’s function equation of motion for an interacting
system can be written in the form of a Dyson equation:
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(
i�
∂

∂t
− �

2∇2

2m

)
Gr

ss′(rt, r′t′) = δ(t − t′)δ(r− r′)δs,s′

+
∑
s′′

∫
d3r′′ d t′′�Σr

ss′′(rt, r′′t′′)Gr
s′′s′(r′′t′′, r′t′) . (9.17)

Dyson equation for retarded Green’s function

Here, we have introduced Σr as the retarded self-energy which combines all
those terms appearing as a consequence of the many-body interaction. In
order to reproduce the results of our factorization approximation, we have
to choose the Hartree–Fock self-energy as

�Σr
ss′′ (rt, r

′′t′′) = δ(t− t′′)
{
δ(r− r′′)δs,s′′

×
∫
d3r1 V (r− r1)

[∑
s1

〈ψ†
s1(r1, t)ψs1 (r1, t)〉 − n(r1)

]

− V (r− r′′)〈ψ†
s′′(r

′′, t)ψs(r, t)〉
}
, (9.18)

where the second term is the exchange self-energy. The Hartree–Fock self-
energy approximation is instantaneous, i.e., not retarded.

For homogeneous stationary systems, Gr and Σr depend only on the
relative coordinates r− r′ = ρ and t − t′ = τ , and not on the center-of-
mass coordinates (r+ r′)/2 and (t + t′)/2. Furthermore, we assume for
simplicity that the Green’s function and the self-energy are both diagonal
in the spin index. Taking the Fourier transform with respect to ρ and τ ,
as defined in Eq. (9.7), the Dyson equation (9.17) takes the form

(
�ω − �

2k2

2m

)
Gr
ss(k, ω) = 1 + �Σr

ss(k, ω)G
r
ss(k, ω) (9.19)

or
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Gr
ss(k, ω) =

1

�[ω + iδ − εk − Σr
ss(k, ω)]

. (9.20)

retarded electron Green’s function

Equation (9.20) shows that the free-particle energy εk is replaced by εk +
Σr(k, ω) as a consequence of the interactions, thus explaining the origin
of the name self-energy. Usually, the self-energy is a complex frequency-
dependent function. In the static limit (ω = 0), the real part of Σr yields
a shift of the single-particle energies due to the many-body interactions,
and the imaginary part describes the corresponding broadening (inverse
damping time).

As illustrative example, we now evaluate the self-energy, Eq. (9.18), for
spatially and temporally homogeneous systems. As mentioned earlier, the
Hartree term vanishes in this case as a consequence of charge neutrality.
For the exchange term, we get

�Σr
exc,ss(k, ω) = −

∑
q

V|k−q|nq , (9.21)

where ψ(r, t) =
∑

k e
ik·rak(t) (with L3 ≡ 1 for simplicity) and

〈ψ†(r′′, t)ψ(r, t)〉 =
∑
k,k′
〈a†k′(t)ak(t)〉ei(k·r−k′·r′′)

=
∑
k

nk e
ik·(r−r′′) (9.22)

have been used. For a thermal electron distribution, nk is given by the
Fermi distribution fk, and the exchange self-energy is

�Σr
exc,ss(k, ω) = −

∑
q

V|k−q|fq . (9.23)

Hence, as a consequence of the exchange interaction, all single-particle en-
ergies �εk are replaced by the renormalized energies

�ek = �εk + �Σr
exc(k) . (9.24)

In order to estimate the numerical value of the energy shift for the case
of a degenerate electron plasma, we approximate the relevant momentum
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transfer by the Fermi wave number

|k− q| � kF . (9.25)

Then Eq. (9.23) yields

�Σr
exc,ss � −

∑
q

VkF fq = −
1
2
VkF n , (9.26)

where the factor 1/2 appears since we do not sum over the spin. Us-
ing the expression for the Fermi wave number, Eq. (6.22), and the three-
dimensional Coulomb potential, Eq. (7.33), we see that the exchange energy
varies with the plasma density as

�Σr
exc,ss � −

2
32/3π1/3

e2

ε0
n1/3 . (9.27)

Eq. (9.27) shows that the energy reduction per particle increases with in-
creasing plasma density n. This increase is proportional to n1/3, i.e., pro-
portional to the inverse mean inter-particle distance. Basically the same
result has already been obtained in Eq. (7.47), where we analyzed the to-
tal exchange energy of the system. All these results are a consequence of
the net energy gain (reduced Coulomb repulsion) resulting from the Pauli
exclusion principle causing particles with equal spin to avoid each other.
Qualitatively, we can estimate this energy gain as the Coulomb energy
e2/ε0r evaluated for r = n−1/3.

For a quasi-two dimensional system, we have to evaluate Eq. (9.26)
with Vq and kF given by Eqs. (7.59) and (7.69), respectively. The resulting
exchange self-energy varies as −n1/2. In two dimensions, the energy gain
due to the exchange hole is (e2/ε0)n−1/2, where n−1/2 measures the distance
between particles.

9.3 Screened Hartree–Fock Approximation

Semiconductors under optical excitation or with an injected current are
ideally suited to study the density-dependent renormalizations of the single-
particle energies, because one can vary the plasma density in these systems
over many orders of magnitude. To obtain a realistic estimate for the
single-particle energy renormalization, we now make use of the plasmon–
pole approximation. Basically, we extend the Hartree–Fock approximation
of the previous section by replacing the bare Coulomb potential Vq with the
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screened one, Vs(q, ω) = Vq/ε(q, ω). However, we will see that we have to
include a correlation self-energy at the same time, the so-called Coulomb-
hole self-energy, which describes the energy reduction due to the depletion
shell around a given charged particle.

As a consequence of the frequency dependence of Vs(q, ω), the resulting
retarded self-energy is also frequency-dependent and cannot simply be in-
terpreted as single-particle energy shift. In order to avoid this complication,
we restrict our treatment to the static approximation

Vs(q) =
Vq

ε(q, 0)
. (9.28)

Replacing Vq by Vs(q) in the exchange self-energy, Eq. (9.23), we obtain

�Σr
exc,ss(k) = −

∑
k′

Vs(|k− k′|)fk′ ≡ �Σr
SX(k) . (9.29)

screened exchange self-energy

In Sec. 9.2, we discuss that the momentum transfer in a degenerate plasma
is of the order of kF , allowing us to approximate Eq. (9.29) as

�Σr
SX(k � 0) � −1

2
nVs(kF ) . (9.30)

This expression can be evaluated using the plasmon–pole approximation.
We obtain for the three-dimensional system

�Σr
SX � −

1
2
n
4πe2

ε0k2F

(
1− ω2

pl

ω2
kF

)
, (9.31)

where ω2
q and ω2

pl are given by Eqs. (8.86) and (8.31), respectively. In the
two dimensional case, we get

�Σr
SX � −

1
2
n
2πe2

ε0kF

(
1− ω2

pl(kF )
ω2
kF

)
, (9.32)

where Eqs. (8.88) and (8.69)have been used.
A comparison of these results with the experiment and with a detailed

derivation shows that the screened exchange self-energy underestimates the
true single-particle energy shifts. This is not astonishing since, as we have
mentioned before, there has to be an additional contribution due to the
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Coulomb correlation effects not included in the Hartree–Fock theory. The
corresponding term which appears in addition to the screened exchange
self-energy, is called the Coulomb hole self-energy,

∑
CH . The origin of

this name is due to the strong reduction of the pair correlation function
Rss′(|r− r′| = 0) also for electrons with different spin, s �= s′, when the
proper Coulomb correlations are included in the many-electron wave func-
tion. In analogy to the “exchange hole” discussed in Chap. 7, this correlation
effect is referred to as “Coulomb hole”. Hence, the Coulomb-hole self-energy
describes the reduction of the total energy due to the fact that the elec-
trons avoid each other because of their mutual Coulomb repulsion. The
renormalized single-particle energy is instead of Eq. (9.24)

ek = εk +ΣSX(k) + ΣCH . (9.24a)

The derivation of the Coulomb-hole contribution to the self-energy is
presented in later chapters of this book. There, we also discuss the corre-
sponding change of the effective semiconductor band gap. Here, we only
want to mention that this contribution can be calculated as the change of
the self-interaction of a particle with and without the presence of a plasma,
i.e.,

�ΣCH =
1
2
lim
r→0

[Vs(r) − V (r)] . (9.33)

Ignoring for the moment the term∝ q4 in the effective plasmon frequency ωq
of the single-plasmon-pole approximation, one obtains for Vs(r) the Yukawa
potential, Eq. (8.61), both in 2d and 3d. Using the Yukawa potential in
Eq. (9.33) we obtain the Coulomb-hole self-energy as

ΣCH = − e2

2ε0
κ , (9.34)

where we have included static screening through ε0 and κ is the screening
wave number in 2d or 3d, respectively.

For the three-dimensional system, it is possible to improve the result
(9.34) by analytically evaluating Vs(r) using the full static plasmon–pole
approximation,

Vs(r) =
L3

(2π)3

∫
d3qVs(q)e−iq·r , (9.35)
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where

Vs(q) =
4πe2

ε0q2


1 + 1

1 + q2

κ2 +
(

νq
ωpl

)2

 . (9.36)

The resulting expression is

Vs(r) =
e2

ε0r
e−ra+

[
cos(ra−) + (4/u2 − 1)−1/2 sin(ra−)

]
for u ≤ 2

=
e2

2ε0r
[
b_e−rc+ + b+e

−rc−
]
for u > 2 , (9.37)

where

u =
ωpl

κ2C1/2
, a± =

κu

2

√
2
u
± 1 , b± = 1±

(
1− 4

u2

)−1/2

,

and

c± =
κu√
2

[
1±

(
1− 4

u2

)1/2
]1/2

.

The screened Coulomb interaction potential according to Eq. (9.37) is plot-
ted in Fig. 9.1 for low and high plasma density and compared to the Yukawa
potential, Eq. (8.61), for the same parameter values. A prominent feature
that we note is the more effective screening with increasing plasma density
causing the strong reduction of the effective Coulomb potential. Whereas
the Yukawa potential is always negative, indicating electron–electron re-
pulsion, the plasmon–pole approximation yields an effective Coulomb po-
tential, which becomes attractive at large distances and sufficiently high
plasma densities.

Evaluating the Coulomb hole self-energy, Eq. (9.33), for the potential
given by Eq. (9.37) we obtain

ΣCH = −a0κE0

(
2

1−4/u2

)1/2
(b+ − b_) for u ≥ 2

= −a0κE0u
[
(1 + 2

u )
1/2 − (1 + 2

u )
−1/2

]
for u < 2

(9.38)
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Fig. 9.1 Comparison of the screened Coulomb potential Vs(r) using the single-plasmon-
pole approximation (SPP), Eq. (9.37) and the Yukawa potential (YUK), Eq. (8.61), for
the plasma densities n1 = 10−3 a−3

0 and n2 = a−3
0 , respectively. Here, a0 is the 3d Bohr

radius, and ER = E0 is given by Eq. (9.39).

where

E0 =
e2

2a0ε0
= ER . (9.39)

An evaluation of Eq. (9.38) is shown in Fig. 9.2 for parameter values which
are typical for bulk GaAs. We see that ΣCH varies almost linearly with
1/rs over a wide range of density values.

At the end of this chapter, we want to mention that the retarded Green’s
function is by no means the only Green’s function which obeys a differential
equation with a singular inhomogeneity. There exists, e.g., a time-ordered
Green’s function which is uniquely related to the retarded Green’s function
in equilibrium systems, but for which one has strict diagrammatic rules
for developing perturbative approximations. As already mentioned, the
situation is different in nonequilibrium systems, such as optically excited
semiconductors. Here, a general nonequilibrium Green’s function theory
exists, which allows us to calculate not only the spectral properties of the
system (contained in the retarded Green’s function) but also the kinetic
evolution of the distribution of the excitations in the system described by
the particle propagator. Furthermore, this general nonequilibrium Green’s
function theory provides also strict diagrammatic rules for the retarded
Green’s function. An introduction to the theory of nonequilibrium Green’s
functions is given in Chap. 21 and Appendix B of this book.
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Fig. 9.2 Coulomb hole self-energy, Eq. (9.38), as function of particles density expressed
in terms of 1/rs, Eq. (7.62). The used parameter values are a0 = 1.096 · 10−6cm,
T = 10K, E0 = 5.32meV, me/m = 1.12, mh/m = 9.1, where m is the reduced electron–
hole mass.
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PROBLEMS

Problem 9.1: Follow the steps discussed in this chapter to prove
Eq. (9.18).

Problem 9.2: Evaluate Eq. (9.18) for a quasi-2d system. Use the approx-
imations discussed for the 3d case to obtain an estimate for the exchange
self-energy.

Problem 9.3: Perform the Fourier transform in (9.10) by closing the fre-
quency integration in the upper or lower complex frequency plane depend-
ing on the sequence of t and t′.
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Chapter 10

Excitons

In the preceding chapters, we discussed the quantum statistics and the
many-body Coulomb effects in an electron plasma with positive background
(jellium). The results obtained are clearly relevant for a metal since it has a
partially filled conduction band. Moreover, these results are also important
for a dielectric medium such as a semiconductor, since they describe the
carrier–carrier interactions within the same band, i.e., the intraband inter-
actions. However, as already discussed in Chap. 5, the optical properties
of semiconductors are mostly related to interband transitions between the
valence and conduction bands.

As it turns out, one can separate the many-body treatment of the
electron–hole system in excited semiconductors quite naturally into the
determination of spectral properties and kinetic properties. As spectral, we
denote energy shifts and the broadening due to interactions, i.e., the renor-
malizations of the states due to the many-body interactions. The kinetics,
on the other hand, deals with the development of the particle distributions
in the renormalized states. The optical properties are mainly linked with
the interband kinetics, whereas the transport properties are connected with
the intraband kinetics of electrons and/or holes, depending on the kind of
free carriers in the semiconductor.

The analysis of the semiconductor interband transitions for variable
excitation conditions is discussed in the following chapter. In the present
chapter, we consider only the low-excitation regime, where an extremely
small density of electrons and holes exist. We therefore concentrate on the
analysis of one-electron-hole pair effects.

163
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10.1 The Interband Polarization

In Chap. 5, we discussed the optical susceptibility due to free-carrier tran-
sitions in semiconductors. In the present chapter, we now generalize this
treatment to include also the Coulomb effects. Again, we first compute the
optical susceptibility from which we then get the absorption coefficient and
the refractive index.

We start by analyzing the macroscopic interband polarization induced
by the coherent monochromatic classical light field E(r, t). The polarization
P(t) is defined as the expectation value of the electric dipole er as

P(t) =
∑
s

∫
d3r 〈ψ̂†

s(r, t) er ψ̂s(r, t)〉

=
∑
s

∫
d3rtr[ρ0ψ̂†

s(r, t) er ψ̂s(r, t)] . (10.1)

In Eq. (10.1), the average is taken with the equilibrium statistical operator
ρ0 describing the system at the initial time before the field was switched
on. If one introduces the reduced one-particle density matrix ρ(r, r′, t) as
the single-time correlation function

ρss′(r, r′, t) = 〈ψ̂†
s(r, t)ψ̂s′ (r

′, t)〉 , (10.2)

one can rewrite Eq. (10.1) as

P(t) =
∑
s

∫
d3r ρss′(r, r′, t)|r=r′,s=s′er . (10.3)

These general definitions now have to be adapted to a semiconductor by
expanding the electron field operators into an appropriate basis.

In the case of a spatially homogeneous system, one is dealing with com-
pletely delocalized electrons. Then the Bloch functions ψλ(k, r) are the
appropriate set for expanding the field operators

ψ̂s(r, t) =
∑
λ,k

aλ,k,s(t)ψλ(k, r) . (10.4)

Inserting this expansion into Eq. (10.1) yields

P(t) =
∑

s,λ,λ′,k,k′
〈a†λ,k,saλ′,k′,s〉

∫
d3r ψ∗

λ,k(r) erψλ′,k′(r) . (10.5)
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The integral has been evaluated in Chap. 5, Eqs. (5.11) – (5.20). We use
the result (5.20) in the form

∫
d3r ψ∗

λ,k(r) erψλ′,k′(r) � δk,k′dλλ′ , (10.6)

where λ �= λ′. Inserting Eq. (10.6) into Eq. (10.5), we obtain the polariza-
tion in a spatially homogeneous system as

P(t) =
∑

k,s,λ,λ′
〈a†λ,k,saλ′,k,s(t)〉dλλ′ =

∑
k,s,λ,λ′

Pλλ′,k,s(t)dλλ′ , (10.7)

where we introduced the pair function

Pλλ′,k,s(t) = 〈a†λ,k,saλ′,k,s(t)〉 . (10.8)

As in Chap. 5, we restrict the treatment to the optical transitions be-
tween the valence and conduction bands of the semiconductor (two-band
approximation). Furthermore, we suppress the spin index s from now on,
assuming that it is included in k. The following calculations will not de-
pend on s, only the spin summation in the definition of the polarization
(10.1) will lead to an extra prefactor of 2 in the final result. Choosing λ = v

and λ′ = c, the pair function, Eq. (10.8) becomes

Pvc,k(t) = 〈a†v,kac,k(t)〉 . (10.9)

This quantity is a representation of the off-diagonal elements of the reduced
density matrix. In an equilibrium system without permanent dipole mo-
ment, these off-diagonal matrix elements vanish. However, the presence
of the light induces optical transitions between the bands. Therefore, the
interband polarization Pvc in such an externally driven system is finite.

In second quantization, we write the interaction Hamiltonian, Eq. (2.4),
between the electric field and the semiconductor electrons as

HI =
∫
d3r ψ̂†(r)(−er) · E(r, t)ψ̂(r) . (10.10)

Assuming that the electric field has a simple exponential space dependence,

E(r, t) = E(t)1
2
(
eiq·r + c.c.

)
, (10.11)
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and using the expansion (10.4) for spatially homogeneous systems, we ob-
tain

HI � −
∑
k

E(t)(a†c,kav,kdcv + h.c.) , (10.12)

where we took the limit q → 0 (dipole approximation) and defined dcv as
the projection of the dipole dcv in the direction of the field E . The inter-
action Hamiltonian, (10.12), shows how the applied field causes transitions
of electrons between valence and conduction band.

Besides the interaction with the external field, we also have to consider
the kinetic and Coulomb contributions from the electrons. These effects are
described by the Hamiltonian (7.29). For our present purposes, we have to
extend the treatment of Chap. 7 by including also the band index λ:

Hel =
∑
λ,k

Eλ,ka
†
λ,kaλ,k +

1
2

∑
k,k′
q�=0
λ,λ′

Vqa
†
λ,k+qa

†
λ′,k′−qaλ′,k′aλ,k . (10.13)

This Hamiltonian is obtained from Eq. (7.29) by including the summa-
tion over the band indices λ, λ′. Furthermore, we have omitted all those
Coulomb terms which do not conserve the number of electrons in each band.
Such terms are neglected because they would describe interband scattering,
i.e., promotion of an electron from valence to conduction band or vice versa
due to the Coulomb interaction, which is energetically very unfavorable.

For the two-band model, we restrict the band summation to λ, λ′ = c, v

and obtain

Hel =
∑
k

(Ec,ka
†
c,kac,k + Ev,ka

†
v,kav,k

)

+
1
2

∑
k,k′,q �=0

Vq

(
a†c,k+qa

†
c,k′−qac,k′ac,k + a†v,k+qa

†
v,k′−qav,k′av,k

+ 2a†c,k+qa
†
v,k′−qav,k′ac,k

)
. (10.14)

For simplicity, we use the single particle energies in effective mass approx-
imation and write the conduction and valence band energies as

Ec,k = �εc,k = Eg + �
2k2/2mc , (10.15)
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and

Ev,k = �εv,k = �
2k2/2mv . (10.16)

The full Hamiltonian of the electrons in the valence and conduction
bands interacting with the light field is now given by

H = HI +Hel . (10.17)

To derive the equation of motion of the polarization, we use the Heisenberg
equation for the individual operators. An elementary but lengthy calcula-
tion for the isotropic, homogeneous case yields

�

[
i
d

dt
− (εc,k − εv,k)

]
Pvc,k(t) =

[
nc,k(t)− nv,k(t)

]
dcvE(t)

+
∑

k′,q �=0
Vq

(
〈a†c,k′+qa

†
v,k−qac,k′ac,k〉+ 〈a†v,k′+qa

†
v,k−qav,k′ac,k〉

+ 〈a†v,ka†c,k′−qac,k′ac,k−q〉+ 〈a†v,ka†v,k′−qav,k′ac,k−q〉
)
, (10.18)

where, as usual,

nλ,k = 〈a†λ,kaλ,k〉 . (10.19)

The first line of Eq. (10.18) is basically the same as Eq. (5.30) of the free-
carrier theory. The four-operator terms appear as a consequence of the
Coulomb part of the electron Hamiltonian (10.14).

To proceed with our calculations, we again make a random phase ap-
proximation to split the four-operator terms in Eq. (10.18) into products
of densities and interband polarizations. For example, we approximate

〈a†c,k′+qa
†
v,k−qack′ac,k〉 � Pvc,k′nc,kδk−q,k′ , (10.20)

because the term ∝ δq,0 does not contribute. As result, we obtain
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�

[
i
d

dt
− (ec,k − ev,k)

]
Pvc,k(t)

=
[
nc,k(t)− nv,k(t)

] dcvE(t) +
∑
q �=k

V|k−q|Pvc,q


 . (10.21)

dynamics of interband polarization (pair) function

In Eq. (10.21), we introduced the renormalized frequencies

eλ,k = eλ,k +Σexc,λ(k) (10.22)

with the exchange self-energy

�Σexc,λ(k) = −
∑
q �=k

V|k−q|nλ,q , (10.23)

compare Eq. (9.21).
As in the case of free carriers, Eq. (5.30), we see that Eq. (10.21) cou-

ples the dynamics of the interband polarization to the evolution of the
carrier distribution functions. Consequently, we need additional equations
for ∂nc,k(t)/∂t and ∂nv,k(t)/∂t. The resulting coupled equations would
then be the optical Bloch equations (5.30) – (5.32) with the additional
Coulomb effects included. We will discuss these semiconductor Bloch equa-
tions in Chap. 12. For the purposes of the present chapter, we eliminate
the population dynamics by making the quasi-equilibrium assumption dis-
cussed in Chap. 5. In quasi equilibrium, we assume that the time scales
of interest are sufficiently long so that the rapid scattering processes have
already driven the carrier distributions to equilibrium in the form of quasi-
stationary Fermi–Dirac distributions. We can then make the replacements

nc,k(t)→ fc,k and nv,k(t)→ fv,k ,

and Eq. (10.21) simplifies to
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�

[
i
d

dt
− (ec,k − ev,k)

]
Pvc,k(t)

=
(
fc,k − fv,k

)dcvE(t) +∑
q �=k

V|k−q|Pvc,q


 . (10.24)

To gain some insight and to recover the results of Chap. 5, we solve
Eq. (10.24) first for Vq = 0, i.e., for noninteracting particles. The free-
carrier polarization equation

�

[
i
d

dt
− (ec,k − εv,k)

]
P 0
vc,k(t) = (fc,k − fv,k)dcvE(t) , (10.25)

can simply be solved by Fourier transformation

P 0
vc,k(ω) = (fc,k − fv,k) dcv

�
[
ω + iδ − (εc,k − εv,k)

]E(ω) , (10.26)

so that

P 0
vc,k(t) =

∫
dω

2π
(fc,k − fv,k) dcv

�
[
ω + iδ − (εc,k − εv,k)

]E(ω)e−iωt . (10.27)

From Eq. (10.7) in two-band approximation we obtain the optical polariza-
tion as

P (t) =
∑
k

Pcv,k(t)dvc + c.c. , (10.28)

which for our special case yields

P 0(t) =
∑
k

∫
dω

2π
|dcv|2 fc,k − fv,k

�
[
ω + iδ − (εc,k − εv,k)

]E(ω)e−iωt + c.c. , (10.29)

i.e., the free-particle result of Chap. 5.

10.2 Wannier Equation

The solution of Eq. (10.24) for finite carrier densities will be addressed
in Chap. 15, where we discuss quasi-equilibrium optical nonlinearities of
semiconductors. In the remainder of the present chapter, we concentrate
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on the linear optical properties, i.e., the situation of an unexcited crystal
where

fc,k ≡ 0 and fv,k ≡ 1 . (10.30)

Inserting (10.30) into Eq. (10.24) and taking the Fourier transform yields

[
�(ω+iδ)−Eg− �

2k2

2mr

]
Pvc,k(ω)=−


dcvE(ω)+∑

q �=k
V|k−q|Pvc,q(ω)


 , (10.31)

where

1
mr

=
1
mc
− 1
mv

(10.32)

is the inverse reduced mass. As a reminder, we note again at this point
that mv < 0.

The solution of Eq. (10.31) is facilitated by transforming into real space.
Multiplying Eq. (10.31) from the left by

L3

(2π)3

∫
d3k . . .

and using the Fourier transform in the form

f(r) =
L3

(2π)3

∫
d3qfqe

−iq·r

fq =
1
L3

∫
d3rf(r)eiq·r (10.33)

we obtain

[
�(ω + iδ)− Eg +

�
2∇2

r

2mr
+ V (r)

]
Pvc(r, ω) = −dcvE(ω) δ(r)L3 . (10.34)

One way to solve this inhomogeneous equation is to expand Pvc into the
solution of the corresponding homogeneous equation :
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−
[

�
2∇2

r

2mr

+ V (r)
]
ψν(r) = Eνψν(r) . (10.35)

Wannier equation

Eq. (10.35) has exactly the form of a two-particle Schrödinger equation for
the relative motion of an electron and a hole interacting via the attractive
Coulomb potential V (r). This equation is known as the Wannier equation.

The pair equation (10.21) and the related Wannier equation have been
derived under the assumption that the Coulomb potential varies little
within one unit cell. This assumption is valid only if the resulting electron–
hole–pair Bohr radius a0 which determines the extension of the ground
state wave function is considerably larger than a lattice constant.

The Wannier equation (10.35) is correct in this form for two- and three-
dimensional systems. For a quasi-one-dimensional (q1D) quantum wire, we
have to replace the Coulomb potential by the envelope averaged potential
V q1D(z), e.g., in the approximation of Eq. (7.78) for cylindrical wires

V q1D(z) =
e2

ε0

1
|z|+ γR

.

Since there is a one-to-one correspondence with the hydrogen atom, if
we replace the proton by the valence-band hole, we can solve the Wannier
equation in analogy to the hydrogen problem, which is discussed in many
quantum mechanics textbooks, such as Landau and Lifshitz (1958) or Schiff
(1968). Introducing the scaled radius

ρ = rα (10.36)

Eq. (10.35) becomes

(
−∇2

ρ −
λ

ρ

)
ψ(ρ) =

2mrEν

�2α2
ψ(ρ) , (10.37)

where

λ =
e22mr

ε0�2α
=

2
αa0

, (10.38)
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and

a0 =
�
2ε0

e2mr
. (10.39)

As in the hydrogen-atom case, the energy Eν is negative for bound states
(Ebound < Eg) and positive for the ionization continuum. We define

a20α
2 = −8mrEνa

2
0

�2
= −4Eν

E0
(10.40)

with the energy unit

E0 =
�
2

2mra20
=

e2

2ε0a0
=
e4mr

2ε20�2
(10.41)

to rewrite Eq. (10.37) as(
−∇2

ρ −
λ

ρ

)
ψ(ρ) = −1

4
ψ(ρ) , (10.42)

and

λ =
e2

�ε0

√
− mr

2Eν
. (10.43)

With this choice of α2 the parameter λ will be real for bound states and
imaginary for the ionization continuum.

The treatment of the q1D case proceeds similarly. Here one sets

ζ = α(|z|+ γR) (10.44)

which again yields Eq. (10.42) with ρ replaced by ζ and α and λ unchanged.
We now proceed to solve Eq. (10.42) for the cases of three- and two-

dimensional semiconductors. For this purpose, we write the Laplace oper-
ator in spherical/polar coordinates as

∇2
ρ =

1
ρ2

∂

∂ρ
ρ2

∂

∂ρ
− L

2

ρ2
in 3D

∇2
ρ =

1
ρ

∂

∂ρ
ρ
∂

∂ρ
− L

2
z

ρ2
in 2D

∇2
ρ =

∂2

∂ζ2
in q1D , (10.45)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Excitons 173

where L and Lz are the operators of the total angular momentum and its
z component,

L2 = −
(

1
sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ

)
(10.46)

and

L2z = −
∂2

∂φ2
. (10.47)

These operators obey the following eigenvalue equations

L2Yl,m(θ, φ) = l(l+ 1)Yl,m(θ, φ) with |m| ≤ l (10.48)

and

Lz 1√
2π
eimφ = m

1√
2π
eimφ , (10.49)

where the functions Yl,m(θ, φ) are the spherical harmonics with m =
0, ±1, ±2, . . . and l = 0, 1, 2 . . . . With the ansatz

ψ(ρ) = fl(ρ)Yl,m(θ, φ) in 3D (10.50)

= fm(ρ)
1√
2π
eimφ in 2D (10.51)

= f(ζ) in q1D (10.52)

we find the equation for the radial part of the wave function as(
1
ρ2

∂

∂ρ
ρ2

∂

∂ρ
+
λ

ρ
− 1

4
− l(l+ 1)

ρ2

)
fl(ρ) = 0 in 3D

(
1
ρ

∂

∂ρ
ρ
∂

∂ρ
+
λ

ρ
− 1

4
− m2

ρ2

)
fm(ρ) = 0 in 2D

(
∂2

∂ζ2
+
λ

ζ
− 1

4

)
f(ζ) = 0 in q1D . (10.53)

10.3 Excitons

We now discuss the bound-state solutions which are commonly referred to
as Wannier excitons. In order to solve Eq. (10.53) for this case, we first



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

174 Quantum Theory of the Optical and Electronic Properties of Semiconductors

determine the asymptotic form of the wave functions for large radii. For
ρ→∞, the leading terms in Eq. (10.53) are(

d2

dρ2
− 1

4

)
f∞(ρ) = 0 (10.54)

and the convergent solution is therefore of the form

f∞(ρ) = e−ρ/2 . (10.55)

Writing f(ρ) = f0(ρ)f∞(ρ) and studying the asymptotic behavior for small
ρ suggests that for ρ → 0 the function f0(ρ) should vary like ρl (3D) or
ρ|m| (2D), respectively. Thus we make the ansatz for the total wave func-
tions

fl(ρ) = ρle−
ρ
2R(ρ) in 3D

fm(ρ) = ρ|m|e−
ρ
2R(ρ) in 2D

f(ζ) = e−
ζ
2R(ζ) in q1D .

(10.56)

Inserting (10.56) into Eq. (10.53) yields

ρ
∂2R

∂ρ2
+
[
2(l+ 1)− ρ]∂R

∂ρ
+ (λ− l − 1)R = 0 in 3D

ρ
∂2R

∂ρ2
+ (2|m|+ 1− ρ)∂R

∂ρ
+
(
λ− |m| − 1

2

)
R = 0 in 2D

(
∂2

∂ζ2
+

∂

∂ζ
+
λ

ζ

)
R = 0 in q1D . (10.57)

Because the three- and two-dimensional equations are of the same type,
we proceed first with these two cases and turn to the discussion of the
quasi-one-dimensional case later.

10.3.1 Three- and Two-Dimensional Cases

Both the 3D and 2D equations in Eq. (10.57) are of the form

ρ
∂2R

∂ρ2
+ (p+ 1− ρ)∂R

∂ρ
+ qR = 0 (10.58)
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with

p = 2l+ 1 , q = λ− l − 1 in 3D

p = 2|m| , q = λ− |m| − 1
2 in 2D

(10.59)

The solution of Eq. (10.58) can be obtained by a power series expansion

R(ρ) =
∑
ν=0

βνρ
ν . (10.60)

Inserting (10.60) into (10.58) and comparing the coefficients of the different
powers of ρ yields the recursive relation

βν+1 = βν
ν − q

(ν + 1)(ν + p+ 1)
. (10.61)

In order to get a result which can be normalized, the series must terminate
for ν = νmax, so that all βν≥νmax = 0. Thus νmax− q = 0, or, using (10.59)
for the 3D case,

νmax + l + 1 = λ ≡ n , (10.62)

where the main quantum number n can assume the values n = 1, 2, . . . ,
respectively, for l = νmax = 0; l = 1 and νmax = 0, or l = 0, νmax = 1, etc.

Correspondingly, we have in 2D,

νmax + |m|+ 1
2
= λ ≡ n+

1
2
. (10.63)

Here, the allowed values of the main quantum number are n = 0, 1, 2, . . . .
The bound-state energies follow from Eqs. (10.43), (10.62) and (10.63) as

En = −E0

1

n2
with n = 1, 2, . . . (10.64)

3D exciton bound-state energies

and
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En = −E0

1

(n+ 1/2)2
with n = 0, 1, . . . , (10.65)

2D exciton bound-state energies

where we identify E0, Eq. (10.41), as the exciton Rydberg energy and a0,
Eq. (10.39), as the exciton Bohr radius which we used already in earlier
chapters as a characteristic length scale.

The binding energy of the exciton ground state is E0 in 3D and 4E0

in 2D, respectively. The larger binding energy in 2D can be understood
by considering quantum well structures with decreasing width. The wave
function tries to conserve its spherical symmetry as much as possible since
the admixture of p-wave functions is energetically unfavorable. Confine-
ment parallel to the quantum wells is therefore accompanied by a decrease
in the Bohr radius perpendicular to the wells. In fact, the exciton radius is
obtained from the exponential term

e−ρ/2 = e−αr/2

with α = 2/a0n in 3D and α = 2/a0(n+ 1/2) in 2D. In the ground state,
the 3D exciton radius is thus simply the exciton Bohr radius a0, but it is
only a0/2 in 2D.
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CuCl

TlCl
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1000
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e
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0
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E

Fig. 10.1 Experimental values for the exciton binding energy E0 versus band gap energy
Eg.
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Eq. (10.41) shows that the exciton Rydberg energy E0 is inversely pro-
portional to the square of the background dielectric constant. The back-
ground dielectric constant describes the screening of the Coulomb inter-
action in an unexcited crystal. This screening requires virtual interband
transitions which become more and more unlikely for materials with larger
band gap energy Eg. As a result, the exciton Rydberg is large for wide-gap
materials such as I–VII compound semiconductors, where one element is
from the first group of the periodic table and the other one from the seventh.
As shown in Fig. 10.1, for direct-gap materials, E0 generally decreases when
one goes through the series of I–VII, II–VI, and III–V compound semicon-
ductors.

From Eq. (10.56) and (10.60) we can now obtain the complete radial
exciton wave functions. These functions still have to be normalized so that

∫ ∞

0

dr rD−1|f(r)|2 = 1 . (10.66)

The resulting first few normalized functions in 3D are

νmax n l fn,l(ρ) = Cρle− ρ
2
∑

ν βνρ
ν En

0 1 0 f1,0(r) = 1

a
3/2
0

2 e−r/a0 E1 = −E0

1 2 0 f2,0(r) = 1
(2a0)3/2 (2− r

a0
)e−r/2a0 E2 = −E0

4

0 2 1 f2,1(r) = 1
(2a0)3/2

r√
3a0

e−r/2a0 E2 = −E0

4
.

(10.67)

3D radial exciton wave functions

The first few normalized eigenfunctions in 2D are
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νmax n m fn,m(ρ) = Cρ|m|e− ρ
2
∑

ν βνρ
ν En

0 0 0 f0,0(r) = 1
a0
4e−2r/a0 En=0 = −4E0

1 1 0 f1,0(r) = 4

a03
√
3

(
1− 4r

3a0

)
e− 2r

3a0 E1 = −4E0

9

0 1 ±1 f1,±1(r) = 16

a09
√
6

r
a0
e−2r/3a0 E1 = −4E0

9
.

(10.68)

2D radial exciton wave functions

The solution of the differential equation (10.58) with integer p and q can
be written in terms of the associate Laguerre polynomials

Lpq(ρ) =
q−p∑
ν=0

(−1)ν+p (q!)2ρν

(q − p− ν)!(p+ ν)!ν!
. (10.69)

Thus, the normalized exciton wave functions can be expressed in general
by these orthogonal Laguerre polynomials as

ψn,l,m(r) = −
√(

2

na0

)3 (n − l − 1)!
2n[(n+ l)!]3

ρle− ρ
2L2l+1

n+l (ρ)Yl,m(θ, φ) ,

(10.70)

3D exciton wave function

where ρ = 2r/na0 and
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ψn,m(r) =

√
1

πa20(n+
1
2
)3
(n − |m|)!
[(n+ |m|)!]3ρ

|m|e− ρ
2L

2|m|
n+|m|(ρ) e

imφ

(10.71)

2D exciton wave function

with ρ = 2r/[(n+ 1/2)a0].

10.3.2 Quasi-One-Dimensional Case

The Wannier equation (10.53) for quantum wires is a Whittaker equation

(
∂2

∂ζ2
+
λ

ζ
− 1

4
+

1/4− µ2
ζ2

)
Wλ,µ(ζ) = 0 (10.72)

with µ = ±1/2. Wλ,1/2(ζ) are Whittaker functions, the quantum numbers
λ have to be determined from the boundary conditions. From Eqs. (10.38)
and (10.40) we obtain the energy eigenvalues as

Eλ = −E0

1

λ2
, (10.73)

q1D exciton bound-state energies

where E0 is the 3D exciton Rydberg energy, Eq. (10.41).
The eigenfunctions can be classified according to their parity as even

and odd functions with df(ζ)/dz |z=0 = 0 and f(ζ) |z=0 = 0 , respectively.
For dipole allowed transitions, the odd functions do not couple to the light
field, which allows us to limit our discussion to the even eigenfunctions

fλ(|z|) = NλWλ,1/2

(
2(|z|+ γR)

λa0

)
. (10.74)

q1D exciton wave functions
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The normalization constant Nλ is given by

Nλ =
1
λa0

(∫ ∞

Rλ

dx |Wλ,1/2(x)|2
)−1/2

,

with Rλ = 2γR/(λa0). The Whittaker functions have the following useful
integral representation

Wλ,1/2(ζ) =
e−ζ/2

Γ(1− λ)
∫ ∞

0

dt e−t

(
1 +

ζ

t

)λ

. (10.75)

The derivative with respect to ζ is

dWλ,1/2(ζ)
dζ

=
e−ζ/2

Γ(1− λ)
∫ ∞

0

dt e−t

(
1 +

ζ

t

)λ(
−1
2
+

λ

ζ + t

)
. (10.76)

At the origin, ζ = αγR = 2γR/(λa0), Eq. (10.76) has to vanish for the
even functions. For the ground state, λ0 is very small, λ0 << 1. Also, for
thin wires αγR << 1. It then follows from Eq. (10.76) that
∫ ∞

0

dt e−t

(
−1
2
+

λ0
ζ + t

)
� 0 . (10.77)

The first term can be integrated directly. The second term is proportional
to the exponential integral, which gives the leading contribution λ0 ln(ζ)
for small ζ. Thus the approximate ground state eigenvalue for thin wires
is determined by

1
2
+ λ0 ln

(
2γR
λ0a0

)
= 0 . (10.78)

Because λ0 << 1 for γR < a0, the corresponding exciton binding energy
|Eλ0 | = E0/λ

2
0 is much larger than the 3D exciton Rydberg energy for a

thin quantum wire, at least for an infinite confinement potential. For more
realistic confinement potentials as in a GaAs/GaAlAs wire, Eλ0 may be as
much as 5E0. In still thinner wires, the electrons and holes are no longer
confined inside the wire well.

For the higher excited states, the eigenvalue λn rapidly approaches the
integer n with increasing n, i.e., λn → n according to

λn − n = − 1
ln(2αR/na0)

. (10.79)
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As a consequence, the usual Balmer series is obtained for the energies of
the higher bound states. At the same time the Whittaker eigenfunctions
of these higher states can be expressed, as Loudon showed, by Laguerre
polynomials

fλn(|z|)→
(

2
a30n

5(n!)2

)1/2

e−|z|/na0 |z|L1
n(2|z|/na0) . (10.80)

The wave function of these higher states vanishes at the origin fλn(0)→ 0.

10.4 The Ionization Continuum

For the continuous spectrum of the ionized states with Eν ≥ 0, we put

Eν ≡ Ek =
�
2k2

2mr
(10.81)

so that Eqs. (10.38) and (10.43) yield

α = 2ik , λ = −i e
2mr

ε0�2k
= − i

a0k
. (10.82)

10.4.1 Three- and Two-Dimensional Cases

Following the same argumentation as in the case of the bound-state so-
lution, we obtain from an asymptotic analysis for small and large ρ the
prefactors ρl exp(−ρ/2) and ρ|m| exp(−ρ/2) for 3D and 2D, respectively.
Making an ansatz as in Eq. (10.56) we then obtain the equations

ρ
∂2R

∂ρ2
+ (2(l + 1)− ρ)∂R

∂ρ
− (i|λ|+ l + 1)R = 0 in 3D

ρ
∂2R

∂ρ2
+ (2|m|+ 1− ρ)∂R

∂ρ
−
(
i|λ|+ |m|+ 1

2

)
R = 0 in 2D . (10.83)

These equations are solved by the confluent hypergeometric functions

F
[
l + 1 + i|λ|; 2(l+ 1); ρ

]
and F

(
|m|+ 1

2
+ i|λ|; 2|m|+ 1; ρ

)
, (10.84)
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where F (a; b; z) is defined as

F (a; b; z) = 1 +
a

b · 1z +
a(a+ 1)

b(b+ 1) · 1 · 2z
2 + . . . . (10.85)

The normalization of the continuum states has to be chosen in such a way
that it connects continuously with the normalization of the higher bound
states, as discussed for the 3D exciton problem by Elliott (1963) and by
Shinada and Sugano (1966) for 2D. Therefore, we normalize the wave
functions in a sphere/circle of radius R, where eventually R → ∞. The
respective normalization integrals in 3D and 2D are

|A3D|
∫R
0
dr r2 (2kr)2l

∣∣∣F [l + 1 + i|λ|; 2(l + 1); 2ikr
]∣∣∣2 = 1

|A2D|
∫R
0
dr r (2kr)2|m|

∣∣∣F (|m|+ 1
2 + i|λ|; 2|m|+ 1; 2ikr)

∣∣∣2 = 1 . (10.86)

Since these integrals do not converge forR→∞, we can use the asymptotic
expressions for z →∞ for the confluent hypergeometric functions

F (a; b; z) =
Γ(b)eiπaz−a

Γ(b− a)
[
1+O

(
1
|z|
)]

+
Γ(b)ezza−b

Γ(a)

[
1+O

(
1
|z|
)]

,

(10.87)

where Γ(n) = (n − 1)! , n integer, is the Gamma function. Using (10.87)
in (10.86) we compute the normalization factors A3D and A2D and finally
obtain the normalized wave function as

ψk,l,m(r) = (i2kr)l

(2l+1)!e
π|λ|

2

√
2πk2

R|λ|sinh(π|λ|)
∏l

j=0(j2 + |λ|2)

× e−ikrF (l + 1 + i|λ|; 2l+ 2; 2ikr)Yl,m(θφ) (10.88)

in 3D and

ψk,m(r) = (i2kr)|m|

(2|m|)!

√
πk

R(1/4+|λ|2)cosh(π|λ|)
∏|m|

j=0

[(
j − 1

2

)2 + |λ|2]

× e
π|λ|

2 e−ikrF
(|m|+ 1

2 + i|λ|; 2|m|+ 1; 2ikr
)
eimφ√
2π

(10.89)
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in 2D. For later reference, it is important to note that the allowed k-values
are defined by

kR = πn and ∆k =
π

R .

Therefore, we have in this case
∑
k

=
R
π

∑
k

∆k → R
π

∫
dk .

10.4.2 Quasi-One-Dimensional Case

With the scaling of Eqs. (10.81) and (10.83), Eq. (10.53) becomes for the
continuum states[

d2

dζ2
−
(
1
4
+ i
|λ|
ζ

)]
f(ζ) = 0 . (10.90)

The two independent solutions of Eq. (10.90) are the Whittaker functions

W
(1)
−i|λ|,1/2(ζ) = Γ(1 + i|λ|)ζe−ζ/2[F (1 + i|λ|, 2; ζ) +G(1 + i|λ|, 2; ζ)] ,

(10.91)

W
(2)
−i|λ|,1/2(ζ) = Γ(1− i|λ|)ζe−ζ/2[F (1 + i|λ|, 2; ζ)−G(1 + i|λ|, 2; ζ)] ,

where F (a, b;x) is the confluent hypergeometric function defined in
Eq. (10.85) and G(1 + i|λ|, 2; ζ) is given by

G(1+i|λ|, 2; ζ) = e−2π|λ| − 1
2πi

{[
2 ln ζ + π cot(π + iπ|λ|) − iπ

]
× F (1 + i|λ|, 2; ζ)

− 2
∞∑
n=0

[
ψ(1 + n) + ψ(2 + n)− ψ(1 + n+ i|λ|)

]

× Γ(1 + i|λ|+ n)Γ(2)ζn

Γ(1 + i|λ|)Γ(2 + n)n!
+

2e−π|λ|

ζ|Γ(1 + i|λ|)|2
}
. (10.92)

Here ψ(x) = dlnΓ(x)/dx is the digamma function. The two solutions
(10.91) will be denoted W (1) and W (2). The even wave functions have
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again a vanishing derivative at the origin. Employing a similar normaliza-
tion procedure as above one finds for the even functions the result

fk(ζ) =
(
eπ|λ|

2π

)1/2
D

(2)
0 W (1)(ζ) −D(1)

0 W (2)(ζ)

(|D(1)
0 |2 + |D(2)

0 |2)1/2
, (10.93)

where

D
(j)
0 =

dW (j)(ζ)
dζ

|ζ=2ikγR .

10.5 Optical Spectra

With the knowledge of the exciton and continuum wave functions and the
energy eigenvalues, we can now solve the inhomogeneous equation (10.34) to
obtain the interband polarization and thus calculate the optical spectrum
of a semiconductor in the band edge region. We limit our treatment to
the discussion of optically allowed transitions in direct-gap semiconductors,
because these semiconductors are particularly interesting with regards to
their use for electro-optical devices. Optical transitions across an indirect
gap, where the extrema of the valence and conduction band are at different
points in the Brillouin zone, need the simultaneous participation of a photon
and a phonon in order to satisfy total momentum conservation. Here, the
phonon provides the necessary wave vector for the transition. Such two-
quantum processes have a much smaller transition probability than the
direct transitions.

To solve Eq. (10.34), we expand the polarization into the solutions of
the Wannier equation

Pvc(r, ω) =
∑
ν

bν ψν(r) . (10.94)

Inserting (10.94) into (10.34), multiplying by ψ∗
µ(r) and integrating over r,

we find

∑
ν

bν
[
�(ω + iδ)− Eg − Eν

]∫
d3r ψ∗

µ(r)ψν(r) = −dcv E(ω)L3ψ∗
µ(r = 0) ,

(10.95)
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or

bµ = − dcvL
3ψ∗

µ(r = 0)
�(ω + iδ)− Eg − Eµ

E(ω) . (10.96)

From Eq. (10.94), we see that

Pvc(r, ω) = −
∑
ν

E(ω) dcv L
3 ψ∗

ν(r = 0)
�(ω + iδ)− Eg − Eν

ψν(r) , (10.97)

and therefore

Pvc,k(ω) = −
∑
ν

E(ω) dcvψ
∗
ν(r = 0)

�(ω + iδ)− Eg − Eν

∫
d3r ψν(r)eik·r . (10.98)

To compute the optical susceptibility from Eq. (10.98), we write the tem-
poral Fourier transform of Eq. (10.28) as

P (ω) =
∑
k

∫
dt (Pcv,k(t)dvc + P ∗

cv,k(t)dvc)e
iωt

=
∑
k

(Pcv,k(ω)dvc + P ∗
cv,k(−ω)dvc) . (10.99)

Inserting Eq. (10.98), using E∗(−ω) = E(ω), and
∑
k

∫
d3r ψν(r)eik·r = 2L3 ψν(r = 0) , (10.100)

we get

P (ω) = −2L3
∑
ν

|dcv|2|ψν(r = 0)|2E(ω) (10.101)

×
[

1
�(ω + iδ)− Eg − Eν

− 1
�(ω + iδ) + Eg + Eν

]
,

where the factor 2 comes from the spin summation implicitly included in
the k-summation. From the relation

χ(ω) =
P(ω)
E(ω) =

P (ω)
L3E(ω) , (10.102)

we finally obtain the electron-hole-pair susceptibility as
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χ(ω) = −2|dcv|2
∑
µ

|ψµ(r = 0)|2

×
[

1

�(ω + iδ)− Eg − Eµ

− 1

�(ω + iδ) + Eg + Eµ

]
. (10.103)

electron–hole–pair susceptibility

The first term in (10.103) is the resonant contribution and the second term
is the nonresonant part, respectively. One often leaves out the nonresonant
part since it does not contribute to the absorption, as can be verified using
the Dirac identity, Eq. (1.69), and noting that the δ-function cannot be
satisfied for ω > 0.

Eq. (10.103) shows that the optical susceptibility is the sum over all
states µ, where the oscillator strength of each transition is determined by
the probability to find the conduction-band electron and the valence-band
hole at the origin, i.e., within the same lattice unit cell.

10.5.1 Three- and Two-Dimensional Cases

The wave functions which are finite in the origin are those with l = 0 and
m = 0 in 3D and those with m = 0 in 2D. Using the wave functions
(10.70), (10.71) and (10.89) and

Y0,0 =
1√
4π

,

the resonant part of the optical susceptibility for a three-dimensional semi-
conductor becomes

χ(ω) = −2|dcv|2
πE0a30

[∑
n

1
n3

E0

�(ω + iδ)− Eg − En

+
1
2

∫
dx

xeπ/x

sinh(π/x)
E0

�(ω + iδ)− Eg − E0x2

]
. (10.104)

Inserting (10.104) into Eq. (1.53) and using the Dirac identity, we obtain
the band edge absorption spectrum as
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α(ω) = α3D
0

�ω

E0

[ ∞∑
n=1

4π

n3
δ(∆ +

1

n2
) + Θ(∆)

πe
π√
∆

sinh( π√
∆
)

]
,

3D Elliott formula (10.105)

where

∆ = (�ω − Eg)/E0 (10.106)

and αD0 has been defined in Eq. (5.81).
Eq. (10.105) is often called the Elliott formula. The 3D exciton ab-

sorption spectrum consists of a series of sharp lines with a rapidly de-
creasing oscillator strength ∝ n−3 and a continuum absorption due to the
ionized states. A comparison of the continuum part αcont of (10.105) with
Eq. (5.80) describing the free-carrier absorption spectrum αfree, shows that
one can write

αcont = αfreeC(ω) (10.107)

where

C(ω) =
π√
∆
eπ/

√
∆

sinh(π/
√
∆)

(10.108)

is the so-called Sommerfeld or Coulomb enhancement factor. For ∆ → 0,
C(ω)→ 2π/

√
∆ so that the continuum absorption assumes a constant value

at the band gap, in striking difference to the square-root law of the free-
carrier absorption. This shows that the attractive Coulomb interaction not
only creates the bound states but has also a pronounced influence on the
ionization continuum. If one takes into account a realistic broadening of the
single particle-energy eigenstates, e.g., caused by scattering of electron–hole
pairs with phonons, only a few bound states can be spectrally resolved. The
energetically higher bound states merge continuously with the absorption of
the ionized states. Fig. 10.2 shows a schematic and a computed absorption
spectrum for a bulk semiconductor. The dominant feature is the 1s-exciton
absorption peak. The 2s-exciton is also resolved, but its height is only 1/8
of the 1s- resonance. The higher exciton states appear only as a small peak
just below the band gap and the continuum absorption is almost constant
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�

E -Eg 0 Eg h�

Coulomb enhancement

excitons

free carriers

Detuning 


Fig. 10.2 Schematic (left figure) and calculated (right figure) band edge absorption
spectrum for a 3D semiconductor. Shown are the results obtained with and without
including the Coulomb interaction. The 1s-exciton part of the computed absorption
spectra has been scaled by a factor of 0.2 .

in the shown spectral region. Such spectra are indeed observed at very low
temperatures in extremely good-quality semiconductors.

For the two-dimensional limit, we obtain the resonant part of the optical
susceptibility as

χ(ω) = − |dcv|2
Lcπa20E0

[ ∞∑
n=0

2
(n+ 1/2)3

E0

�(ω + iδ)− Eg − En

+
∫
dx

xeπ/x

cosh(π/x)
E0

�(ω + iδ)− Eg − E0x2

]
, (10.109)

and the resulting absorption spectrum is

α(ω)=α2D
0

�ω

E0

[∞∑
n=0

4

(n+ 1
2
)3
δ

(
∆+

1

(n+ 1
2
)2

)
+Θ(∆)

e
π√
∆

cosh( π√
∆
)

]
.

(10.110)

2D Elliott formula

The 2D Coulomb enhancement factor

C(ω) =
eπ/

√
∆

cosh(π/
√
∆)

(10.111)
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E - 4Eg 0 Eg

Fig. 10.3 Schematic (left figure) and calculated (right figure) band edge absorption
spectrum for a 2D semiconductor. Shown are the results obtained with and without
including the Coulomb interaction. The 1s-exciton part of the computed absorption
spectra has been scaled by a factor of 0.1 .

approaches 2 for ∆ → 0. The absorption at the band edge is thus twice
the free-carrier continuum absorption. For a finite damping, the absorption
of the ionized states and the absorption in the higher bound states again
join continuously. Fig. 10.3 shows both, the schematic and the computed
absorption spectrum using Eq. (10.110). In comparison to the 3D-case,
the 2D 1s-exciton is spectrally far better resolved as a consequence of the
four-fold increase in binding energy in 2D.

10.5.2 Quasi-One-Dimensional Case

In the final subsection of this exciton chapter, we discuss the optical spectra
of quantum wires. Because of the cut-off in the Coulomb potential we have
for the optical susceptibility

χ(ω) = −2|dcv|2
∑
λ

|fλ(αγR)|2

×
[

1
�(ω + iδ)− Eg − Eλ

− 1
�(ω + iδ) + Eg + Eλ

]
. (10.112)

With the q1D eigenfunctions of the bound and ionized pair states,
Eqs. (10.75) and (10.97), respectively, we get the following resonant contri-
butions to the spectrum
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χ(ω) = − 2
E0
|dcv|2

[∑
λ

|NλW
2
λ,1/2(2γR/λa0)|2

E0

�(ω + iδ)− Eg − Eλ

+
2
a0

∫ ∞

0

dx
eπ/x

2π
|D(2)

0 W (1) −D(1)
0 W (2)|2

|D(1)
0 |2 + |D(2)

0 |2
E0

�(ω + iδ)− Eg − E0x2

]
,

(10.113)

where x = a0k is used again as the integration variable in the contribution of
the continuum states. The functions D(i)

0 and W (i) defined in Eqs. (10.93)
and (10.91), respectively, are all evaluated at ζ = 2ikγR. The absorption
spectrum is finally given by

α(ω) =
4πω
nc

2
E0
|dcv|2

[∑
λ

|NλW
2
λ,1/2(2γR/λa0)|2πδ(∆− Eλ/E0)

+
1
πa0

|D(2)
0 W (1) −D(1)

0 W (2)|2
|D(1)

0 |2 + |D(2)
0 |2

eπ/
√
∆

2
√
∆

]
, (10.114)

where ∆ = (�ω − Eg)/E0 is again the normalized energy detuning from
the band gap. The Sommerfeld factor which describes the deviations of the

�

Detuning 


h�E - x Eg 0 Eg

excitons

free carriers

Fig. 10.4 Schematic (left figure) and calculated (right figure) band edge absorption
spectrum for a quasi-1D semiconductor. Shown are the results obtained with and with-
out including the Coulomb interaction. The 1s-exciton part of the computed absorption
spectra has been scaled by a factor of 0.2 .
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continuum spectrum from the free-carrier spectrum in Chap. 5 is given by

C(ω) =
eπ/

√
∆

8
|D(2)

0 W (1) −D(1)
0 W (2)|2

|D(1)
0 |2 + |D(2)

0 |2
. (10.115)

In striking contrast to the 3D and 2D cases, the q1D Sommerfeld factor
C(ω) < 1 for all �ω > Eg. Due to this fact, the singular 1D-density of
states does not show up at all in the absorption spectrum (see Fig. 10.4).
In fact, the band gap in a quantum wire cannot be determined directly
from the low-intensity optical spectra, so that other techniques, such as
two-photon absorption, have to be used for such a measurement. The
absences of any structure at the band gap is by no means a consequence
of a finite broadening but solely a Coulomb effect. A very large part of
the total oscillator strength is accumulated in the exciton ground state.
Note, that the first excited state has odd parity, only the second excited
state contributes to the absorption spectrum. The approximate vanishing
of the higher bound states (10.80) shows that they have indeed very small
oscillator strengths.
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PROBLEMS

Problem 10.1: Derive the Hamiltonian (10.14) from Eq. (7.29) by includ-
ing the band index λ with all the operators and by summing over λ = c, v.
Discuss the terms which have been omitted in (10.14).

Problem 10.2: Use the Heisenberg equation with the Hamiltonian (10.14)
to compute the equation of motion (10.18) for the interband polarization.
Make the Hartree–Fock approximation in the four-operator terms to obtain
Eq. (10.21).

Problem 10.3: Verify that Eqs. (10.105) and (10.110) correctly reduce
to the respective free-particle result without Coulomb interaction. Hint:
Formally one can let the Bohr radius a0 → ∞ to obtain the free-particle
limit.
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Chapter 11

Polaritons

In direct-gap semiconductors, excitons and photons are strongly coupled.
To account for this coupling, it can be useful, especially in the linear regime,
to introduce new quasi-particles, the polaritons, which combine exciton
and photon properties. This polariton concept has been very helpful for
explaining optical measurements in 3D- semiconductors with a large direct
gap at low excitation densities.

11.1 Dielectric Theory of Polaritons

In Chap. 10, we derived the Wannier equation, Eq. (10.35), for the rela-
tive motion of an electron–hole pair. If we include also the center-of-mass
motion, this equation becomes

−
[

�
2∇2

R

2M
+

�
2∇2

r

2mr
+ V (r)

]
ψ(R, r) = Etotψ(R, r) , (11.1)

where M = me +mh. As in the case of the hydrogen atom, the center-of-
mass motion is described by a plane wave

ψ(R, r) =
eik·R

L3/2
ψ(r) . (11.2)

Correspondingly, the total energy eigenvalue of Wannier excitons is

Etot = Eg + En +
�
2K2

2M
. (11.3)

As in the case of an hydrogen atom, the center-of-mass wave function of
the exciton is a plane wave ∝ exp(ik ·R).

193
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photon dispersion

exciton dispersion

E

k

Fig. 11.1 Schematic drawing of photon and 1s-exciton dispersion.

In Fig. 11.1, we plot the dispersion of the 1s-exciton together with the
dispersion of the light

�ωk =
�ck

n0
, (11.4)

where n0 is the background refractive index of the medium. The figure
shows that both dispersions intersect, i.e., there is a degeneracy at the in-
tersection point. The exciton–photon interaction removes that degeneracy
introducing a modified joint dispersion. The quasi-particles associated with
this new dispersion are the exciton–polaritons. In general, polaritons are
also formed by transverse optical phonons and the light, called phonon–
polaritons. Since we do not discuss phonon–polaritons in this book, we
refer to the exciton–polaritons simply as polaritons.

The optical dielectric function for the excitons, i.e., without the ioniza-
tion continuum, is

ε(ω) = ε0[1 + 4πχ(ω)]

= ε0

[
1− 8π|dcv|2

∑
n

|ψn(r = 0)|2
�(ω + iδ)− Eg − En

]
, (11.5)

where ε0 = n20 and Eq. (10.103) have been used. In this form, only resonant
terms are contained and the momentum of the emitted or absorbed photon
has been neglected. In order to find the propagating electromagnetic modes
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in a dielectric medium, we have to insert ε(ω) into the wave equation (1.43)
for the transverse electric field of a light beam. For a plane wave, we get[
−k2 + ω2

c2
ε(ω)

]
Eωei(k·r−ωt) = 0 . (11.6)

The transverse eigenmodes of the medium are obtained from the require-
ment that Eω �= 0, so that

c2k2 = ω2ε(ω) . (11.7)

transverse eigenmodes

11.1.1 Polaritons without Spatial Dispersion
and Damping

Let us analyze Eq. (11.7) considering only the contribution of the lowest
exciton level,

ε(ω) � ε0

[
1− 8π|dcv|2 |ψ1(r = 0)|2

�(ω + iδ)− Eg + E0

]
, (11.8)

or

ε(ω) = ε0

(
1− ∆

ω − ω0 + iδ

)
, (11.9)

where

�∆ = 8π|dcv|2|ψ1(r = 0)|2 and �ω0 = Eg − E0 . (11.10)

In order to satisfy Eq. (11.7), the wave number k has to be chosen complex

k = k′ + ik′′ . (11.11)

Then we can write the real and imaginary part of Eq. (11.7) as

ω2ε0
c2

(
1− ∆

ω − ω0

)
= k′2 − k′′2 (11.12)

and

πδ(ω − ω0)ω
2
0ε0
c2

= 2k′k′′ , (11.13)
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respectively, where the Dirac identity, Eq. (1.17), has been used. The imag-
inary part of the wave number is proportional to δ(ω − ω0) describing ab-
sorption at the exciton resonance. Outside the resonance (ω �= ω0) we
obtain the undamped polariton modes

ω

√
ω − ω0 −∆
ω − ω0 =

ck′√
ε0

. (11.14)

The resulting dispersion is plotted in Fig. 11.2.

0

1

2

0 1 2 3

�
�/

0

k' c/ n�0 0

Fig. 11.2 Polariton dispersion without spatial dispersion for ∆/ω0 = 0.2.

From Eq. (11.14) one obtains for low frequencies, ω << ω0, a photon-
like dispersion

ω � ck′√
ε0(1 + ∆/ω0)

(11.15)

with a light velocity slightly smaller than c/n0. For ω → ω0, the wave
number diverges, k′ →∞. No solution of Eq. (11.14) exists for frequencies
between ω0 and ω0 + ∆. In other words, there is a stop band between ω0
and ω0 + ∆ separating the lower and upper polariton branch. At ω0 +∆,
k′ is zero and for ω >> ω0 one again obtains a photon-like dispersion with
the light velocity c/n0.

The longitudinal eigenmodes of a dielectric medium are determined by
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ε(ω) = 0 , (11.16)

longitudinal eigenmodes

which yields the eigenfrequencies of the longitudinal exciton ωl = ω0 +∆,
while the transverse exciton frequency ωt = ω0. Therefore, ∆ is called the
longitudinal-transverse (LT) splitting.

For the longitudinal excitons, the polarization is parallel to the wave
vector k. Eq. (11.10) shows that the longitudinal-transverse splitting is
proportional to the so-called optical matrix element

|dcv|2|ψ1(r = 0)|2 ∝ |dcv|
2

ad0
, (11.17)

where Eqs. (10.70) and (10.71) have been used. The region in which no
transverse waves propagate is thus particularly large for crystals with small
exciton Bohr radii, i.e., in wide-gap semiconductors such as CuCl. Whether
the LT-splitting can be observed experimentally depends on the ratio of
∆ to the exciton damping δ, which is finite in real crystals, e.g., as a
consequence of the exciton–phonon interaction. For ∆ >> δ, the stop
band is physically important, but not for ∆ << δ.

In general, the dielectric functions for longitudinal and transverse ex-
citations are not the same. However, they become degenerate in the long
wave-length limit, which we have considered so far. For more details see
Haug and Schmitt–Rink (1984).

11.1.2 Polaritons with Spatial Dispersion and Damping

If the momentum of the photon is not disregarded, the momentum conser-
vation requires that the created or annihilated exciton has the same finite
wave vector as the photon. The energy of an exciton with a finite transla-
tional momentum �k is given by Eq. (11.3). Then the transverse dielectric
function becomes wave-number-dependent, yielding for the 1s-exciton state

ε(k, ω) = ε0

(
1− ∆

ω − ω0 − �k2

2M + iγ

)
. (11.18)

Here, we treat the damping γ as a generally nonvanishing constant. How-
ever, we note that a realistic description of an exciton absorption line often
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requires a frequency-dependent damping γ(ω). A constant γ results in a
Lorentzian absorption line, but in reality one observes at elevated temper-
atures nearly universally an exponential decrease of the exciton absorption
α(ω) for frequencies below the exciton resonance, i.e.,

α(ω) = α0e
−(ω0−ω)/σ for ω < ω0 . (11.19)

Urbach rule

The derivation of the Urbach rule needs a damping γ(ω) which decreases
with increasing detuning ω0 − ω. The physical origin of the dynamical or
frequency-dependent damping is the following: the absorption of a photon
with insufficient energy �ω < �ω0 requires the scattering of the virtually
created exciton with energy �ω into a state Ek = �ω0+�

2k2/2M under the
absorption or scattering of an already present excitation in the crystal. In
polar semiconductors, the relevant excitation will be a longitudinal optical
(LO) phonon. Now it is evident that γ(ω) decreases rapidly with decreasing
frequency because the probability to absorb n LO phonons decreases rapidly
with increasing n. From a microscopic point of view, the damping is the
imaginary part of the exciton self-energy Σ(k, ω), which in general is both
frequency- and momentum-dependent.

Now let us return to the simple form of Eq. (11.18) to discuss the
transverse eigenmodes. Because a momentum-dependent dielectric func-
tion means a nonlocal response in real space, one speaks in this case also
of a dielectric function with spatial dispersion. Inserting Eq. (11.18) into
the eigenmode equation (11.7) yields

c2k2

ε0
= ω2

(
1− ∆

ω − ω0 − �k2

2M + iγ

)
. (11.20)

The solution of this equation for the real and imaginary part of the wave
number is shown in Fig. 11.3.
With spatial dispersion and finite damping one finds for all frequencies two
branches, ω1 and ω2. At high frequencies, ω/ω0 > 1, Fig. 11.3 again shows a
photon-like and an exciton-like branch. In the range of the LT-split, ω2(k′)
has some structure which results in a negative group velocity [negative slope
of ω2(k′)]. One sees, however, that in this range the damping of this mode
increases strongly. In a region with damping, the group velocity loses its
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meaning. Instead, the Poynting vector has to be calculated, from which one
gets an energy velocity. At still lower frequency the branch ω2 continues
as a Tscherenkov mode with cT > c/n0. But again this has no physical
significance due to the very large damping. The mode ω1 is damped in
the range of the LT-splitting and becomes photon-like with little damping
below the exciton resonance, ω/ω0 = 1.

0.5

1

1.5

-10 -5 0 5 10

�

-Im k Re k

Re �1

Im �1

Re �2

Im �2

Fig. 11.3 Polariton dispersion with spatial dispersion and damping for ∆/ω0 = 0.1,
γ/ω0 = 0.01, �ω0ε0/2Mc2 = 0.001. The frequency ω is in units of ω0 and k is in units
of c/ω0, respectively.

If one considers the influence of the interface between the crystal and,
e.g., vacuum, the presence of two propagating modes requires an additional
boundary condition (ABC). Often Pekar’s additional boundary condition
is chosen which states that the normal component of the polarization has
to be zero at the interface. The need for the additional boundary con-
dition stems from the fact that one has used a three dimensional spatial
Fourier transform, which is not allowed for a crystal with a surface. To
avoid this problem, one has to calculate the two-point polarization func-
tion Pcv(r, r′, t) for a spatially inhomogeneous system.

11.2 Hamiltonian Theory of Polaritons

Polaritons can also be discussed directly as mixed exciton–photon excita-
tions in a semiconductor. For this end, we will introduce exciton creation
and destruction operators, which, as we will show, obey Bose commuta-
tion relations in the linear regime. For the subsequent calculations, it is
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convenient to introduce a hole operator

β†
−k,−s ≡ av,k,s (11.21)

indicating that the annihilation of an electron with (k, s) in the valence
band corresponds to the creation of a hole with the opposite momentum
and spin. To keep the notation symmetrical, we define

α†
k,s ≡ a†c,k,s , (11.22)

where the electron operators α, α† operate exclusively in the conduction
band and the hole operators β, β† operate in the valence band, respectively.

Suppressing the spin index, and using the electron–hole pair operator

α†
kβ

†
−k′ , (11.23)

the operator describing generation of an exciton in the state ν with total
momentum K can be written as

B†
ν,K =

∑
k,k′

δ
[
K− (k− k′)]ψν

(
k+ k′

2

)
α†
kβ

†
−k′

=
∑
k

ψν(k −K/2)α†
kβ

†
K−k . (11.24)

The derivation of this relation is best obtained in the Dirac representation,
where

B†
ν,K = |νK〉〈0| . (11.25)

Multiplying Eq. (11.25) with the completeness relation in terms of the
electron–hole pairs

∑
k,k′
|k,−k′〉〈k,−k′| = 1 , (11.26)

one gets
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B†
ν,K =

∑
k,k′
|k,−k′〉〈k,−k′|νK〉〈0|

=
∑
k,k′
〈k,−k′|νK〉|k,−k′〉〈0|

=
∑
k,k′
〈k,−k′|νK〉α†

kβ
†
−k′ . (11.27)

Furthermore,

〈k,−k′|νK〉 =
∫
d3r d3r′〈k,−k′|r, r′〉〈r, r′|νK〉

=
∫
d3r d3r′e−ik·r eik

′·r′eiK·(r+r′)/2ψν(r− r′)

= δ[K− (k− k′)]ψν
(
k+ k′

2

)
, (11.28)

where ψν(k) is the Fourier transform of the exciton wave function for the
relative motion. Explicitly, the Fourier transforms for the ground-state
wave functions are

ψ0(k) = 8
√
πa30

1
[1 + (ka0)2]2

in 3D (11.29)

and

ψ0(k) =
√
2πa0

1
[1 + (ka0/2)2]3/2

in 2D . (11.30)

We see that ψ0(k) is roughly constant for 0 < k < 1/a0 or 2/a0, and falls
off rapidly for large k values.

The commutator for the exciton operators is

[B0,0, B
†
0,0] =

∑
k,k′

ψ0(k)ψ∗
0(k

′)
[
β−kαk , α

†
k′β

†
−k′

]

=
∑
k

|ψ0(k)|2(1 − α†
kαk − β†

−kβ−k) (11.31)

so that

〈[B0,0, B
†
0,0]〉 = 1−O(nad0). (11.32)
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This is a Bosonic commutator relation for a vanishing number of electrons
and holes, i.e. in the linear regime. At elevated densities, however, one has
to take the deviations from the Bosonic nature into account.

The Hamiltonian for free excitons can be written as

H0 =
∑
k

�eνkB
†
ν,kBν,k. (11.33)

In order to express the interaction Hamiltonian HI of the electron system
with the light field in terms of exciton operators, we multiply Eq. (11.24)
with ψ∗

ν(κ) and sum over ν to get

∑
ν

ψ∗
ν(κ)B

†
ν,K =

∑
νk

ψ∗
ν(κ)ψν(k−K/2)α†

kβ
†
K−k

=
∑
k

δκ,k−K/2α
†
kβ

†
K−k = α†

1
2K+κ

β†
1
2K−κ

. (11.34)

Taking the finite wave number q of the light explicitly into account, HI can
then be written as

HI = −
∑
k,q

dcv

[
α†

1
2q+k

β†
1
2q−k

E(q)e−iωqt + h.c.
]

= −
∑
k,q,ν

dcv
[
ψν(k)B†

ν,qE(q)e−iωqt + h.c.
]
. (11.35)

Using

E(q, t) = −1
c

∂

∂t
A(q, t) , (11.36)

we obtain

E(q, t) = E(q)e−iωqt = i
√
2π�ωq(bq − h.c.) , (11.37)

where we denote the photon annihilation operator by bq (see Appendix A),
and

ωq =
cq√
ε0

. (11.38)
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The exciton–photon interaction Hamiltonian in the resonant approximation
is thus

HI = −i�
∑
q,ν

gνq(B†
νqbq − h.c.) (11.39)

with the optical matrix element

�gνq = dcvψ
∗
ν(r = 0)

√
π�ωq/2 . (11.40)

The total exciton–photon Hamiltonian is now

H=�

∑
q

[∑
ν

eνqB
†
νqBνq + ωqb

†
qbq−i

∑
ν

gνq(B†
νqbq−h.c.)

]
. (11.41)

In the following, we consider only the lowest exciton level. The bilinear
Hamiltonian (11.41) can be diagonalized by introducing polariton operators
pq as linear combination of exciton and photon operators :

pq = uqBq + vqbq . (11.42)

We demand that the polariton operators obey the Bose commutation rela-
tions

[pq , p†q] = |uq|2 + |vq|2 = 1 . (11.43)

We now choose the unknown coefficients uq and vq so that the Hamiltonian
(11.41) becomes diagonal in the polariton operators

H = �

∑
q

Ωqp
†
qpq . (11.44)

It turns out that the transformation coefficients uq and vq and the polariton
spectrum Ωq can best be found by evaluating the commutator [p,H ]/� once
directly using the polariton Hamiltonian (11.44) and once using Eq. (11.42)
together with the exciton–photon Hamiltonian. We obtain

Ωqpq = Ωq(uqBq + vqbq)

= uq(eqBq − igqbq) + vq(ωqbq + igqBq) . (11.45)

Comparing the coefficients of Bq and bq we find

0 = (Ωq − eq)uq + igqvq
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and

0 = −igquq + (Ωq − ωq)vq , (11.46)

respectively. The determinant of the coefficients of uq and vq has to vanish,
i.e,

(Ωq − eq)(Ωq − ωq)− g2q = 0 ,

or

Ωq,1,2 =
1

2
(eq + ωq)± 1

2

√
(eq − ωq)2 + 4g2q . (11.47)

polariton spectrum

We see immediately that Ω1,2 are the frequencies of the upper and lower
polariton branches which we found already in Sec. 11.1. For q → 0, the
upper branch approaches e0 + g2/e0 showing that the LT splitting in this
formulation is given by g2/e0, which vanishes for g from Eq. (11.40).

Using Eqs. (11.43) and (11.46), we find for the upper polariton branch

uq,1 =

√
Ωq,1 − ωq

2Ωq,1 − eq − ωq and vq,1 = i

√
Ωq,1 − eq

2Ωq,1 − eq − ωq (11.48)

and for the lower polariton branch with Ω2 < e, ω the coefficients

uq,2 =

√
Ωq,2 − ωq

2Ωq,2 − eq − ωq and vq,2 = −i
√

Ωq,2 − eq
2Ωq,2 − eq − ωq . (11.49)

Fig. (11.4) shows the wave number dependence of |u1|2 and |v1|2 for the up-
per polariton branch according to Eq. (11.48), for simplicity without spatial
dispersion, i.e., with eq = e0. The upper branch polariton is exciton-like
for small q-values, (|u1|2 � 1), and changes around the exciton resonance
successively into a photon-like excitation (|v1|2 � 1). The lower branch
polariton shows the reverse properties.
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Fig. 11.4 Dispersion of |ui|2 and |vi|2 for the upper polariton branch.

The resulting polariton Hamiltonian is

H = �

∑
q,i=1,2

Ωi,qp
†
i,qpi,q . (11.50)

All formulas derived in this chapter hold only if the nonresonant interaction
terms are small. The full interaction Hamiltonian with nonresonant terms
has the form

HI = i�
∑

gq(Bq +B†
−q)(b−q − b†q) . (11.51)

The total Hamiltonian can still be diagonalized by a transformation which
mixes Bq, bq and B†

−q, b
†
−q operators linearly :

pi,q = ui,1,qBq + ui,2,qbq + ui,3,qB
†
−q + ui,4,qb

†
−q . (11.52)

This slightly more general transformation is called the Hopfield (1958) po-
lariton transformation.

If we compare the dielectric formalism used at the beginning of this
chapter with the diagonalization procedure of this section, we see that an
advantage of the first approach is that it allows us quite naturally to include
the damping of the modes.
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11.3 Microcavity Polaritons

Even though we did not specify it explicitly, the polariton properties dis-
cussed so far are valid for infinitely extended bulk materials. Modifications
are necessary when we deal with quantum confined systems, such as quan-
tum wells and wires. In these cases, free propagation is possible only in the
unconfined directions, leading to two- or one-dimensional polariton modes.

More interesting are configurations with quantum confinement not only
for the electrons but also for the photons. Here, the confinement for the
photons can be provided by converting two parallel end faces of a semi-
conductor crystal into mirrors of very high reflectivity. This generates an
optical resonator, i.e., a Fabry Perot cavity, which has eigenmodes deter-
mined by the length L of the cavity and the quality of the mirrors. In the
simplest case, these mirrors could be made with metallic films, but often
one uses so-called distributed Bragg reflectors (DBR mirrors) that are made
of alternating layers of low and high refractive index material with a layer
thickness of a quarter of the wave length of light.

If L equals half a wave length of light, one has a one-dimensional mi-
crocavity where only one longitudinal optical mode is allowed. This mode
is just a standing wave with nodes at both mirrors and a single maximum
in the middle of the sample, while parallel to the mirrors one has still a
continuum of transverse running modes with a wave vector k‖.

To determine the microcavity mode, we start with the wave equation
(1.43) in the form

∆E(r, ω) +
ω2

c2
ε(ω)E(r, ω) = 0 , (11.53)

where we assume a situation without any resonances in the spectral range of
interest, so that the dielectric function is purely real, ε = n2. The solution
for the lowest mode of the microresonator is

E(r, ω) = E0 sin(
πz

L
)eik‖·r . (11.54)

Inserting (11.54) into the wave equation (11.53), we find the eigenfrequen-
cies

ω0,k‖ =
c

n

√
π2

L2
+ k2‖ . (11.55)

Note, that in contrast to the dispersion of bulk photons, the dispersion of
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Fig. 11.5 Exciton polariton dispersion of a planar microcavity versus parallel momen-
tum k‖. The thin lines show the bare caving photon and exciton dispersions.

the microcavity polaritons (11.55) approaches a finite frequency in the long
wave-length limit k‖ → 0.

Next, we consider the interaction of this light mode with a 2D quan-
tum well placed in the middle of the microcavity, i.e. at z = L/2, where
the optical mode has its maximum. If one couples the 1s-excitons of this
quantum well to the photons of the microcavity mode, one gets in analogy
with (11.41) the following resonant exciton–photon Hamiltonian

H = �

∑
k‖

[
e0,k‖B

†
0,k‖B0,k‖ + ω0,k‖b

†
0,k‖b0,k‖ − igk‖

(
B†
0,k‖b0,k‖ − h.c.)

]
.

(11.56)

Here, in analogy with (11.40), the interaction matrix element is given by

�gk‖ = dcvψ
2D
0 (r = 0)

√
π�ω0,k‖ . (11.57)

Applying the same diagonalization procedure as discussed in the last sec-
tion, we get the following microcavity polariton spectrum

Ωk‖,1,2 =
1
2
(e0,k‖ + ω0,k‖)±

1
2

√
(e0,k‖ − ω0,k‖)2 + 4g2k‖ . (11.58)

A sketch of the resulting microcavity polariton is given in Fig. 11.5 for a
cavity mode which is degenerate at k‖ = 0 with the 1s-exciton. One sees
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that in contrast to the bulk polariton both branches of the microresonator
polariton tend to a finite frequency at k‖ → 0 which gives these structures
unique optical properties.
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PROBLEMS

Problem 11.1: Generalize Eq. (11.20) to include the energetically higher
(n = 2, 3, . . . ) exciton levels.

Problem 11.2: Compute the Fourier transform of the 1s-exciton wave



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Polaritons 209

function in 2D and 3D.

Problem 11.3: Compute the polariton transformation coefficients uq and
vq and the polariton spectrum Ωq by evaluating the commutator [p,H] once
using the polariton Hamiltonian, Eq. (11.44), and once using Eq. (11.42)
together with the exciton–photon Hamiltonian.

Problem 11.4: Show that the operators for the lower and upper polariton
branches commute, e.g., [p1, p†2] = 0.

Problem 11.5: Diagonalize the microcavity exciton–photon Hamiltonian
(11.56) and derive the dispersion relation, Eq. (11.58), by applying the
polariton transformation according to Eqs. (11.42) – (11.47).



This page intentionally left blank 



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Chapter 12

Semiconductor Bloch Equations

The previous two chapters analyze the interband transitions in semicon-
ductors in the linear regime focusing on the correct treatment of the all
important Coulomb attraction between the conduction-band electron and
the valence-band hole. In this and the following chapters, we will now ex-
tend that treatment into the nonlinear regime where several electron–hole
pairs are excited and the interactions between these pairs have to be con-
sidered. In situations with elevated electron–hole–pair densities, we have
to deal with finite numbers of electrons and holes in the conduction and
valence band which are coupled dynamically to the interband polarization.
In this chapter, we derive the set of coupled differential equations which
governs the coupled dynamics of electrons, holes and the optical polariza-
tion in the spectral vicinity of the semiconductor band gap. We call these
equations the semiconductor Bloch equations since they are the direct gen-
eralization of the equations for the free-carrier transitions, which can be
put into the form of Bloch equations, as has been shown in Chap. 5.

12.1 Hamiltonian Equations

We start from the Hamiltonian

H = Hel +Hl , (12.1)

where

211
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Hel =
∑
k

(
Ec,ka

†
c,kac,k + Ev,ka

†
v,kav,k

)

+
1
2

∑
k,k′,q �=0

Vq
(
a†c,k+qa

†
c,k′−qac,k′ac,k + a†v,k+qa

†
v,k′−qav,k′av,k

+ 2a†c,k+qa
†
v,k′−qav,k′ac,k

)
(12.2)

is the electron part of the Hamiltonian in two-band approximation. Here,
we include only those Coulomb interaction processes that conserve the par-
ticle number in each band. In other words, interband Coulomb processes
in which, e.g., one electron and one hole are annihilated and two electrons
are created are not taken into account due to the relatively large energy
gap between both bands.

HI = −
∑
k

E(t)(a†c,kav,kdcv + h.c.) , (12.3)

describes the interband dipole coupling to the light field.
For the subsequent calculations, it is convenient to transform the total

Hamiltonian into the electron–hole representation (see Chap. 11). Inserting
the definitions (11.21) and (11.22),

β†
−k = av,k (12.4)

and

α†
k = a†c,k , (12.5)

into the Hamiltonian (12.1) and restoring normal ordering of the electron
and hole operators, we obtain
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H =
∑
k

(
Ee,kα

†
kαk + Eh,kβ

†
−kβ−k

)

+
1
2

∑
k,k′,q�=0

Vq
(
α†
k+qα

†
k′−qαk′αk+β

†
k+qβ

†
k′−qβk′βk−2α†

k+qβ
†
k′−qβk′αk

)
−
∑
k

E(t)(dcvα†
kβ

†
−k + h.c.

)
, (12.6)

electron–hole Hamiltonian

where constant terms have been left out. The single particle energies in
(12.6) are

Ee,k = Ec,k = �εe,k

and

Eh,k = −Ev,k +
∑
q �=0

Vq = �εh,k , (12.7)

showing that the kinetic energy of the holes includes the Coulomb exchange
energy −∑Vqnv,|k−q| with nv,|k−q| = 1 for the full valence band. The low-
intensity interband transition energy is therefore

∆Ek = Ec,k − Ev,k +
∑
q �=0

Vq . (12.8)

In extension of the analysis in Chap. 10, we now want to derive the coupled
equations of motion for the following elements of the reduced density matrix

〈α†
kαk〉 = ne,k(t)

〈β†
−kβ−k〉 = nh,k(t)
〈β−kαk〉 = Phe(k, t) ≡ Pk(t) .

(12.9)

We proceed as in Chap. 10 and compute the Hamiltonian equations of
motion, but this time for all the expectation values (12.9). Straightforward
operator algebra yields



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

214 Quantum Theory of the Optical and Electronic Properties of Semiconductors

�

[
i
d

dt
− (εe,k + εh,k)

]
Pk = (ne,k + nh,k − 1)dvcE(t)

+
∑

k′,q�=0

Vq

(
〈α†

k′+qβ−k+qαk′αk〉 − 〈β†
k′+qβ−k+qβk′αk〉

+ 〈β−kα†
k′−qαk′αk−q〉 − 〈β−kβ†

k′−qβk′αk−q〉
)
, (12.10)

�
∂

∂t
ne,k = −2 Im

[
dcv E(t)P ∗

k

]
+ i

∑
k′,q�=0

Vq

(
〈α†

kα
†
k′−qαk−qαk′〉 − 〈α†

k+qα
†
k′−qαkαk′〉

+ 〈α†
kαk−qβ

†
k′−qβk′〉 − 〈α†

k+qαkβ
†
k′−qβk′〉

)
, (12.11)

�
∂

∂t
nh,k = −2 Im

[
dcv E(t)P ∗

k

]
+ i

∑
k′,q �=0

Vq

(
〈β†

−kβ
†
k′−qβ−k−qβk′〉 − 〈β†

−k+qβ
†
k′−qβ−kβk′〉

+ 〈α†
k′+qαk′β†

−kβ−k+q〉 − 〈α†
k′+qαk′β†

−k−qβ−k〉
)
. (12.12)

As in our derivation of the polarization equation in Chap. 10, we now
again split the four-operator terms into products of densities and interband
polarizations plus the unfactorized rest. This way we separate the equations
of motion into the Hartree–Fock and scattering parts

∂

∂t
〈A〉 = ∂

∂t
〈A〉HF +

∂

∂t
〈A〉

∣∣∣∣
scatt

. (12.13)

Here, the scattering terms are simply defined as the differences between
the full and the Hartree–Fock terms so that the decomposition is formally
exact. However, at later stages we will have to make approximations to
obtain manageable expressions for the scattering terms.
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Using the decomposition (12.13) for all the four-operator terms in
Eq. (12.10) – (12.12), one can write the resulting equations as

∂Pk
∂t

= −i(ee,k + eh,k)Pk (12.14)

− i

�

(
ne,k + nh,k − 1

)dcvE(t) +∑
q �=k

V|k−q|Pq


+

∂Pk
∂t

∣∣∣∣
scatt

,

∂ne,k
∂t

= −2
�
Im




dcvE(t) +∑

q �=k
V|k−q|Pq


P ∗

k


+

∂ne,k
∂t

∣∣∣∣
scatt

, (12.15)

∂nh,k
∂t

= −2
�
Im




dcvE(t) +∑

q �=k
V|k−q|Pq


P ∗

k


+

∂nh,k
∂t

∣∣∣∣
scatt

, (12.16)

where again the renormalized single-particle energies

�ei,k = �εi,k +Σexc,i(k) = �εi,k −
∑
q

V|k−q|ni,q , i = e, h (12.17)

have been introduced.
Approximations for the scattering terms of Eqs. (12.14) – (12.16) will

be discussed in Sec. 12.3 and in later chapters of this book. Here, we note
that in all three equations the combination

1
�


dcvE(t) +∑

q �=k
V|k−q|Pq




appears. In generalization of the Rabi frequency (2.49) for an atomic sys-
tem, we therefore introduce the generalized Rabi frequency

ωR,k =
1

�


dcvE +∑

q �=k
V|k−q|Pq


 , (12.18)

generalized Rabi frequency

emphasizing the fact, that the electron–hole system does not react to the
applied field E(t) alone, but to the effective field which is the sum of the
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applied field and the internal dipole field of all generated electron–hole
excitations.

With the definition (12.18), Eqs. (12.14) – (12.16) can be written in the
very compact form

∂Pk

∂t
= −i(ee,k + eh,k)Pk − i(ne,k + nh,k − 1)ωR,k +

∂Pk

∂t

∣∣∣∣
scatt

∂ne,k

∂t
= −2 Im(ωR,kP

∗
k ) +

∂ne,k

∂t

∣∣∣∣
scatt

∂nh,k

∂t
= −2 Im(ωR,kP

∗
k ) +

∂nh,k

∂t

∣∣∣∣
scatt

. (12.19)

semiconductor Bloch equations

Since Eqs. (12.19) are the generalization of the optical Bloch equations
(5.30) – (5.32), we call them the semiconductor Bloch equations.

These semiconductor Bloch equations constitute the basis for most of
our understanding of the optical properties of semiconductors and semi-
conductor microstructures. Depending on the strength and time dynamics
of the applied laser light field contained in the generalized Rabi frequency
(12.18), one can distinguish several relevant regimes:

• the low excitation regime in which the exciton resonances — some-
times accompanied by exciton molecule (biexciton) resonances — dom-
inate the optical properties. The interaction with phonons provides the
most important relaxation and dephasing mechanism. As the density
increases gradually, scattering between electron–hole excitations also
becomes important.
• the high excitation regime in which an electron–hole plasma is excited.
Here, the screening of the Coulomb interaction by the optically excited
carriers and the collective plasma oscillations are the relevant physi-
cal phenomena. The main dissipative mechanism is the carrier–carrier
Coulomb scattering.
• the quasi-equilibrium regime which can be realized on relatively long
time scales. Here, the excitations have relaxed into a quasi-equilibrium
and can be described by thermal distributions. The relatively slow
approach to equilibrium can be described by a semi-classical relaxation
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and dephasing kinetics.
• the ultrafast regime in which quantum coherence and the beginning
dissipation determine the optical response. The process of decoherence,
of the beginning relaxation and the build-up of correlations, e.g., by a
time-dependent screening are governed by the quantum kinetics with
memory structure of the carrier–carrier and carrier–phonon scattering.

The optical light field can consist of two or more light pulses propagating in
equal or different directions with the same or different carrier frequencies,
pulse envelopes, and intensities, respectively. The semiconductor Bloch
equations are excellently suited to analyze such multi-pulse experiments and
the wide variety of physical phenomena, such as relaxation, dephasing, and
build-up of correlations. Among the many different possible configurations
in nonlinear spectroscopy, there are two basic experimental set-ups that we
will analyze in the following chapters of this book:

• As four-wave mixing (FWM) spectroscopy, we denote a typical exper-
imental configuration where two or three pulsed laser beams hit the
sample under different angles of incidence and variable time delays.
The pulses induce polarizations in the crystal. These polarizations in-
terfere, forming a lattice (grating), from which one obtains refracted
signals in various orders. The decay of the FWM signal is often stud-
ied to analyze dephasing processes in detail.

• Time resolved differential transmission spectroscopy (DTS) refers to ex-
periments where two more or less co-linearly propagating pulsed laser
beams with equal or different carrier frequencies hit the sample with
variable time delay. The carriers excited by the first, often stronger
pulse (the pump pulse) modify the absorption of the second, usually
weak pulse (the probe pulse). Such DTS-experiments give direct in-
formation about build-up and decay of nonlinearities induced by the
pump, especially about the relaxation kinetics of the electron–hole ex-
citations.

The analysis of such experiments under various conditions in terms of the
semiconductor Bloch equations will be a major issue in some of the following
chapters of this book.

Generally, the scattering terms in the semiconductor Bloch equations
(12.19) describe all the couplings of the polarizations and populations, i.e.,
of the single-particle density matrix elements to higher-order correlations,
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such as two-particle and phonon- or photon-assisted density matrices. How-
ever, in many cases one can identify specific physical mechanisms that dom-
inate the scattering terms in some of the excitation regimes listed above.
For example, in the low excitation regime often the coupling of the excited
carriers to phonons determines relaxation and dephasing, whereas at high
carrier densities carrier–carrier scattering dominates. For relatively long
pulses, Markov approximations for the scattering processes are often justi-
fied, and the scattering terms can be described by Boltzmann-like scattering
rates due to carrier–phonon or carrier–carrier scattering, respectively.

For ultra-short pulses, the Markov approximations may break down.
Here, quantum kinetics with its memory structure has to be used to describe
the effects of scattering processes which are often not completed during the
action of a light pulse. In this regime, the quantum coherence of the electron
states influence the scattering kinetics in an important way and give rise to
a mixture of coherent and dissipative effects.

In all situations, the semiconductor Bloch equations are a very suit-
able theoretical framework which, however, has to be supplemented with
an appropriate treatment of the scattering terms in order to describe the
various aspects of the rich physics which one encounters in pulse excited
semiconductors. In general, the semiconductor Bloch equations have to be
treated together with the Maxwell equations for the light field in order to
determine the optical response. This self consistent coupling of Maxwell
and semiconductor Bloch equations (for shortness also called Maxwell–
semiconductor–Bloch equations) is needed as soon as spatially extended
structures are analyzed where light propagation effects become important.
Relevant examples are the polariton effects analyzed in the previous chap-
ter, as well as semiconductor lasers or the phenomenon of optical bistability
discussed later in this book. In optically thin samples, however, where prop-
agation effects are unimportant, the transmitted light field is proportional
to the calculated polarization field. Under these conditions one can treat
the semiconductor Bloch equations separately from Maxwell’s equations to
calculate the optical response.

Superficially, the semiconductor Bloch equations seem to be diagonal
in the momentum index k, but in reality already the Coulomb terms in
the generalized Rabi frequency (12.18) and in the exchange energy (12.17)
and even more the scattering terms lead to strong couplings of all momen-
tum states. As simple limiting cases, the semiconductor Bloch equations
reproduce both the optical Bloch equations for free-carrier transitions (see
Chap. 5) and the Wannier equation for electron–hole pairs.
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The first equation of Eq. (12.19) is nothing but the polarization equation
(10.21) supplemented by the scattering term. The factor

1− ne,k − nh,k = nv,k − nc,k

is again the population inversion of the state k. Its effects on the optical
absorption spectra are often denoted as Pauli blocking, state filling, or more
generally as phase space filling.

If one ignores all the Coulomb potential terms, V (q)→ 0, Eqs. (12.19)
reduce to the free-carrier optical Bloch equations of Chap. 5. As shown
in Chap. 10, the homogeneous part of Eq. (12.19) becomes the general-
ized Wannier equation for electron–hole pairs with the effective Coulomb
interaction being renormalized by the phase-space filling factor. The term

−2 Im(ωR,kP ∗
k

)
in the last two equations of (12.19) describes the generation of electrons and
holes pairs by the absorption of light. As long as the scattering terms are
ignored, the rate of change of the hole population (last equation of (12.19))
is identical to the rate of change of the electron population, second equation
of (12.19).

12.2 Multi-Subband Microstructures

Before we proceed with the discussion of the semiconductor Bloch equa-
tions, we will give their formulation for microstructures with several sub-
bands. For free carriers, the density matrix equations have already been
derived in Chap. 5, Eq. (5.36). In terms of the creation and annihilation
operators, we write the reduced density matrix as

ρi,µ;j,ν(k, t) = 〈a†j,ν,k(t)ai,µ,k(t)〉 . (12.20)

Note the inversion of the indices between left and right hand side of this
definition. For quantum dots with confinement in all directions, the wave
vector has to be dropped, and the index ν represents the whole set of
quantum numbers for the discrete energy levels.

For the optical transitions between subband µ in the valence band j =
v and subband ν in the conduction band i = c induced by a coherent
light field, the optical polarization components are given by the off-diagonal
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matrix elements

Pν;µ(k) = ρc,µ;v,ν(k) = 〈a†v,ν,kac,µ,k〉 . (12.21)

The other relevant matrix elements are the electron occupation probability
for state k in subband ν

ne,ν,k = ρc,ν;c,ν(k) = 〈a†c,ν,kac,ν,k〉 (12.22)

and the hole occupation probability in subband µ which is given by

nh,µ,k = 1− ρv,µ;v,µ(k) = 1− 〈a†v,µ,kav,µ,k〉 . (12.23)

The equation of motion for the density matrix follows from the Heisenberg
equation dA

dt = i
�
[H,A] in the form

da†j,ν,kai,µ,k
dt

=
da†j,ν,k
dt

ai,µ,k + a†j,ν,k
dai,µ,k
dt

. (12.24)

Since we only want to explicitly compute the Hartree–Fock parts of the
multiband semiconductor Bloch equations, we do not have to use the full
interaction Hamiltonian. It is sufficient to work with the Hartree–Fock
Hamiltonian which includes the interaction with the light field

HHF =
∑

�εi′,µ′,ka
†
i′,µ′,kai′,µ′,k − E(t)

∑
di′,µ′;j′,ν′(k)a†i′,µ′,kaj′,ν′,k

−
∑

Vi′,µ′,j′,ν′;j′,ν′′,i′,µ′′(q)
[
ρj′,ν′′;i′,µ′(k−q)−δj′,vδi′,vδν′′,µ′

]
a†j′,ν′,kai′,µ′′,k .

(12.25)

This Hamiltonian is obtained by making the Hartree–Fock approximation
in the full many-body multi-subband Hamiltonian. Here, the Coulomb
interaction potential is

Vi′,µ′,j′,ν′;j′,ν′′,i′,µ′′(q) =
2πe2

ε0L2

∫
dzdz′ζ∗i′,µ′(z)ζ∗j′,ν′(z′)

×e
−q|z−z′|

q
ζj′,ν′′(z′)ζi′,µ′′(z) , (12.26)

compare problem 12.2. In deriving Eq. (12.26), we again excluded the
interband Coulomb scattering processes but allowed for intersubband scat-
tering.
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In the Hartree–Fock Hamiltonian (12.25), we have subtracted the ex-
change energy with the full valence band, because this Hartree–Fock ex-
change energy is already included in the band structure calculations. Thus
for the terms with j′ = i′ = v and ν′′ = µ′ the contributions of the va-
lence band subbands to the energy renormalizations are determined by the
hole distribution functions, 1− ρv,µ′;v,µ′(−k) = nh,µ′(k), in analogy to the
situation in bulk semiconductors.

With the HF Hamiltonian (12.25) one finds the multi-subband Bloch
equations[

d

dt
+ i
(
εi,µ,k − εj,ν,k

)]
ρi,µ;j,ν(k)

= − i
�
E(t)

∑[
ρi,µ;i′,µ′(k)di′,µ′;j,ν(k)− di,µ;j′,ν′(k)ρj′,ν′;j,ν(k)

]
− i

�

∑{
ρi,µ;j′,ν′(k)

[
ρj′,ν′′;j,µ′(k−q)−δj′,vδj,vδν′′,µ′

]
Vj,µ′,j′,ν′;j′,ν′′,j,ν(q)

−Vi′,µ′,i,µ;i,ν′′,i′,µ′′(q)
[
ρi,ν′′;i′,µ′(k− q)− δi,vδi′,vδν′′,µ′

]
ρi′,µ′′;j,ν(k)

}
+

d

dt
ρi,µ;j,ν(k)

∣∣∣∣
scatt

. (12.27)

Here, we have added the scattering terms which describe higher correlation
and dissipative collision rates.

Without subband structure the multi-subband equation (12.27) reduces
to the two-band semiconductor Bloch equations (12.19). For compactness
of notation, we do not split Eq. (12.27) into separate equations for the off-
diagonal polarization components and the diagonal components (i = j, µ =
ν), which describe the density kinetics in the various subbands. Depending
on the selection rules and the spectral width of the exciting laser pulse, finite
polarization components can be induced for more than one pair of subbands.
As in the two-band semiconductor Bloch equations, the Coulomb exchange
terms generate nonlinear terms in the multi-subband equations.

12.3 Scattering Terms

All interaction effects beyond the mean field approximation are contained
in the scattering terms. In particular, these terms introduce dissipative
behavior in the form of dephasing rates for the interband polarization and
collision rates describing the relaxation of the electron and hole distribu-
tions. The relaxation kinetics drives the particle distribution toward ther-
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mal distributions often in times much shorter than the radiative lifetime of
the carriers.

A simple phenomenological description of the relaxation needs at least
two relaxation times, called T ′

1 and T1:

dne,k
dt

∣∣∣∣
scatt

=
fe,k − ne,k(t)

T ′
1

− ne,k(t)
T1

, (12.28)

where fe,k = 1/(e(ek−µ)β + 1) is the Fermi function of Chap. 6. Here, the
second term describes recombination of carriers whereas the first term mod-
els the intraband relaxation, i.e., the relaxation of the general nonequilib-
rium distribution ne,k towards a quasi-equilibrium Fermi distribution fe,k,
leaving the total number of electrons in the conduction band unchanged.
Thus∑

fe,k =
∑

ne,k(t) = Ne(t) . (12.29)

This relation allows us to calculate the chemical potential µe(T,Ne(t)). A
refined treatment would take into account that fe,k does not yet describe
the total equilibrium distribution, but only a local equilibrium fe,k(t) with
slowly varying chemical potential and temperature, and — more generally
— also with a slowly changing drift velocity. We will, however, not dwell
further on these phenomenological treatments, but ask how such a dissipa-
tive kinetics can be derived microscopically by coupling the electron system
to a bath with a continuous energy spectrum.

Before doing that, let us also briefly consider the dephasing kinetics of
the interband polarization which describes the decay of quantum coherence
in a coherently excited system. The simplest description of dephasing uses
a dephasing time, also called a transverse relaxation time T2. This simple
phenomenological description of dephasing works surprisingly often reason-
ably well, given the complex underlying scattering kinetics. However, also
here, nonlinear and non-Markovian effects set a limit to the simple phe-
nomenological ansatz.

In the low excitation regime, the dissipative kinetics is determined by
impurity scattering or in pure, polar III–V and II–VI compound semicon-
ductors by the scattering of the excited carriers with phonons. Of the
various different phonon branches, the carrier scattering with longitudi-
nal optical (LO) phonons usually leads to the most rapid dynamics. At
high excitation levels, where a dense electron–hole plasma is generated,
the carrier–carrier collisions are the fastest dissipative processes. We treat
here the simpler case of LO-phonon scattering first. In contrast to acoustic
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phonons with their linear dispersion, optical phonons have little dispersion
and can often simply be described by one energy �ω0. Typical LO-phonon
energies in III–V and II–VI semiconductors are of the order of 20 to 40
meV.

The carriers are scattered within their bands by the absorption or emis-
sion of one LO phonon. The corresponding intraband scattering Hamilto-
nian, the so-called Fröhlich Hamiltonian, is given by:

He−LO =
∑
i,k,q

�gqa
†
i,k+qai,k

(
bq + b†−q

)
, (12.30)

where bq and b†−q are the bosonic phonon annihilation and creation opera-
tors, respectively. Note, that the momentum conservation is built into the
Fröhlich Hamiltonian. The analysis shows that as long as the energy spec-
trum of the electrons is continuous, the coupling to a bath of dispersionless
optical phonons will give rise to dissipation. Only in quantum dots, where
the carriers are confined in all space dimensions so that no momentum can
be defined, one has to take the dispersion of the LO-phonons into account
in order to get dephasing.

If the momentum transfer is neglected by setting q = 0 in the Fröhlich
interaction Hamiltonian, an exactly treatable model results because differ-
ent electron momentum states are no longer coupled. Even though it is
based on additional assumptions, such an exactly treatable model is of con-
siderable interest to study carrier relaxation and dephasing for arbitrary
strengths of the coupling.

The interaction matrix element gq is given by

|gq|2 = ω0Vq
2�

(
1
ε∞
− 1
ε0

)
, (12.31)

where Vq is again the bare Coulomb matrix element and ε0 and ε∞, re-
spectively, are the low and high frequency dielectric constants of the unex-
cited crystal. The Coulomb matrix element in (12.31) shows that effective
carrier–carrier interaction mediated by the exchange of an LO phonon is
also of Coulombic nature. The screening of Vq due to optical phonons with
the frequency ω0 occurs between the low and high frequency limit. This
is the reason why the difference between 1/ε∞ and 1/ε0 determines the
interaction potential (see also problem 12.5).

It is usual, to define the strength of the LO-phonon coupling as the ratio
of phonon-induced electron energy shift to phonon energy in terms of the
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dimensionless Fröhlich coupling parameter

αi = e2
√

mi

2�3ω0

(
1
ε∞
− 1
ε0

)
. (12.32)

In the weakly polar III–V compounds, αi  1, which justifies the use of
perturbation theory in these materials. In the more polar II–VI compounds,
αi � 1, which defines the intermediate polaron coupling regime. Here,
nonperturbative methods are needed.

We limit our discussion here to the weak coupling regime. The collision
term due to LO-phonon scattering is given by

∂ρi,j(k)
∂t

∣∣∣∣
scatt

=
i

�
〈
(
[He−LO, a

†
j,k]ai,k + a†j,k[He−LO, ai,k]

)
〉

= i
∑
q

gq

(
〈a†j,k+qai,k

(
bq + b†−q

)〉 − 〈a†j,kai,k−q(bq + b†−q
)〉)

= i
∑
q

gq

(
F−
ij,k,q + F+

ij,k,q −G−
ij,k,q −G+

ij,k,q

)
. (12.33)

We see, that the scattering term couples the two-operator dynamics to ex-
pectation values of two electron and one phonon operator. These quantities
are called phonon-assisted density matrices. In detail, the phonon-assisted
density matrices are

F−
ij,k,q = 〈a†j,k+qai,kbq〉
F+
ij,k,q = 〈a†j,k+qai,kb†−q〉

G−
ij,k,q = 〈a†j,kai,k−qbq〉

G+
ij,k,q = 〈a†j,kai,k−qb†−q〉 . (12.34)

There are relations between the four phonon-assisted density matrices. F−

and F+, and similarlyG− and G+ differ only by the exchange of the phonon
annihilation and creation operators. Consequently, the phonon absorption
and emission processes in the − and + functions are interchanged, which
can simply be accomplished by a reversal of the phonon frequency and
momentum, as will be discussed later. Furthermore,

G−
ij,k,q = F−

ij,k,q

∣∣∣
k→k−q

and G+
ij,k,q = F+

ij,k,q

∣∣∣
k→k−q

, (12.35)

so only one phonon-assisted density matrix has to be evaluated explicitly.
Because we do not know the phonon-assisted density matrices, we write

down their equations of motion under the full Hamiltonian H = HHF +
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HLO +He−LO, where HLO =
∑

q �ω0b
†
qbq is the free phonon Hamiltonian.

The electron Hartree–Fock Hamiltonian can be written as

HHF =
∑
ij,k

Hij,ka
†
i,kaj,k , (12.36)

where the Hamilton matrix is given by

Hij,k = εi,kδij −
∑
q

V (q)(ρij,k−q − δivδjv)− E(t)dij(k) , (12.37)

which includes the coupling to the coherent light field. We will call HHF +
HLO = Hmf the mean-field Hamiltonian.

The resulting equation of motion is

∂F−
ij,k,q

∂t
=

∂F−
ij,k,q

∂t

∣∣∣∣∣
mf

+
i

�
〈[He−LO , a

†
j,k+qai,kbq

]〉 . (12.38)

The homogeneous mean-field time development is given by

∂F−
ij,k,q

∂t

∣∣∣∣∣
mf

=
i

�

∑
l

(
F−
il,k,qHlj,k+q−Hil,kF

−
lj,k,q

)
−(iω0+γij,k,q)F−

ij,k,q ,

(12.39)

or explicitly

∂F−
ij,k,q

∂t

∣∣∣∣∣
mf

= i
(
εj,k+q − εi,k − ω0 + iγij,k,q

)
F−
ij,k,q

− i

�
E(t)

∑[
F−
il,k,qdlj(k+ q)− dil(k)F−

lj,k,q

]
− i

�

∑{
F−
il,k,qV (q′)

[
ρlj(k + q− q′)− δl,vδj,v

]
− V (q′)

[
ρil(k− q′)− δivδlv

]
F−
lj,k,q

}
. (12.40)

The first line of (12.40) describes the free evolution of the phonon-assisted
density matrix F−. We have added an infinitesimal damping γij,k,q to in-
sure an adiabatic switching on. The second line describes the Stark shifts
of the energy levels due to the laser light pulse, while the next two lines
describe the Hartree–Fock corrections. In total, Eq. (12.40) gives a homo-
geneous equation for the mean-field development of F−. The second term
in Eq. (12.38), which has not been evaluated so far, gives rise to inhomoge-
neous terms in the form of new higher order density matrices. We decouple
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the resulting hierarchy of an infinite series of equations of larger and larger
density matrices by factorization into single particle reduced density matri-
ces. Best insight in the physical nature of the resulting terms is obtained,
if we do not evaluate the commutator in (12.38) at all, but factorize the
products of four electron and two phonon operators directly:

i

�
〈[He−LO , a

†
j,k+qai,kbq

]〉 (12.41)

= igq
∑{

Nqρii′ (k)
[
δi′j − ρi′j(k + q)

]
− (Nq + 1)ρii′(k+ q)

[
δi′j − ρi′j(k)

]}
,

where Nq = 1/(eβ�ω0 − 1) = N(ω0) is the number of thermal LO phonons.
For simplicity, we consider the phonons as a thermal bath. Similar equa-
tions hold for the other three phonon-assisted density matrices.

12.3.1 Intraband Relaxation

Let us consider for the moment only diagonal density matrices

ρi,i(k) = ni(k) (12.42)

and neglect corrections of the energy spectrum (i.e. lines 2 to 4 in (12.39)).
Under these simplifying conditions, Eq. (12.38) reduces to

∂F−
ii,k,q

∂t
= i
(
εi,k+q − εi,k − ω0 + iγii,k,q

)
F−
ii,k,q+

igq

{
N(ω0)ni(k, t)

[
1−ni(k+q, t)

]−[N(ω0)+1
]
ni(k+q, t)

[
1− ni(k, t)

]}
.

(12.43)

A formal integration yields

F−
ii,k,q(t) = igq

∫ t

−∞
dt′ei

(
εi,k+q−εi,k−ω0+iγii,k,q

)
(t−t′)

×
{
N(ω0)ni(k, t′)

[
1−ni(k+ q, t′)

]
− [N(ω0)+1

]
ni(k+q, t′)

[
1− ni(k, t′)

]}
. (12.44)

As already mentioned, the phonon-assisted density matrix F+ can be ob-
tained from F− by interchanging phonon absorption and emission and re-
versing the phonon momentum. We introduce for this purpose the sign
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function σ = ±1 and replace ω0 → σω0 and note that the following rela-
tions are valid:

σN(σω0)|σ=−1 = −
1

e−β�ω0 − 1
=
eβ�ω0 − 1 + 1
eβ�ω0 − 1

= N(ω0) + 1 , (12.45)

and

σ
[
N(σω0) + 1

]∣∣
σ=−1

= N(ω0) . (12.46)

Using these relations, we formally introduce into the scattering rate (12.33)
a sum over σ:

∂ni(k)
∂t

∣∣∣∣
scatt

= −
∑

q,σ=±1

σg2q

∫ t

−∞
dt′ei

(
εi,k+σq−εi,k−σω0+iγii,k,q

)
(t−t′)

×
{
N(σω0)ni(k, t′)

[
1−ni(k + σq, t′)

]
− [N(σω0)+1

]
ni(k+ σq, t′)

[
1−ni(k, t′)

]}
−
{
k→ k− σq

}
. (12.47)

The last term generates from the preceding ones the contributions of the
G functions.

The appearance of the time integral on the RHS of Eq. (12.47) shows
that in general the scattering rate depends on the history of the system.
In particular, the distribution functions enter into the scattering rate with
their values at earlier times t′ ≤ t. Processes with such a memory struc-
ture are called non-Markovian. They arise from the elimination of the
dynamics of the phonons and the higher correlations. Such non-Markovian
scattering integrals are typical for the short-time regime in which quantum
mechanical coherence of the electron and phonon states (here in the form
of the coherent exponential wave factors) is still present. Therefore, the
non-Markovian short-time dynamics is called quantum kinetics. Only for
long times, the non-Markovian quantum kinetics reduces to the Markovian
scattering kinetics of Boltzmann.

Suppose that the particles are excited by a pulse around t = 0. If the
time t is long enough so that tω0 # 1, the exponentials oscillate rapidly.
The distribution functions vary slowly compared to the exponentials and
can be taken out of the integral with their value at the upper boundary.
This is the so-called Markov approximation. The integrals over the remain-
ing exponentials then yield the energy conserving Dirac delta function times
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a factor of π. In detail, the time integral has the structure

∫ t

−∞
dt′ei(∆ε+iγ)(t−t′) =

ei(∆ε+iγ)(t−t′)

−i(∆ε+ iγ)

∣∣∣∣∣
t

−∞
=

i

∆ε+ iγ
. (12.48)

With Dirac’s identity we get

i

∆ε+ iγ
= i

[
P

1
∆ε
− iπδ(∆ε)

]
= iP

1
∆ε

+ πδ(∆ε) , (12.49)

where P denotes the principal value of the integral. Using this result in Eq.
(12.47), taking the real part, and evaluating the σ summation, we obtain
in this long-time limit the result:

∂ni(k)
∂t

∣∣∣
scatt

= −∑
q 2πg

2
qδ
(
εi,k+q − εi,k − ω0

)
×
{
Nqni(k, t)

[
1−ni(k+q, t)

]−(Nq+1)ni(k+q, t)
[
1−ni(k, t)

]}
−∑

q 2πg
2
qδ
(
εi,k−q − εi,k + ω0

)
×
{
(Nq+1)ni(k, t)

[
1−ni(k−q, t)]−Nqni(k−q, t)[1−ni(k, t)

]}
.

(12.50)

electron–phonon Boltzmann scattering rate

This is the famous Boltzmann scattering rate. It contains the transition
probabilities per unit time as determined by Fermi’s golden rule, compare
Fig. 12.1. The first scattering rate describes an intraband electron transi-
tion from state i,k to state i,k + q by absorption of a phonon. For this
transition, one needs a phonon (the probability is given by Nq), the initial
electron state has to be occupied (probability ni(k, t)) and the final state
has to be empty (probability 1 − ni(k + q, t)). Due to this transition rate
the electron distribution at state i,k decreases (- sign). The next term de-
scribes the back-scattering from the initial state i,k+ q with Nq phonons
to the final state i,k with Nq + 1 phonons. This phonon emission process
takes place as stimulated and spontaneous emission. Thus one gets a factor
Nq + 1. For both described scattering processes, the energy before and
after the collision has to be conserved εi,k+q = εi,k + ω0. In the following



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Semiconductor Bloch Equations 229

Fig. 12.1 Sketch of the four electron–phonon scattering processes. The solid lines sym-
bolize the electrons scattering from their initial to final states and the curled lines rep-
resent the phonon absorption or emission, respectively.

terms, emission and absorption is interchanged and the phonon momentum
q is reversed. These rates stem from the + functions. As a consequence
of the Markov approximation, the Boltzmann scattering rate depends only
on the distributions at time t and not on the values of the distributions
at earlier times. The Boltzmann scattering rates drive the system toward
thermal equilibrium, which is characterized by a maximum of the entropy.
In our case, the electrons will relax to thermal distributions with the lattice
temperature.

If one drops the assumption that only diagonal elements of the density
matrix exist, one gets for the scattering rate of the density ni(k) extra
terms arising from the population factors in the equations for F−

ii,k,q :

igq

[
Nqρi,j �=i(k)ρj �=i,i(k+ q)−(Nq + 1)ρij �=i(k+ q)ρj �=i,i(k)

]
. (12.51)

These terms contain products of the interband polarization components,
showing that there is also scattering into and out of the coherently ex-
cited interband polarization. For shortness, these terms are often called P 2

terms. Before we discuss the influence of the other mean-field terms in the
equation for the phonon-assisted density matrix, we first analyze the basic
mechanisms of dephasing.
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12.3.2 Dephasing of the Interband Polarization

In order to analyze how the intraband phonon scattering destroys the co-
herent interband polarization, we now consider the off-diagonal elements
of the phonon-assisted density matrix equation (12.38), e.g., with i = c

and j = v again without the optical Stark effect terms and without the
Coulomb exchange terms:

∂F−
cv,k,q

∂t
= i
(
εv,k+q − εc,k − ω0 + iγcv,k,q

)
F−
cv,k,q

+ igq

{
−N(ω0)ρcc(k)ρcv(k+ q) +N(ω0)ρcv(k)

[
1− ρvv(k+ q)

]
+
[
N(ω0) + 1

]
ρcc(k+q)ρcv(k)−

[
N(ω0)+1

]
ρcv(k+q)

[
1−ρvv(k)

]}
.

(12.52)

Next, we note that the optically induced off-diagonal matrix elements are
rapidly oscillating functions. In order to insulate the slowly varying parts,
we split off the oscillations with the carrier frequency ω of the exciting light
field:

ρcv(k, t) = e−iωtpcv(k, t) . (12.53)

A formal integration yields

F−
cv,k,q(t) = igqe

−iωt

∫ t

−∞
dt′ei

(
εv,k+q−εc,k+ω−ω0+iγcv,k,q

)
(t−t′)

×
{
−N(ω0)ρcc(k, t′)pcv(k+ q, t′) +N(ω0)pcv(k, t′)

[
1− ρvv(k+ q, t′)

]
+
[
N(ω0) + 1

]
ρcc(k+ q, t′)pcv(k, t′)

− [N(ω0) + 1
]
pcv(k+ q, t′)

[
1− ρvv(k, t′)

]}
. (12.54)

This result shows that, due to the action of the light field in the off-diagonal
matrix elements, an electron state c,k is mixed with a valence band state
v,k, which in turn is scattered via phonon interaction into the state v,k+q.
In the long-time limit, this second-order process, which constitutes the
basic dephasing mechanism, is possible under energy conservation because
εc,k − ω � εv,k.

Inserting all phonon-assisted density matrices into the scattering rate
of the off-diagonal density matrix element, we obtain
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∂ρcv(k, t)
∂t

∣∣∣∣
scatt

=

−
∑
q,σ

σg2qe
−iωt

∫ t

−∞
dt′ei

(
εv,k+q−εc,k+ω−σω0+iγcv,k,q

)
(t−t′)

×
{
N(σω0)

[
pcv(k, t′)nh(k+ σq, t′)− pcv(k+ σq, t′)ne(k, t′)

]
+
[
N(σω0) + 1

][
pcv(k, t′)ne(k + σq, t′)− pcv(k+ σq, t′)nh(k, t′)

]}
−
{
k→ k+ σq

}
. (12.55)

The integral has a real part which describes the dephasing and an imaginary
part which describes the self-energy corrections due to the coupling to LO
phonons. These self-energies are called the polaron shifts. In the long-
time limit, we can again make the Markov approximation by pulling the
distribution functions out of the integral taking their values at the upper
time t. The integral over the remaining exponential yields a complex energy
denominator which can be decomposed into its real and imaginary part
using Dirac’s identity as explicitly shown above.

12.3.3 Full Mean-Field Evolution of the Phonon-Assisted
Density Matrices

Let us return to the equation (12.39) for the phonon-assisted density matrix,
which contains the full mean-field time development under the coherent
light field and the Coulomb Hartree–Fock terms. These terms introduce
into the scattering integrals the particle spectra renormalized by the op-
tical Stark effect and by the Coulomb exchange process. These spectral
renormalizations are time-dependent, i.e., they give the information which
particle spectra are realized at a given time. In order to include these
effects, we write (12.38) in the form

∂F−
ij,k,q

∂t
=

∂F−
ij,k,q

∂t

∣∣∣∣∣
mf

+Rij,k,q , (12.56)

where

Rij,k,q =
i

�
〈[He−LO , a

†
j,k+qai,kbq]〉 (12.57)
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is the inhomogeneous scattering term. The mean-field terms are defined in
Eq. (12.39). The solution of the inhomogeneous equation can be written as

F−
ij,k,q(t) =

∑
l

∫ t

−∞
dt′T−

il (t, t
′)Rlj,k,q(t′) . (12.58)

Here, T−
il (t, t

′) is the time evolution matrix which develops according to the
mean-field Hamiltonian

∂T−
ij,k,q

∂t
=

∂T−
ij,k,q

∂t

∣∣∣∣∣
mf

=
i

�

∑
l

(
T−
il,k,qHlj,k+q−Hil,kT

−
lj,k,q

)
−(iω0+γij,k,q)T−

ij,k,q ,

(12.59)

from the initial value Tij,k,q(t, t) = δij . The validity of the ansatz (12.58)
can be checked by direct insertion into (12.38). Note, that the time evolu-
tion matrix reduces simply to the free-particle exponential time evolution

Tij,k,q(t, t′)→ ei
(
εj,k+q−εi,k−ω0+iγij,k,q

)
(t−t′) , (12.60)

if only the free-particle terms are considered. In the full solution for the
scattering term, the exponentials have simply to be replaced by the time
evolution operator T (t, t′).

So far the damping constants γij,k,q have been considered as infinites-
imal quantities. A detailed numerical inspection of the equations shows,
however, that, particularly for larger coupling constants, one needs finite
damping constants in order to obtain numerically stable solutions. It turns
out, that a self-consistent approach in which the damping constants are
also evaluated for the electron–LO phonon interaction yields the required
stability.
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PROBLEMS

Problem 12.1: Derive the electron–hole Hamiltonian, Eq. (12.6).

Problem 12.2: Derive the multi-subband Coulomb interaction potential
(12.26). Hint: Use the envelope wave functions discussed in Sec. 5.2.2 and
perform the two-dimensional Fourier transform of Sec. 7.3 over the in-plane
coordinate r‖.

Problem 12.3: Generalize the two-band many-body Hamiltonian,
Eq. (10.14), to the multi-band situation. Make the Hartree–Fock approxi-
mation to derive Eq. (12.25).

Problem 12.4: Show that the entropy density defined as

s(t) = −kB
∑
k

{
nk(t) ln

[
nk(t)

]
+ (1 − nk(t)) ln

[
1− nk(t)

]}

of an electron gas increases monotonously for the Boltzmann scattering rate
for electron–phonon interaction.

Problem 12.5: Derive the electron–LO phonon interaction constant gq
(12.31) by considering the low- and high-frequency limit of the Coulomb
interaction in a polar medium. At low frequencies both the ion displacement
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and the orbital polarization are present, while at high frequencies the inertia

gq gq

========== = +
_ _ _ _ _ _ _

V /q 0� V /q ��

D (q,0)
r

Fig. 12.2 Diagrams of the Coulomb and phonon-mediated interaction

of the ions is too large so that their oscillations cannot follow. Therefore,

Vq
ε0

=
Vq
ε∞

+ g2qD
r(q, ω � 0) ,

with ε(ω = 0) = ε0 and ε(ω → ∞) = ε∞, see Fig. 12.2. Dr(q, ω) is the
retarded phonon Green’s function. The last term is the electron–electron
interaction caused by an exchange of a phonon. Calculate the free phonon
Green’s function from its definition in time with t′ = 0 for t ≥ 0

Dr(q, t) = − i
�
〈[(b†q(t) + b−q(t)), (bq + b†−q)]〉 ,

and by using bq(t) = e−iω0tbq. Apply the Fourier transform into frequency
space and take the low-frequency limit.
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Chapter 13

Excitonic Optical Stark Effect

Very efficient experimental methods to study the optical properties of semi-
conductors are those that use two successive laser pulses, one to prepare
the system in a certain way and one to test it after a variable time delay.
The simplest geometry of such an experiment is schematically shown in
Fig. 13.1.

Because the characteristic times for optical dephasing and relaxation of
band electrons in semiconductors are rather short, one has to use femto-
second laser pulses if one wants to study the quantum coherence and initial
relaxation stages of the excited states. Generally speaking, the dephasing
times become larger as the phase space of the excited electrons is reduced
by quantum confinement, particularly, if one eliminates all translational de-
grees of freedom as in quantum dots. It is also true that the dephasing times
are longer in the low-density regime where one excites primarily neutral
complexes such as excitons or biexcitons (two electron–hole–pair states),

Eprobe

Epump

kp

kt

Fig. 13.1 Geometry of a pump-probe experiment.
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particularly, in systems where their binding energies are large. Similarly,
if one excites spin-polarized states, one finds relatively slow spin dephas-
ing because spin–flip processes are relatively rare. In these cases, one can
use picosecond pulses instead of the femtosecond pulses mentioned before.
For the analysis of such time-resolved two-pulse experiments, the semicon-
ductor Bloch equations form the appropriate theoretical framework. The
coherent laser light field in these equations has to describe naturally both
pulses.

A very important example of a “coherent” semiconductor response is
the excitonic optical Stark effect, where a strong pump pulse excites the
material energetically below the exciton resonance and the probe pulse
monitors the transmission change at the exciton resonance. The optical
Stark effect in a two-level system has already been discussed in Chap. 2.
Here, the coherent light field mixes the wave functions of the two states
leading to the dressed states. Even though the Stark effect is well-known in
atomic systems, it was only observed in semiconductors in the mid 1980’s
because of the above mentioned short dephasing times.

Normalized Detuning Normalized Detuning
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Fig. 13.2 (a) Redshift (shift to lower energies, dotted line) and blueshift (dashed line) of
an excitonic resonance α0 (solid line) and (b) the resulting absorption change (differential
absorption) α− α0.

In our discussion of the optical Stark effect in semiconductors, we concen-
trate on the case of nonresonant excitation of the exciton, where it is a
good approximation to ignore absorption and generation of real carriers.
In this case, the optical Stark effect manifests itself as a light-induced shift
of the excitonic resonance. Depending on the selection rules of the optical
transitions this shift can be a blueshift, i.e. shift of the resonance to higher
energies, or a redshift (see Fig. 13.2).
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We discuss different features of the excitonic optical Stark effect in three
steps. First, we present analytic results of a two-band model for a quasi-
stationary situation and then we discuss dynamic excitation conditions. In
the third step, we include the selection rules for the transitions and also
consider biexcitonic correlations, which allows us to discuss pump–probe
configurations for different polarizations of the pump and probe pulses.

13.1 Quasi-Stationary Results

In this section, we present the analysis of the quasi-stationary optical Stark
effect. This condition applies only when the amplitude variations of the
light field are so slow, that we can make an adiabatic approximation. For
femtosecond experiments, this procedure is generally not valid. Neverthe-
less, we start our discussion with that stationary case in order to understand
the similarities and differences of this coherent phenomenon in atomic and
semiconductor systems. Particularly, we analyze analytically the modifica-
tions due to the semiconductor many-body effects. Dynamical solutions for
pulsed excitation are then discussed in the following section.

As an introduction, we first reformulate the treatment of Chap. 2 of the
optical Stark shift of a two-level atom in terms of the Bloch equations for the
polarization and the population. In second quantization, the Hamiltonian
for the two-level system is

H =
∑
j=1,2

�εj a
†
j aj −

[
d21 E(t)a†2 a1 + h.c.

]
(13.1)

with the coherent pump field E(t) = Epe−iωpt. Via the Heisenberg equation
for the operators, we get the following equations for the polarization P =
〈a†1a2〉 and the density in the upper state n = n2 = 〈a†2a2〉 = 1− n1:

i
dP

dt
= εP − (1 − 2n)

d21
�
Ep (13.2)

and

dn

dt
=
i

�
(d21 Ep P ∗ − h.c.) (13.3)

with ε = ε2 − ε1. These two completely coherent equations (no damping
terms) have a conserved quantity (see problem 13.1)

K = (1 − 2n)2 + 4|P |2 . (13.4)
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With the initial condition n = 0 and P = 0 we have K = 1, or

n =
1
2
(1±

√
1− 4|P |2) . (13.5)

Eq. (13.5) shows that the density is completely determined by the polar-
ization. This is only true for a fully coherent process, or in the language of
quantum mechanics, for virtual excitations. These excitations of the atom
vanish if the field is switched off, whereas real excitations would stay in the
system and would decay on a much longer time scale determined by the
carrier lifetime. From Eqs. (13.2) - (13.5) one can again derive the results
of Chap. 2 (see problem 13.2).

Next, we turn to the coherent Bloch equations of the semiconductor
which have been derived in Chap. 12, see Eqs. (12.19). Here, we omit all
damping and collision terms, an approximation which is clearly not valid
for resonant excitation, where real absorption occurs. With nk = nc,k =
1− nv,k, we can write Eqs. (12.19) as

i
dPk
dt

= ek Pk − (1− 2nk)ωR,k (13.6)

dnk
dt

= i(ωR,kP ∗
k − ω∗

R,kPk) , (13.7)

where �ek is the pair energy renormalized by the exchange energy

�ek = �(ee,k + eh,k) = Eg +
�
2k2

2m
− 2

∑
k′
Vk−k′nk′ (13.8)

and ωR,k is the effective Rabi frequency, Eq. (12.18).
Note, that there is a complete formal analogy between the two-level

atom equations (13.2) – (13.3) and the semiconductor equations (13.6) –
(13.7) for each k-state, except for the renormalizations of the pair energy
and of the Rabi frequency, which mix the k-states in a complicated way.
From this analogy, we get immediately the conservation law

nk =
1
2
(1±

√
1− 4|Pk|2) . (13.9)

If the fields are switched on adiabatically only the minus sign in Eq. (13.9)
can be realized and the relations 0 ≤ nk ≤ 1/2 and 0 ≤ |Pk|2 ≤ 1/2 hold.
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Solving Eqs. (13.6) and (13.9) adiabatically, i.e., neglecting all possible
slow amplitude variations, we find for E(t) = Ep exp(−iωpt)

Pk =
(1− 2nk)ωR,k

ek − ωp . (13.10)

Eq. (13.10) together with Eqs. (13.7) - (13.9) form a complicated system of
nonlinear integral equations, which can be solved numerically or which has
to be simplified by further approximations.

In experiments, one usually applies a weak test beam to measure the
effects which the strong pump beam introduces in the semiconductor.
To study this situation, we add to the pump beam a weak test beam
Et exp(−iωtt) which induces an additional small polarization δPk. Lin-
earizing Eqs. (13.6) - (13.9) yields

i
d

dt
δPk = δek Pk + ek δPk + 2δnk ωR,k − (1− 2nk) δωR,k , (13.11)

where

δek = −2
�

∑
k′
Vk−k′δnk′ , (13.12)

δnk =
Pk δP

∗
k + P ∗

k δPk
1− 2nk

, (13.13)

and

� δωR,k = dcv Et e−iωtt +
∑
k′
Vk−k′ δPk′ . (13.14)

We now eliminate the time dependence of the pump field by splitting off a
factor exp(−iωpt) of Pk, δPk and ωR,k, e.g., Pk = pk exp(−iωpt). This way
we obtain

i
d

dt
δpk = δek pk + (ek − ωp)δpk + 2δnk ωR,k − (1 − 2nk)δωR,k , (13.15)

where we redefined the change in the Rabi frequency as

� δωR,k → � δωR,k = dcv Et ei∆t +
∑
k′
Vk−k′δpk′ , (13.16)

and ∆ = ωp − ωt is the frequency difference of the pump and test beam.
This system of equations can be solved if the solutions of Pk and nk under
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the influence of the strong pump beam alone are known. For a stationary
problem, we have to choose the form

δpk = δp+k e+i∆t + δp−k e
−i∆t . (13.17)

Once δp+k is known, we get the susceptibility and the absorption spectrum of
the test beam in the usual way. In particular, one is interested to see how the
exciton absorption spectrum is influenced by a pump beam which is detuned
far below the lowest exciton resonance. In order to get a realistic absorption
spectrum, one takes a finite damping for polarization δPk induced by the
test beam into account. Note again, that a purely coherent equation for
the Pk induced by the pump-beam, and a dissipative equation for δPk are a
physically justified model, because of the rapidly decreasing damping with
increasing detuning, i.e., the frequency-dependent dephasing. In Fig. 13.3,
we show the results of a numerical evaluation of the stationary equation
for a quasi-two-dimensional GaAs quantum-well structure. The detuning
of the pump beam with respect to the 1s-exciton was chosen as ten exciton
Rydberg energies. Fig. 13.3 clearly shows a large blueshift of the exciton
resonance with increasing pump intensity. Simultaneously also a blueshift of
the band edge occurs and the exciton oscillator strength does not decrease.
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Fig. 13.3 Calculated 2D absorption spectrum versus normalized detuning (�ω−EG)/E0

according to Ell et al. for (Eg − �ωp)/E0 = 10 and the pump intensities Ip = 0, 7.5,
and 30 MW/cm2 from left to right.

In order to analyze these numerical results, we analytically solve the
equations in first order of the pump intensity. Thus Ep, Pk, and nk can be
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considered as small expansion parameters. From Eq. (13.9) we find

nk = |Pk|2 +O(|Pk|4) . (13.18)

The quasi-stationary equation for the polarization induced by the test beam
reduces with δp+k >> δp−k to (see problem 13.3)
∑
k′

[
H0
kk′ +∆Hkk′ − �(ωt + iδ)δkk′

]
δp+k′ = (1− 2|pk|2)dcv Et , (13.19)

where H0 is the unperturbed pair Hamiltonian

H0
kk′ =

(
Eg +

�
2k2

2m

)
δkk′ − Vk−k′ , (13.20)

and

∆Hkk′ = 2δkk′dcvEpp∗k + 2|pk|2Vk−k′ − 2δkk′
∑
k′′

Vk−k′′ |pk′′ |2

+ 2δkk′p∗k
∑
k′′

Vk−k′′pk′′ − 2pkVk−k′p∗k′ . (13.21)

We now expand the polarization induced by the test field in terms of
the unperturbed exciton eigenfunctions, i.e., in terms of the eigenfunctions
of the Hamiltonian (13.20):

δp+k =
∑
λ

δp+λ ψλ,k . (13.22)

Inserting this expansion into Eq. (13.19), multiplying with ψ∗
λ,k from the

left, and summing over all k yields∑
λ′

[
�(ωλ−ωt−iδ)δλλ′+∆Hλλ′

]
δp+λ′ =

∑
k

ψ∗
λ,k(1− 2|pk|2) dcv Et . (13.23)

Here, we introduced the perturbation Hamiltonian

∆Hλλ′ = Πλλ′ +∆λλ′ , (13.24)

whereΠλλ′ is the anharmonic interaction between the exciton and the pump
field,

Πλλ′ = 2 Ep
∑
k

ψ∗
λ,kdcv p

∗
k ψλ′,k , (13.25)
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and ∆λλ′ is the exciton–exciton interaction

∆λλ′ = 2
∑
kk′

Vk−k′ψ∗
λ,k(p

∗
k − p∗k′)(pk ψλ′,k′ + pk′ψλ′,k) . (13.26)

We can rewrite Eq. (13.23) as

�δp+λ =

∑
k ψ

∗
λ,k(1− 2|pk|2)dcv Et −

∑
λ′ �=λ∆Hλλ′ δp+λ′

ω̄λ − ωt − iδ , (13.27)

where ω̄λ is the renormalized exciton frequency

ω̄λ = ωλ +∆Hλλ/� . (13.28)

Eq. (13.27) can be solved iteratively with

�δp
+(1)
λ =

∑
k ψ

∗
λ,k(1− 2|pk|2)dcv Ep
ω̄λ − ωt − iδ . (13.29)

Note, that in this procedure even the first-order result contains the shifted
exciton energies �ωλ i.e., the Stark shift as well as the phase-space filling.
In the next order, one finds

�δp
+(2)
λ = �δp

+(1)
λ −

∑
λ′ �=λ∆Hλλ′δp

+(1)
λ′

ω̄λ − ωt − iδ . (13.30)

The linear optical susceptibility of the test beam is finally obtained as

χt(ωt) = 2
∑
λ

d∗λ δp
+
λ

Et , (13.31)

where

dλ =
∑
k

dcv ψ
∗
λ,k . (13.32)

The resulting susceptibility has the form (see problem 13.4)

χt(ωt) =
2
�

∑
λ

f̄λ
ω̄λ − ωt − iδ , (13.33)

where f̄λ is the renormalized exciton oscillator strength:

f̄λ = |dλ|2 − 2d∗λ
∑
k

ψ∗
λ,k|pk|2dcv+

∑
λ′ �=λ

d∗λ∆Hλλ′dλ′ + (λ � λ′)
�(ωλ − ωλ′)

. (13.34)
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Note, that the result (13.33) is put into the usual form of the exciton suscep-
tibility, but it contains renormalized exciton energies ω̄λ and renormalized
oscillator strengths f̄λ. In this low-intensity regime, the quasi-stationary
optical Stark effect can be described completely in terms of shifts of the ex-
citon levels and in terms of changes of the exciton oscillator strengths. The
first correction term of the oscillator strength in Eq. (13.34) describes the
reduction due to phase-space filling, while the terms due to the perturba-
tion ∆H describe the corrections caused by the anharmonic exciton–photon
and the exciton–exciton interaction.

In the linear approximation in the pump field, the polarization pk can
be written in terms of an exciton Green’s function

pk(ωp) = −dcv EpGr(k, ωp) , (13.35)

with

Gr(k, ωp) = −
∑
λ

ψ∗
λ,kψλ(r = 0)

�(ωλ − ωp − iδ) . (13.36)

For small detuning ωp − ω1s << E0, the Green’s function simplifies to

Gr(k, ωp) = −
ψ∗
1s,kψ1s(r = 0)

�(ω1s − ωp − iδ) , (13.37)

so that

Πλλ = ψ∗
1s(r = 0)

∑
k

ψ1s,k|ψλ,k|2 2|d Ep|2
�(ω1s − ωp) . (13.38)

The Stark shift due to the anharmonic exciton–photon interaction is equal
to the usual two-level Stark shift (2|d Ep|2)/�(ω1s − ωp) times an enhance-
ment factor due to the electron–hole correlation

ρλ = ψ∗
1s(r = 0)

∑
k

ψ1s,k|ψλ,k|2 . (13.39)

For the band edge, we find with |ψλ=∞,k|2 = δk,0

ρ∞ = ψ∗
1s(r = 0)ψ1s,k=0 . (13.40)

Using the two- and three-dimenisonal exciton wave functions (see Chap. 10)
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ψ1s,k =
√
2π a0[

1 + (ka0/2)2
]3/2

ψ1s,k =
8
√
πa30[

1 + (ka0)2
]2 ,

we find (see problem 13.4)

ρ1s =
(
16/7
7/2

)
; ρ∞ =

(
4
8

)
for

(
2D
3D

)
. (13.41)

For small detuning, we obtain the surprising result that the contribution of
the anharmonic exciton–photon interaction to the Stark shifts is larger for
the continuum states than for the exciton.
Similarly, the polarization–polarization interaction ∆λλ can be written for
small detuning as
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Fig. 13.4 Calculated shifts of the exciton ∆Ex and of the band gap ∆Eg versus normal-
ized detuning (�ωp − E1s)/E0; as well as shifts due to the anharmonic exciton–photon
interaction alone, ∆Exp

x and ∆Exp
g respectively.



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Excitonic Optical Stark Effect 245

∆λλ = 2|ψ∗
1s(r = 0)dEp|2

×
∑
kk′

Vk−k′ψ∗
λ,k(ψ

∗
1s,k − ψ∗

1s,k′ )(ψ1s,kψλ,k′ − ψ1s,k′ψλ,k)
�2(ω1s − ωp)2

= νλ
2|dEp|2

�(ω1s − ωp) . (13.42)

The enhancement factor νλ diverges as 1/(ω1s − ωp) for ωp → ω1s. Again,
the integrals can be evaluated analytically and yield

ν1s =
E0

�(ω1s − ωp)a1s , (13.43)

where

a1s =
(
64(1− 315π2/212)

26/3

)
�
(
15.4
8.66

)
for

(
2D
3D

)
, (13.44)

and

ν∞ =
E0

�(ω1s − ωp)a∞ , (13.45)

where

a∞ =
(
64(1− 3π/16)

24

)
�
(
26.3
24

)
for

(
2D
3D

)
. (13.46)

Again, we see that these contributions to the Stark shifts are larger for the
continuum states than for the exciton ground state. For general values of
the detuning, the shifts have to be evaluated numerically. Fig. 13.4 shows
the resulting shifts of the exciton and the continuum states for varying de-
tuning. For all values of the detuning, the blueshift of the continuum states
is larger than that of the exciton ground state, i.e., the exciton binding
energy increases.

Now, we are in a position to understand the numerical results for the
quasi-stationary Stark effect shown in Fig. 13.3. The phase-space filling due
to the action of the pump beam, which would result in a reduction of the
oscillator strength of the exciton, is overcompensated by the anharmonic
exciton–photon and exciton–exciton interaction, which increase the binding
energy and thus the oscillator strength. These conclusions can indeed be
verified by evaluating the oscillator strength (13.34) explicitly.
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13.2 Dynamic Results

In our investigation of dynamical aspects of the optical Stark effect, we
again start from the coherent semiconductor Bloch equations, Eqs. (13.6)
and (13.7). We write the total field E as sum of pump Ep and test field Et

E(r, t) = Ep(r, t) + Et(r, t)
= Ep(t)e−i(kp·r+Ωt) + Et(t)e−i(kt·r+Ωt) (13.47)

with kp �= kt.
In order to obtain analytical results, we ignore the nonlinear terms, i.e.,

the terms involving products of polarizations and densities, i.e., we treat
only the linear coherent part

�

[
i
∂

∂t
− (εe,k + εh,k)

]
Pk = (2nk − 1)dcvE(t)−

∑
q �=k

V|k−q|Pq , (13.48)

�
∂

∂t
nk = i

[
dcvE(t)P ∗

k − c.c.
]
, (13.49)

where we again assumed

nh,k = ne,k = nk . (13.50)

As initial conditions, we assume an unexcited system,

nk = Pcv,k = 0 .

As in Eqs. (10.31) - (10.35), we now transform the equations to real space:

i�
∂

∂t
P (r) = HehP (r) + dcvE(t)

[
2n(r)− δ(r)] (13.51)

and

�
∂

∂t
n(r) = i

[
dcvE(t)P ∗(−r)− c.c.

]
, (13.52)

Here,

Heh = Eg − �
2∇2

2mr
− V (r) (13.53)
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is the Wannier Hamiltonian, compare Eq. (10.35). Note, that under the
present conditions the equations yield local charge neutrality,

ne(r) = nh(−r) ≡ n(r) .

Now, we multiply Eqs. (13.51) and (13.52) by ψλ(r), where ψλ(r) is the
eigenfunction of the Wannier equation (10.35). Then we integrate over r to
obtain

i�
∂

∂t
Pλ = �ελPλ + dcvE(t)

[
2nλ − ψλ(r = 0)

]
, (13.54)

and

�
∂

∂t
nλ = i dcvE(t)P ∗

λ − id∗cvE(t)Pλ , (13.55)

where we used the notation

∫
d3rψλ(r)P (r) = Pλ ,∫
d3rψλ(r)n(r) = nλ . (13.56)

The set of Eqs. (13.54) – (13.55) is closed for each λ. The source term in
Eq. (13.54) is proportional to the electron–hole–pair wave function in the
origin and therefore only the s-functions contribute. Hence, ψλ(r) is a real
function that depends only on |r|.

Introducing now

Pλ = ψλ(r = 0)Pλ and nλ = ψλ(r = 0)Nλ , (13.57)

we obtain the simplified equations of motion

∂

∂t
Pλ = −(iελ + γ)Pλ − idcv

�
E(t)(2Nλ − 1)

∂

∂t
Nλ = −Γnλ + i

dcv
�
E(t)P∗

λ − i
d∗cv
�
E∗(t)Pλ , (13.58)

where we added the appropriate phenomenological damping terms. We use
the total field in the form of Eq. (13.47). In order to eliminate the optical
frequencies, we introduce the notation

Pλ ≡ e−iΩtpλ and wλ ≡ (1− 2Nλ) . (13.59)
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Inserting these definitions into Eqs. (13.58) yields

∂

∂t
pλ = [i(ελ − Ω) + γ]pλ

+ i
dcv
�

[
Ep(t) e−ikp·r + Et(t) e−ikt·r

]
wλ (13.60)

and

∂

∂t
wλ = −Γ(wλ − 1)− i 2dcv

�

[
Ep(t) e−ikp·r + Et(t) e−ikt·r

]
p∗λ

+ i
2d∗cv

�

[
E∗p (t) eikp·r + E∗t (t)eikt·r

]
pλ . (13.61)

In order to keep the theory as simple as possible, we assume that Et(t)
is short on all the relevant time scales, so we can approximate

Et(t) = Et δ(t− tt) . (13.62)

This corresponds to a broad frequency spectrum. The experiment measures
only that part of the signal which propagates in probe direction. Therefore,
we are interested only in that component of the solution for pλ which has
the spatial factor

∝ eikt·r . (13.63)

Since we consider the case of an arbitrarily weak probe, we include only
terms which are linear in Et. To obtain analytic results, we ignore all terms
which are higher than second order in Ep(t).

Clearly, for t < tt, we have no signal in the direction of the probe. The
only contribution is

pλ(t < tt) = i
dcv
�
e−ikp·r

∫ t

−∞
dt′e−

[
i(ελ−Ω)+γ

]
(t−t′)Ep(t′)wλ(t′) .(13.64)

For that period of time during which the probe is incident on the sample,
we can solve Eq. (13.61) as
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∫ tt+

tt−

dt
∂wλ

∂t
= wλ(tt+)− wλ(tt−)

� −i 2dcv
�

e−ikt·rEt p∗λ(tt−) + i
2d∗cv

�
eikt·rE∗t pλ(tt−) + . . . , (13.65)

where we denote by tt− and tt+ the times just before and after the probe
pulse, respectively. In Eq. (13.65), we used

pλ(tt) = pλ(tt−) +O(Et) , (13.66)

where the correction term of order Et has been neglected, since we are
interested only in terms linear in Et. The expression for pλ(tt−) is given by
Eq. (13.64). Inserting Eq. (13.65) into Eq. (13.64) shows that a grating

∝ ei(kt−kp)·r (13.67)

is formed in the sample. Light from the pump pulse can scatter from the
grating into the direction of the probe and can therefore be seen by the
detector. In addition, the probe transmission is also modified through the
saturation of the transitions.

To include all effects systematically, we now solve Eqs. (13.60) and
(13.61) for the polarization and density variables by expanding them in
powers of the fields

pλ(t) =i
dcv
�

∫ t

−∞
dt′e−

[
i(ελ−Ω)+γ

]
(t−t′)

[
Ep(t′)e−ikp·r+ Et(t′)e−ikt·r

]
wλ(t′)

� i
dcv
�
Et e−ikt·r e−

[
i(ελ−Ω)+γ

]
(t−tt)wλ(tt−)Θ(t− tt)

+ i
dcv
�

∫ t

−∞
dt′ e−

[
i(ελ−Ω)+γ

]
(t−t′)Ep(t′)wλ(t′)e−ikp·r (13.68)

and
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wλ(t) = 1− i2dcv
�

∫ t

−∞
dt′e−Γ(t−t′)

[
Ep(t′)e−ikp·r + Et(t′)e−ikt·r

]
p∗λ(t

′)

+ i
2d∗cv

�

∫ t

−∞
dt′ e−Γ(t−t′)

[
E∗p (t′)eikp·r + E∗t (t′)eikt·r

]
pλ(t′)

� 1− i2dcv
�

e−Γ(t−tt)Et e−ikt·rp∗λ(tt−)Θ(t− tt)

+ i
2d∗cv

�
e−Γ(t−tt)E∗t eikt·rpλ(tt−)Θ(t− tt)

− i
2dcv

�

∫ t

−∞
dt′ e−Γ(t−t′)Ep(t′)p∗λ(t′)e−ikp·r

+ i
2d∗cv

�

∫ t

−∞
dt′ e−Γ(t−t′)E∗p (t′)pλ(t′)eikp·r , (13.69)

where we used Eq. (13.62) for the probe pulse. Now, we insert Eq. (13.69)
into Eq. (13.68) and solve the resulting integral equation iteratively. This
way, we obtain many terms, most of which do not contribute to our final
result. In order to keep our equations as short as possible, we write only
those terms which lead to a contribution in the final result that influences
the probe transmission. We obtain

pλ(t) =
idcv
�
Ete−ikt·r e−[i(ελ−Ω)+γ](t−tt)wλ(tt−)Θ(t− tt)

+2
d2cv
�2
Ete−i(kt+kp)·rp∗λ(tt−)

∫ t

tt

dt′ e−[i(ελ−Ω)+γ](t−t′)e−Γ(t′−tt)Ep(t′)Θ(t− tt)

−2 |dcv|
2

�2

∫ t

−∞
dt′e−[i(ελ−Ω)+γ](t−t′)Ep(t′)

∫ t′

−∞
dt′′e−Γ(t′−t′′)E∗p (t′′)pλ(t′′)

+ . . . . (13.70)

The third line of this expression is of the order (Ep)2 and contains an integral
over pλ. Since we keep only terms up to the order Et(Ep)2 in our analysis,
it is sufficient to solve this integral by inserting the first line of Eq. (13.70)
and the first term of Eq. (13.69) to get
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pλ(t) = i
dcv
�
Et e−ikt·r e−[i(ελ−Ω)+γ](t−tt)wλ(tt−)Θ(t− tt)

+ 2
d2cv
�2
Ete−i(kt+kp)·rp∗λ(tt−)

×
∫ t

tt

dt′ e−[i(ελ−Ω)+γ](t−t′)e−Γ(t′−tt)Ep(t′)Θ(t− tt)

− i
2dcv

�

|dcv|2
�2
Et e−ikt·r

∫ t

tt

dt′ e−[i(ελ−Ω)+γ](t−t′)Ep(t′)

×
∫ t′

tt

dt′′ e−Γ(t′−t′′)E∗p (t′′) e−[i(ελ−Ω)+γ](t′′−tt)Θ(t− tt)
+ . . . . (13.71)

At the end of our calculations, we are interested in the optical susceptibility
χλ(ω) for the probe pulse. Therefore, we study the Fourier transform of
the polarization

Pλ(ω) =
∫ ∞

−∞
dt eiωt Pλ(t) =

∫ ∞

−∞
dt ei(ω−Ω)tpλ(t)

=
∫ ∞

tt

dt ei(ω−Ω)tpλ(t) =
∫ ∞

0

dt ei(ω−Ω)tpλ(t+ tt) e−i(ω−Ω)tt . (13.72)

Here, we used the result of Eq. (13.71), that pλ(t) has a component pro-
portional to e(ikt·r), (13.63), only for t > tt, i.e., after the probe hit the
sample. For the spectrum of the probe (test) pulse, we can write

Et(ω) =
∫ ∞

−∞
dt Et(t) eiωt =

∫ ∞

−∞
dt Et(t) ei(ω−Ω)t e−ikt·r

� Et ei(ω−Ω)tt e−ikt·r (13.73)

Using Eqs. (13.66) and (13.71) – (13.73), we obtain
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Pλ(ω) = i
dcv
�

Et(ω)
γ − i(ω − ελ)

{
wλ(tt−)

− i
2dcv

�
e−ikp·r p∗λ(tt−)

∫ ∞

0

dt′ e[i(ω−Ω)−Γ]t′ Ep(t′ + tt)

− 2
|dcv|2

�2

∫ ∞

0

dt ei(ω−Ω)t Ep(t+ tt)

×
∫ t

0

dt′ e−Γ(t−t′) e−[i(ελ−Ω)+γ]t′ E∗p (t′ + tt)

}

≡ χλ(ω)Et(ω) . (13.74)

Extracting the probe susceptibility, we find

χλ(ω) = i
dcv
�

1
γ − i(ω − ελ)

{
wλ(tt−)

−2 |dcv|
2

�2

∫ tt

−∞
dt′ e

[
i(ελ−Ω)−γ

]
(tt−t′)E∗p (t′)

∫ ∞

0

dt e

[
i(ω−Ω)−Γ

]
tEp(t+ tt)

−2 |dcv|
2

�2

∫ ∞

0

dt ei(ω−Ω)tEp(t+tt)
∫ t

0

dt′e−Γ(t−t′)e−
[
i(ελ−Ω)+γ

]
t′ E∗p (t′+tt)

}

(13.75)

where Eq. (13.64) has been used for p∗λ(tt−). The last term in Eq. (13.75)
can also be written in the form

−2 |dcv|
2

�2

∫ ∞

0

dt′
∫ ∞

t′
dt ei(ω−Ω)tEp(t+ tt) e−Γ(t−t′) e−

[
i(ελ−Ω)+γ

]
t′E∗p (t′+ tt)

= −2 |dcv|
2

�2

∫ ∞

0

dt′
∫ ∞

0

dtei(ω−Ω)t e−Γt e−
[
i(ελ−ω)+γ

]
t′Ep(t+ t′+ tt)E∗p (t′+ tt)

� −2 |dcv|
2

�2

1
Γ− i(ω − Ω)

∫ ∞

0

dt e−
[
i(ελ−ω)γ

]
t| Ep(t+ tt)|2

� −i 2 |dcv|
2

�2

1
ω − Ω

∫ ∞

0

dt e−
[
i(ελ−ω)+γ

]
t| Ep(t+ tt)|2 . (13.76)
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Taking ελ = ωx, with ωx denoting the exciton resonance frequency, we can
use Eq. (13.76) to discuss the excitonic optical Stark effect. In order to see
the light-induced shift more clearly, we consider the large detuning case,

|ω − Ω| >> γ , |ω − ελ| .

Inserting Eq. (13.76) into Eq. (13.75), we obtain the asymptotic behavior
as

δχλ(ω) � 2
dcv
�

|dcv|2
�2

1
ω − Ω

∫ ∞

0

dt
e−[i(ελ−ω)+γ]t

γ − i(ω − ελ) | Ep(t+ tt)|2 (13.77)

and for the pump-induced absorption change we get

δα(ω) = −Im
[
d∗cv
�
δχλ(ω)

]
=

� |dcv|
4

�4

2
Ω− ελ Im


∫ ∞

0

dt
e−
[
i(ελ−ω)+γ

]
t

γ − i(ω − ελ) | Ep(t+ tt)|2

 . (13.78)

To analyze Eq. (13.78), let us assume for a moment that we excite the
sample by a cw-beam, i.e., Ep(t) = Ep = const. Then we obtain from
Eq. (13.78)

δα(ω) ∝ − |Ep|
2

e− Ωp

2γ(ελ − ω)[
(ελ − ω)2 + γ2

]2 (13.79)

which describes the absorption change caused by the shift of a Lorentzian
resonance. This can be seen by looking at

γ

γ2 + (ελ − ω − δ)2 −
γ

γ2 + (ελ − ω)2 � −
2δγ(ελ − ω)[

γ2 + (ελ − ω)2
]2 , (13.80)

where we assumed δ << |ελ − ω|. Hence, Eq. (13.79) yields a dispersive
shape around the resonance, ω = ελ, which describes decreasing and in-
creasing absorption below and above the resonance, respectively.

For the case of pulsed excitation, the sample response is much more
complex. Inserting the full Eq. (13.75) into the first line of Eq. (13.78), we
obtain the results in Fig. 13.5 for different pump–probe delays. Fig. 13.5
shows, that for negative time delays, tt < 0, i.e., when the probe pulse
comes before the pump pulse maximum, the probe-transmission change
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Fig. 13.5 Differential absorption spectra calculated in the spectral vicinity of the exciton
resonance ελ = ωx. The detuning is defined as (ω − ωx)/σ, where σ−1 is the temporal
width of the pump pulse. The FWHM of the pump pulse was assumed to be 120 fs, and
the central pump frequency was detuned -10 below the resonance. The different curves
are for different pump–probe delays tt with 100 fs intervals, starting from the bottom
at -500 fs (probe before pump) to the top curve which is for 0 fs (pump–probe overlap).
[After Koch et al. (1988).]

shows oscillatory structures which evolve into the dispersive shape of the
optical Stark effect.

Similar oscillations are obtained for the case of resonant interband ex-
citation (Koch et al., 1988). In this situation, the pump laser is tuned into
the spectral regime of interband absorption, coupling an entire region of
electron–hole transitions. The spectral extent of this region is given by
the spectral width of the pump pulse. For negative pump–probe delays,
the femtosecond experiments also show transient transmission oscillations.
In contrast to the optical Stark effect, however, these oscillations then de-
velop into a symmetric feature, called the spectral hole, which describes the
saturation of the pump-laser coupled electron–hole transition.

The general origin of the transient transmission oscillations is found in
the grating, Eq. (13.67), which scatters parts of the pump pulse into the
direction of the probe pulse. For t < tt, the scattered pump interferes with
the probe and causes the oscillations. Alternatively, one can also view the
transient oscillations as perturbed free induction decay. The probe pulse
excites the polarization, which decays on the time scale of the coherence de-
cay time. The pump pulse then modifies the medium and perturbs (shifts)
the resonances, thus leading to the interference oscillations. For more de-
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tails, see the review article by Koch et al. (1988) and the given references.

13.3 Correlation Effects

In this section, we go beyond the limit of extremely low intensities. This
makes it necessary to include in the semiconductor Bloch equations not
only the pure Hartree–Fock terms but also the leading contributions of the
correlation terms. In order to have a systematic approach, we go back to
the Coulomb part of the many-body Hamiltonian, Eq. (12.6), where we now
add extra summations over different electron (e, e′) and hole (h, h′) states

HC =
1
2

∑
k,k′,q �=0,e,e′

Vqα
†
e,k+qα

†
e′,k′−qαe′,k′αe,k

+
1
2

∑
k,k′,q �=0,h,h′

Vqβ
†
h,k+qβ

†
h′,k′−qβh′,k′βh,k

−
∑

k,k′,q �=0,e,h

Vqα
†
e,k+qβ

†
h,k′−qβh,k′αe,k . (13.81)

Similarly, the interaction between the carriers and the classical electro-
magnetic field, HI , is generalized to

HI = −E(t) ·
∑
k,e,h

[
dehα†

e,kβ
†
h,−k + (deh)∗βh,−kαe,k

]
, (13.82)

with the electron–hole interband dipole matrix element deh. In our analysis,
we explicitly include the heavy-hole valence band and the lowest conduction
band, both of which are twofold spin-degenerate. The two heavy-hole bands
(h = 1, 2) are characterized by the states | − 3/2, h > and |3/2, h >, and
the conduction bands (e = 1, 2) by | − 1/2, e > and |1/2, e >, respectively.
For light propagating in the z-direction, i.e., perpendicular to the plane
of the quantum well, we use the usual circularly polarized dipole matrix
elements

d11 = d0 σ
+ =

d0√
2

(
1
i

)
,

d12 = d21 = 0 ,

d22 = d0 σ
− =

d0√
2

(
1
−i
)

, (13.83)
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where d0 is the modulus of d11 and d22. Due to these selection rules, i.e.,
deh ∝ δeh, we have two separate subspaces of optical excitations, that are
optically isolated. They are, however, coupled by the many-body Coulomb-
interaction, since it is independent of the band indices (spin).

As in Chap. 12, we evaluate the Heisenberg equation for the different
operator combinations to obtain

i�
∂

∂t
P eh
k = − (Ee

k + Eh
k

)
P eh
k +

∑
q �=0

VqP
eh
k−q

+

(
deh −

∑
e′
fee

′
k d

e′h −
∑
h′
deh

′
fh

′h
k

)
· E

−
∑

q �=0,k′,e′
Vq

(〈
α†
e,kα

†
e′,k′β

†
h,k+qαe′,k′−q

〉

−
〈
α†
e,k+qα

†
e′,k′β

†
h,kαe′,k′+q

〉)
+

∑
q �=0,k′,h′

Vq

(〈
α†
e,k+qβ

†
h′,k′+qβ

†
h,kβh′,k′

〉

−
〈
α†
e,kβ

†
h′,k′+qβ

†
h,k−qβh′,k′

〉)
. (13.84)

In the two-band case, i.e., if only a single conduction and a single valence
band is considered, we have e = e′ = 1 and h = h′ = 1 in Eq. (13.84). In the
more general multiband configuration, summations over all the respective
bands have to be considered. Since we restrict the analysis in this section
to transitions from heavy-holes to the lowest conduction band, P eh

k is non-
vanishing only for e = h = 1 and e = h = 2, i.e., concerning the subband
indices it is proportional to δeh, since the terms with e �= h have no sources.
For similar reasons, also fee

′
k and fh

′h
k are diagonal, i.e., proportional to δee′

and δhh′ , respectively.
In order to deal with the four-operator correlations that appear in

Eq. (13.84), we follow an approach where the nonlinear optical response
is classified according to an expansion in powers of the applied field. Stahl
and coworkers (1994) were the first who recognized that this traditional
nonlinear optics expansion establishes a systematic truncation scheme of
the Coulombic many-body correlations for purely coherent optical excita-
tion configurations. In the following, we outline the basic steps that are
involved in this procedure.

Studying the structure of the coupled equations for the correlation func-
tions, one finds that the four-operator terms which appear in the equation
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of motion for the microscopic polarization can be decomposed into〈
α†
e,kα

†
e′,k′β

†
h′′,k′′αe′′′,k′′′

〉
=
∑
k̂,ĥ

〈
α†
e,kα

†
e′,k′β

†
h′′,k′′β

†
ĥ,k̂

〉〈
βĥ,k̂αe′′′,k′′′

〉

+O(E5) , (13.85)

where
〈
α†
e,kα

†
e′,k′β

†
h′′,k′′β

†
ĥ,k̂

〉
can be considered as an unfactorized product

of polarization operators that is of second order in the field, ∝ O(E2) since
two electron–hole pairs are created, whereas

〈
βĥ,k̂αe′′′,k′′′

〉
is linear in the

field, ∝ O(E) since a single electron–hole pair is destroyed. Hence, the
right hand side of Eq. (13.85) is at least of third order in the field.

The correctness of this decoupling scheme can be verified quite easily,
whereas one needs more general considerations to obtain the explicit ex-
pressions. In the most straightforward way, one first notes that Eq. (13.85)
is valid when the semiconductor is in its ground state, since in this case
both sides vanish. Then one can take the time derivative of the lowest
(third) order contributions of Eq. (13.85) which are given by〈

∂

∂t
(α†

e,kα
†
e′,k′β

†
h′′,k′′αe′′′,k′′′)

〉
=

∑
k̂,ĥ

〈
∂

∂t
(α†

e,kα
†
e′,k′β

†
h′′,k′′β

†
ĥ,k̂

)
〉〈

βĥ,k̂αe′′′,k′′′
〉

+
∑
k̂,ĥ

〈
α†
e,kα

†
e′,k′β

†
h′′,k′′β

†
ĥ,k̂

〉〈 ∂

∂t
(βĥ,k̂αe′′′,k′′′)

〉
. (13.86)

Computing the time derivatives by evaluating the commutators with the
Hamiltonian according to the Heisenberg equation, inserting the obtained
equations of motion up to the required order in the field, and performing
the summations, Eq. (13.86) and thus Eq. (13.85) are readily verified.

Another, even simpler example for such a decoupling in a fully coherent
situation is the expression for the occupation probabilities in terms of the
microscopic polarizations up to second order in the field

fee
′

k =
∑
h′

(P eh′
k )∗P e′h′

k +O(E4) ,

fhh
′

k =
∑
e′

(P e′h
k )∗P e′h′

k +O(E4) . (13.87)

Analogous to what has been said above, also this conservation law, which
is nothing but the expansion of Eq. (13.9), can be verified by computing
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the time derivative and inserting the expressions up to the required order.
Instead of just merely verifying the decouplings in Eqs. (13.85) and

(13.87), we address the coherent dynamics of a many-body system on the
level of a general analysis. Let us start by defining a normally ordered
operator product as

{N,M} ≡ c†(ϕN ) c†(ϕN−1) ... c†(ϕ1) c(ψ1) ... c(ψM−1) c(ψM ) , (13.88)

where depending on ϕi and ψj the operators c† and c are electron or hole
creation or annihilation operators for certain ki and kj , respectively. The
quantities {N,M} contain the full information about the dynamics of the
photoexcited system. E.g., the microscopic polarization P eh

k corresponds
to {0, 2}, its complex conjugate (P eh

k )∗ corresponds to {2, 0}, and the oc-
cupation probabilities faak to {1, 1}.
Next, we consider the time derivative of the normally ordered operator
products, which is given by

6
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Fig. 13.6 Sketch of the coupling between dynamical variables, ({N,M}). The num-
bers in the circles denote the minimum order of the corresponding expectation value
< {N,M} > in the external field amplitude. The dotted (solid) lines symbolize the
optical (Coulomb) coupling. [After Lindberg et al. (1994).]



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Excitonic Optical Stark Effect 259

∂

∂t
{N + 1,M + 1} =

(
∂c†(ϕN+1)

∂t

)
{N,M} c(ψM+1)

+ c†(ϕN+1)
(
∂{N,M}

∂t

)
c(ψM+1)

+ c†(ϕN+1) {N,M}
(
∂c(ψM+1)

∂t

)
. (13.89)

To analyze to which correlations functions {N,M} are coupled, one can
evaluate the equations of motion for the operators, i.e., ∂c†(ϕi)

∂t and ∂c(ϕj)
∂t .

Using Heisenberg’s equation, one finds that {1, 0} ({0, 1}) is coupled to
itself by the single-particle (band structure) part, coupled to {0, 1} ({1, 0})
by the light-matter interaction, and coupled to {2, 1} ({1, 2}) by the many-
body Coulomb interaction.

Inserting these results into Eq. (13.89) and restoring normal ordering,
i.e., commuting all creation operators to the left of the destruction op-
erators, one can see that the light-matter interaction couples {N,M} to
{N−1,M+1}, {N+1,M−1}, {N−2,M}, and {N,M−2}, since it is given
by pairs of creation and destruction operators. The many-body Coulomb
interaction, however, couples {N,M} to {N,M} and {N + 1,M + 1}.
Therefore, the four-operator part of the Hamiltonian generates the cou-
pling to products that contain more operators, i.e., the many-body hierar-
chy. Clearly, for both parts of the Hamiltonian, operators with N−M being
odd are only coupled to other operators where N−M is odd, and operators
with N −M being even are only coupled to other operators where N −M
is even. Thus, if we start from the ground state as the initial condition, i.e.,
〈{0, 0}〉 = 1 and all other expectation values are zero, the operators {N,M}
with N −M being odd vanish at all times, since they contain no sources.
These considerations are visualized in Fig. 13.6. This, furthermore, clearly
shows that in any finite order in the external field, only a finite number of
expectation values contribute to the optical response. To find the lowest
order in the light field of any term {N,M}, one only needs to evaluate the
minimum number of dotted lines in Fig. 13.6, which are needed to connect
it to {0, 0}.

As can be seen from Fig. 13.6 and can be proven rigorously, see Lindberg
et al. (1994), the minimum order in the field in which 〈{N,M}〉 is finite is
(N +M)/2 if N and M are both even and (N +M)/2+ 1 if N and M are
both odd, i.e.,

〈 c†(ϕ2N ) . . . c†(ϕ1) c(ψ1) . . . c(ψ2M ) 〉 = O(EN+M ) , (13.90)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

260 Quantum Theory of the Optical and Electronic Properties of Semiconductors

and

〈 c†(ϕ2N+1) . . . c†(ϕ1) c(ψ1) . . . c(ψ2M+1) 〉 = O(EN+M+2) . (13.91)

If one starts initially from the ground state of the semiconductor and the
dynamics is fully coherent, one can factorize expectation values containing
a mix of creation and destruction operators to lowest order into products
of expectation values which contain either only creation or only destruction
operators. For our case, we can write

〈 c†(ϕ2N ) ... c†(ϕ1) c(ψ1) ... c(ψ2M ) 〉 =
〈 c†(ϕ2N ) ... c†(ϕ1) 〉 〈 c(ψ1) ... c(ψ2M ) 〉 + O(EN+M+2) , (13.92)

and

〈 c†(ϕ2N+1) ... c†(ϕ1) c(ψ1) ... c(ψ2M+1) 〉 =
〈 c†(ϕ2N+1) ... c†(ϕ1) 〉 〈 c(ψ1) ... c(ψ2M+1) 〉 + O(EN+M+4) . (13.93)

To prove Eqs. (13.92) and (13.93), it is important to note that in the Heisen-
berg picture, where the operators are time-dependent, all expectation values
are taken with respect to the initial state, which is the ground state | 0 〉 of
the semiconductor, i.e.,

〈 c†(ϕN ) c†(ϕN−1) ... c†(ϕ1) c(ψ1) ... c(ψM ) 〉 =
〈 0 | c†H(ϕN , t) ... c†H(ϕ1, t) cH(ψ1, t) ... cH(ψM , t) | 0 〉 . (13.94)

Now, one can define an interaction picture by decomposing the Hamil-
tonian into H = H0 + HI , where H0 contains the free-particle and the
Coulomb interaction parts. As is well known, in the interaction picture an
operator O becomes time-dependent according to

OI(t) = eiH0t O e−iH0t . (13.95)

Inserting the interaction representation of the identity operator in be-
tween the creation and destruction operators of a ground state expectation
value of Heisenberg operators, i.e., in between c†H(ϕ1, t) and cH(ψ1, t) of



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Excitonic Optical Stark Effect 261

Eq. (13.94), one finds by iterating the exponentials e±iH0t of Eq. (13.95)

〈 0 | c†H(ϕN , t) ... c
†
H(ϕ1, t) cH(ψ1, t) ... cH(ψM , t) | 0 〉 =

〈 0 | c†H(ϕN , t) ... c†H(ϕ1, t) | 0 〉 〈 0 | cH(ψ1, t) ... cH(ψM , t) | 0 〉
+
∑
δ1

〈 0 | c†H(ϕN , t) ... c†H(ϕ1, t) c
†
I(δ1, t) | 0 〉

×〈 0 | cI(δ1, t) cH(ψ1, t) ... cH(ψM , t) | 0 〉

+
1
2

∑
δ1,δ2

〈 0 | c†H(ϕN , t) ... c†H(ϕ1, t) c
†
I(δ2, t) c

†
I(δ1, t) | 0 〉

×〈 0 | cI(δ1, t) cI(δ2, t) cH(ψ1, t) ... cH(ψM , t) | 0 〉
+ · · · . (13.96)

This general result can be used to expand all correlation functions into their
contributions up to any defined order in the field.

We now apply this scheme to obtain the equations of motion which
describe the optical semiconductor response in the coherent χ(3)-limit. In
order to be able to distinguish between the uncorrelated Hartree-Fock part
and the correlation contributions, it is convenient to define a pure four-
particle correlation function via

B̄eh′e′h
k,k′,k′′,k′′′ =

〈
α†
e,kβ

†
h′,k′α

†
e′,k′′β

†
h,k′′′

〉
−
〈
α†
e,kβ

†
h′,k′

〉〈
α†
e′,k′′β

†
e,k′′′

〉
−
〈
α†
e,kβ

†
h,k′′′

〉〈
α†
e′,k′′β

†
h′,k′

〉
= Beh′e′h

k,k′,k′′,k′′′

−
〈
α†
e,kβ

†
h′,k′

〉〈
α†
e′,k′′β

†
e,k′′′

〉
−
〈
α†
e,kβ

†
h,k′′′

〉〈
α†
e′,k′′β

†
h′,k′

〉
.

(13.97)

Using the above introduced expansions up to third order in the field,
the polarization equation can be written as

∂

∂t
P eh
k =

∂

∂t
P eh
k |hom +

3∑
n=1

∂

∂t
P eh
k |inhom,n , (13.98)
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with

i�
∂

∂t
P eh
k |hom = − (Ee

k + Eh
k

)
P eh
k +

∑
q

VqP
eh
k−q , (13.99)

i�
∂

∂t
P eh
k |inhom,1 =


deh −∑

e′,h′
(P eh′

k )∗P e′h′
k de

′h

−
∑
h′,e′

deh
′ ∑

e′
(P e′h′

k )∗P e′h
k


 ·E , (13.100)

i�
∂

∂t
P eh
k |inhom,2 = −

∑
q,e′,h′

Vq

[
P eh′
k

(
P e′h′
k

)∗
P e′h
k−q − P eh′

k+q

(
P e′h′
k+q

)∗
P e′h
k

+ P eh′
k+q

(
P e′h′
k

)∗
P e′h
k − P eh′

k

(
P e′h′
k−q

)∗
P e′h
k−q

]
, (13.101)

i�
∂

∂t
P eh
k |inhom,3 =

∑
q,k′,e′,h′

Vq

(
P e′h′
k′

)∗(
B̄eh′e′h
k,k′,k′−q,k−q − B̄eh′e′h

k+q,k′,k′−q,k

+ B̄eh′e′h
k+q,k′+q,k′,k − B̄eh′e′h

k,k′+q,k′,k−q
)
. (13.102)

The homogeneous part of Eq. (13.98) contains the kinetic energies of elec-
trons and holes plus their Coulomb attraction. This term is diagonal in
the basis of exciton eigenstates. The contributions denoted with the sub-
script inhom in Eq. (13.98) are the different inhomogeneous driving terms,
i.e., they are the sources for the microscopic polarizations. The direct cou-
pling of the carrier system to the electromagnetic field is represented by
the terms proportional to d · E, see Eq. (13.100). These terms include
the linear optical coupling (d ·E) and the phase-space filling contributions
(d ·E P ∗P ).

As a consequence of the many-body Coulomb interaction, Eq. (13.98)
contains further optical nonlinearities. The contributions that are of first-
order in the Coulomb interaction, which are proportional to V PP ∗P , are
given by Eq. (13.101). Those, together with the phase-space filling terms,
correspond to the Hartree–Fock limit of Eq. (13.98). The correlation contri-
butions to the polarization equation, see Eq. (13.102), consist of four terms
of the structure V P ∗B̄, where B̄ is the genuine four-particle correlation
function defined in Eq. (13.97). Hence, as a consequence of the many-body
Coulomb interaction, the two-particle electron–hole amplitude P is coupled
to higher-order correlation functions B̄.

If the calculation of the coherent nonlinear optical response is limited to
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a finite order in the applied field, the many-particle hierarchy is truncated
automatically and one is left with a finite number of correlation functions.
This truncation occurs since one considers here purely optical excitation
where only the optical field exists as linear source which in first-order in-
duces a linear polarization, in second order leads to carrier occupations,
and so on. In the more general situation, where incoherent populations
may be present, as, e.g., by pumping via carrier injection or in the presence
of relaxed occupations, a classification of the nonlinear optical response in
terms of powers of a field is no longer meaningful. For such cases, one
can use a cluster expansion or nonequilibrium Green’s functions to obtain
systematic approximation schemes to the many-body hierarchy.

Equation (13.98) has been derived within the coherent χ(3)-limit, i.e., by
keeping all contributions up to third-order in the electromagnetic field. If
this condition is fulfilled, the nonlinear optical response is fully determined
by the dynamics of single and two electron–hole–pair excitations, P and B̄,
respectively. The equation for B̄’s is obtained as

∂

∂t
B̄eh′e′h
k,k′,k′′,k′′′ =

∂

∂t
B̄eh′e′h
k,k′,k′′,k′′′ |hom +

∂

∂t
B̄eh′e′h
k,k′,k′′,k′′′ |inhom , (13.103)

with

i�
∂

∂t
B̄eh′e′h
k,k′,k′′,k′′′ |hom = −

(
Ee
k + Eh′

k′ + Ee′
k′′ + Eh

k′′′

)
B̄eh′e′h
k,k′,k′′,k′′′

+
∑
q′
Vq′
(
B̄eh′e′h
k+q′,k′+q′,k′′,k′′′ − B̄eh′e′h

k+q′,k′,k′′−q′,k′′′

+ B̄eh′e′h
k+q′,k′,k′′,k′′′+q′ + B̄eh′e′h

k,k′+q′,k′′+q′,k′′′

− B̄eh′e′h
k,k′+q′,k′′,k′′′−q′+B̄eh′e′h

k,k′,k′′+q′,k′′′+q′

)
,(13.104)

i�
∂

∂t
B̄eh′e′h
k,k′,k′′,k′′′ |inhom = −V|k−k′′′|

(
P eh
k′′′ − P eh

k

) (
P e′h′
k′ − P e′h′

k′′

)
+ V|k−k′|

(
P eh′
k′ − P eh′

k

)(
P e′h
k′′′ − P e′h

k′′

)
. (13.105)

The homogeneous part of the equation for B̄ contains the kinetic energies as
well as the attractive and repulsive interactions between two electrons and
two holes, i.e., the biexciton problem. The sources of Eq. (13.103) consist
of the Coulomb interaction potential times nonlinear polarization terms,
V PP .

Since the equations of motion in the coherent χ(3)-limit are quite
lengthy, in order to see the structure of the many-body couplings, it is
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useful to reduce the notation and to consider a schematical set of equa-
tions of motion. These can be obtained from Eqs. (13.98) and (13.103) by
neglecting all indices and superscripts,

i�
∂

∂t
P = −EP P + ( d − b P ∗ P )E − VHF P

∗ P P + Vcorr P
∗ B̄

(13.106)

and

i�
∂

∂t
B̄ = −EB B̄ − V̄corr P P . (13.107)

Here, EP and EB are the energies of single- and biexciton states, and b
denotes the Pauli blocking, VHF the first-order (Hartree–Fock) Coulomb
terms, and Vcorr as well as V̄corr Coulomb correlation contributions.

Formal integration of Eq. (13.107) yields

B̄(t) =
i

�
V

∫ t

−∞
dt′eiE(t−t′)/�P (t′)P (t′) . (13.108)

Inserting this expression for B̄(t) into Eq. (13.106) shows that P (t) depends
on contributions P (t′) with t′ < t, i.e., on terms with earlier time argu-
ments. Such Coulombic memory effects would be neglected if one solved
the coupled equations adiabatically within the Markov approximation.

As an application, we use the coherent χ(3)-equations to compute differ-
ential absorption spectra for different circular polarizations of the pump and
probe pulses assuming excitation of the semiconductor energetically below
the exciton resonance. Numerical results for the polarization-dependent
excitonic optical Stark effect, are displayed in Fig. 13.7. In the upper
right panel in Fig. 13.7, we see the computed differential absorption spec-
trum for co-circularly polarized pulses. This spectrum corresponds to the
usual blueshift of the exciton resonance discussed in the previous sections
of this chapter. The detailed analysis reveals that the phase-space filling
nonlinearity and the first-order Coulomb terms, i.e., the Hartree–Fock con-
tributions induce a blueshift, whereas the correlations alone would yield
a redshift. However, for the σ+σ+ configuration the magnitude of the
correlation-induced contribution is relatively small and in turn, the total
signal is dominated by the blueshift of the Hartree–Fock terms.

The situation is, however, very different if opposite circularly polarized
(σ+σ−) pump and probe pulses are considered, see the lower right panel
in Fig. 13.7. For this configuration, the Hartree–Fock contributions for
heavy-hole transitions vanish and the response is completely determined by
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Fig. 13.7 Experimental (left column) and computed (right column) differential absorp-
tion spectra for a InGaAs/GaAs quantum-well sample. The pump pulses were detuned
to 4.5 meV below the exciton resonance and the shown spectra were obtained at zero
time delay. The usual blueshift is obtained for equal polarization (top row) and a redshift
is obtained for opposite circular polarizations of the pump and probe pulses. [After Sieh
et al. (1999).]

correlations. These correlations yield a redshift which is not compensated
by other terms and thus survives. As Sieh et al. (1999) have shown, the
occurrence of this redshift is not directly related to the existence of a bound
biexciton that can be excited with σ+σ− polarized pulses. This can be seen
already from the analysis of the σ+σ+ excitation configuration, where no
bound biexciton can be excited but still the correlation term alone amounts
to a redshift of the exciton resonance.

Experimental measurements of the excitonic optical Stark effect for dif-
ferent pump–probe polarization configurations are displayed in the left col-
umn of Fig. 13.7. These measurements nicely confirm the predictions of
the third-order theory.
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PROBLEMS

Problem 13.1: Show for a two-level system that (1 − 2n)2 + 4|P |2 is a
conserved quantity.

Problem 13.2: Use Eqs. (13.2) – (13.5) to derive the optical Stark shift
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results of Sec. 2-3 for the two-level atom.

Problem 13.3: Show that δp+k >> δp−k and derive the linearized
Eq. (13.19).

Problem 13.4: Calculate the enhancement factors (13.40) using the exci-
ton wave functions in 2D and 3D.

Problem 13.5: Use the Heisenberg equation for the four-operator terms
to derive Eq. (13.103) in the coherent χ(3) limit.
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Chapter 14

Wave-Mixing Spectroscopy

In extension of the optical Stark effect pump–probe experiments discussed
in the previous chapter, we now want to present a more general analysis
of two-pulse wave-mixing experiments. The model configuration is shown
schematically in Fig. 14.1.

In general, one cannot consider all systems as spatially homogeneous
because the light fields will be absorbed most strongly at the crystal sur-
face where the beams enter and the two beams will in general propagate
in different directions. The induced polarization will act in a spatially in-
homogeneous way as a source term for Maxwell’s equations describing the
fields. Thus in general one has to determine a two-point density matrix of

2k -kp t

kp

kt

2k -kt p

Ep

Et

Fig. 14.1 Schematics of two-pulse experiments: Two successive pulses called pump and
probe pulse with a delay time τ propagate in the directions kp and kt through the sample.
The DTS is measured in the direction kt of the test pulse, the FWM is measured in the
direction 2kp − kt of the beam diffracted from the lattice induced by the two pulses.

269
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the form

ρij(rp, rt, t) = 〈ψ†
j (rt, t)ψi(rp, t)〉 . (14.1)

Introducing center-of-mass and relative coordinates R = (mirp +
mjrt)/(mi+mj) and r = rp−rt and a Fourier transformation with respect
to the relative coordinate r, one gets the Wigner distribution

ρij(R,k, t) =
1
V

∫
d3reik·rρij(R, r, t) . (14.2)

With these distributions one can calculate the optically induced polariza-
tion,

P (R, t) =
∑
k

dvcρcv(R,k, t) + c.c. . (14.3)

This polarization enters into Maxwell’s equations describing the dynamics
of the light field as it propagates through the sample. Obviously, the deter-
mination of the Wigner functions and the resulting electromagnetic fields
is considerably more involved in comparison with calculations of the den-
sity matrices in spatially homogeneous situations. As an alternative to the
Wigner functions, one can also use density matrices which depend on two
momenta

ρij(kp,kt, t) = 〈a†j,kt(t)ai,kt(t)〉 , (14.4)

from which the information about the spatial variation can be obtained. In
a single band, e.g., the distribution function at the spatial coordinate R is

n(R,k, t) =
∑
K

ρ(
1
2
K+ k,−1

2
K+ k, t)eiR·K . (14.5)

The advantage is that it is often much easier to formulate the equations of
motion in momentum space than in real space. So far, these off-diagonal
density matrices in K-space have been used successfully mainly for quantum
wires, where the complications due to the angles between the two momenta
do not exist. In thin samples however, where propagation effects and spatial
inhomogeneities are of minor importance, one can calculate the resulting
electromagnetic field which propagates in a certain direction by adiabatic
approximations from the calculations for spatially homogeneous fields.
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14.1 Thin Samples

In order to understand why the transmitted light in thin samples is pro-
portional to the polarization field, we consider Maxwell’s wave equation

∂2E
∂t2
− c2

n20
∆E = −4π∂

2P

∂t2
� 4πω2P , (14.6)

where n0 is the refractive index of the unexcited crystal. The polarization
formally constitutes an inhomogeneity. The field E can be calculated by a
solution of the homogeneous equation plus an integral over the Green’s func-
tion of the homogeneous field equation folded with the inhomogeneous po-
larization term. As for the calculations of the retarded Liénhard-Wiechert
potentials in electrodynamics, this term reduces to the retarded polariza-
tion integral, in which the actual time is replaced by the retarded time
t − Rn/c, where R is the distance between the coordinate of the polar-
ization and that of the resulting field. In thin samples, these retardation
effects are very small, the integral reduces to a weighted spatial average of
the polarization term over the sample. In other words, the field caused by
the polarization in the medium is proportional to the spatially homogeneous
polarization.

For optically thin samples, we generalize the considered two-pulse laser
light field which excites the sample by introducing the two propagation
directions by means of two wave vectors kp and kt. A spatial variation of
the amplitudes is not considered. This way, we can write

E(t) = Ep(t)e−i
(
ωpt−kp·r

)
+ Et(t− τ)e−i

[
ωt(t−τ)−kt·r

]
= eikp·r

[
Ep(t)e−iωpt + Et(t− τ)e−iωt(t−τ)eiφ

]
, (14.7)

where we introduced the phase φ = (kt − kp) · r. With such an excitation
field the calculated induced polarization will also depend on the phase

P (t, τ, φ) =
∑
k

dvcρcv,k(φ) + c.c. ∝ Etransm . (14.8)

The polarizations induced by the two delayed parts of the field (14.7) form
a transient lattice with the lattice vector kp−kt. The field will be diffracted
from this lattice into multiple orders determined by the factor eikp·reinφ.
For n = 1, one gets the propagation vector kt, that is in the direction of
the delayed test pulse (see Fig. 14.1). This is the pump–probe situation
analyzed for the excitonic optical Stark effect in Chap. 13. For n = 2, one
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gets the propagation vector 2kt − kp, etc. This is the direction of the first
diffracted order in a degenerate four-wave mixing configuration.

The name four-wave mixing originates from the fact, that one generally
has to consider a total of four different E-fields, three incident and a scat-
tered field. Here, we discuss only the so-called degenerate case where two
fields are combined into the pump beam. Hence, the pump counts twice,
whereas probe and transmitted fields count only once.

We numerically evaluate the resulting polarization for various values of
the phase. In actual calculations, the polarization has to be obtained for
only a few phase values. Because of the periodicity in φ, we extract from
this knowledge the n-th order Fourier transform of the polarization

Pn(t, τ) =
∫ 2π

0

dφ

2π
P (t, τ, φ)einφ . (14.9)

This evaluation of the polarization in various directions without treating
the spatial inhomogeneity explicitly is called an adiabatic approximation.
Alternatively, one can expand the density matrix ρ =

∑
n ρne

iφn and cal-
culate the equations of motion for the various components successively.

To discuss pump-probe experiments, we have to calculate P1(t, τ). The
spectrum of the transmitted light is given by |P1(ω, τ)|2. Because the trans-
mitted field in the test pulse direction kt is not background-free, one often
measures a differential signal by subtracting the spectrum |P 0

t (ω)|2 for the
test field alone.

In Chap. 13, we already discussed the example of the excitonic optical
Stark effect. Here, we now show a case where the modifications of the
interband continuum are studied. Specifically, we discuss the results of a
low-intensity experiment according to Leitenstorfer et pal. on GaAs with a
two color titanium sapphire laser. The pump pulse was tuned to 150 meV
above the band edge and had a duration of 120 fs. In the differential
transmission spectrum of the delayed probe pulse with a duration of 25 fs
tuned 120meV above the gap, one sees, at negative time delays an increased
transition probability around the spectral position of the pump pulse due
to Pauli blocking.

Due to excitonic enhancement above the populated states and to a mi-
nor degree due to band-gap shrinkage, an induced absorption is observed
above the spectral position of the pump pulse. A remarkably sharp fea-
ture is present in the earliest probe spectrum which seems to contradict the
time–energy uncertainty relation. Above a delay of 100 fs the build up of
the first LO-phonon cascade structure is seen clearly followed by a struc-
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Fig. 14.2 Measured (a) and calculated DTS spectra in various approximations for delay
times ranging from −100 fs to 160 fs. (b) Incoherent analysis with Markovian scattering
kinetics, (c) Coherent analysis with Markovian scattering kinetics, (d) Coherent analysis
with non-Markovian quantum kinetics. [The measured spectra are according to Fürst et
al. (1996), the calculated spectra are according to Schmenkel et al. (1998).]

ture due to two successive phonon emission processes at still later times. In
these experiments, only 8 ·1014cm−3 carriers have been excited, so that the
relaxation kinetics was dominated by LO-phonon scattering. We present in
Fig. 14.2 the calculated differential transmission spectra for three approx-
imations to the relaxation kinetics. In the second figure, the test spectra
have been calculated in the Markovian limit of the LO-phonon relaxation
kinetics by inserting the population distributions calculated for the pump
pulse into the Bloch equations for the test pulse. This incoherent analysis
fails to explain the sharp spectral features at the high energy cross-over
from reduced to induced absorption at early time delays. We note further
that the build-up of the first and particularly the second peak of the phonon
cascade occurs in this theoretical formulation faster than in the experiment.
If one replaces the incoherent analysis by a coherent one, i.e., if one treats
only one set of Bloch equations for the two pulses together and determines
the polarization in the kt direction at the end, one sees that the sharp spec-
tral features at the cross-over point and at earliest delays are now present as
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in the experimental spectra. If one uses finally the delayed non-Markovian
quantum kinetics of the phonon scattering, the time scale of the build-up of
the phonon peaks now also agrees with the experiment. Thus, the analysis
of this experiment shows clearly the need for the coherent determination of
the test-beam polarization and for the non-Markovian quantum relaxation
kinetics.

Next, we discuss a femtosecond four-wave mixing experiment of Wegener
et pal. on GaAs in which for the first time the LO-phonon quantum beats
have been seen superimposed on the exponentially decaying time-integrated
four-wave mixing signal. The time-integrated four-wave mixing signal is
theoretically determined by

∫ +∞
−∞ dt|P2(t, τ)|2. There is also the possibility

to measure instead the time-resolved signal |P2(t, τ)|2, both as a function
of the real time t and the delay time τ , or the frequency-resolved signal
|P2(ω, τ)|2. The quantum beats, which are clearly seen in the experimental
and theoretical time-integrated four-wave mixing signals, are due to the
phonon oscillations in the integral kernel of the non-Markovian scattering
integrals. The two pulses had a duration of 14 fs and had the form of a
hyperbolic secans

E0(t) = E0
1

cosh(t/∆t)
. (14.10)

As a residual Coulomb scattering was also present under the experimental
conditions, we use, in addition to the dephasing by phonon scattering, an
excitation-induced phenomenological damping in the form γ = γ0+ γ1n(t),
where n(t) is the number of carriers at time t. The carrier frequency of the
two pulses was degenerate and was tuned to the exciton resonance.
As Fig. 14.3 shows, one gets a nearly perfect agreement between the ex-
periment and the quantum kinetic calculations. Naturally, the oscillations
are only present in a non-Markovian version of the dephasing kinetics. The
time-integrated four-wave mixing signals show on the exponential decay an
oscillation with the frequency (1+me/mh)ω0, which can be understood as
the beating frequency of two interband polarization components coupled by
the coherent exchange of an LO-phonon between conduction-band states.
These observed phonon beats are a clear manifestation of the delayed quan-
tum kinetics.

Finally, we want to mention that the quantum kinetics used to analyze
originally the two described experiments has been derived by nonequilib-
rium Green’s functions. In the weak coupling theory, the integral kernel
of the resulting scattering integrals is expressed in terms of retarded and
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Fig. 14.3 Measured (solid lines) and calculated (dashed lines) time-integrated four-wave
mixing signals for three excitation densities (1.2×1016 cm−3 (top curve), 1.9×1016 cm−3

(middle curve) and 6.3× 1016 cm−3 (bottom curve)) with LO-phonon scattering. [After
Bányai et al. (1995).]

advanced electron Green’s functions of the state k and k+q coupled by the
exchange of a phonon. These spectral functions are again determined in
the mean-field approximation like the time- evolution function Tij,k,q(t, t′)
for the phonon-assisted density matrices. As the mean-field terms do not
couple the states k and k+q, the result of both theories on this level is
identical.

14.2 Semiconductor Photon Echo

The photon echo is a special example of a four-wave mixing experiment; it is
the optical analogon of Hahn’s (1950) famous spin echo in nuclear magnetic
resonance. For the experimental observation of the photon echo, the system
is excited by a sequence of two pulses that are separated in time by τ . At
the time 2τ the system spontaneously emits a light pulse in the four-wave
mixing direction, the photon echo. This phenomenon is known from atoms,
where it occurs in systems with sufficient inhomogeneous broadening.

In semiconductors, photon echoes can be obtained, e.g., at excitonic
resonances if the system is inhomogeneously broadened. This case is very
similar to the atomic system and can be understood accordingly. More
interesting is the situation of the intrinsic semiconductor photon echo that
also occurs in systems without any inhomogeneous broadening relying on
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the specific properties of interband continuum of the electron–hole excita-
tions.

To analyze the intrinsic photon echo in semiconductors, we start from
the coherent semiconductor Bloch equations (13.6) – (13.7). In order to
obtain analytic results, we want to solve the Bloch equations in first order
of the weak pulse Et and in second order of the strong pulse Ep, to com-
pute the leading contribution to the signal in the direction 2kp − kt. To
keep our analytical analysis as simple as possible, we ignore all dissipative
contributions in the semiconductor Bloch equations. These contributions
could be included, but they would make our equations more complicated.
To eliminate the population nk, we use the conservation law, Eq. (13.9).
Since we restrict our overall result to be of third order in the field ampli-
tude, we expand Eq. (13.9) as in Eq. (13.18) and keep only the lowest-order
term. The resulting equation for the interband polarization is

i�
d

dt
Pk = �εk Pk −

∑
k′
Vk′Pk+k′ − 2

∑
k′
Vk′ |Pk+k′ |2Pk

+2
∑
k′
Vk′Pk+k′ |Pk|2 − dcv E(1− 2|Pk|2) . (14.11)

This equation can be simplified, making again use of the known solutions
of the Wannier equation (10.35)

�εk ψλ,k −
∑
k′

Vk′ψλ,k+k′ = �ελ ψλ,k . (14.12)

Expanding the interband polarization,

Pk =
∑
λ

ψλ,k P
λ

Pλ =
∑
k

ψ∗
λ,k Pk , (14.13)

inserting into Eq. (14.11), multiplying by ψ∗
λ′,k and summing over k, we

obtain
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i�
d

dt
Pλ = �ελP

λ − 2
∑
k,k′

Vk′
∑

λ′λ′′λ′′′
ψ∗
λ,k

(
ψ∗
λ′,k+k′ψλ′′,k+k′

−ψ∗
λ′,k ψλ′′,k+k′

)
ψλ′′′,k(Pλ′

)∗Pλ′′
Pλ′′′

−dcv E ψ∗
λ(0) + 2 dcv E

∑
k

∑
λ′λ′′

ψ∗
λ,k ψ

∗
λ′,k ψλ′′,k(Pλ′

)∗Pλ′′
. (14.14)

Here, we used∑
k

ψ∗
λ,k = ψ∗

λ(r = 0) = ψ∗
λ(0) . (14.15)

We solve Eq. (14.14) using perturbation theory, keeping the results
which are first-order in Et and second order in Ep. For simplicity, we
assume that no temporal overlap exists between the two pulses. Hence, we
can choose a time t0 so that the first pulse is gone and the second one has
not come yet. Since the explicit form of Eq. (14.14) is somewhat lengthy,
we show our solution procedure for the simpler equation

i
dP

dt
= ε P + E + a|P |2E + b|P |2 P , (14.16)

which has the same basic structure as Eq. (14.14). To obtain the solution
in first order of Et, we drop all nonlinearities and solve

i
dP

dt
= ε P + Et , (14.17)

with the initial condition that P vanishes before the pulse Et arrives. For
the time t0 after the first pulse Et is gone and the second pulse Ep has not
yet arrived, we obtain by integrating Eq. (14.17)

P (t0) = −i e−iεt0 Et(ε) . (14.18)

Here,

Et(ε) =
∫ t0

−∞
dtEt(t) eiεt , (14.19)

which is the Fourier transform of Et at the frequency ε since Eτ (t) = 0 for
t > t0.
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For the integration over the second pulse, we use the polarization (14.18)
as an initial condition. To obtain a result, which is of second order in Ep,
we solve the equation iteratively. First, we use again Eq. (14.17) to get

P (0)(t) = −i e−iεt

[
Et(ε) +

∫ t

t0

dt′ Ep(t′) eiεt
′
]
, (14.20)

and then we iterate the Eq. (14.18) once:

i
dP (1)

dt
= ε P (1) + Ep + a|P (0)|2Ep + b|P (0)|2P (0) . (14.21)

Since the pulses propagate in different directions,

Et/p ∝ exp(ikt/p · r) , (14.22)

and we are interested only in the contribution which propagates in the
direction 2kp−kt, we pick out from Eq. (14.21) only those terms which are
proportional to Ep Ep E

∗
t , before we perform the final integration.

Following this procedure with the full equation (14.14), we obtain

P (t)
�
3

|dcv|2dcv = −2i
∑
k

∑
λλ′λ′′

ψλ(0)ψ∗
λ,k ψλ′(0)ψ∗

λ′,k ψ
∗
λ′′(0)ψλ′′,k E

∗
t (λ

′)

×
∫ t

t0

dt′ e−iελ(t−t′)+iελ ′t′ Ep(t′)
∫ t′

t0

dt′′ e−iελ′′(t′−t′′)Ep(t′′)

− 2
∑
kk′

∑
λλ′λ′′λ′′′

Vk−k′ψλ(0)ψ∗
λ,k ψ

∗
λ′′ (0)ψλ′′,k′ ψ∗

λ′′′ (0)ψλ′′′,k

× [ψλ′(0)ψ∗
λ′,k′ − ψλ′(0)ψ∗

λ′,k
]
E∗
t (λ

′)
∫ t

t0

dt′ e−iελ(t−t′)+iελ′ t′

×
∫ t′

t0

dt′′ e−iελ′′ (t′−t′′)Ep(t′′)
∫ t′

t0

dt′′′ e−iελ′′′(t′−t′′′)Ep(t′′′) ,

(14.23)

where E(λ) = E(ελ). The first term in Eq. (14.23), which does not vanish
when the Coulomb matrix element Vk is set to 0, describes the response of an
inhomogeneous set of independent oscillators. The last term in Eq. (14.23)
is due to the exchange terms in the semiconductor Bloch equations. It
has been shown by Lindberg et al. (1992), that these exchange terms
contribute considerably to the excitonic part of the semiconductor photon
echo. Since these considerations are beyond the scope of this book, we
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refer the interested reader to the original literature listed at the end of this
chapter.

For our analytical evaluations, we concentrate on the much simpler case
when the excitation frequency is above the band gap, well within the inter-
band absorption continuum. In this case, we treat the Coulomb interaction
perturbatively. We neglect the Coulomb interaction in the wave functions
and keep it only in the exchange contributions as multiplying matrix ele-
ment in the sums, so that

ψλ,k � δkλ and ψλ(0) � 1 . (14.24)

The states are essentially free particle states and consequently the eigen-
values ελ are basically

�ελ � Eg +
�
2

2m
λ2 . (14.25)

The signal (14.23) takes the form

P (t)
�
3

|dcv|2dcv = −2i
∑
λ

E∗
t (λ) e

−iελt

[∫ t

t0

dt′ Ep(t′) eiελt
′
]2

− 2
∑
λλ′

Vλ−λ′ E∗
t (λ

′) e−iελt

∫ t

t0

dt′
[
1− ei(ελ−ελ′)(t−t′)]

×
∫ t′

t0

dt′′ Ep(t′′) eiελt
′′
∫ t′

t0

dt′′′ Ep(t′′′)eiελ′ t′′′ . (14.26)

If we assume simple δ-function pulses,

Et(t) = Et δ(t+ τ)

Ep(t) = Ep δ(t) , (14.27)

then

Et(λ) = Et e
−iελτ , (14.28)

and, for t > t0, we obtain for the first term in Eq. (14.26):

P(1)(t) ∝ E∗
tE

2
p

∑
λ

e−iελ(t−τ) ∝ E∗
t E

2
p δ(t− τ) . (14.29)
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Hence, the polarization and therefore also the field emitted in the direction
2kp − kt peaks at a delayed time τ , which is equal to the temporal separa-
tion of the two pulses. This is the signature of the photon echo. Thus, the
first term of Eq. (14.26) describes the photon echo of the semiconductor
continuum states. The second term in Eq. (14.26) gives a nonecho contri-
bution, which is caused by the exchange terms in the semiconductor Bloch
equations. We do not analyze this term any further in this chapter and
refer the interested reader to Lindberg et al. (1992) for more details.

At the end of this section, we show an example of the numerical evalu-
ations of the full semiconductor Bloch equations for the photon echo con-
figuration discussed here (Koch et al. 1992). These numerical evaluations
were done for 120 fs (FWHM) pulses which excite a CdSe sample at the 1s-
exciton resonance. Since the short pulses are spectrally broad they excite
also the higher exciton states, as well as the lower part of the ionization
continuum. The 1s-exciton is, however, dominant and contributes to the
total signal like a single oscillator. Additionally, many-body effects like
the band-gap renormalization can also become important since they may
completely modify the resonance conditions.

In Fig. 14.4, we show the numerically computed time resolved signal
in photon echo direction for two 100 fs (FWHM) pulses with 400 fs delay
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Fig. 14.4 Time-resolved signal in photon echo direction for excitation at the exciton
resonance. The dephasing time is 200 fs, the time delay is 400 fs, and the pulse FWHM
is 100 fs for both pulses. The peak value of the dipole coupling energy of the second pulse
is dcv E2 = 0.1ER, where the exciton binding energy ER = 16 meV in CdSe. The peaks
of the pulses are marked by arrows. The lower parts of the figures show the renormalized
band edge (EG−E0

G)/ER as function of time. Here, E0
G is the unrenormalized band edge.

In Figs. (a) – (c), the peak amplitude of the first pulse is changed: (a) dcv E1 = 0.03ER,
(b) dcv E1 = 0.06ER, and (c) dcv E1 = 0.1ER. [From Koch et al. (1992)]
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between the pulses. We see in Fig. 14.4a (upper part), that for the case
of a weak first pulse, only an almost instantaneous signal and no photon
echo at +400 fs occurs. This signal is solely due to the exchange correlation
between the excited excitons. For higher pulse intensities (Figs. 14.4b and
14.4c), we see the gradual development of an echo signal, which coexists
with the instantaneous signal for intermediate intensities.

To analyze the origin of this scenario, we plot the time dependence of
the renormalized band gap in the bottom part of the figures. Comparison
of the top and bottom parts of Fig. 14.4a – 14.4c reveals that the echo
contribution in the time-resolved signal occurs as soon as the continuum
states are shifted into resonance during the presence of the first pulse (band-
gap shift below — 1ER in Fig. 14.4b). Consequently, direct continuum
excitation is possible, which yields a photon echo signal at 400 fs because
of the intrinsic inhomogeneous broadening of the electron–hole continuum
states. Intermediate field strengths result in a characteristic double peak
structure in the signal.
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PROBLEMS:

Problem 14.1: Derive Eq. (14.11) using a third-order expansion of the
coherent semiconductor Bloch equations.

Problem 14.2: Perform the analysis described in Eqs. (14.16) – (14.22)
to derive Eq. (14.23).
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Chapter 15

Optical Properties of a
Quasi-Equilibrium Electron–Hole

Plasma

In situations where either the width of a single pulse or the delay between
the pump and probe pulse are longer than the intraband relaxation time,
the electron and hole distributions have already relaxed to thermal Fermi
distributions.

fi,k =
1

e
β( �2k2

2mi
−µi) + 1

. (15.1)

Here, the chemical potentials µi are measured with respect to the actual
band edge, that is in an interacting system with respect to the renormalized
band edge. The configuration is quasi-stationary, which is meant to imply
that the chemical potentials and the temperatures of the distributions may
vary slowly in time.

For such a situation, the treatment of the semiconductor Bloch equa-
tions is simplified by the fact that the equations for the electron and hole
distributions do not have to be evaluated for all momenta as they are known
to be Fermi distributions. Summing the equations for the electron and hole
distributions over all momenta, one obtains a rate equation for the total
number of electrons or holes. All intraband scattering processes drop out
by this procedure, because they do not change the total number of electrons
or holes. From the resulting total carrier numbers at a given time one can
calculate the corresponding chemical potentials µi(t). Most often one can
assume charge neutrality so that Ne(t) = Nh(t). If the temperatures Ti(t)
of the electron and hole gases also have to be calculated, one multiplies the
equations for the electron–hole distributions with the kinetic energy of the
corresponding carriers. After summation, one obtains, at least for weakly
interacting carrier gases, two energy rate equations from which the variation
of the electron and hole temperatures with time can be calculated. Here,

283
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we assume for simplicity that the temperature and chemical potentials of
the distributions are known or can be obtained by fitting the calculated to
the measured spectra.

The main remaining task is then the solution of the equations for the
interband polarization components. In this regime of slowly varying or even
stationary fields, the screening of the particle–particle Coulomb interaction
by the carriers is fully developed and can be described by its equilibrium
form. The more complex problem of the temporal build-up of the screening
from the Coulomb scattering terms can be avoided in this situation. A
common approximation for the treatment of the influence of screening on
the optical properties is to use a screened Hartree–Fock approximation
with an RPA screening which is particularly simple in the plasmon–pole
approximation (see Chap. 8). Here, the bare Coulomb potential is replaced
by the statically screened potential both in the renormalized single-particle
energies and in the renormalized Rabi frequencies. As an improvement, one
can use quasi-static screening in which the frequency is given by the change
of the single-particle frequency, ei,k′ − ei,k.

The renormalized single-particle energies in a quasi-equilibrium system
are

�ei,k = �εi,k −
∑
k′
Vs,|k−k′|fi,k′ , (15.2)

and the renormalized Rabi frequency is

�ωR,k = dcvE0 +
∑
k′
Vs,|k−k′|Pk′ , (15.3)

where

Vs,q =
Vq

ε(q, ω = 0)
(15.4)

is the statically screened potential. Thus, attractive (electron–hole) and
repulsive (electron–electron and hole–hole) interactions are treated in the
same way. This is important because a considerable cancellation occurs
between these two interactions as will be discussed below. To simplify the
problem further, we will use a phenomenological Markovian approxima-
tion, ∝ −γPk(t), for the dephasing rate. γ is either constant or linearly
dependent on the excitation density Ni(t), in order to include the effects
of induced dephasing. As shown below, this approximation for the damp-
ing together with the quasi-equilibrium approximation needs to be done
consistently.
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In Chap. 10, we solved the interband polarization equation for an unex-
cited crystal and found an absorption spectrum consisting of sharp absorp-
tion lines due to the bound states and a broad absorption band due to the
ionization continuum. Now, we analyze the changes of this band-edge spec-
trum when a quasi-equilibrium electron–hole plasma exists in the crystal.
The spectrum of a pure plasma has already been calculated and discussed in
Chap. 5 in the free-carrier approximation. In this chapter, we calculate how
an excitonic spectrum with sharp bound-state resonances gradually changes
into a plasma spectrum with increasing electron-hole-pair population.

For a constant light field, the stationary equation for the interband
polarization component in the rotating wave approximation is

�(ω−ee,k−eh,k+iγ)Pk=−(1−fe,k−fh,k)

(
dcvE+

∑
k′
Vs|k−k′|Pk′

)
.

(15.5)

polarization equation in quasi-equilibrium

The coupled equations for the polarizations in the different momentum
states form a set of linear, inhomogeneous algebraic equations, which can
be solved, e.g., by numerical matrix inversion. As already discussed in
Chap. 5, absorption and gain occur depending on the sign of the inversion
factor

(1− fe,k − fh,k) . (15.6)

The cross-over from absorption to gain occurs where the inversion is zero.
This condition can also be written as

1

e
−β(�2k2

2mh
−µh) + 1

=
1

eβ(
�2k2
2me

−µe) + 1
. (15.7)

which implies (see problem 15.1)

e
−β(�

2k2
2mh

−µh) = eβ(
�
2k2

2me
−µe) . (15.8)

Taking the logarithm on both sides, one finds for the cross-over energy

�
2k2

2me
+

�
2k2

2mh
= µe + µh . (15.9)
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In the limit of vanishing damping, the imaginary part of the free-carrier
interband polarization components implies energy conservation

�ω = E′
g +

�
2k2

2me
+

�
2k2

2mh
. (15.10)

From this law for the optical transition and the cross-over condition (15.9),
one finds the cross-over energy between gain and absorption

�ω − E′
g = µe + µh , (15.11)

i.e., optical gain in the spectral region above the renormalized band gap
and the total chemical potential, and optical absorption for higher ener-
gies. Besides the band filling and band-gap renormalization another im-
portant influence of the plasma is the screening of the Coulomb potential.
The attractive electron–hole potential is weakened by the plasma screening
causing a reduction of the excitonic effects in the spectra. Actually, at a
critical plasma density, the combined effects of the screening and of the
occupation of k-states by the plasma result in a vanishing exciton binding
energy. Above this critical density, also called Mott density, only ionized
states exist. However, as we will see, the attractive potential still modifies
the plasma spectrum considerably.

The screening of the Coulomb potential and the Fermi exchange effects
contribute to the renormalization of the single-particle energies which re-
sults in the band gap shrinkage ∆Eg = E′

g − Eg. The band-gap shrinkage
and the reduction of the exciton binding energy are of similar size, so that
normally no shift of the exciton resonance occurs as the plasma density is
increased. The influence of the plasma is only seen in a reduction of the
exciton oscillator strength due to the increasing exciton Bohr radius with
increasing plasma density, until the band edge reaches the exciton level at
the Mott density. Above the Mott density the exciton resonance no longer
exists. However, the attractive Coulomb potential still increases the prob-
ability to find the electron and hole at the same position, which causes an
excitonic enhancement (Coulomb enhancement) of the plasma absorption
or gain spectrum.

The fact that the inversion factor (15.6) can change its sign complicates
the solution of Eq. (15.5) since it implies that the corresponding homoge-
neous eigenvalue equation is non-Hermitian. In the following, we describe
first a numerical method for obtaining rather accurate solutions by a ma-
trix inversion, and then two approximate solutions which are considerably
simpler and can be used above the Mott density, i.e., in the high-density
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regime. In the final section of this chapter, we discuss the so-called plasma
theory, which provides a simple analytical approximation scheme for 3D
semiconductors.

15.1 Numerical Matrix Inversion

Because the screened Coulomb potential Vs,k−k′ depends not only on |k′|
but also on the angle between k and k′, we want to simplify the problem
by introducing an angle-averaged potential by

∑
k′
Vs,|k−k′|Pk′ →

∑
k′
V̄s,k,k′Pk′ , (15.12)

where the angle-averaged potential is given by

V̄s,k,k′ =
1
2

∫ +1

−1

d(cosθ)Vs,[k2+k′2−2kk′cos(θ)]1/2 in 3D (15.13)

and

V̄s,k,k′ =
1
2π

∫ 2π

0

dφVs,[k2+k′2−2kk′cos(φ)]1/2 in 2D . (15.14)

With this approximation we take only s-wave scattering into account and
the integral equation becomes one-dimensional. Because Eq. (15.5) is linear
in the field (the polarization becomes nonlinear only via the plasma density,
which is a function of the light intensity), we can introduce a susceptibility
function χk by

Pk = χk E . (15.15)
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The susceptibility function obeys the integral equation

χk = χ0k

(
1 +

1

dcv,k

∑
k′

V̄s,k,k′χk′

)
, (15.16)

susceptibility integral equation

where χ0k is the free-carrier susceptibility function of Chap. 5:

χ0k = −dcv,k 1− fe,k − fh,k
�(ω + iγ − ee,k − eh,k) . (15.17)

More realistic optical line shapes are obtained by taking into account the
finite damping γ (dephasing) of the interband polarization. As discussed
in the previous chapter, the dephasing for high-density situations is domi-
nated by carrier–carrier scattering. At lower densities, carrier–phonon and
carrier–impurity scattering are the main sources of dissipation. For the
purposes of the present discussion, the detailed mechanism of damping
and dephasing is assumed to be not relevant. We therefore simply replace
the infinitesimal damping in χ0 by the inverse dephasing time γ. If one
uses a finite damping γ, the energy conservation is smeared out and as a
consequence the cross-over from absorption to gain at the total chemical
potential would no longer be guaranteed. According to Green’s function
theory under these conditions a spectral representation has to be used

χ0k = dcv,k

∫ +∞

−∞

dω′

2π
2γ/�

(ω′−ee,k−eh,k)2+γ2
1−fe(�ω′−eh,k)−fh(eh,k)

ω − ω′ + iδ
.

(15.18)

Instead of using a constant γ, a better description of the band-tail ab-
sorption can be obtained with a frequency-dependent γk(ω). Such a dy-
namical damping results naturally if it is calculated as the imaginary part
of a frequency-dependent self-energy. Here, we take it in the form

γk(ω) = γ0
1

e(Ek−�ω)/Eα + 1

in order to describe the exponential absorption tail. The energy Ek is given
by Ek = �

2k2/2m and Eα is a numerical constant.
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Even though Eq. (15.17) has the same form as the free-carrier suscepti-
bility in Chap. 5, the single-particle energies in Eq. (15.17) are the renor-
malized energies calculated in the quasi-static approximation of Chap. 9.
Hence, Eq. (15.17) includes the band-gap renormalization effects due to
the electron–hole plasma. Next, we introduce a vertex function Γk which
describes the deviations of the full susceptibility χ from χ0:

χk = Γkχ0k . (15.19)

The vertex function obeys the equation

Γk = 1 +
1

dcv,k

∑
k′

χ0k′V̄s,k,k′Γk′ . (15.20)

vertex integral equation

The integral equation (15.20) will now be solved by various methods.
The integral over k′ is approximated by a discrete sum∑
k′
→
∫

dk′

2π
→
∑
i

∆k′i
2π

. (15.21)

In numerical evaluations, one typically obtains converging solutions if
around 100 terms are included in the summation. Here, the ki can be taken
equidistantly, however, better accuracy is obtained if the ki are taken as
the points of support of a Gaussian quadrature. At low densities the angle-
averaged potential becomes singular for k′ = k. This singularity has to be
removed before the numerical matrix inversion is performed. One adds and
subtracts a term(∑

k′
Fk,k′ V̄s,k,k′

)
Γkχ0k +

∑
k′
V̄s,k,k′

(
χ0k′Γk′ − Fk,k′χ0kΓk

)
, (15.22)

where Fk,k′ is chosen so that Fk,k = 1 and that the sum in the first bracket
can be evaluated analytically, e.g., in 3D

Fk,k′ =
2k4

k′2(k′2 + k2)
. (15.23)

The bracket of the difference term in (15.22) vanishes at k = k′ where V̄s,k,k′

is singular, so that the total term is a smooth function at k = k′. With
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Fig. 15.1 Computed absorption (a) and refractive index spectra (b) for bulk GaAs at
T = 10 K using the matrix-inversion procedure. The used parameters are: me = 0.0665,
mh = 0.457, εo = 13.74, ε∞ = 10.9, a0 = 125 Å, E0 = 4.2 meV, and the densities are 0
(1), 5 · 1015cm−3 (2), 3 · 1016cm−3 (3), and 8 · 1016cm−3 (4), respectively. The damping
is �γ = 0.05E0

such a procedure, compensation terms can be found for the plasmon–pole
approximation both in 3D and 2D.

Fig. 15.1 and Fig. 15.2 show the optical spectra which are obtained by
numerical matrix inversion for the examples of bulk GaAs and bulk InSb
for various plasma densities. The resulting complex susceptibility

χ(ω) =
1
L3

∑
k

d∗cvχk (15.24)

defines the complex optical dielectric function ε(ω) = 1 + 4πχ(ω) which in
turn determines the spectra of absorption α(ω), Eq. (1.51) and refraction
n(ω), Eq. (1.50).

At low plasma densities the absorption spectra in Fig. 15.1-a shows well-
resolved 1s and 2s exciton resonances, followed by an ionization continuum
enhanced by excitonic effects. A plasma density of 1016 cm−3 is close
to the Mott density where the exciton bound states cease to exist. The
excitonic enhancement still causes the appearance of a maximum around
the original exciton ground-state position. At still higher densities a band-
gap reduction far below the position of the original exciton ground state is
seen, and simultaneously a build-up of optical gain occurs. The vanishing of
the exciton resonance in the absorption spectrum also causes considerable
changes in the refractive index, as shown in Fig. 15.1-b. Particularly, if
the laser beam is tuned below the exciton resonance, where the absorption
is relatively weak, the index of refraction decreases with increasing plasma
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Fig. 15.2 Computed absorption spectra for bulk InSb at T = 77 K using the matrix-
inversion procedure. The used parameters are: me = 0.0145, mh = 0.4, ε0 = 17.05,
ε∞ = 15.7, a0 = 644.8 Å, E0 = 0.665 meV, and the densities N are 0 (1), 8 · 1015cm−3

(2), 2 · 1016cm−3 (3), and 3 · 1016cm−3 (4), respectively.

density. This effect is often exploited in optical switching devices which are
based on dispersive optical bistability, see Chap. 16.

The bulk InSb spectra of Fig. 15.2 have been calculated with a damping
�γ = 2E0 = 1 meV, which is twice as large as the exciton Rydberg. This
case is typical for narrow band-gap semiconductors. Here, the exciton is not
resolved in the unexcited medium and causes only a step-like absorption
edge.

The corresponding absorption spectra for ideal 2D GaAs are shown in
Fig. 15.3. Only one hole band was taken into account. Experimentally
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Fig. 15.3 Computed absorption spectra for 2D GaAs at T = 77 K using the matrix-
inversion procedure. The used parameters are: a0 = 62, 5 Å, and E0 = 16, 8 meV, all the
other parameters are the same as in Fig. 15.1. The densities N are 0 (1), 1 · 1011cm−2

(2), 5 · 1011cm−2 (3), and 1 · 1012cm−2 (4), respectively.
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in quantum-well structures, one often sees superimposed the contributions
of more than one band, e.g. of the heavy- and the light-hole bands in
GaAs-based materials.

Finally, we discuss the plasma density-dependent absorption spectra of
a quantum wire. As already mentioned in Chap. 8, the screening of the
Coulomb potential by the confined plasma is expected to be of little impor-
tance in a quantum wire, because the field lines passing through the barrier
material cannot be screened. Fig. 15.4-a shows the calculated absorption
spectra for a cylindrical GaAs quantum-well wire and Fig. 15.4-b shows the
corresponding refractive index spectra. The q1D Coulomb potential of a
cylindrical quantum wire, Eq. (7.78), is used in the calculations. The spec-
tra have been obtained by matrix inversion and have been calculated with-
out screening. The spectra calculated with screening (Benner and Haug,
1991) do not differ substantially, showing that for q1D systems the effect
of state filling is the most important source of the optical nonlinearities.
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Fig. 15.4 Computed absorption (a) and infractive index spectra (b) for a cylindrical q1D
GaAs quantum wire at T = 300 K using the matrix-inversion procedure. The parameters
are the same as in Fig. 15.1. The 1D-densities are na0 = 0 (1), na0 = 0.5 (2), na0 = 1
(3), and na0 = 2 (4), respectively. Ω is the energy spacing between subbands, and E0

and a0 are the bulk exciton binding energy and Bohr radius, respectively.

Studying the absorption spectra in Fig. 15.4-a, one might conclude that
the band-gap reduction is not very strong in quantum wires. Actually,
however, the opposite is true. The band-gap shrinkage in q1D is larger
than in higher dimensional materials, as can be seen in Fig. 15.5.

For the density nao = 2, ∆Eg reaches already five exciton binding
energies. The fact, that the absorption peak in Fig. 15.4-a shows only a
slight red shift is thus again a result of the compensation between reduction
of the exciton binding energy and gap shift.
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Fig. 15.5 Band-gap reduction, ∆Eg, and chemical potentials as functions of carrier
density for the quantum wire of Fig. 15.4

We conclude, that with the reduction of the dimension in mesoscopic
semiconductor microstructures the influence of screening on the quasi-
equilibrium nonlinearities decreases, while the influence of state filling in-
creases.

15.2 High-Density Approximations

The integral equation (15.20) can be solved approximately if the attrac-
tive electron–hole potential is not too strong, i.e., in the high-density
limit, where plasma screening and phase-space occupation have reduced
the strength of the Coulomb potential sufficiently. We rewrite Eq. (15.20)
by introducing a formal interaction parameter σ, which will be assumed to
be small

Γk = 1 +
σ

dcv

∑
k′
V̄s,k,k′χ0k′Γk′ . (15.25)

A power expansion of Γ in terms of σ yields

Γk =
∑
n

qnσ
n , (15.26)

where the first coefficient is determined by

q1 =
1
dcv

∑
k′
V̄s,k,k′χ0k′ . (15.27)
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In general, one can express Eq. (15.26) as the ratio of two polynomials

P
(N,M)
k =

∑N
n=0 rnσ

n∑M
m=0 smσ

m
, (15.28)

which represents the (N,M)-Padé approximation. The coefficients rn and
sn can be obtained by a comparison with the original expansion (15.26).
We use the simplest nontrivial (0,1)-Padé approximation

Γk = P
(0,1)
k =

1
1− q1k , (15.29)

which results in an optical susceptibility of the form

χ(ω) =
1

L3

∑
k

d∗
cvχ

0
k

1− q1k
. (15.30)

Padé approximation

The denominator in Eq. (15.30) expresses the influence of the multiple
electron–hole scattering due to their attractive interaction potential Vs,
which causes the excitonic enhancement.

Another approximation for the integral equation (15.20) is obtained by
inserting a dominant momentum, which we take as the Fermi momentum,
into the angle-averaged screened Coulomb potential. The Fermi momentum
is

kF = (3π2n)1/3 in 3D (15.31)

kF = (2πn)1/2 in 2D , (15.32)

see Chaps. 6 and 7. Then the susceptibility integral equation (15.16) be-
comes

χk = χ0k

(
1 +

1
dcv

∑
k′
χk′ V̄s,kF ,k′

)
= χ0k[1 + S(ω)] , (15.33)

and for

S(ω) =
1
dcv

∑
k′
χk′ V̄s,kF ,k′ (15.34)
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we get the self-consistency equation

S(ω) =
1
dcv

∑
k

χ0kV̄s,kF ,k
[
1 + S(ω)

]
(15.35)

with the solution

1 + S(ω) =
1

1− 1
dcv

∑
χ0kV̄s,kF ,k

. (15.36)

Eq. (15.36) yields the optical susceptibility

χ(ω) =
∑
dcvχ

0
k

L3 − 1
dcv

∑
k χ

0
kV̄s,kF ,k

(15.37)

expressing again, in a different approximation, the effect of the excitonic en-
hancement, however, with a simple momentum-independent enhancement
factor 1 + S(ω).
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Fig. 15.6 3D absorption spectra for GaAs at 300 K for the densities 1 · 1016cm−3 (1),
1·1018cm−3 (2), 2·1018cm−3 (3), and 3·1018cm−3 (4), respectively. Matrix inversion (full
lines), Padé approximation (dashed lines), high-density approximation (dotted lines).

Taking the spectral representation, Eq. (15.18), only for the imaginary
part, we compare absorption spectra for 3D and 2D semiconductors in
Figs. 15.6 and 15.7 for the different levels of approximations. We show the
results obtained a) by solving Eq. (15.20) by numerical matrix inversion (full
curves), b) by using the (0,1)-Padé approximation (15.30) (dashed curves)
and c) using the high-density approximation (15.37) (dotted curves).



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

296 Quantum Theory of the Optical and Electronic Properties of Semiconductors

The agreement of both approximations b) and c) with the numerical solu-
tion a) becomes very good, if a pronounced optical gain exists. At lower
plasma-densities, where the gain vanishes, but where the densities are still
above the Mott density, the (0,1)-Padé approximation yields a slightly bet-
ter description of the excitonic enhancement than the high-density approx-
imation, particularly in the 2D case. At low densities, where bound states
of the exciton exist, both approximations are unable to give a reliable de-
scription of the bound-state resonances in the absorption spectra.
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Fig. 15.7 2D absorption and gain spectra for GaAs at 300 K for the densities
1 · 1010cm−2 (1), 1 · 1011cm−2 (2), 2 · 1012cm−2 (3), and 3 · 1012cm−2 (4), respec-
tively. The full lines are the result of the matrix inversion, the dashed line is the Padé
approximation and the dotted line represents the high-density approximation.

15.3 Effective Pair-Equation Approximation

For many practical applications, it is very useful to have an approximate
analytical solution for the full density regime, which can then be used in
further studies, e.g., of optical bistability (see Chap. 16) or nonlinear optical
devices. Such an approximation scheme (plasma theory) for 3D systems has
been developed by Banyai and Koch (1986) in terms of an effective electron–
hole–pair equation. The main approximation of this theory is that it ignores
the reduction of the attractive electron–hole Coulomb interaction via occu-
pation of k-states by the plasma, assuming that the dominant weakening
comes through the plasma screening. This assumption is reasonable in 3D
systems at elevated temperatures, but it fails in 2D and q1D where state
filling is more important.
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We start from the Fourier-transformed polarization equation in the form[
�(ω + iγ)−H]P = −(1− fe,k − fh.k)dcvE , (15.38)

where the eigenvalue equation of the hermitian Hamilton operator is

Hφν,k = (εe,k + εh,k)φν,k −
∑
k′
Vs,k−k′φν,k′ = Eνφν,k . (15.39)

Expanding the polarization components into the eigenfunctions

Pk =
∑
n

aνφν,k , (15.40)

the solution of Eq. (15.38) can be written in the form

Pk = −
∑
ν

φν,k
tanh

[
β
2 (�ω − Eg − µ)

]
�(ω + iγ)− Eν

dcvE
∑
k′
φ∗ν,k′ , (15.41)

where we approximate

1− fe,k − fh,k � tanh
[
β

2
(�ω − Eg − µ)

]
.

The resulting absorption coefficient is then

α(ω) =
4π2ω
nbc
|dcv|2 tanh

[
β

2
(�ω−Eg−µ)

]∑
ν

|ψν(r = 0)|2δ(Eν − �ω) .

(15.42)

The remaining problem for the analytic evaluation is to obtain the eigen-
functions ψν and the corresponding eigenvalues for the screened Coulomb
potential. Unfortunately, we do not know an analytic solution for the Wan-
nier equation with the Yukawa potential. However, there is a reasonably
good approximation to the screened Coulomb potential, which is the so-
called Hulthén potential

VH(r) = − 2e2κ/ε0
e2κr − 1

, (15.43)

for which one can solve the Wannier equation (10.35). As in Chap. 10, we
make the ansatz

ψν(r) = fnl(r)Ylm(θ, φ) , (15.44)
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where ν = n, l,m represents the relevant set of quantum numbers. We
obtain the radial equation

−∂
2fnl
∂r2

− 2
r

∂fnl
∂r

+
[
l(l+ 1)
r2

− gλ2

eλr − 1

]
fnl = εnlfnl (15.45)

with

λ = 2κ, g =
1
a0κ

, and εnl =
Enl

E0a20
.

Since we are only interested in those solutions which do not vanish at the
origin,

fnl(r = 0) �= 0 ,

we restrict the analysis of Eq. (15.45) to l = 0 and drop the index of f and
ε. For this case, we obtain from Eq. (15.45)

−∂
2u

∂r2
− gλ2u

eλr − 1
= εu , (15.46)

where we introduced

u(r) = rf(r) . (15.47)

Defining

z = 1− e−λr , w(r) = u(r)/z(1− z)β (15.48)

with

β =
√
−ε/λ2 (15.49)

and inserting these definitions into Eq. (15.46) yields

z(1− z)∂
2w

∂z2
+ [2− (2β + 3)z]

∂w

∂z
− (2β + 1− g)w = 0 . (15.50)

This is the hypergeometric differential equation, which has the convergent
solution

F (a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)
z2

2!
+ . . . , (15.51)

where it is required that c �= 0,−1,−2, . . . . In our case, we have
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a = 1 + β +
√
g + β2

b = 1 + β −
√
g + β2

c = 2 . (15.52)

15.3.1 Bound states

For the bound-state solutions, we have εν < 0. Since f must be a normal-
izable function, we request

f(r →∞)→ 0 , (15.53)

which yields the condition that

b = 1− n , n = 1, 2, 3, . . .

and therefore,

β =
1
2n

(g − n2) ≡ βn and εn = −λ2β2n ; n = 1, 2, . . . . (15.54)

The energetically lowest bound state (1s-exciton) is ionized for

g → 1 , i.e., a0κ→ 1 ,

which is the Mott criterion for the Hulthén potential, Eq. (15.43). Inverting
the transformations (15.47), (15.48), and using Eq. (15.51), we obtain the
bound-state wave functions as

ψν(r) = Nn
z(1− z)βn

r
F (1− n, 1 + g/n, 2; z)Ylm , (15.55)

where the normalization constant is

Nn =

√
1
8π
g3

1
n

(
1
n2
− n2

g2

)
. (15.56)

The relevant factor for the optical response is therefore

|ψn(r = 0)|2 = λ3

32π2
g3

1
n

(
1
n2
− n2

g2

)
, (15.57)

where a factor 1/4π comes from the spherical harmonics.
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15.3.2 Continuum states

For the unbound solutions of Eq. (15.45), we have εν > 0 and

βν = i
√
εν/λ . (15.58)

Inserting (15.58) into Eqs. (15.51) and (15.52) and normalizing the resulting
wave function in a sphere of radius R, i.e.,

4π
∫ R

0

dr|uν(r)|2 = 1 , (15.59)

we obtain εν = ν2π2/R2 and

fν = Nν
z

r
(1−z)βνF

(
1+βν+

√
g − |βν |2, 1+βν−

√
g − |βν |2, 2; z

)
(15.60)

with

Nν =
1√
R


 |βν |sinh(2π|βν |)g
cosh(2π|βν |)− cos

(
2π
√
g − |βν |2

)


1/2

, (15.61)

where cos(ix) = cosh(x). Finally, for the optical response, we need

∑
ν

|ψν(r = 0)|2f(βν) = 1
E02π2a30

(15.62)

×
∫ ∞

0

dx
sinh(πg

√
x)

cosh(πg
√
x)− cos(π

√
4g − xg2)f(x) ,

where the spin summation together with the spherical harmonics contribute
a factor 1/2π.

15.3.3 Optical spectra

Combining Eqs. (15.57) and (15.62) with Eq. (15.42) yields

α(ω) = α0tanh
[
β

2
(�ω−Eg− µ)

]
�ω

E0

[∑
n

1
n

(
1
n2
− n2

g2

)
δΓ

(
∆− En

E0

)

+
∫ ∞

0

dx
sinh(πg

√
x)

cosh(πg
√
x)− cos(π

√
4g − xg2)δΓ(∆− x)

]
, (15.63)
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where α0 and ∆ are defined in Eqs. (5.81) and (10.106), respectively, the
n-summation runs over all bound states,

δΓ(x) =
2

πΓcosh(x/Γ)
, (15.64)

and a factor 2 in the exciton part results from the spin summation.
Eq. (15.63) yields semiconductor absorption spectra that vary with carrier
density N = Σf(k). The theoretical results agree very well with experimen-
tal observations for many different semiconductor materials. An example
of such a comparison with experiments is shown in Fig. 15.8. From the
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Fig. 15.8 Experimental and theoretical absorption and refractive index spectra are com-
pared for room temperature GaAs. [After Lee et al. (1986).] (a) The experimental ab-
sorption spectra are obtained for different excitation intensities I (mW): 1) 0; 2) 0.2; 3)
0.5; 4) 1.3; 5) 3.2; 6) 8; 7) 20; 8) 50 using quasi-cw excitation directly into the band and
a 15 µm excitation spot size. The oscillations in curve 8) are a consequence of imperfect
antireflection coating. (b) The dispersive changes ∆n are obtained through a Kramers–
Kronig transformation of the absorptive changes α(I = 0) − α(I) (a). The agreement
with direct measurements of dispersive changes has been tested for the same conditions
using a 299-Åmultiple-quantum-well sample. (c) Calculated absorption spectra using
the plasma theory for the densities N (cm−3): 1) 1015 (linear spectrum); 2) 8 · 1016; 3)
2·1017; 4) 5·1017; 5) 8·1017; 6) 1·1018; 7) 1.5·1018. (d) Kramers–Kronig transformation
of the calculated absorption spectra.
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absorptive changes

∆α(ω) = α(ω,N2)− α(ω,N1) , (15.65)

one obtains the corresponding dispersive changes

∆n(ω) = n(ω,N2)− n(ω,N1) (15.66)

through the Kramers–Kronig transformation

∆n(ω) =
c

π
P

∫ ∞

0

dω′ ∆α(ω
′)

ω′2 − ω2
, (15.67)

where P again indicates the principle value. Examples of the dispersive
changes in bulk GaAs are shown in Figs. 15.8-b and 15.8-d.

It is worthwhile to note at this point that the Kramers–Kronig transfor-
mation (15.67) is valid even though we are dealing with a nonlinear system,
as long as ∆α depends only on parameters that are temporally constant.
We have to be sure that the carrier density N does not vary in time, or that
N varies sufficiently slowly so that it is justified to treat its time-dependence
adiabatically.
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PROBLEMS

Problem 15.1: Show that the vanishing of the inversion occurs at the
photon energy �ω − E′

g = µe + µh.

Problem 15.2: Derive the expression for the optical susceptibility using
the (1,2) Padé approximation.

Problem 15.3: Derive the self-consistency equation (15.35).

Problem 15.4: Discuss the Hulthén potential for small and large radii
and compare it to the Yukawa potential.

Problem 15.5: Verify that Eq. (15.63) yields the correct free-particle
result for a0 →∞ and the Wannier result for κ→ 0.
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Chapter 16

Optical Bistability

Optical instabilities in semiconductors can occur if one combines the strong
material nonlinearities with additional feedback. The simplest example of
such an instability is optical bistability, in which one has situations with
two (meta-) stable values for the light intensity transmitted through a non-
linear material for one value of the input intensity I0. Which transmitted
intensity the output settles down to, depends on the excitation history. A
different state is reached, if one either decreases the incident intensity I0
from a sufficiently high original level, or if one increases I0 from zero. The
possibility to switch a bistable optical device between its two states allows
the use of such a device as binary optical memory.

A proper analysis of the optical instabilities in semiconductors requires
a combination of the microscopic theory for the material nonlinearities with
Maxwell’s equations for the light field, including the appropriate boundary
conditions. The polarization relaxes in very short times, determined by
the carrier–carrier and carrier–phonon scattering, to its quasi-equilibrium
value which is governed by the momentary values of the field and the carrier
density. Therefore, we can use the quasi-equilibrium results of Chap. 15 for
the optical susceptibility as the material equation, which implies that the
polarization dynamics has been eliminated adiabatically.

The process of carrier generation through light absorption couples the
electron–hole–pair density to the electromagnetic field. The electromag-
netic field in turn is described by the macroscopic Maxwell equations, in
which the polarization field depends on the value of the electron–hole–pair
density through the equation for the susceptibility. This set of equations,
i.e., the microscopic equation for the susceptibility together with the macro-
scopic equations for the carrier density and for the light field, constitutes the
combined microscopic and macroscopic approach to consistently describe

305
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semiconductor nonlinearities.

16.1 The Light Field Equation

Before we discuss two examples of optical bistability in semiconductors, we
present a systematic derivation of the relevant equations. Wave propagation
in dielectric media is described by

(
∇2 − grad div− 1

c2
∂2

∂t2

)
E = 4π

c2
∂2P
∂t2

, (16.1)

where Maxwell’s equations request div D = 0, since we assume no external
charges. However, div E = −E ∇ε

ε = −E · ∇ ln(ε), where ε is the medium
dielectric constant, is generally not zero. Therefore, the electromagnetic
field is no longer purely transverse but also has a longitudinal component.

To obtain the equations for the longitudinal and transverse variations
of the field amplitudes, we assume a Gaussian incident light beam

E = E0 e−r2/w2
0 , r2 = x2 + y2 ,

with a characteristic (transverse) width w0 which propagates in z direction.
Using the ansatz

∇ = eT∇T + ez
∂

∂z

E = e−i(ωt−kz)(eT ET + ez Ez)
P = e−i(ωt−kz)(eT PT + ez Pz) , (16.2)

we subdivide the wave equation (16.1) into a longitudinal and a transverse
part. ez and eT in Eq. (16.2) are the unit vectors in z-direction and in the
transverse directions, respectively. The transverse equation is

∇T

[
∇T ET +

(
ik +

∂

∂z

)
Ez
]
−
(
−k2 + 2ik

∂

∂z
+

∂2

∂z2
+∇2

T

)
ET

=
1
c2

(
ω2 + 2iω

∂

∂t
− ∂2

∂t2

)(ET + 4πPT
)
, (16.3)
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and the longitudinal equation is(
ik +

∂

∂z

)
∇T ET−∇2

TEz =
1
c2

(
ω2 + i2ω

∂

∂t
− ∂2

∂t2

)(Ez + 4πPz
)
. (16.4)

As usual, the polarization is related to the optical susceptibility or the
dielectric function via

Pz,T = χEz,T =
ε− 1
4π
Ez,T . (16.5)

It is now convenient to split the susceptibility into the linear part χ0 and
the nonlinear, density-dependent part χnl

χ = χ0 + χnl(N) =
ε0 − 1
4π

+
εnl(N)
4π

. (16.6)

Even though we explicitly deal with a density-dependent nonlinearity, this
treatment can easily be generalized to also include, e.g., thermal and other
nonlinearities. To derive the coupled equations for the longitudinal and
transverse field components from Eqs. (16.3) and (16.4), we use the so-
called paraxial approximation, see Lax et al. (1975). Scaled variables are
introduced as

x = x̄w0 ; y = ȳw0 ; z = z̄ l ; t = t̄ τR , (16.7)

where

l = kw2
0 (16.8)

is the diffraction length of the beam in z direction, τR = l nb/c is the char-
acteristic propagation time over that distance, nb =

√
ε0 and ω = ck/nb.

The dimensionless number

f =
w0

l
<< 1 (16.9)

serves as small parameter allowing us to expand all quantities in powers of
f . Consistent equations are obtained using

ET = E [0]T + f2E [2]T + · · · ,
Ez = fE [1]z + f3E [3]z + · · · ,
χnl = f2χ

[2]
nl + f4χ

[4]
nl + · · · . (16.10)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

308 Quantum Theory of the Optical and Electronic Properties of Semiconductors

Inserting Eqs. (16.9) and (16.10) into Eqs. (16.3) and (16.4) yields a set of
coupled equations in the orders O(f), O(f3), · · · . Restricting ourselves to
O(f), we obtain

kE [1]z = i∇T E [0]T (16.11)

and

[
c

nb

∂

∂z
− i

c

2knb

∇2
T +

∂

∂t
+
cα(ω,N)

2nb

− i
ω∆n(ω,N)

nb

]
E [0]
T = 0 ,

(16.12)

transverse field equation

where we used Eqs. (1.51), (1.50) to introduce absorption and refractive-
index change,

α(ω,N) =
4πω
nbc

χ′′(ω,N) and ∆n(ω) � 2πχ′
nl(ω,N)
nb

, (16.13)

respectively. Eq. (16.10) shows that the electromagnetic field is purely
transverse in lowest order, but it may nevertheless depend on the transverse
coordinate. Only in next order, there is a small longitudinal component
whose size depends on f .

For simplicity of notation, we now replace eT E [0]T by E . Through
α(ω,N) and ∆n(ω,N), the field amplitude E is nonlinearly coupled to
the electron–hole–pair density

N =
1
L3

∑
k

ne,k =
1
L3

∑
k

nh,k . (16.14)

Note, that we use N for the electron–hole–pair density in this chapter to
distinguish it clearly from the refractive index n.
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16.2 The Carrier Equation

To obtain a dynamic equation for the total carrier density, we sum the
equation for the carrier distribution, see Eq. (12.19)

dN

dt
= −2 Im 1

L3

∑
k


1

�

[
dcvE(t) +

∑
q �=k

V|k−q|Pq(t)
]
P ∗
k (t)


 , (16.15)

where we used the explicit expression (12.18) for the generalized Rabi fre-
quency. We can convince ourselves that the Coulomb term in Eq. (16.15)
does not contribute. To show this, we write

2 Im
∑
k,q

V|k−q|PqP ∗
k = Im

∑
k,q

(
V|k−q|PqP ∗

k + V|q−k|PkP ∗
q

)
, (16.16)

where we interchanged q←→ k in the second half of the sum. The RHS of
this equation has the structure

Im(A+A∗) = Im(2ReA) ≡ 0 . (16.17)

Hence, Eq. (16.15) simplifies to

dN

dt
= −2

�
Im

1
L3

∑
k

dcvE(t)P ∗
k (t) . (16.18)

Now, we express the time-dependent polarization through its Fourier trans-
form, which we write as product of susceptibility and field,

dN

dt
= −2

�
Im

1
L3

∑
k

dcvE(t)
∫

dω

2π
χ∗
k(ω)E∗(ω)eiωt , (16.19)

where we should remember, that the susceptibility function contains only
the resonant term, since Pk = Phe(k), Eq. (12.9). For a monochromatic
field of the form

E(t) = E0e−iω0t , (16.20)

E(ω) = 2πE0δ(ω − ω0) , (16.21)

Eq. (16.19) yields

dN

dt
= −1

�
Im E(t) E0 1

L3

∑
k

dcv χ
∗
k(ω0) e

iω0t . (16.22)
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To take the imaginary part, we write

Im E(t) E∗(t) 1
L3

∑
k

dcv χ
∗
k(ω0) = |E(t)|2 Im

1
L3

∑
k

dcv χ
∗
k(ω0) . (16.23)

Hence, Eq. (16.22) becomes

dN

dt
=

1
�
|E(t)|2χ′′(ω0) , (16.24)

where we evaluated the k-summation. Expressing the imaginary part of
the susceptibility in terms of the intensity absorption coefficient, we get

dN

dt
= |E(t)|2nbc

4π
α(ω0)
�ω0

=
α(ω0)
�ω0

I , (16.25)

where we introduced the intensity

I = |E(t)|2nbc
4π

. (16.26)

Note, that in the spirit of the quasi-equilibrium approximation, the field
amplitude and therefore also the intensity can be slow functions of time.
Replacing ω0 by ω and phenomenologically adding carrier recombination
and diffusion, we write the rate equation for the carrier density N as

∂N

∂t
= −N

τ
+
α(ω,N)

�ω
I +∇D∇N . (16.27)

electron–hole–pair rate equation

Here, τ is the carrier life time and D is the electron–hole–pair diffusion
coefficient, also called the ambi-polar diffusion coefficient.

Eqs. (16.12) and (16.27), together with an expression for the nonlinear
susceptibility determine the quasi-equilibrium nonlinear optical response of
semiconductors. Note, that this approach involves the adiabatic elimination
of the polarization dynamics, which is often justified if the field variations
are slow compared to the fast phase destroying processes.
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16.3 Bistability in Semiconductor Resonators

Dispersive optical bistability or bistability through decreasing absorption
may be obtained if a semiconductor is brought into an optical resonator,
which introduces the required feedback for the light field. In the following,
we consider a Fabry–Perot resonator (Fig. 16.1) consisting of two lossless
mirrors of reflectivity R and transmissivity T = 1−R. The nonlinear semi-
conductor material fills the space between the mirrors. In many practical
applications, the mirrors are actually the end faces of the semiconductor
crystal itself, and R is just the natural reflectivity, or R is increased through
additional high reflectivity coatings evaporated onto the semiconductor sur-
faces.

As shown schematically in Fig. 16.1, it is useful to decompose the com-
plex transverse field amplitude E into the forward and backward propa-
gating parts to treat the feedback introduced by the mirrors. We write

E = EF + EB = ξF e
−iφF + ξBe

iφB , (16.28)

where the amplitudes ξ and the phases φ are real quantities. Depending
on the phase relation between EF and EB, there can be either constructive
or destructive interference, leading to a maximum or minimum of the light
intensity transmitted through the etalon.

E0

Ef

Eb

Et

R,TR,T

Fig. 16.1 Schematic drawing of a Fabry-Perot etalon. The mirrors have reflectivity R,
transmissivity T = 1−R, and Eo, Ef , Eb, Et are incident, forward traveling, backward
traveling, and transmitted field, respectively.

Dominantly dispersive nonlinearities can be observed in semiconductors,
since the refractive index of the medium changes via the carrier density
with the light intensity, causing the optical path between the mirrors of
the etalon to change with intensity. These intensity-induced changes tune
the etalon in or out of resonance with light of a fixed frequency. In reality,
absorptive and dispersive changes occur simultaneously, but either one may
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be dominant in a particular frequency regime.
The boundary conditions of the Fabry-Perot resonator can be written

as

EF (z = 0) =
√
T E0 +

√
R EB(z = 0) (16.29)

EB(z = 0) =
√
R EF (z = L)eiβ/2−αtotL/2 (16.30)

EF (z = L) =
Et√
T

= EF (z = 0)eiβ/2−αtotL/2 , (16.31)

yielding

∣∣∣∣ EtE0
∣∣∣∣
2

=
T 2

(eαtotL/2 −Re−αtotL/2)2 + 4Rsin2(β/2)
, (16.32)

where we used

cos(β) = 1− 2 sin2(β/2) .

The effective absorption αtot, as well as the phase shift β still have to be
computed. The total phase shift of the light after passing through the
resonator can be written as

β = φF (z = L)− φB(z = L)− 2δ , (16.33)

where 2δ contains all carrier-density-independent phase shifts of the linear
medium and of the mirrors. If we ignore transverse variations, and insert
Eq. (16.28) into Eq. (16.12), we obtain for the field amplitudes
(
∂

∂t
+
nb
c

∂

∂t
+
α(ω,N)

2

)
ξF,B = 0 , (16.34)

and for the phases(
∂

∂z
+
nb
c

∂

∂t

)
φF,B = ∓ω∆n(ω,N)

c
, (16.35)

where the minus sign is for φF .
Most semiconductor bistability experiments are done for resonator

lengths L � 0.5 − 2µm. Under these conditions, the round-trip time for
the light in the resonator is substantially shorter than the carrier relaxation
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time τ and it is justified to adiabatically eliminate the dynamics of the light
field (bad cavity limit),

∂ξ

∂t
� 0 and

∂φ

∂t
� 0 . (16.36)

Solving Eqs. (16.34) and (16.35) for these conditions yields

ξF,B(z) = ξF,B(0)exp
{
−1
2

∫ z

0

dz′ α
[
N(z′)

]}
(16.37)

and

φF,B(z) = ∓ω
c

∫ z

0

dz′∆n
[
N(z′)

]
, (16.38)

showing that αtot and β in Eq. (16.32) are given by

αtot =
1
L

∫ L

0

dz α[N(z)] (16.39)

and

β

2
= −

{
δ +

ω

c

∫ L

0

dz∆n
[
N(z)

]}
. (16.40)

The spatial carrier distribution N(z) has to be computed from Eq. (16.27).
To describe typical semiconductor etalons, it is often a good approxi-

mation to neglect all spatial density variations (diffusion dominated case).
Then one can trivially evaluate the integrals in Eqs. (16.39) and (16.40),
and Eq. (16.32) becomes

It =
T 2I0[

eα(ω,N)L
2 − Re−α(ω,N)L

2

]2
+ 4R sin2

[
δ + ω∆n(ω,N)L

c

] .

(16.41)

transmission through a resonator

Eq. (16.41) is the well-known equation for the transmission of a Fabry-
Perot etalon. This transmission exhibits peaks whenever the argument of
the sin2-term equals integer multiples of π.
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Through α and ∆n, Eq. (16.41) is coupled to the spatially averaged rate
equation (16.27)

dN

dt
= −N

τ
+
α(ω,N)

�ω
I , (16.42)

where I has to be taken as the average intensity inside the resonator

I � It
1 +R

T
. (16.43)

Note, that the incident intensity I0 in Eq. (16.41) may still be time-
dependent, but all variations have to be slow on the time scale of the
resonator round-trip time (adiabatic approximation).

To explicitly solve Eqs. (16.41) – (16.43) for an example of practical
interest, we use the band-edge nonlinearities of room-temperature GaAs
(Fig. 15.8) as obtained from the theory in Sec. 15.3. Inserting the computed
α(N) and ∆n(N) into Eqs. (16.41) – (16.43) allows us to directly study
nonlinear optical device performance. We obtain bistable hysteresis curves
by plotting transmitted intensity versus input intensity. In Fig. 16.2, we
show some typical results for slightly different resonator lengths L, i.e., for
different detunings of the excitation frequency ω with respect to the nearest
resonator eigenfrequency ωR < ω, where

ωR = m
πc

Lnb
, m = 0, 1, 2, · · · . (16.44)
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Fig. 16.2 Optical bistability for GaAs at T = 300 K, as computed from Eq. (16.41)
using the absorption and refractive index data shown in Fig. 15.8. The mirror reflectivity
R = 0.9, the resonator lengths are 2.0168 µm (1), 2.0188 µm (2), and 2.0233 µm (3),
respectively, and the operating frequency ω is chosen such that (�ω − Eg)/E0 = −4.
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Curve 2 in Fig. 16.2 shows marginal and curve 3 shows well developed opti-
cal bistability for some range of input intensities, whereas curve 1 exhibits
only nonlinear transmission.

For a situation similar to the one in curve 3 of Fig. 16.2, a stability ana-
lysis shows that the intermediate branch with the negative slope is unstable
and therefore not realized under usual experimental conditions. Hence,
increasing the incident intensity I0 from 0 leads to a transmitted intensity
It that follows the lower bistable branch until I0 reaches the switch-up
intensity, denoted by B in Fig. 16.3, then It follows the upper branch.
On the other hand, lowering I0 from an original value I0 > B leads to a
transmission following the upper branch, until I0 reaches the switch-down
intensity, denoted by A in Fig. 16.3.

Optically nonlinear or bistable semiconductor etalons may be used as
all-optical logic or switching devices, see Gibbs (1985). Since the bistable
etalon maintains one of two discrete output states for some range of input
intensity, it is possible to use it in the so-called latched mode. In that case,
one divides the total input beam into several beams, which may serve as
holding beam or switching beam(s). The holding beam has an intensity
positioned between the switch points of the bistable loop (A and B in
Fig. 16.3) and is used to bias the device. The switching beam — which
actually is the input logic beam — then only has to be sufficiently large
for the total incident intensity to exceed the switch-up threshold B. The
device, once switched, would remain in a high transmission state even if
the switching beam is removed. It has to be turned off by interrupting its
bias power or by some other mechanism.

A B
I0

It

Fig. 16.3 Optical bistability for GaAs at T = 300 K, where B, A denote the switch-up
and switch-down intensities.



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

316 Quantum Theory of the Optical and Electronic Properties of Semiconductors

In this latched mode of operation, one can obtain signal amplification.
When a nonlinear etalon is operated as a passive device, it obviously has
no overall gain relative to the total incident power. However, it is possible
to achieve differential gain, in which case the device is able to transmit a
larger signal than the signal used to switch it. Differential gain makes it
possible to use the output of one device as input (switching beam) for one
or more other devices. This process is called cascading and the number of
devices that can be switched with the output of a single device is usually
referred to as fan-out. Using two beams as input in addition to the proper
bias beam makes it possible to realize all-optical gates which perform logic
functions, such as AND, OR, or NOR.

16.4 Intrinsic Optical Bistability

From a conceptual point of view, the simplest example of optical bistability
is obtained, if one considers a medium whose absorption increases with in-
creasing excitation density. Bistability in such a system may occur without
any external feedback since the system provides its own internal feedback.
Increasing the carrier density leads to an increasing absorption that causes
the generation of even more carriers, etc.. There are numerous mechanisms
which may cause such an induced absorption in semiconductors and other
systems. Here, we concentrate on the induced absorption which is observed
in semiconductors like CdS at low temperatures, as a consequence of the
band-gap reduction (Koch et al., 1985). However, most of the macroscopic
features discussed below are quite general and may very well also occur in
other systems.

In Fig. 16.4, we show the absorption spectra for CdS, which have been
computed using the theory of Sec. 15.3. For some frequencies below the
exciton resonance, we see that the absorption increases with increasing car-
rier density. Assuming now that the semiconductor is excited at such a
frequency below the exciton, one has only weak absorption for low intensi-
ties. Nevertheless, if the exciting laser is sufficiently strong, even this weak
absorption generates a density of electron–hole pairs which causes a reduc-
tion of the semiconductor band gap. Eventually, the band edge shifts below
the frequency of the exciting laser giving rise to a substantially increased
one-photon absorption coefficient. Consequently, the absorption increases
with increasing carrier density.

Since we want to emphasize here the general aspects of increasing ab-
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Fig. 16.4 Computed absorption spectra for CdS at T = 30 K. These results have been
obtained using the theory of Sec. 15.3, with the parameters: me = 0.235, mh = 1, 35,
ε0 = 8.87, a0 = 30.1 Å, E0 = 27meV, Γ = 0.04E0, and αn = 106/cm.

sorption optical bistability, we do not use the original CdS data, but a
simple generic model:

α(N) =



αL , N < N1

αL + (αH − αL) sin
[
π(N−N1)
2(N2−N1)

]
, N1 < N < N2

αH , N2 < N

(16.45)

Here, αL and αH denote the low and high absorption values.
The coupling between carrier densityN and light intensity I is described

by Eq. (16.27), which in the stationary, spatially homogeneous case leads
to

α(N) =
N

I

�ω

τ
. (16.46)

This relation can be bistable, as indicated in Fig. 16.5, where we plot α(N),
Eq. (16.45), and the straight line, which is the RHS of Eq. (16.46). The
slope of this straight line is inversely proportional to I. The intersection
points with the curve α(N) are the graphical solutions of Eq. (16.46), clearly
showing the occurrence of three simultaneous solutions indicating intrinsic
optical bistability without resonator feedback (see Fig. 16.6). It is worth-
while to stress at this point that for such an induced absorption bistability
only a single pass of the light beam through the medium is required. Hence,
one has no superposition of forward and backward traveling waves as, e.g.,
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N

�(N)
Nh / I� �

Fig. 16.5 Graphical solution of Eq. (16.46) using α(N) given by Eq. (16.45).

in the Fabry-Perot resonator. Therefore, one may neglect nonlinear disper-
sive effects as long as one is only interested in the characteristic variation
of the transmitted intensity and not in transverse beam-profile variations
or in diffraction effects.

To obtain an equation for the light intensity, we multiply Eq. (16.12)
by E∗ and add the complex conjugate equation

[
∂

∂t
+

c

nb

∂

∂z
+

c

nb
α(N)

]
E E∗ = − ic

2knb

(
E∇2

TE∗ − c.c.
)
. (16.47)

The RHS of Eq. (16.47) describes beam diffraction. This effect can be
neglected if the length over which the light propagates is much smaller

I

N

Fig. 16.6 Bistability of the carrier density N as function of intensity I, obtained as
solution of Eq. (16.46). The lines with the arrows indicate switch-up of carrier density
N when I is increased from 0, and switch-down when I is decreased from a sufficiently
high value.
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than the characteristic diffraction length. For a sufficiently thin sample, we
can therefore approximate Eq. (16.47) as
[
∂

∂t
+

c

nb

∂

∂z
+

c

nb
α(N)

]
I = 0 . (16.48)

If N is constant, the steady state solution of Eq. (16.48) is Beer’s law

I(z) = I(z = 0)e−α(N)z , (16.49)

where z = 0, L are the sample front and end faces, respectively. Eq. (16.49)
shows that the transmitted intensity It = I(z = L) is high (low) if α(N) is
low (high).

If the carrier density exhibits optical bistability, as shown in Fig. 16.6,
the corresponding transmitted intensity shows the hysteresis loop plotted in
Fig. 16.7. We see that the transmitted intensity follows the input intensity
I0 for low I0. When I0 exceeds the value at which the carrier density
switches to its high value, the sample absorption also switches up and the
transmitted intensity switches down.

It

I0

Fig. 16.7 Transmitted intensity versus input intensity for the carrier bistability shown
in Fig. 16.6. The lines with the arrows indicate switch-down of the transmitted intensity
It when the incident intensity I0 = I(z = 0) is increased from 0, and switch-up when I0
is decreased from a sufficiently high value.

The described situation is experimentally relevant, if Dτ/L2 >> 1, i.e.,
in the diffusion dominated case or for very thin semiconductor samples at
the center of the input beam. Induced absorption bistability in CdS for
these conditions has indeed been observed experimentally, and the experi-
mental results are properly described by the outlined theory. In addition,
there exist interesting longitudinal, transverse, and dynamic instabilities
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in such induced absorbers. However, the discussion of these effects goes
beyond the scope of this book.
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PROBLEMS

Prolem 16.1: Derive Eqs. (16.11), (16.12) and the corrections of O(f2)
applying the procedure outlined in the text.

Problem 16.2: Show that the resonator formula (16.32) satisfies all the
boundary conditions specified in Eqs. (16.29) – (16.31).

Problem 16.3: Discuss dispersive optical bistability for the case of a Kerr
medium with linear losses α = α0 and ∆n = n2N . Solve the coupled
Eqs. (16.41) and (16.42) graphically and analyze the conditions for optical
bistability.
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Chapter 17

Semiconductor Laser

From a technological point of view, semiconductor light-emitting diodes
are probably the most important electro-optical semiconductor devices.
Whereas the majority of these diodes is used at relatively low power lev-
els under spontaneous light emission conditions, suitably designed devices
can operate as semiconductor lasers. These lasers are used for many appli-
cations in data communication with optical fibers, for data recording and
processing (CD players, laser printers), and for optical control and display
devices. Today, low-power semiconductor laser diodes have become rela-
tively cheap mass products. Modern crystal growth techniques are used to
engineer lasers with well specified device properties. Most of the presently
available diodes are made from binary, ternary or quarternary III-V com-
pounds to get an active material with the desired band gap and laser fre-
quency. Microstructures with low optical losses have been developed and
quantum confinement effects can be exploited to obtain low-threshold laser
diodes. In addition to III-V compound lasers, narrow-gap semiconductor
lasers, such as lead salt laser diodes, are used in the far infrared. Successful
operation of quantum-well laser diodes in large parts of the visible region of
the optical spectrum has been reported and quantum-dot laser structures
are under active investigation for a wide variety of emission frequencies.

In this chapter, we discuss the physical principles and the quantum me-
chanical equations which govern the action of semiconductor lasers. For the
rich spectrum of different device designs, we have to refer to special books on
semiconductor lasers [e.g. Thompson (1980) or Agrawal and Dutta (1986)].
As in the description of passive bistable semiconductor devices in Chap. 16,
we need the equations for the electrons in the semiconductor in combina-
tion with Maxwell’s equations for the laser light. A classical treatment of
the light field, if necessary supplemented with stochastic noise sources, is

321
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sufficient as long as we are not interested in the photon statistics and other
quantum mechanical aspects of the laser light. The electric field E(t) is
driven by the dielectric polarization P (t) which in turn is determined by
the inversion of the electrons, i.e., the electron–hole plasma density N(t).
The main difference compared to passive devices is that the field is gene-
rated by the laser itself, and the energy is supplied by a pump source,
usually in form of an injection current. The resulting negative absorption
provides the optical gain so that the spontaneously emitted light can grow
into coherent laser light.

17.1 Material Equations

In laser diodes, one has a relatively dense quasi-thermal electron–hole
plasma, in which the relaxation times are of the order of 100 fs, while
the spontaneous lifetime in a direct-gap semiconductor is typically of the
order of ns. The relaxation rate of the light field in the laser cavity is of the
order of the cavity round-trip time, � 10 ps, so that the polarization follows
more or less instantaneously all changes of the electron-hole density and of
the light field. Under these conditions the polarization dynamics can be
eliminated adiabatically, and we can base our discussion on the equations
derived in the previous chapter. However, we have to include additional
terms into the equations for the field and the carrier density, in order to
properly model the semiconductor laser configuration.

Instead of discussing the complex susceptibility χ in laser theory, one
sometimes prefers to deal with gain, g(ω), and refractive index, n(ω), which
are defined as

g(ω) + 2ik0 n(ω) =
4πω
nbc

[
iχ′(ω)− χ′′(ω)

]
. (17.1)

The gain function, g(ω), is the negative of the absorption coefficient,
Eq. (1.53).

To keep the present analysis as simple as possible, we ignore all effects
which lead to deviations from the quasi-equilibrium assumption, such as
spectral, spatial, or kinetic hole burning. Hence, it is sufficient to use
the electron–hole–pair rate equation (16.27) supplemented by laser specific
terms. For the present purposes, we write this rate equation as

dN

dt
= rp − rst − rsp − rnr , (17.2)
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where the different rates on the RHS describe injection pumping of carriers
(rp), stimulated emission (rst), spontaneous emission (rsp), and the nonra-
diative transitions (rnr), respectively. Note, that the adiabatic elimination
of the polarization and the local equilibrium assumption can only be jus-
tified if one is interested in time scales that are long in comparison to the
inter-particle collision times.

The pump rate due to an injection current density j can be written as

rp =
jη

ed
, (17.3)

where η is the quantum efficiency and d the transverse dimension of the
active region in the laser. The loss rate due to stimulated emission has been
derived in the previous chapter, where it was discussed as generation rate
due to light absorption:

rst =
g(ω)
�ω
E20
nbc

8π
= − 1

2�
χ′′(ω)E20 . (17.4)

Since the quasi-equilibrium susceptibility contains the factor

(1− fe,k − fh,k) = (1− fe,k)(1− fh,k)− fe,kfh,k , (17.5)

we can always write its imaginary part as

χ′′(ω) = χ′′
a(ω)− χ′′

e (ω) , (17.6)

where the emission part

χe ∝ fefh , (17.7)

and the absorption part,

χa ∝ (1− fe)(1 − fh) , (17.8)

respectively. Eq. (17.7) shows that the probability for light emission out of
a state is proportional to the joint probability to have an electron and hole
in this state, whereas absorption, Eq. (17.8), requires that both states are
unoccupied. For the Padé approximation of Chap. 15, this part is

χe(ω) = −
∑
k

|dcv,k|2fe,kfh,k
1− q1

1
�(ω + iδ − ee,k − eh,k) . (17.9)
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Using the subdivision of the susceptibility in Eq. (17.6), we can also divide
the gain coefficient as

g(ω) = −4πω
cnb

( χ′′
a − χ′′

e ) ≡ ga − ge , (17.10)

where ga and ge are the probabilities per unit length for absorbing and
emitting a photon, respectively. Thus −gec/nb is the emission probability
of a photon per unit time.

The spontaneous emission rate into the continuum of all photon modes
is with ω = ωq,λ, where q, λ label the photon wave vector and polarization,

rsp = − 1
L3

∑
q,λ

c

nb
ge(ωq,λ) = 2

4π
(2π)3

∫
dq q2

4πω
ε0

χ′′
e (ωq) (17.11)

or

rsp =
∫ ∞

0

dω

2πε0

(
2ωnb
c

)3

χ′′
e (ω) , (17.12)

where we have used nb � (ε0)1/2. The weight factor ω3 shows that it is
difficult for higher laser frequencies to overcome the losses due to sponta-
neous emission. This is one of the major problems in the development of
an x-ray laser.

The nonradiative recombination rate has a linear term describing re-
combination under multi-phonon emission at deep traps levels. Addition-
ally, in narrow-gap semiconductors and at high plasma densities, one often
also has to consider Auger recombination processes. These processes are
proportional to the third power of the plasma density, so that the total
nonradiative recombination rate can be written as

rnr =
N

τ
+ CN3 . (17.13)

The influence of the Auger recombination rates increase with decreasing
gap energy. In infrared semiconductor lasers, this is often the dominant
loss term.

17.2 Field Equations

In the semiclassical description for the semiconductor laser, we use the
wave equation (16.1) and include an additional term proportional to the
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conductivity σ to model the losses of the laser cavity:(
∇2 − grad div− 1

c2
∂2

∂t2
− 4πσ

c2
∂

∂t

)
E = 4π

c2
∂2P
∂t2

. (17.14)

In the simplest case, the cavity of a semiconductor laser is the resonator
formed by the two parallel cleaved end faces of the crystal. To treat the
space dependence of the electromagnetic field, we use an expansion in terms
of orthonormal cavity eigenmodes un(r):

E(r, t) =
∑
n

En(t)un(r) ,

and

P(r, t) =
∑
n

Pn(t)un(r) , (17.15)

and equivalently for the polarization. The spatial eigenmodes fulfill the
condition

(∇2 − grad div)un(r) = −ω
2
nε0
c2

un(r) , (17.16)

where ωn is the eigenfrequency of the nth resonator mode.
Expressing the polarization through the carrier-density-dependent sus-

ceptibility and the field,

Pn =
ε0 − 1
4π
En + χ(N)En , (17.17)

we obtain, see problem (17.2),

d2

dt2

{[
1 +

4π
ε0
χ(N)

]
En
}
+
κc

nb

dEn
dt

+ ω2
nEn = 0 , (17.18)

where we introduced κc/nb = 4πσ/ε0 as the cavity loss rate.
Equation (17.18) for the field amplitude, together with the carrier rate

equation (17.2) establish a simple model for the average properties of a
semiconductor laser. To gain some insight into the laser action, we look
for steady state solutions of Eqs. (17.18) and (17.2). For this purpose, we
make the ansatz

En = E0 e
−iωmt and N = N0 . (17.19)
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Inserting (17.19) into Eqs. (17.18) and (17.2) yields[
ω2
m − ω2

n + iωm
κc

nb
+

4πω2
m

ε0
χ(N0)

]
E0 = 0 , (17.20)

and

χ′′(N0)
2�

E2
0 −

N0

τ
+ rp = 0 , (17.21)

where, for simplicity, we omitted the spontaneous emission and the nonlin-
ear nonradiative recombination term CN3 in Eq. (17.2). Separating real
and imaginary parts of Eq. (17.20), we obtain the following coupled equa-
tions[

κ− g(N0, ωm)
]
E0 = 0 , (17.22){

ω2
m

[
1 +

4πχ′(N0)
ε0

]
− ω2

n

}
E0 = 0 , (17.23)

and

N0 = τ

[
rp +

χ′′(N0)
2�

E2
0

]
, (17.24)

where Eq. (17.1) has been used to express the imaginary part of the sus-
ceptibility in Eq. (17.22) through the real part of the gain.

We see that Eqs. (17.22) – (17.24) have two regimes of solutions:

i) for g(N0, ωm) < κ

E0 = 0 and
N0

τ
= rp , (17.25)

ii) for κ = g(N0, ωm), the field E0 �= 0, and the solutions are

κ = g(N0, ωm) , (17.26)

ω2
m =

ω2
n

1 + 4πχ′(N0)/ε0
, (17.27)

and

E2
0 =

(
N0

τ
− rp

)
2�

χ′′(N0)
=
(
rp − N0

τ

)
8π�ωm

cnbg(N0, ωm)
. (17.28)
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Eq. (17.25) yields a carrier density which increases linearly with the pump
rate rp, as long as the laser light field vanishes. If the carrier density is high
enough, so that the gain g(N0, ωm) compensates the losses κ, the laser field
E0 begins to grow. The condition (17.26) describes the laser threshold, and
Eq. (17.27) determines the operating frequency of the laser, which is pulled
away from the cold cavity frequency ωn. This mode pulling is caused by
the refractive index changes due to the increased carrier density.

E0

2

0

(a)

(b)
N0

0 rth rp

0

Fig. 17.1 (a) Intensity E2
0 versus pump rp showing the linear dependence of Eq. (17.28)

above the threshold pump value rth. (b) Carrier density N0 versus rp showing how N0

is clamped at its threshold value according to the steady-state saturated-gain equals loss
condition, Eq. (17.26).

Fig. 17.1 schematically shows the solutions (17.25) – (17.28). Assuming
an originally unexcited system without electrons or holes, we increase the
plasma density by increasing the pump rate rp. The increasing plasma
density then leads to growing gain g, until the gain equals the losses and
the laser threshold is reached. Clearly the condition (17.26) is fulfilled first
at that frequency which corresponds to the gain maximum. However, since
the cavity modes ωn are discretely spaced, one may not have an eigenmode
directly at the gain maximum. In this case, the mode closest to the gain
maximum starts to lase. The actual laser frequency ωm is determined from
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Eq. (17.27).
In our simple spatially homogeneous model, in which spectral hole burn-

ing is impossible due to the rapid carrier–carrier scattering, the plasma can
support only one stable laser mode. Once the threshold of the first laser
mode is reached, increased pumping does not increase the plasma density,
but rather leads to an increase of the intensity of the lasing mode. At this
point it should be noted that the laser equations derived in this chapter
are valid only if the field is not too strong, since we did not include any
high-field effects. Intensive laser beams may very well contribute to the
energy renormalization for the electrons and holes. These radiative self-
energy corrections describe the spectral hole burning, which for lasers gives
rise to an extra gain saturation at high fields.

A sharp laser threshold as in Fig. (17.1) is usually not realized in exper-
iments. The observed lasing transition is typically somewhat more grad-
ual, due to the unavoidable presence of spontaneous emission into the laser
mode and due to other noise sources in the laser. To include such effects, we
have to extend our simple treatment to include dissipation and fluctuation
contributions.

17.3 Quantum Mechanical Langevin Equations

In a more complete laser theory, we have to include the fluctuations, which
are necessarily linked with dissipative processes. In the following, we dis-
cuss quantum mechanical Langevin equations, which provide a method that
allows us to incorporate, at least approximately, dissipative processes and
the connected fluctuations into the Heisenberg equations for a given quan-
tum mechanical operator. With this method we obtain noise terms in the
dynamic equations for the laser field and the reduced density matrix of the
electronic excitations.

As an example, we first show for the harmonic oscillator that it is quan-
tum mechanically inconsistent to have only dissipative terms in addition
to the usual Heisenberg equation. The equation of motion for the Boson
annihilation operator of the harmonic oscillator is

db

dt
=
i

�
[H, b] = −iωb . (17.29)
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To include damping in the traditional way, we write

db

dt
=
(
−iω − κ

2

)
b . (17.30)

The solution of this equation is b(t) = b(0) exp[−iω + κ/2)t], and it is a
simple exercise (see problem 17.1) to show that the commutator [b(t), b†(t)]
is not equal to one for all times. The damping term causes a decay of the
commutator. We can correct this inconsistency by adding a fluctuation
operator f(t) to the equation of motion

db

dt
=
(

−iω − κ

2

)
b(t) + f(t) . (17.31)

Langevin equation

For simplicity, we always assume in this book that the fluctuation oper-
ators can be described as Markovian noise sources. This means that the
stochastic fluctuations at different times are uncorrelated (no memory)

〈f(t)f†(s)〉 = 2Dδ(t − s) . (17.32)

Markovian fluctuations

The average in Eq. (17.32) is taken over a reservoir to which the system
must be coupled in order to introduce irreversible behavior. D is called the
diffusion constant, which is related via the dissipation–fluctuation theorem
to the damping constant κ.

To obtain an explicit form for the fluctuation operator and the dissipa-
tion rate, let us discuss the coupling of the harmonic oscillator to a reservoir
(also called a bath), which consists of a large set of harmonic oscillators Bλ

with a continuous energy spectrum �Ωλ. We assume that the bath oscilla-
tors are all in thermal equilibrium and are not disturbed by the coupling
to the harmonic oscillator which represents our system. In other words,
we assume that the bath is infinitely large in comparison to the system of
interest.
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The total system-bath Hamiltonian is

H
�

= ωb†b+
∑
λ

ΩλB
†
λBλ +

∑
λ

gλ (bB
†
λ +Bλb

†) . (17.33)

The equations of motion for the oscillators of the system and bath are

db

dt
= −iωb− i

∑
λ

gλBλ

and

dBλ

dt
= −iΩλBλ − igλb . (17.34)

Formally integrating the equation for the bath operator, we obtain

Bλ(t) = Bλ(0)e−iΩλt − igλ
∫ t

0

dτ b(τ) e−iΩλ(t−τ) . (17.35)

Inserting this result into the equation for the system operator yields

db

dt
= −iωb− i

∑
λ

gλ

[
Bλ(0)e−iΩλt − igλ

∫ t

0

dτ b(τ) e−iΩλ(t−τ)

]
, (17.36)

which we write in the form

db

dt
= −iωb+ f(t)− κ

2
b(t) . (17.37)

Now, we identify

κ

2
b(t) �

∑
λ

g2λb(0)e
−iΩλt

∫ t

0

dτ ei(Ωλ−ω)τ �
[∑

λ

g2λ π δ(Ωλ − ω)
]
b(t) ,

(17.38)

where we approximated b(t) � b(0) exp(−iωt). In Eq. (17.38), we recog-
nize Fermi’s golden rule for the transition rate per unit time of an energy
quantum �ω into the continuous spectrum of the bath. Using the density of
states ρ(ω) � ρ, assuming g(ω) � g, and integrating over all bath energies,
we get the damping constant

κ = g22πρ . (17.39)
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The fluctuation operator f(t) is given by the second term in Eq. (17.36) as

f(t) = −i
∑
λ

gλBλ(0)e−iΩλt . (17.40)

Obviously, if we average f(t) over the bath < · · · >= tr ρB . . . , with

ρB =
e−βHB

tr e−βHB
, (17.41)

we find 〈f(t)〉 = 0. For the second moments, we get

〈f †(t)f(s)〉 =
∑
λ

g2λ 〈B†
λ(0)Bλ(0)〉 eiΩλ(t−s) � g2g0(ω)ρ2πδ(t− s) ,

or

〈f†(t)f(s)〉 = κ g0(ω)δ(t − s) ,

〈f(t)f†(s)〉 = κ
[
g0(ω) + 1

]
δ(t − s) ,

〈f(t)f(s)〉 = 0 and 〈f†(t)f†(s)〉 = 0 . (17.42)

dissipation-fluctuation theorem for harmonic oscillator

Here, g0(ω) =
[
exp(β�ω) − 1

]−1 is the thermal Bose distribution for the
bath quanta. Eqs. (17.42) are called dissipation-fluctuation relations be-
cause they link the correlations of the fluctuations and the damping con-
stant κ, which describes the dissipation rate. We see that our simple model
yields, at least approximately, Markovian correlations for the fluctuations.

For the discussion of noise sources in the electron–hole system of the
semiconductor laser, one needs a more general formulation of the quan-
tum mechanical dissipation–fluctuation theorem. Following Lax (1966), we
therefore write the general Langevin equation for a set of quantum mechan-
ical variables Oµ as

d

dt
Oµ = Aµ({Oµ}, t) + Fµ({Oµ}, t) , (17.43)

where the dissipation rates Aµ are calculated in second-order perturbation
theory in the interaction of the system with its reservoirs, as shown above
for the example of the harmonic oscillator. The Markov assumptions for
the fluctuations are then:
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Fµ(t) is independent of all Oµ(s) for t > s ;

〈Fµ(t)〉 = 0 ;

〈Fµ(t)Fν(s)〉 = 2Dµν δ(t− s) . (17.44)

In order to determine the generalized diffusion coefficients Dµν , we use the
Langevin equation (17.43). We obtain Oµ(t+∆t), where ∆t is a small time
interval, from Oµ(t) as

Oµ(t+∆t)−Oµ(t) =
∫ t+∆t

t

dsAµ({Oµ}, s) +
∫ t+∆t

t

dsFµ({Oµ}, s)

or

∆Oµ � Aµ∆t+
∫ t+∆t

t

dsFµ(s) . (17.45)

For the time derivative of the bilinear expression 〈Oµ(t)Oν(t)〉, we find

d

dt
〈Oµ(t)Oν (t)〉 � 1

∆t

[
〈Oµ(t+∆t)Oν(t+∆t)〉 − 〈Oµ(t)Oν (t)〉

]
� 1
∆t

[
〈(Oµ(t) + ∆Oµ)(Oν(t) + ∆Oν)〉 − 〈Oµ(t)Oν(t)〉

]
� 1
∆t

[
〈Oµ(t)∆Oν〉+ 〈∆OµOν (t)〉 + 〈∆Oµ∆Oν〉

]
.

Using Eq. (17.45) we get

d

dt
〈Oµ(t)Oν (t)〉 � 〈OµAν〉+ 〈AµOν〉

+
1
∆t

[
〈Oµ(t)

∫ t+∆t

t

dsFν(s)〉+ 〈
∫ t+∆t

t

dsFµ(s)Oν (t)〉
]

+ 〈Aµ(t)
∫ t+∆t

t

dsFν(s)〉 + 〈
∫ t+∆t

t

dsFµ(s)Aν(t)〉

+
1
∆t
〈
∫ t+∆t

t

dsFµ(s)
∫ t+∆t

t

ds′ Fν(s′)〉 . (17.46)

The terms in the second line of Eq. (17.46) do not contribute because
Oµ(t) is not correlated with the fluctuations Fν(s) for t < s < t + ∆t
(see Eq. (17.44)). The terms in the third line are of third order in the
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system-bath interaction and are neglected. Inserting the Markov assump-
tion, Eq. (17.44), into the last line of Eq. (17.46), we get the result

2Dµν =
d

dt
〈OµOν〉 − 〈AµOν〉 − 〈OµAν〉 . (17.47)

dissipation–fluctuation theorem

According to Eq. (17.47), one has to calculate the time-derivative of the
bath-averaged term 〈OµOν〉 and subtract the expressions which contain
the linear dissipation rate Aµ in order to get the diffusion coefficients Dµν .

As an application of Eq. (17.47), we now use the example of spontaneous
emission to calculate the diffusion coefficient for ni,k and Pk. Note, that we
do not adiabatically eliminate the interband polarization dynamics in this
example. For more details, see Haug and Haken (1967). The interaction
Hamiltonian with the bath of photons is

HI =
∑

�dcv (a
†
c,kav,kBλ +B†

λa
†
v,kac,k) , (17.48)

where the index λ runs over the continuum of all photon modes. We assume
that the bath is in the vacuum state |0λ〉 without photons, so that only
spontaneous emission and no absorption is possible. The change of the
population density in the state c,k calculated in second-order perturbation
theory is

d

dt
〈nc,k〉 = −d2cv

∑
λ

〈nc,k(1− nv,k)〉πδ(εck − εvk − Ωλ) = 〈Anc,k〉 , (17.49)

in agreement with Fermi’s golden rule. In order to calculate the diffusion
coefficient Dnc,k,nc,k , we have to evaluate

d

dt
〈nc,knc,k〉 = d

dt
〈nc,k〉 = 〈Anc,k〉 ,

so that

2Dnck,nck = d2cv
∑
λ

〈nc,k(1− nv,k)〉πδ(εck − εvk − Ωλ) , (17.50)

which describes the typical shot noise for population variables. In general,
shot noise consists of the sum of all transition rates in and out of the con-
sidered state. Because we assume that no photons are present in the bath,
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only emission processes, i.e., transitions out of the state c,k are possible.
In local equilibrium, where 〈nik〉 = fik, we have to consider only the total
number of electrons in one band. Because the optical transition probabili-
ties at different k-values are not correlated, one gets for the fluctuations of
the total electron density Nc the result

2DNc,Nc = d2cv
∑
λ,k

fck(1 − fvk)πδ(εck − εvk − Ωλ) , (17.51)

which is just the total spontaneous transition rate. Similarly, one calculates
the auto-correlation of the fluctuations of the polarization Pk

2DPk,P
†
k
+ 2DP †

k ,Pk
= 2γk

[
fck(1− fvk) + fvk(1 − fck)

]
. (17.52)

These polarization fluctuations determine mainly the coherence properties
of the semiconductor laser light.

The different dissipative contributions to the carrier rate equation (17.2)
can be modeled by a coupling to a suitable bath. The resulting noise sources
all have shot noise character (see e.g. Haug, 1967, 1969)

dN

dt
= rp − rst − rsp − rnr + Fp + Fst + Fsp + Fnr . (17.53)

The correlations of the fluctuations are discussed below.
Diode lasers are pumped by an injection current, which is driven by a

voltage source via a serial resistor Rs. If the serial resistor is larger than the
differential resistance of the diode, Rs suppresses the current fluctuations in
the diode. The resulting pump noise is, as Yamamoto and Machida (1987)
have shown, simply the Nyquist noise in the serial resistor

〈Fp(t)Fp(s)〉 = 4kBT
e2L3Rs

δ(t− s) . (17.54)

Obviously, by increasing Rs one can essentially suppress the pump noise.
For the stimulated emission, we obtain from the generalized dissipation

fluctuation theorem, Eq. (17.54),

〈Fst(t)Fst(s)〉 = |E0(t)|
2

2L3

[
χ′′
a(ω) + χ′′

e (ω)
]
δ(t− s) , (17.55)

where we used Eqs. (17.1) and (17.6). In the evaluation of the various terms
in Eq. (17.55), we had to take the expression for χ before the expectation
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values were taken, i.e.,

fe,k → a†c,kac,k (17.56)

and correspondingly for the other population terms. A close inspection of
Eq. (17.55) shows that 〈Fst(t)Fst(s)〉 is proportional to

fefh + (1− fe)(1 − fh) ,

which describes the sum of the interband transition rates due to the laser
action.

The noise terms due to spontaneous emission have the correlation

〈Fsp(t)Fsp(s)〉 = rsp
L3

δ(t− s) , (17.57)

and the nonradiative transition noise yields

〈Fnr(t)Fnr(s)〉 = rnr
L3

δ(t− s) . (17.58)

17.4 Stochastic Laser Theory

The basic equations for our stochastic laser theory are (17.53) and (17.18)
with an added noise term. To get a feeling for the solutions of these equa-
tions, we analyze the situation, where we have small fluctuations around
the steady state values of Eqs. (17.26) – (17.28), which are now the mean
(bath averaged) values. Following Vahala and Yariv (1983), we express all
quantities in terms of their mean values and slowly varying amplitude and
phase perturbations, i.e.,

En = [E0 + E(t)]e−i
[
ωmt−φ(t)

]
,

N = N0 + n(t) ,

and

χ(N) = χ(N0) +
∂χ

∂N0
n(t) , (17.59)

where the first-order Taylor coefficient is

∂χ

∂N0
=

∂χ

∂N

∣∣∣∣
N=N0

.
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We insert (17.59) into Eq. (17.18) and linearize the resulting equation in
terms of the perturbations E(t), φ(t) and n(t). As described in prob-
lem (17.4), we obtain

i2ωm

(
dE

dt
+ iE0

dφ

dt

)
+ i ωmE0

8π
ε0

∂χ

∂N0

dn

dt
+ ω2

m

4π
ε0

∂χ

∂N0
E0 n

+
[
ω2
m − ω2

n + iωm
κc

nb
+

4πω2
m

ε0
χ(N0)

]
E0 = F (t) . (17.60)

On the RHS of Eq. (17.60) we added the classical Markovian noise term
F (t) = F ′(t) + i F ′′(t) with

〈F (t)〉 = 0 ,

〈F ′(t)F ′(t′)〉 = 〈F ′′(t)F ′′(t′)〉 =Wδ(t− t′) ,

and

〈F ′(t)F ′′(t)〉 = 0 , (17.61)

where W is given by the rate of spontaneous emission into the laser mode.
The expression for W can be determined from the quantum mechanical
theory of Sec. 17-3.

Eq. (17.60) describes the field and phase perturbations which are cou-
pled to the carrier density perturbations n(t). Introducing the expansion
(17.59) into the Langevin equation (17.53) for the carrier density yields

dn

dt
+
∂χ′′

∂N0

1
2�
E2
0n−

χ′′(N0)E0E

�
+
n

τ
− χ′′(N0)

2�
E2
0 +

N0

τ
− rp = Fn ,

(17.62)

where, as in Sec. 17.2, we again omitted the spontaneous emission and the
nonlinear nonradiative recombination term CN3. Fn is the sum of the
relevant noise contributions.

The perturbations of the carrier density and the field amplitude and
phase have zero mean values. Therefore, taking the bath average of the
coupled Eqs. (17.60) and (17.62), yields the steady state laser equations
(17.22) – (17.24). Using these equations in Eqs. (17.60) and (17.62) gives
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three coupled equations which link the amplitude, phase and carrier-density
perturbations to the Langevin noise terms

dE

dt
+ E0

4π
ε0

∂χ′

∂N0

dn

dt
+ E0ωm

2π
ε0

∂χ′′

∂N0
n =

F ′′

ωm
, (17.63)

dφ

dt
+

4π
ε0

∂χ′′

∂N0

dn

dt
− ωm 2π

ε0

∂χ′

∂N0
n = − F ′

ωmE0
, (17.64)

and

dn

dt
+
n

τr
− ω2

rε0
E0ωm2π∂χ′′/∂N0

E = Fn . (17.65)

Here, we defined

1
τr

=
1
τ
+ E2

0

∂χ′′

∂N0

1
2�

,

ω2
r = E2

0ωm
2π
�ε0

∂χ′′

∂N0
χ′′(N0) = −I0κ 4π

�ε0

∂χ′′

∂N0
, (17.66)

and

I0 = E2
0

cnb
8π

. (17.67)

To appreciate these definitions, let us take the time derivative of the deter-
ministic part of Eq. (17.65):

d2n

dt2
+
dn

dt

1
τ ′r
− ω2

rε0
E0ωm2π∂χ′′/∂N0

dE

dt
= 0 , (17.68)

and eliminate dE
dt using the deterministic part of Eq. (17.63). We obtain

d2n

dt2
+
dn

dt

1
τ ′r

+ ω2
rn = 0 , (17.69)

where

1
τ ′r

=
1
τr

+
2ω2

r

ωm

∂χ′/∂N0

∂χ′′/∂N0
. (17.70)

Eq. (17.69) shows that the density exhibits damped oscillations, the so-
called relaxation oscillations. The parameter combinations ωr and τ ′r are
the frequency and damping time of these relaxation oscillations for ωR >>

1/τ ′r.
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Eqs. (17.63) – (17.65) are coupled first-order differential equations which
can be solved by Laplace transformation. From the resulting expressions
for E(t), φ(t), and n(t) we can compute the autocorrelation functions, such
as 〈E(t + τ)E(t)〉. We obtain for the phase autocorrelation function, see
problem (17.6),

〈φ(t + τ)φ(t)〉 = W

4ω2
mE

2
0

(1 + α2)t

+ [B1 cos(βτ) +B2 sin(β|τ |)]e−|τ |/2τr , (17.71)

where B1 and B2 are combinations of the constants entering Eqs. (17.63)
– (17.65),

β2 =
(
ω2
r −

1
4τ2r

)

and

α =
∂χ′/∂N0

∂χ′′/∂N0
. (17.72)

is the so-called line-width enhancement factor.
The laser line width is obtained from

〈E∗(t+ τ)E(t)〉 � E2
0e

iωmτ i〈ei
[
φ(t+τ)−φ(t)

]
〉

� E2
0e

iωmτe−
1
2 〈
[
φ(t+τ)−φ(t)

]2〉
� E2

0e
iωmτexp

{
− W

8ω2
mE

2
0

(1 + α2)|τ |

+ e−|τ |/τr
[
B1 cos(βτ) +B2 sin(β|τ |)

]
−B1

}
. (17.73)

Assuming for the moment |τ | >> τr, we obtain from Eq. (17.73)

〈E∗(t+ τ)E(t)〉 � E2
0e

iωmτe
− W

8ω2
mE2

0
(1+α2)|τ |

. (17.74)

Fourier transformation of Eq. (17.74) yields the field spectrum
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SE(ω) =
∫ ∞

−∞
dτ e−iωτ 〈E∗(τ)E(0)〉

= E2
0

∆ω
(ω − ωm)2 + (∆ω/2)2

, (17.75)

where

∆ω =
W

4ω2
mE

2
0

(1 + α2) . (17.76)

Eq. (17.76) is the Schawlow–Townes line-width formula, except for the ad-
ditional term α2. Since α2 is often larger than one in semiconductor gain
media, the laser line width usually exceeds the Schawlow–Townes limit.
Hence, the expression line-width enhancement factor for α. The expres-
sion (17.76) for the semiconductor laser line width has been derived first
by Haug and Haken (1967), but only later has it been recognized that the
line width enhancement factor α in semiconductors can be much larger
than unity, because generally the density-dependent refractive changes of
the complex gain function are quite large in semiconductors as compared
to atomic systems.

Fourier transformation of the full correlation function (17.73) is not
possible analytically. In order to show the basic features, we ignore the
term proportional B2 and approximate exp(−|τ |/τr) � 1, β � ωr, assum-
ing weakly damped relaxation oscillations. We use the associated series
(Abramowitz and Stegun, 1972) for the modified Bessel functions In to
write

eB1[cos(ωrτ)−1] = I0(B1) + 2
∞∑
n=1

In(B1) cos(nωrτ) . (17.77)

Inserting our approximations and Eq. (17.77) into Eq. (17.73), and evalu-
ating Eq. (17.75) yields

SE(ω) = E2
0∆ω

∞∑
n=−∞

e−B1In(B1)
(ω − ωm − nωr)2 + (∆ω/2)2

, (17.78)

showing that the laser spectrum consists of a series of lines at ω = ωm+nωr.
An example of the spectrum is shown in Fig. 17.2. The main peak is at

ωm and the sidebands occur at multiples of the carrier relaxation oscillation
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Fig. 17.2 Plot of the main mode and the first two sidemodes of the normalized laser
spectrum, Eq. (17.75). For illustration, we choose the frequency of the relaxation oscil-
lations ωr = 2, B1 = 1, ∆ω/ωr = 0.25.

frequency. Such spectra, usually with stronger damped sidemodes, are in-
deed observed in semiconductor lasers above threshold, see, e.g., Thompson
(1980) or Agrawal and Dutta (1986).

17.5 Nonlinear Dynamics with Delayed Feedback

A single-mode semiconductor laser diode displays a rich scenario of nonlin-
ear dynamical effects with bistable, quasi-periodic and chaotic behavior, if
one provides an optical feedback which couples a part of the emitted light
field E(t− τ) with an appropriate delay τ back into the resonator. In order
to get these instabilities, the delay-time has to be of the order of an in-
verse relaxation oscillation frequency, i.e. τωr � 1. Because the relaxation
oscillation frequencies are typically in the MHZ-region, experimental real-
izations typically use the field from a distant optical reflector.

In the presence of delayed feedback, the appropriate field equation in
the slowly varying amplitude approximation is(

d

dt
− iω0

)
E0(t) =

1
2

[
G(N)− 1

Tp

]
E0(t) + ηE0(t− τ) , (17.79)

where η is the strength of the feedback. The intensity gain G differs by a
factor of 2 from the amplitude gain g defined in (17.1). It is considered here
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as a complex gain function, i.e. G′ = 2g, while the imaginary part describes
the dispersive influence. In terms of the complex dielectric function, the
complex gain is G = 8πiωχ/(nbc). Similarly, the inverse photon lifetime
Tp is related to the cavity loss κ by T−1

p = 2κ. The material equation is
according to (17.2)

dN

dt
= rp − rst − rsp − rnr

= rp −G′I(t)− N

TN
. (17.80)

Writing the field E0 =
√
Iei(ω0t+Φ) in terms of the intensity I(t) and a

phase Φ(t), the field equation yields

dI

dt
=
(
G′− 1

Tp

)
I(t)+2η

√
I(t)I(t− τ) cos[ω0τ +Φ(t)− Φ(t− τ)] ,

(17.81)

and

dΦ
dt

=
1
2
G′′(N)− η

√
I(t− τ)
I(t)

sin
[
ω0τ +Φ(t)− Φ(t− τ)] . (17.82)

Next, we simplify the gain by linearizing it around its value at threshold.
With ∆N = N −Nthr, we get for the real part of the gain

G′(∆N) = G′(Nthr) +
∂G′(N)
∂N

∆N =
1
Tp

+A∆N , (17.83)

where we used the fact that at threshold the gain equals the losses 1
Tp
. For

the imaginary part, we introduce the line-width enhancement factor in the
form

α = −∂G
′′/∂N

∂G′/∂N
, (17.84)

compare (17.72) and write

G′′(∆N) = G′′(Nthr) +
∂G′′

∂N
∆N = G′′(Nthr)− αA∆N . (17.85)

For sufficiently strong laser fields, it may happen that the gain is spectrally
deformed since the stimulated emission predominantly removes carriers that
are in states energetically close to the laser resonance. This spectral hole
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burning is often treated phenomenologically by introducing an intensity-
dependent gain in the form

G′(∆N, I) =
G′(∆N)
1 + εI(t)

� G′(∆N)
[
1− εI(t)] , (17.86)

where the expanded form can be used for weak saturation. This approxima-
tion can indeed be motivated by detailed studies of the scattering kinetics
(see Schuster and Haug (1996)). Ignoring a constant phase shift, we obtain
the following equations for the intensity, phase, and the deviations of the
total carrier number from its threshold value

dI

dt
=
[
G′(∆N, I)− 1

Tp

]
I(t) + η

√
I(t)I(t−τ) cos[ω0τ +Φ(t)− Φ(t−τ)] ,

(17.87)

dΦ
dt

= −α
2
A∆N(t)− η

√
I(t− τ)
I(t)

sin
[
ω0τ +Φ(t)− Φ(t− τ)] , (17.88)

and

d∆N
dt

= ∆rp −G′(∆N, I)I(t) − ∆N
TN

. (17.89)

These equations are know as the Lang–Kobayashi equations.
As an application, we now analyze under which conditions a weak level

of feedback can transform the relaxation oscillations of a semiconductor
laser into self-sustained oscillations. In the relaxation oscillations, the car-
rier and photon numbers oscillate out of phase about their mean value.
Because the oscillations are damped, they are usually present only after
fast switching processes or as a consequence of noise. The delayed external
feedback, however, can counteract the damping leading to stable oscilla-
tions. In terms of the parameters of the Lang-Kobayashi, (17.87) – (17.89),
the relaxation oscillation frequency (17.66) becomes

ω2
r =

∂G′

∂N
∆rp . (17.90)

This form shows that the relaxation oscillation frequency varies as the
square root of the pump rate above threshold. Decomposing the phase
into a part linear in time and an oscillating one, we get

Φ(t) = ∆ω0t+ φ(t) . (17.91)
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The time average < dΦ(t)/dt >= ∆ω0t describes the shift of the laser fre-
quency by the feedback. For external laser modes, which obey the condition

ωL = ω0 +∆ω0 =
(2M − 1/2)π

τ
, (17.92)

where M is a positive integer, the trigonometric functions simplify to

cos
[
ω0τ +Φ(t)− Φ(t− τ)] = sin

[
φ(t) − φ(t− τ)] , (17.93)

and

sin
[
ω0τ +Φ(t)− Φ(t− τ)] = − cos

[
φ(t)− φ(t − τ)] . (17.94)

The cos term can be replaced by its temporal average. Without this replace-
ment, one would get additionally the contributions of the higher harmonics
2mω with m = 1, 2, . . . . A detailed analysis shows further that under the
chosen conditions one can use the following simplifications√

I(t)I(t− τ) � I0 and
√
I(t− τ)/I(t) � 1 , (17.95)

where I0 is the stationary mean intensity value. As only oscillations with
small amplitudes will be considered, one can linearize the product G′(t)I(t)
around its stationary value. Denoting the stationary values as I0 and N0,
we define the oscillatory deviations p(t) and n(t) via

I(t) = I0
[
1 + p(t)

]
and N(t) = N0 +

Tpn(t)
∂G′/∂N

. (17.96)

The mean photon number is

I0 = ∆rpT ′
p , where T ′

p =
Tp

1 + ε/(ATn)
� Tp . (17.97)

The mean shift of the laser frequency is

〈Φ̇〉 = η〈cos[φ(t)− φ(t− τ)]〉 , (17.98)

and the stationary carrier density is

N0 = Nthr − ∂G′/∂I
∂G′/∂N

I0 . (17.99)

The equations of motion for p(t), φ(t), and m(t) are

dp

dt
= −2Γpp(t) + n(t)

Tp
+ 2η sin

[
φ(t)− φ(t− τ)] , (17.100)
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dφ

dt
=

α

2Tp
n(t) , (17.101)

and

dn

dt
= −2Γnn(t)− Ω̃2Tpp(t) . (17.102)

Here, Ω̃ is the relaxation oscillation frequency of the solitary laser Ω̃2 =
ω2
r − (Γp + Γn)2 � ω2

r . The damping rates Γp and Γn are given by

2Γp = − ∂G/∂I

∂G/∂N
ω2
rTp and 2Γn =

1
TN

+ ω2
rTp . (17.103)

An approximative solution of these equations is obtained in the form of
simple harmonic oscillations

φ(t) =
1
2
aφ cos(ωt) , (17.104)

p(t) = ap cos(ωt− µ0), ap = (ω/ωr)2aφ
α cos(µ0)

, µ0 = arctan(
2Γn
ω

) , (17.105)

and

n(t) = −an sin(ωt) with an =
ωTp
α

aφ . (17.106)

The amplitude and period of the limit cycle is obtained from the equations
of motion using the expansion sin(b sin(x)) � 2J1(b) sin(x), where J1(b) is
the first order Bessel function. With b = aφ sin(ωτ2 ) one gets the implicit
equation

b

2J1(b)
=

η

ηc
, (17.107)

where the critical feedback strength ηc for the formation of the limit cycle
with the period ω is given by

ηc =
(
ω

ωr

)2 Γp + Γn
α sin2(ωτ/2)

. (17.108)

Using a quadratic expansion of the Bessel function 2J1(b)/b � 1− b2/8 one
gets a square root law of the form

b = 2
√
2
√
1− ηc

η
, (17.109)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Semiconductor Laser 345

which is typical for a so-called Hopf bifurcation. The frequency of the limit
cycle is found from

ω

ωr
− ωr

ω
=

2(Γn + Γp)
ωr tan(ωτ/2)

. (17.110)

This equation has in principle an infinite series of solutions. As an example,
we consider feedback levels η ≥ ηc, where only two solutions ωi with i = 1, 2
are possible. In Fig. 17.3, we compare the analytical results to numerical
solutions of the full equations. Fig. 17.3a shows the dominant characteristic
frequencies of the two solutions and Fig. 17.3b displays the amplitudes of
the intensity oscillations which are marked by the arrows in Fig. 17.3a. In
Fig. 17.3c, we plot the parameter ranges in which the different stationary,
single frequency (monostable) and bistable solutions appear.
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Fig. 17.3 Two bistable limit cycles as a function of the relaxation frequency Ω(J) =
ωr(rp), where J = rp is the pump current. (a) Frequencies of the two limit cycles. (b)
Amplitudes of the oscillating photon density. The circles give the results of the numerical
integration. (c) Critical feedback rates for the various types of solutions. The parameters
are α = 6, Tp = 2ps, Tn = 2ns, τ = 1ns, (∂G′/∂I)/(∂G′/∂N) = −4.6. [According to
Ritter and Haug (1993).]

The numerical solutions of the Lang-Kobayashi equations and the ex-
perimental findings of Mørk et al. (1990) confirm the calculated scenario
for small feedback levels quite well. At higher feedback levels frequency
doubling of the oscillations and quasi-periodic solutions arise, which finally
go over into chaotic solutions. These chaotic solutions are characterized by
strange attractors, which can be generated, e.g., by plotting the successive
intensity maxima Imax

n+1 versus Imax
n of the oscillations.
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PROBLEMS

Problem 17.1: Show that the commutator relation of the harmonic oscil-
lator is violated if one includes only dissipation in the Heisenberg equation
for b and b†.

Problem 17.2: Derive Eq. (17.18) for the field amplitudes from the wave
equation (17.14). Use the eigenmode expansion (17.15) and χ(N = 0) = 0,
since the background susceptibility has been included in ε0.

Problem 17.3: Use the general fluctuation–dissipation theorem,
Eq. (17.47), to derive the diffusion coefficients, Eqs. (17.50) – (17.52).

Problem 17.4: Use the expansion (17.59) to derive Eq. (17.60) from
Maxwell’s wave equation (17.18). Hint: Neglect all second-order derivatives
of the perturbations, all products of perturbations, terms proportional to
(ω2

m − ω2
n)E, σE, σφ, and use[

1 +
4πχ(N0)

ε0

](
E

φ

)
�
(
E

φ

)
.

Problem 17.5: Solve Eqs. (17.63) – (17.65) using Laplace transformations.

Problem 17.6: Use the solutions of problem 17.5 to compute 〈φ(t+τ)φ(t)〉.
Hint: Keep decaying terms ∝ exp(−ω|τ |), but neglect all terms propor-
tional exp(−ωt), for and ω > 0.
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Chapter 18

Electroabsorption

An important tool in solid-state spectroscopy is the application of static
electric or magnetic fields. These fields give rise to characteristic changes
in the optical spectra yielding valuable information about the nature of the
optical transitions. In this chapter, we discuss the effects of dc-electric fields
on the absorption of bulk (3D) and quantum-well (quasi-2D) semiconduc-
tors showing that the field effects in the respective absorption spectra are
remarkably different.

Applying an electric field to atomic systems causes a reduction of the
overall symmetry, which leads to the splitting of degenerate levels and to
field-dependent level shifts. This effect is called the (dc) Stark effect. If one
applies an external electric field to a semiconductor, this field has a pro-
nounced influence on the optically active electron–hole pairs. In comparison
to these effects, it is often justified to disregard field-induced changes in the
atomic orbits. Following this philosophy, we therefore describe the atomic
orbits by the unperturbed Bloch functions and study the influence of the
field on the relative motion of the electron–hole pair using effective mass
approximation.

18.1 Bulk Semiconductors

In Chap. 10, we compute the semiconductor band-edge absorption spectrum
for directly allowed optical transitions. The result can be written as

α(ω) = αb
∑
n

|ψn(r = 0)|2δ(En − �ω) , (18.1)

349
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where

αb =
8π2|dcv|2ω

nbc
, (18.2)

including a factor 2 from the spin summation. In Eq. (18.1), ψn and En

are the eigenfunctions and energy eigenvalues of the electron–hole pair,
respectively, where En includes the band-gap energy Eg.

If we disregard the Coulomb effects altogether, the stationary
Schrödinger equation of the relative motion of the electron–hole pair in
the presence of an electric field F (parallel to the z-axis) can be written as

(
−�

2∆
2mr

− ezF − En

)
ψn(r) = 0 . (18.3)

To solve this equation, we make the ansatz

ψn(r) =
1
L
ei(kxx+kyy)ψn(z) , (18.4)

where L = V 1/3 is the linear extension of the system. We write the energy
eigenvalue as

En =
�
2

2mr
(k2|| + κ2n) ≡ En,k|| , (18.5)

with k2|| = k2x+ k2y. Inserting Eqs. (18.4) and (18.5) into Eq. (18.3), we find

(
d2

dz2
+ fz + κ2n

)
ψn(z) = 0 , (18.6)

where

f = eF
2mr

�2
=

eF

E0a20
, (18.7)

and E0 and a0 are the usual excitonic units, defined in Chap. 10. Eq. (18.7)
shows that fa30 is the ratio between the dipole energy in the field and the
exciton Rydberg energy, ea0F/E0. Introducing the dimensionless variable
Z by

Z = f1/3z (18.8)
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and substituting

ζn = Z + κ2nf
−2/3 = Z + (a0κn)2

(
E0

a0eF

)2/3

, (18.9)

we find

ψ′′
n(ζn) = −ζnψn(ζn) , (18.10)

where ψ′′
n(ζ) = d2ψn/dζ

2. The solution of Eq. (18.10) is

ψn(z) = anAi(−ζn) , (18.11)

where Ai(x) is the Airy function (Abramowitz and Stegun, 1972),

Ai(x) =
1
π

∫ ∞

0

du cos
(
u3

3
+ ux

)
, (18.12)

and an is a normalization constant. The Airy function decays exponentially
for positive arguments

lim
x→∞ Ai(x) =

1
2
√
πx1/4

e−
2
3x

3/2
(
1− 3c1

2x3/2

)
, (18.13)

with c1 = 15/216. For negative arguments, the Airy function oscillates,

lim
x→∞ Ai(−x) = 1√

πx1/4
sin
(
2
3
x3/2 +

π

4

)
, (18.14)

expressing the accelerating action of the field. The normalization constant
an is determined by

a−2
n =

∫ ∞

−∞
dz|Ai(−ζn)|2 = lim

L→∞

∫ L

−L

dz|Ai(−ζn)|2 , (18.15)

or, using Eqs. (18.8) and (18.9),

f1/3

a2n
= lim

L→∞

∫ Lf1/3

−Lf1/3
dx |Ai(x)|2 . (18.16)

With partial integration we obtain

∫ Lf1/3

−Lf1/3
dx|Ai(x)|2 = xAi2(x)|Lf1/3

−Lf1/3 −
∫ Lf1/3

−Lf1/3
dx2xAi(x)Ai′(x) . (18.17)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

352 Quantum Theory of the Optical and Electronic Properties of Semiconductors

Because Ai(x) satisfies the differential equation

Ai′′(x) = xAi(x) , (18.18)

we get

∫ Lf1/3

−Lf1/3
dx |Ai(x)|2 = xAi2(x)|Lf1/3

−Lf1/3 −
∫ Lf1/3

−Lf1/3
dx 2Ai′′(x)Ai′(x)

= xAi2(x)|Lf1/3

−Lf1/3 −
∫ Lf1/3

−Lf1/3
dx

d
[
Ai′(x)

]2
dx

=
{
xAi2(x)− [Ai′(x)]2}|Lf1/3

−Lf1/3 . (18.19)

Inserting Eq. (18.19) into Eq. (18.16) yields

a−2
n = lim

L→∞

√
L

f1/3
1
π
, (18.20)

where we used the fact that Ai(x) and Ai′(x) vanish for x→∞. For Ai(−x)
and Ai′(−x), we inserted the asymptotic expressions given by Eq. (18.14)
and by

lim
x→∞Ai′(−x) = x1/4√

π
cos

(
2
3
x3/2 +

π

4

)
. (18.21)

The energy eigenvalues are computed from the boundary condition

ψn(z = L) = 0 (18.22)

as

2
3

√
f

(
L+

κ2n
f

)3/2

=
(
n− 1

4

)
π . (18.23)

Solving Eq. (18.23) for κn and inserting the result into Eq. (18.5) yields

En,k|| =
�
2

2mr

{
k2|| − Lf +

[
3πf
2

(n− 1/4)
]2/3}

. (18.24)

Now, we have all the ingredients needed to evaluate Eq. (18.1), which we
write as
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α(ω) = αb

∫ ∞

−∞

dkx
2π

∫ +∞

−∞

dky
2π

∑
n

πf1/3√
L
δ(En,k|| + Eg − �ω)

×
∣∣∣∣Ai

[
f−2/3

(
k2|| −

2mrEn,k||

�2

)]∣∣∣∣
2

. (18.25)

We change the sum over n to an integral over E

∑
n

→
∫ ∞

0

dE
dn

dE
(18.26)

and evaluate the density of states using Eq. (18.23)

dn

dE
=

2mr

�2π
√
f

(
L+

κ2n
f

)1/2

� 2mr

�2π
√
f

√
L . (18.27)

We dropped the additive term in L + κn/f , since we are finally interested
in the limit L → ∞, see above. Inserting Eq. (18.26) and (18.27) into
Eq. (18.25) yields

α(ω) = αb

∫ ∞

0

dk2||
(2π)2

2mr

�2f1/3

∣∣∣∣Ai
{
f−2/3

[
k2|| +

2mr(Eg − �ω)
�2

]}∣∣∣∣
2

=
αb
2π

mrf
1/3

�2

∫ ∞

ε

dx |Ai(x)|2 , (18.28)

where

ε =
2mr(Eg − �ω)

�2f2/3
=
Eg − �ω

E0

(
E0

ea0F

)2/3

. (18.29)

Again, we evaluate the integral in Eq. (18.28) by partial integration, fol-
lowing the steps in Eqs. (18.16) – (18.19). The result is

∫ ∞

ε

dx |Ai(x)|2 = −εAi2(ε) + [Ai′(ε)]2 . (18.30)

The total absorption spectrum is thus
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Fig. 18.1 Absorption spectrum for free carriers in an electric field according to
Eq. (18.31). The absorption α is given in units of α′ = αbmrf1/3/(2π�2) and ε is
given by Eq. (18.29)

α(ω) =
αb

2π

mrf
1/3

�2
{−εAi2(ε) + [Ai′(ε)]2} . (18.31)

electroabsorption for free carriers

Fig. 18.1 shows the resulting absorption as function of ε. The oscillatory
character of the Airy functions for negative arguments leads to oscillations
in the absorption spectrum above the band gap. The amplitude of these
oscillations decreases with increasing energy. We can also see from Fig. 18.1
that the absorption has a tail below the gap, i.e., for �ω < Eg or ε > 0.

Using the asymptotic form (18.13) and

lim
x→∞ Ai′(x) =

x1/4

2
√
π
e−

2
3x

3/2
(
1 +

21c1
10x3/2

)
, (18.32)

we obtain the below-gap absorption as
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α(ω) � αb

32π2
f

Eg − �ω
exp

{
− 4

3f

[
2mr(Eg − �ω)

�2

]3/2}
. (18.33)

Franz-Keldysh effect

Eq. (18.33) describes the exponential low energy absorption tail which is
caused by the electric field f . The frequency range of this tail increases with
f . One may understand the appearance of the absorption tail as a photon-
assisted field-induced tunneling of an electron from the valence band into
the conduction band.

The absorption spectrum far above the band edge, �ω >> Eg or ε << 0,
can be estimated using Eqs. (18.14) and (18.21) with the result

α(ω) =
αb

(2π)2

(
2mr

�2

)3/2 √
�ω − Eg . (18.34)

Eq. (18.34) is nothing but the free-carrier absorption result of Chap. 5 for
a 3d-system.

18.2 Quantum Wells

If one applies the electric field perpendicular to the layer of a quantum
well, the situation is quantitatively different from that in bulk material.
Because of the opposite charges, the field pushes electron and hole toward
the opposite walls of the well. Hence, the overlap between the corresponding
particle-in-a-box wave functions is drastically modified. To discuss this
effect, we again disregard for the time being the modifications caused by
the electron–hole Coulomb interaction.

In a spatially inhomogeneous situation, such as in a quantum well, one
has to use a two-point susceptibility function in real space representation
χ(R,R′, ω), which connects nonlocally the polarization and the field ac-
cording to

P (R, ω) =
∫
d3R′ χ(R,R′, ω)E(R′, ω) . (18.35)
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The optical susceptibility is given by a generalization of Eq. (18.1) as

χ(R,R′, ω) = χ0
∑
µ

ψ∗
µ(R, r = 0)ψµ(R′, r′ = 0)

�(ω + iδ)− Eµ
. (18.36)

Here, ψµ(R, r) is the wave function of an electron–hole pair, and R, r are
the center-of-mass and relative coordinates, respectively. In spatially homo-
geneous situations, χ depends only on R−R′. The Fourier transform with
respect to the difference of the center-of-mass coordinates yields the spatial
dispersion, i.e., the wave-vector dependence of the susceptibility discussed
in Chap. 11. However, due to the spatially inhomogeneous situation in a
quantum well one has

χ(R,R′, ω) �= χ(R−R′, ω) .

The light wave length in the visible range is of the order of 10−4cm. This
is much larger than the typical quantum-well width, which for GaAs is
around 10−6cm. Therefore, it is useful to introduce a susceptibility which
is averaged over the quantum-well volume,

χ̄ =
1
V

∫
d3R

∫
d3R′χ(R,R′, ω) . (18.37)

This averaged susceptibility locally connects the optical polarization and
the electromagnetic field.

Let us consider, for simplicity, a potential well of infinite depth extend-
ing over −L/2 ≤ z ≤ L/2. The pair wave function of a narrow quantum
well can be taken as the product of particle-in-a-box wave functions for the
electron and hole times the function describing the relative motion in the
plane of the layer

ψµ(R, r) = ψne(ze)ψnh(zh)φk||(r||) . (18.38)

Electron and hole wave functions in the z direction obey the equation(
− �

2

2mi

d2

dz2i
± eEzi

)
ψni(zi) = Eni ψni(zi) , (18.39)

where the +(−) sign is linked to i = e(h). The boundary conditions are

ψni(z = ±L/2) = 0 . (18.40)
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Without the field the wave functions are just the simple trigonometric func-
tions with even and odd parity

ψ0
n(z) =

{
cos(knz)
sin(knz)

}
with kn =

π

L

{
2n+1
2n

}
for n = 0, 1, 2, . . . . (18.41)

The absorption spectrum resulting from Eqs. (18.36) – (18.41) is

α(ω) =
αb
L

∑
k||,ne,nk

δ(�ω − Eg − Ek|| − Ene − Enh)
AneAnh

×
∣∣∣∣∣
∫ +L/2

−L/2

dz ψne(z)ψnh(z)

∣∣∣∣∣
2

, (18.42)

quantum confined Franz-Keldysh spectrum

with Ek|| =
�
2k2

||
2m and the normalization

Ani =
∫ +L/2

−L/2

dz |ψni(z)|2 .

The overlap integral in Eq. (18.42) results from the spatial average,
Eq. (18.37), over Rz = ze = zh = z, because rz = ze − zh = 0 accord-
ing to (18.36), and in the same way over R′

z .
Eq. (18.39) is again solved in terms of Airy functions. However, in order

to fulfill the boundary conditions, we have to use a linear combination of
the two independent types of Airy functions Ai(ζ) and Bi(ζ), where

Bi(x) =
1
π

∫ ∞

0

du

[
e−

u3
3 +ux + sin

(
u3

3
+ ux

)]
, (18.43)

see Abramowitz and Stegun (1972). The solution of Eq. (18.39) is thus

ψni(zi) = aiAi(ζi) + biBi(ζi) , (18.44)

with

ζni = ±f1/3zi − κ2nif−2/3 . (18.45)
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Fig. 18.2 Calculated wave functions and energy levels for a 150 Å thick GaAs-like
quantum well at 0 and 105 Vcm−1. [After Schmitt-Rink et al. (1989).]

The boundary condition yields the requirement for the existence of solutions

Ai(ζi+)Bi(ζi−) = Ai(ζi−)Bi(ζi+) (18.46)

and

bi
ai

= −Ai(ζi+)
Bi(ζi+)

, (18.47)

where ζi± corresponds to zi = ±L/2. Eq. (18.46) determines the energies
κ2ni and Eq. (18.47) yields the relative weight of the Airy functions Bi and
Ai. The summations over ne and nh in Eq. (18.42) are now replaced by
integrations over the energies Ee and Eh

α(ω) =
αb
L

∑
k||

∫ ∞

−eEL/2

dEe

∫ ∞

−eEL/2

dEh
dne
dEe

dne
dEe

×δ(�ω − Eg − Ek|| − Ee − Eh) Ieh , (18.48)
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where Ieh is again the square of the normalized overlap integral between
the electron and hole wave functions

Ieh =

∣∣∣∫ +L/2−L/2
dz ψne(z)ψnh(z)

∣∣∣2
AneAnh

. (18.49)

Fig. 18.2 shows the calculated wave functions in the potential well with and
without an electric field. The picture of the wave functions gives immedi-
ately the information how the overlap integral Ieh changes due to the field
for the various inter-subband transitions.

In Fig. 18.3, we plot the calculated absorption spectrum for a GaAs
quantum well with L= 150 Å width in the presence of an electric field of
105 Vcm−1. We see, e.g., that the transition between the second valence
subband and the first conduction subband, which was forbidden without
field, obtains a large oscillator strength in the field. For the limit L→ ∞,
the inter-subband transitions approach the modulation of the bulk Franz-
Keldysh spectrum.
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Fig. 18.3 Calculated absorption of a 150 Å thick GaAs-like quantum well at 105 Vcm−1.
The individual transitions are labeled (nv , nc) where nv (nc) is the valence (conduction)
subband number. The smooth line is the calculated Franz-Keldysh effect for bulk mate-
rial, see Fig. 18.1. [After Schmitt-Rink et al. (1989).]
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18.3 Exciton Electroabsorption

In this section, we extend the treatment to include the attractive electron–
hole Coulomb potential. Instead of Eq. (18.3), we then have to solve the
basic pair equation(

−�
2∆

2mr
− ezF − e2

ε0r
− Eµ

)
ψµ = 0 . (18.50)

Again, we discuss the solution of this equation and the resulting optical
spectra both for bulk and quantum-well semiconductors.

18.3.1 Bulk Semiconductors

The exciton in a bulk semiconductor loses its stability in the presence of
an electric field, as can be seen easily by inspecting the total electron–
hole potential in Eq. (18.50). Plotting this potential along the z direction,
Fig. 18.4, we see immediately that the exciton can be ionized if one of the
carriers tunnel from z1 to z2 through the potential barrier. The tunne-
ling causes a lifetime broadening of the exciton resonance. For example,
for GaAs the exciton resonance vanishes completely for fields larger than
103V/cm. In addition to the broadening, there is also a shift of the exciton
resonance, the so-called (dc) Stark shift. Second-order perturbation shows
immediately that the shift of the ground state is quadratic in the field and
negative

∆E0 � − (ea0F )2

E0
≡ −F2E0 , (18.51)

which holds as long as the perturbation is sufficiently small, i.e., F << 1.
But still more interesting is the question how the Franz-Keldysh absorption
tail will be modified by excitonic effects. To study the region of the exciton
absorption tail, we use the quasi-classical approximation introduced into
quantum mechanics by Wentzel, Kramers and Brillouin, and often called
the WKB method. This approach has been applied by Dow and Redfield
(1970) to the present problem, we follow here the analytical approximations
by Merkulov and Perel (1973) and Merkulov (1974).

In excitonic units, Eq. (18.50) becomes(
∆+ Fz + 2

r
− ε
)
ψ = 0 , (18.52)
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Fig. 18.4 Exciton potential in z-direction with an applied electric field (F = 0.01).

where all coordinates are scaled with the Bohr radius and all energies with
the exciton Rydberg energy, respectively. Since the scaled pair energy is
always negative in the tail region, we introduced the positive energy scale

ε ≡ −Eµ

E0
≡ Eg − �ω

E0
> 1 . (18.53)

Here, the energy �ω of the exciting photon is assumed to be below the
band-gap energy, so that ε is always positive and larger than unity.

The maximum of the potential (point z3 in Fig. 18.4) has an energy of
−2√2F in z direction. For simplicity, we assume that the applied field is
not too strong so that we always have potential barrier even for the lowest
exciton state, i.e.,

2
√
2F < εmin = 1 . (18.54)

Under this condition, the exciton still exists as a quasi-bound state and we
can essentially divide the solution of the problem into three steps: i) For
the regime far away from the center of the exciton, we make a quasiclassical
approximation and use � as formal expansion parameter. ii) For z < z1, i.e.,
inside the Coulomb well, we neglect the electric field in comparison to the
Coulomb potential and use the quantum mechanical solution (Chap. 10) for
the exciton problem. iii) We match the solutions in the regime z1 < z < z3,
where the quasiclassical approximation is still reasonably good and where
the electric field is still small in comparison to the Coulomb potential.
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First, we derive the quasiclassical solution for z > z2. In cylindrical
coordinates, the Laplace differential operator is given by

∆ =
1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

∂2

∂z2
+

1
ρ2

∂2

∂φ2
, (18.55)

where ρ is the radius perpendicular to z. Because only the wave functions
with the angular-momentum quantum numberm = 0 are finite in the origin
and thus contribute to the absorption spectrum, we drop the dependence
on the angle φ,(

1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

∂2

∂z2
+ Fz + 2√

ρ2 + z2
− ε
)
ψsc = 0 . (18.56)

The force K linked with the potential

V (ρ, z) = −Fz − 2/
√
ρ2 + z2 (18.57)

is given as

K = −∇V = Fez − 2zez + 2ρeρ
r3

, (18.58)

where ez and eρ are the unit vectors in z and ρ direction, respectively. The
ratio of the two force components

Kρ

Kz
= − 2ρ
Fr3 − 2z

(18.59)

is always small for r2 >> F−1. At the maximum of the potential barrier

z23 =
2
F ,

so that one can approximately neglect Kρ in the region z > z3. It is
therefore a good approximation in the whole quasiclassical region to use
only a one-dimensional potential

V (z) = −Fz − 2
z

(18.60)

instead of the full potential, Eq. (18.57). In this case, Eq. (18.56) simplifies
to [

1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

∂2

∂z2
− V (z)− ε

]
ψsc = 0 . (18.61)
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Using the ansatz

ψsc(ρ, z) = χ(ρ)Ψ(z) , (18.62)

we can separate Eq. (18.61) into[
1
ρ

∂

∂ρ
ρ
∂

∂ρ
+ p2ρ

)
χ = 0 (18.63)

and[
∂2

∂z2
− V (z)− ε− p2ρ

]
Ψ = 0 , (18.64)

where pρ is the quasimomentum perpendicular to the z-axis.
Eq. (18.63) is a version of Bessel’s differential equation and the solutions

are the cylindrical Bessel functions

χ(ρ) = J0(pρρ) . (18.65)

To solve Eq. (18.64), we make the quasiclassical approximation. For
this purpose, we introduce again formally the �-dependence of the kinetic
energy operator, use � as a formal expansion parameter, and put it equal
to unity at the end. We write Eq. (18.64) as[

�
2 ∂

2

∂z2
+ p2(z)

]
Ψ = 0 , (18.66)

where we introduce the quasimomentum p(z) through the relation

p2(z) = −ε− V (z)− p2ρ . (18.67)

Inserting the ansatz

Ψ(z) = e
i
�
σ(z) (18.68)

into Eq. (18.66) results in

i�σ′′ − (σ′)2 + p2 = 0 . (18.69)

Now, we expand the phase function σ(z) formally in powers of �/i

σ(z) = σ0(z) + (�/i)σ1(z) + (�/i)2σ2(z) + · · · (18.70)
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and compare the various orders of �. In the order O(�0), we obtain

σ′
0(z) = ±p(z) , (18.71)

with the solution

σ0(z) = ±
∫ z

z2

dζ p(ζ) . (18.72)

The first-order equation is

iσ′′
0 + 2iσ′

0σ
′
1 = 0 , (18.73)

so that

σ1(z) = − ln
√
p(z) + ln C , (18.74)

where ln C is a normalization constant. Summarizing the results, we obtain

Ψ(z) =
C√|p(z)| exp

(
±i
∫ z

z2

dζ p(ζ)
)

, (18.75)

where we put the formal expansion parameter �→ 1.
Because a classical particle cannot penetrate into regions in which the

potential energy exceeds the total energy, we define the classical turning
points by p2(z1,2) = 0 and find

z2,1 =
1
2F

[
(ε+ p2ρ)±

√
(ε+ p2ρ)2 − 8F

]
. (18.76)

The quasimomentum p(z) is real in the region, z > z2 and the wave function
(18.75) describes oscillatory solutions.

In the region of the potential barrier, z1 < z < z2, ε > 1 and −V (z) < 1,
so that p2(z) < 0 and p(z) is purely imaginary. Eq. (18.75) describes an
exponentially increasing or decaying solution in the classically forbidden
region. The exponentially increasing solution is clearly unphysical and has
to be discarded, so that we have in the classically forbidden region

Ψ(z) =
C√|p(z)| exp

(
−
∫ z

z2

dζ |p(ζ)|
)

. (18.77)

Now, we can approximate

|p(z)| =
√
ε+ V (z) + p2ρ � p0(z) +

p2ρ
2p0(z)

(18.78)
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with p0(z) = [ε+ V (z)]1/2 and the integral in Eq. (18.77) can be simplified
by considering that z deviates only slightly from r, i.e.,

z = r cos(θ) � r
(
1− 1

2
θ2
)

, (18.79)

so that

Ψ(z) � C√|p(z)| exp
[∫ r

z2

dζ

(
p0 +

p2ρ
2p0

)
+
∫ z

r

dζ p0

]

� C√|p(z)| exp
[
−
∫ z2

r

dζ

(
p0 +

p2ρ
2p0

)]
exp

(
−rθ

2

2
√
ε

)
. (18.80)

Here, z2 can be evaluated for pρ � 0. Furthermore, in the vicinity of
the z-axis the argument of the Bessel function can be put equal to zero
J0(pρρ) � J0(0) = 1, so that the semiclassical form of the wave function
(18.62) becomes ψsc = Ψ.

Now, we turn to the solution of the exciton problem for the core region,
z < z3, in which we may neglect approximately the field. Using Eq. (10.70),
we may write the exciton wave functions with l = 0 and m = 0, which are
finite at the origin, as

Ψx(r) = Ψ(0) e−r
√
ε F

(
1− 1√

ε
; 2; 2
√
ε r

)
, (18.81)

where we used the relations

L2l+1
n+l

(
2r
na0

)
=

(n+ l)!(n+ l)!
(n− l− 1)!(2l + 1)!

F

(
−n+ l+ 1; 2l+ 2;

2r
na0

)
(18.82)

and

n =
E0

En
=

1√
ε
. (18.83)

For r >> ε−1/2, one may use the asymptotic form of the confluent hyper-
geometric function,

F (a; b; z)→ ezΓ(b)za−b

Γ(a)
(18.84)
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which yields

Ψx(r) =
Ψ(0) exp[(−rε1/2)]

Γ
(
1− 1√

ε

)
(2
√
ε r)1+

1
ε1/2

. (18.85)

This function has to be matched with the spherical part of the semiclassical
wave function (18.80) which is obtained by averaging the angle-dependent
part of (18.80) over the angles

Ψ̄sc(r) =
∫
dΩ
4π

Ψ(r) =
∫ 2π

0

dφ

2π

∫ π

0

dθ

2
sin θf(r) exp

(
−1
2
r
√
ε θ2

)

� 1
2

∫ π

0

dθ θ f(r) exp
(
−1
2
r
√
ε θ2

)

� 1
4

∫ ∞

0

dxf(r) exp
(
−1
2
r
√
εx

)
= f(r)

1
2r
√
ε
,

where f(r) stands for the angle-independent parts. The total spherical part
of the semiclassical wave function can therefore be written as

Ψ̄sc(r) � C

ε1/4(2
√
εr)1+

1√
ε

exp

(
−
∫ z2

z1

dζ

(
p0+

p2ρ
2p0

)
− ln
√
ε√
ε
− 1√

ε
−√εr

)
.

(18.86)

Here, we introduced the tunnel integral ranging from z1 to z2. The in-
tegral from z1 to r has been evaluated approximately. The semiclassical
wave function Ψ̄sc, Eq. (18.86), and the asymptotic exciton wave function
Ψx, Eq. (18.85), have approximately the same r-dependence. We used
ε−1/2 ln 2r � ε−1/2, which holds approximately for the matching region. A
comparison of the coefficients yields

ψ(0) =
Γ
(
1− 1√

ε

)
C

ε1/4
exp

(
−Tt −

p2ρ
2
αt

)
, (18.87)

where

Tt =
∫ z2

z1

dζ p0(ζ) +
ln
√
ε√
ε

+
1√
ε

(18.88)
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and

αt =
∫ z2

z1

dζ
1

p0(ζ)
. (18.89)

The αt correction term becomes unimportant, because the summation over
all pρ values brings the correction down from the exponent, so that it enters
into the result as an unimportant prefactor. The evaluation of the tunnel
integral yields

Tt =
2ε2/3

3F − 1√
ε
ln
(
8ε3/2

F
)

. (18.90)

The first term in Eq. (18.90) gives rise to the Franz-Keldysh result, while the
second term describes the quite significant modification due to the Coulomb
potential. The only unknown coefficient in the result is the normalization
constant C. The existence of the exciton has little influence on the normal-
ization which is determined by the asymptotic form of the wave function,
see Chap. 10. Thus the normalization is the same as for free carriers.
The resulting absorption spectrum is

α(ω) = αFK(ω)

{
Γ
(
1− 1√

ε

)
exp

[
1√
ε
ln

(
8ε3/2

F

)]}2

, (18.91)
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Fig. 18.5 Exciton enhancement of the electroabsorption according to Eq. (18.91). α is
in units of αF K and ε = (Eg − �ω)/E0.
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where ε = (Eg − �ω)/E0 and αFK(ω) is the Franz-Keldysh absorption
coefficient given in Eq. (18.33). An example of the absorption spectrum
according to Eq. (18.91) is shown in Fig. 18.5. Depending on the detuning
ε and the field strength F , the exciton electroabsorption coefficient can be
up to 103 times larger than the Franz-Keldysh absorption coefficient. The
absorption approaches the Franz-Keldysh spectrum asymptotically only for
very large detunings.

18.3.2 Quantum Wells

The spatial confinement in a quantum well prevents field ionization of the
exciton up to very large field strengths. As a consequence, one can ob-
serve very large Stark shifts of, e.g., the lowest exciton resonance in a field
perpendicular to the layer of the quantum well (Miller et al., 1985).

In order to treat the problem, we decompose it into that of the one-
dimensional motion of the noninteracting electron and hole in the quantum-
well potential Vi(zi) and the field, and into that of the relative electron–hole
motion in the layer under the influence of the Coulomb interaction. We
write the total Hamiltonian as

H = Hez +Hhz +Heh , (18.92)

where

Hiz = − �
2

2mi

∂2

∂z2i
+ Vi(zi)± eEzi , i = e, h (18.93)

and

Heh = − �
2

2m
∂2

∂r2
− e2

ε0
√
r2 + (ze − zh)2

. (18.94)

For the wave function, we use a product ansatz

ψ = ψe(ze)ψh(zh)Ψeh(r) , (18.95)

where the wave functions ψi(zi) are the eigenfunctions of the Hamiltonian
(18.93). Assuming infinitely high potential wells, the functions ψi(zi) are
given by Eq. (18.44) in terms of Airy functions. The effect of a finite poten-
tial well and the resulting leaking of the wave functions into the embedding
material can approximately be accounted for by introducing an effective
well width Leff which is slightly larger than the actual width L.
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Fig. 18.6 Shift of the exciton peak position in a 95-Å multiple-quantum well as function
of the electric field. [From Miller et al. (1985).]

For the wave function Ψeh(r), a 1s-like function is assumed with a radius
λ, which is determined variationally

Ψeh(r) =

√
2
π

e−
r
λ

λ
. (18.96)

The total pair energy

Eeh = Eez + Ehz + 〈Ψ∗|Heh|Ψ〉 (18.97)

is minimized with respect to λ for a given field F. The resulting energy shifts
are shown in Fig. 18.6, together with the experimentally observed Stark
shifts for the heavy and light hole (hh and lh) exciton of a GaAs quantum
well with a width of 95 Å. One sees that Stark shifts up to 20 meV are
obtained with an electric field of about 105 V/cm. Only above this large
value of the electric field, field-induced tunneling sets in and broadens the
exciton resonance. The quantum confined Stark shift of � 20meV is more
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than twice the exciton binding energy of � 9meV in this quantum well.
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PROBLEMS

Problem 18.1: (a) Use first-order perturbation theory in the applied field
to evaluate the absorption spectrum, Eq. (18.42), for the quantum-confined
Franz-Keldysh effect. Use the basis functions (18.41) to show the reduction
in oscillator strength for the transition between the lowest electron–hole
subband, 0, h → 0, e. This transition is fully allowed without field, and it
is reduced in the presence of the field. (b) Use the same method as in (a)
to show that the field makes the transition 0, h→ 1e dipole allowed.

Problem 18.2: Show that the tunnel integral, first term of Eq. (18.88),
can be transformed into the expression

T1 = F1/2

∫ z2

z1

dz√
z

√
(z2 − z)(z − z1) (18.98)

and further into the form

T1 =
ε3/2

23/2F s2
∫ +1

−1

dt

√
1− t2
1 + st

=
ε3/2

23/2F s2 I(s) , (18.99)

where s =
√
1− 8F

ε2 =
√
1− y2.

Problem 18.3: Show that the evaluation of the integral I(s), defined in
Eq. (18.99), for s = 1 gives the Franz-Keldysh result I(1) = 4

3

√
2.
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Chapter 19

Magneto-Optics

The application of magnetic fields in solid state physics and particularly also
in semiconductor optics has always been an extremely versatile tool, partic-
ularly for the identification of the symmetry of electronic states. Therefore,
magneto-optics has become a very large field in its own right. In this chap-
ter, we discuss only some basic aspects of the influence of the magnetic fields
on the free electron motion, which are of particular interest for the intrinsic
linear and nonlinear optical properties of semiconductors and semiconduc-
tor microstructures. We focus on the optical properties of magneto-excitons
and magneto-plasmas in quantum confined structures.

The Lorentz force of a constant magnetic field constrains a free electron
on a cyclotron orbit perpendicular to the magnetic field. An especially well-
defined problem arises, if one applies a magnetic field perpendicularly to a
quantum well which suppresses the electron motion in the field direction. In
this configuration, interesting physical phenomena, such as the quantized
Hall effect and the crystallization of the electrons into a Wigner crystal
occur.

It has been shown that the Hartree-Fock theory becomes exact for a two-
dimensional electron gas in the limit of low temperatures and high magnetic
fields. Therefore, we limit our discussion in this chapter to the Hartree-Fock
theory of magneto-excitons and magneto-plasmas in 2D quantum wells and
1D quantum wires. Modeling the wire configuration as an additional weak
harmonic lateral confinement allows us to study the smooth transition be-
tween effectively 1D and 2D systems. In this treatment, we follow the
theoretical work presented in Bayer et al. (1997) and show a comparison
with experimental results.

First, we discuss the single-particle problem, which can be treated ex-
actly for a harmonic lateral confinement potential in terms of modified

371
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Landau eigenfunctions. Expanding the density matrix in the Landau basis,
we derive the Bloch equations of the magneto-plasma. Only the Coulomb
exchange terms are kept. Assuming quasi-equilibrium carrier distributions,
we then use the polarization equation to calculate the linear absorption,
gain and luminescence spectra, which can be compared most directly to
experimental observations in quantum wires.

19.1 Single Electron in a Magnetic Field

We consider an electron in a quantum well (x − y plane) that experiences
an additional smooth lateral quantum-wire confinement potential in the x-
direction. The electron moves under the influence of a constant magnetic
field in the z-direction. For realistic quantum wires, the confinement po-
tential can be assumed to have a Gaussian shape, which for the lower-lying
states can be approximated by a harmonic oscillator potential.

We assume the validity of the effective mass approximation and neglect
all band-mixing effects taking into account only those states that are formed
out of the lowest quantum-well electron and heavy-hole subbands. The
single-particle Hamiltonian for an electron (j = e) or a hole (j = h) moving
in the x− y plane with the wire axis in the y direction can be written as

H0
j =

�
2

2mj
[pj − ejA(rj)]

2 +
1
2
mjΩ2

jx
2
j +

Eg

2
. (19.1)

Here, the band gapEg of the underlying quantum well is split symmetrically
between the electrons (−|e|) and holes (|e|). The term 1

2mjΩ2
jx

2
j models the

lateral confinement potential characterized by the intersubband frequencies
Ωj .

The vector potential A describes the constant magnetic field B = ezB
in z-direction. The vector potential is not uniquely defined. Two gauges
are commonly used:
(i) the symmetric gauge with

A(r) =
1
2
B× r = B

2
(−yex + xey) , (19.2)

(ii) the asymmetric Landau gauge

A(r) = xBey . (19.3)
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One can easily verify that in both cases

B = curl A =

∣∣∣∣∣∣
ex ey ez
∂/∂x ∂/∂y 0
Ax Ay 0

∣∣∣∣∣∣ = B ez . (19.4)

For practical purposes, it is often advantageous to use the asymmetric Lan-
dau gauge (ii) which depends only on the x-coordinate. In this frame, the
magnetic field produces together with the confinement potential (charac-
terized by the oscillator frequency Ωj) a harmonic oscillator potential in
the x-direction, while one has a free motion in the y-direction.

In the Landau gauge, the single-particle Hamiltonian (19.1) can be writ-
ten as

H0
j =

�
2

2mj
[pj − ejBxjey)]2 + 1

2
mjΩ2

jx
2
j +

Eg

2
(19.5)

=− �
2

2mj

∂2

∂x2j
− �

2

2mj

∂2

∂y2j
− �ωc,j

xj
i

∂

∂yj
+

1
2
mj(Ω2

j+ω
2
c,j)x

2
j+

Eg

2
,

where

ωc,j =
ejB

mj

(19.6)

cyclotron frequency

is the cyclotron frequency of the carriers j.
For the total wave function, we make the ansatz

ψj(xj , yj) =
eikyj√
Ly

φj(xj) , (19.7)

where the plane wave contribution results from the absence of a confining
potential in y-direction. Inserting this ansatz into Schrödinger’s equation
and using a quadratic completion, we obtain the x-dependent Hamiltonian

H0(xj) = − �
2

2mj

∂2

∂x2j
+

1
2
mjω

2
eff,j(xj −∆xj)2 +

�
2k2

2meff,j
+
Eg

2
. (19.8)

Here, the effective oscillator frequency is given by

ωeff,j =
√
Ω2
j + ω2

c,j . (19.9)
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The origin of the oscillator potential is shifted by

∆xj = kδj = k
�

mj

ωc,j
ω2
eff,j

. (19.10)

Furthermore, we introduced the translational effective mass for the
quantum-wire electron in a magnetic field

meff,j = mj

(
ωeff,j
Ωj

)2

. (19.11)

This effective mass increases quadratically with the magnetic field once
the cyclotron frequency exceeds the spectral difference between the wire
subbands. Writing the oscillator potential term in the Hamiltonian (19.8)
as

m2
j

�2
ω2
eff,j(xj − kδj)2 =

(xj − kδj)2
(leff,j)4

, (19.12)

we identify the characteristic length

leff,j =

√
�

mjωeff,j
, (19.13)

which is the amplitude of the electron’s zero point fluctuations. This
length is a generalization of the so-called Landau length, which deter-
mines the cyclotron radius. With leff,i, the shift ∆xi becomes ∆xi =
kl2eff,i(ωc,i/ωeff,i). It is interesting to note that this shift of the origin
depends on the momentum along the wire. This can be understood as the
action of the Lorentz force on the moving carrier.

The eigenfunctions of (19.8) are shifted harmonic oscillator functions
φν(xj − ∆xj), also called modified Landau states. Hence, the complete
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single-particle eigenfunctions are

ψjk,ν(xj , yj) =
eikyj√
Lx

φjν(xj)

=
eikyj√
Lx

φν(xj−∆xj) with ν = 0, 1, 2, · · · . (19.14)

modified Landau eigenfunctions

The corresponding single-particle energies are

Ej
k,ν =

�
2k2

2meff,j

+
Eg

2
+ �ωeff,j

(
ν +

1

2

)
. (19.15)

modified Landau ladder

The effective mass increases with increasing magnetic field showing how the
field hinders the translational motion along the wire. The characteristic
frequency of the Landau ladder with parabolic confinement potential and
magnetic field is ωeff,j =

√
Ω2
j + ω2

c,j . Thus, the magnetic field increases
the lateral subband spacing.

Finally, we note that the electron and hole wave functions are the time-
reversal counterparts of each other

ψek,ν =
(
ψh−k,ν

)∗
. (19.16)

19.2 Bloch Equations for a Magneto-Plasma

In order to study the optical properties of the quantum confined magneto-
plasma, we derive the Bloch equations for this system by expanding the
electron–hole density matrix into the modified Landau base (19.14), which
diagonalizes the single-particle problem. The Coulomb interactions between
the optically excited carriers are taken into account in the mean-field ap-
proximation. As mentioned above, this approximation becomes very good
for strong effective quantum confinement through the combined influence
of barriers and magnetic field.

For simplicity, we analyze a configuration with equal effective electron
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and hole masses, so that

meΩe = mhΩh = mΩ , (19.17)

where Ω is the total inter-subband spacing. This approximation assures
local charge neutrality. While the values of the axial momentum k are
unrestricted for B = 0, they are restricted in the presence of a magnetic
field by the condition that the center of the carrier wave function ∆jx must
lie inside the quantum wire. This condition imposes

∆xj = kδj ≤ Lx
2

(19.18)

as condition for the harmonic confinement potential.
If we fit the lateral subband splitting Ω with the energy splitting between

the two lowest subbands of a rectangular square well

�Ω =
(
2π
Lx

)2
�
2

2m
−
(
π

Lx

)2
�
2

2m
=

3π2�2

2mL2
x

(19.19)

we obtain for the largest allowed wave number km

Lxkm =
3π2

4
ω2
eff

ωcΩ
= κm . (19.20)

Here, ωc and ωeff are also calculated with the reduced mass m. Now the
density of states can be calculated:

D(E) = trδ(E −H) =
∑
ν,k

δ(E − Ek,ν)

=
Ly
2π

∫ κm

−κm

dk
∑
ν

δ

(
�
2k2

2meff
+ Ek=0,ν − E

)

=
Ly

Lx2πẼ0

∫ κm

−κm

dκ
∑
ν

δ

(
κ2 − E − Ek=0,ν

Ẽ0

)
, (19.21)

where we used Eq. (4.6) for D = 1 with ∆k = Ly

2π . Furthermore, we
introduced κ = kLx as integration variable and Ẽ0 = �

2/(2meffL
2
x) as

characteristic energy. The integral over the delta function yields

D(E) =
Ly

Lx2πẼ0

∑
ν

Θ
(
κ2m −

E − Ek=0,ν

Ẽ0

)√
Ẽ0

E − Ek=0,ν
. (19.22)

With increasing magnetic field the single-particle density of states changes
from the 1/

√
E-like behavior of a 1D system to the δ-function-like behavior
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of a totally confined system. Calculating now the total number of states g
in a quasi-1D subband with index ν, one finds the relation

g ∝ ωeff
Ω

. (19.23)

In contrast to a quantum well in a normal magnetic field, for which the
number of states in a Landau level depends linearly on the magnetic field,
the number of states in a quantum wire is nearly constant for weak fields,
and approaches the linear dependence only in the high-field limit.

The matrix elements of the Coulomb potential (see also Problem 19.2)
can be written as

V j,j′
ν,ν′;ν′,ν(q)=

∑
qx

2πejej′

ε0
√
q2+q2x

∣∣∣∣
∫
dxφ∗ν(x+δq)e

iqxxφν′(x)
∣∣∣∣
2

= V j,j′
ν,ν′ ,

(19.24)

where ε0 is the background dielectric function. Using the modified Landau
states (19.14), one can evaluate the Coulomb matrix elements analytically
in terms of modified Bessel functions of zeroth and first order (see the
evaluations in Wu and Haug). As defined in Sec. 12.2, the single-particle
density matrix is

ρi,ν;i′,ν(k, t) = 〈a†i,k,ν(t)ai′,k,ν(t)〉 ,where {i, i′} = {c, v} . (19.25)

Here, we consider only diagonal elements in ν because the optical transitions
in our model connect only states with the same Landau subband quantum
number. Switching to the electron–hole representation, the relevant carrier
densities are

ρeeν,ν(k) = 〈α†
k,ναk,ν〉 = nek,ν (19.26)

and

ρhhν,ν(k) = 〈β†
k,νβk,ν〉 = nhk,ν , (19.27)

with the electron and hole operators α, α† and β, β†, respectively. Following
the derivation in Chap. 12, we find for the optical interband polarization

ρehν,ν(k, t) = 〈β−k,ναk,ν〉 = Pk,ν (19.28)
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the dynamic equation(
i
∂

∂t
− eek,ν − ehk,ν

)
Pk,ν =

(
nek,ν + nhk,ν − 1

)
ωR,k,ν(t) + i

∂Pk,ν
∂t

∣∣∣∣
scatt

.

(19.29)

Here, the carrier energies ejk,ν are the exchange renormalized single-particle
energies

�ejk,ν = Ej
k,ν −

∑
q,ν′,j

V jj′
ν,ν′(q)nj

′
k−q,ν′ (t) , (19.30)

with the Landau ladder energies Ej
k,ν (19.15). The sum j′ extends only

over the Landau subbands of the considered species.
The exchange renormalized Rabi frequency ωR is given by

�ωR,k,ν(t) = dcvE(t) +
∑
q,ν′

V eh
ν,ν′(q)Pk−q,ν′ . (19.31)

The equations for the carrier densities are

∂

∂t
njk,ν = −2Im [ωR,k,ν(t)P ∗

k,ν

]
+
∂njk,ν
∂t

∣∣∣∣∣
scatt

, (19.32)

copmpare Eqs. (12.19).
Because in quantum wires the luminescence emerging from the end of

the wires can be measured most easily, we limit our analysis to the calcula-
tion of the wire luminescence. In the experiments, the carriers are excited
by a a cw pump field and have enough time to thermalize before their radia-
tive decay. Therefore, we have to calculate only the polarization equation
with quasi-equilibrium Fermi distributions of the carriers. The density and
the temperature of the carrier distributions are used as fitting parameters
in the comparison with corresponding measured spectra.

19.3 Magneto-Luminescence of Quantum Wires

In this section, we follow the procedure discussed in Chap. 15 to com-
pute the quasi-equilibrium optical nonlinearities. We slightly generalize the
treatment by including the summations over the Landau subband states.

Again, we start by calculating the stationary optical interband polar-
ization components which are linear in the field E(t) = E0e

−iωt. The sta-
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tionary polarization equation is in the rotating wave approximation

�

(
ω−eek,ν−ehk,ν+iγ

)
pk,ν =

(
fek,ν+f

h
k,ν − 1

)[
dcvE0+

∑
q,ν′

V eh
νν′(q)pk−q,ν′

]
,

(19.33)

where pk,ν = Pk,νe
−iωt. From the scattering term, we took only a phe-

nomenological dephasing or damping rate γ into account. The electron and
hole distributions are thermal Fermi functions, e.g.,

fek,ν =
1

e

(
�ωeff

(
ν+ 1

2

)
+ �2k2

2me
eff

−µe

)
β
+ 1

. (19.34)

With this ansatz, we not only assume that the electrons of a given Landau
subband are in thermal equilibrium, but that all electron subbands are in
equilibrium among each other.

It is advantageous to eliminate the amplitude of the light field by intro-
ducing a susceptibility component

χk,ν(ω) =
Pk,ν(t)
E(t) , (19.35)

which depends on the carrier frequency of the light. The total susceptibility
is then obtained as

χ(ω) = dcv
∑
k,ν

Pk,ν(ω) . (19.36)

The equation for the susceptibility component can be written in the form

χk,ν(ω) = χ0nk(ω)− χ0nk(ω)
1

dcv

∑
k′,ν′

V eh
νν′(k − k′)χ0nk(ω) ,

(19.37)

susceptibility integral equation

where we again used the spectral representation according to Eq. (15.18).
From the susceptibility, one gets the luminescence spectrum using the equi-
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a) b)
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Energy [eV] Energy [eV]

1.431.43 1.44 1.441.45 1.451.46 1.461.47 1.47

Fig. 19.1 (a) Calculated and (b) measured luminescence spectra. The experiments were
done using a modulated barrier In0.13Ga0.87As/GaAs quantum wire at B = 10.5 T. The
plasma densities and temperatures used in the theoretical spectra have been determined
to fit the experimental spectra with increasing excitation power. [After M. Bayer et al.
(1997).]

librium relation

I(ω) ∝ Im{χ(ω)}
eβ(�ω−µ) − 1

, (19.38)

where µ = µe + µh is the electron-hole chemical potential with respect to
the band gap.

As an example of the resulting spectra, we show in Fig. 19.1 calcu-
lated luminescence spectra for a field B = 10.5 T, where the magnetic
confinement dominates already over the lateral barrier confinement (see
problem 19.3). In this situation, the wire resembles already in some re-
spects a 2D system in a strong magnetic field. The spectra are calculated
for various carrier densities n and plasma temperatures T . The densities
and the temperatures are chosen to give the best fit to the corresponding
experimental spectra shown in the same figure. The investigated sample is
based on a In0.13Ga0.87As/GaAs quantum well. The top GaAs layer has
been removed by selective etching, except for a 29 nm wide stripe. This
remaining stripe modulates the ground-state energy of the quantum well
and causes a lateral confinement. The resulting quantum wire had a width
of Lx = 29 nm. The electron–hole concentration has been generated by a
cw Ar+ laser (λ = 514.5 nm) with power densities of up to 3 kWcm−2.
The sample has been immersed in liquid He (T = 1.8 K). The appropriate
material parameters are: the subband spacing Ω � 2E0 � 8.4meV, where
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E0 is the 3D exciton Rydberg of GaAs. The broadening has been taken
to be γ = 1E0. At the lowest density of n = 0.12 × 106 cm−1 and the
corresponding lowest excitation power, only the emission from the lowest
wire subband is seen. Note that the excess energy of the exciting laser
causes heating of the plasma (but not of the lattice), so that the plasma
temperature increases with the excitation power from 43 K at the lowest
excitation power to 117 K at the highest power. At higher powers the n = 2
wire subband starts to be filled so that also luminescence from this next
higher level takes place, while the n = 1 line saturates. In the excitation
region, where also the n = 2 subband line is present, both peaks of the two
luminescence lines show a slight shift to lower energies at higher excitation
powers, which is more pronounced for the n = 2 transitions.

In particular, one can see that the n = 1 line does not shift at all as
long as the the n = 2 subband is not filled (the three lowest densities). The
calculations show that here already a strong band-gap shift exists, but it
is completely compensated by the reduction of the exciton correlations. It
is known that for a 2D system the compensation is exact in the limit of a
strong magnetic field essentially due to the neutrality of the electron–hole
pair, which explains the absence of any shift with only one occupied sub-
band. Due to the interaction between carriers in two different subbands, the
energy renormalization becomes stronger than the effect of the attractive
interactions.
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PROBLEMS

Problem 19.1: Derive the single-particle Hamiltonian (19.8) for the states
φk,ν .

Problem 19.2: Show that the Coulomb matrix element can be written in
the form (19.24), by calculating the integral∫
dxdy

∫
dx′y′ψ∗

k′n′(x, y)ψ∗
k,ν(x

′, y′)V (x− x′, y − y′)ψk′,ν′(x′y′)ψk,ν(x, y) .

Use the Fourier transform of the 2D Coulomb potential

V (x− x′, y − y′) =
∑
q,qx

2πe2

ε0
√
q2 + q2x

eiq(y−y′)eiqx(x−x′) ,

and the eigenfunctions (19.14).

Problem 19.3: (a)Calculate the cyclotron energy �ωc = eB/m for B =
10.5 T in the InGaAs/Ga quantum wire in units of meV. Use a reduced
electron–hole mass of m = 0.06m0, where m0 is the free electron mass. In
SI units, the specific electron charge e/m0 = 1.759× 1011A s kg−1, while a
Tesla is T = kg s−2 A−1. Here, A denotes Ampere.
(b) Calculate for comparison the energy of the subband spacing �Ω in meV
with the same reduced mass.
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Chapter 20

Quantum Dots

The ultimate quantum-confinement effects occur in very small semicon-
ductor structures, called quantum dots, which confine the laser-excited
electron–hole pairs in all three space dimensions. Such systems can be re-
alized in many different ways, including glasses doped with semiconductor
microcrystallites, microstructures fabricated by lithographic techniques, in-
terface fluctuations in quantum wells, strain-induced quantum dots and
many more. A common aspect of all of these systems is that their geometry
provides a confinement potential with a spatial extension comparable to the
exciton Bohr radius in the respective semiconductor material. The detailed
shape of the potential depends on the respective system, including more
or less spherical confinement in microcrystallites, parabolic confinement in
interface dots, or more complicated shapes in other systems. For more de-
tailed discussion of experimental realizations of quantum dots and of the
resulting confinement potentials, we refer the interested reader to the lit-
erature cited at the end of this chapter. Here, we only want to discuss the
basic principles of optical excitations in quantum-dot systems.

20.1 Effective Mass Approximation

For most of the discussion in this chapter, we consider a spherical hard
wall confinement potential. More precisely, we assume a sphere of radius
R and background dielectric constant ε2 embedded in another material
with background dielectric constant ε1. It is reasonably straightforward to
modify the results for other (simple) geometries, such as microcubes, boxes,
or parabolic confinement potentials. We concentrate on systems where

R ≤ a0 , (20.1)

383
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but still much larger than the semiconductor lattice constant. Hence, these
quantum dots are mesoscopic structures in the sense of Chap. 4.

Using the envelope function approximation, we assume again that the
electron wave function can be written as

ψ(r) = ζ(r)uλ(k � 0, r) , (20.2)

compare Eq. (4.1). Here, uλ(k � 0, r) is the Bloch function of the bulk
material, and ζ(r) is the envelope function. The wave function ψ(r) has
to satisfy the boundary conditions of the quantum dot. For simplicity, we
analyze the case of ideal quantum confinement, i.e.,

ψ(r ≥ R) = 0 . (20.3)

Furthermore, we assume that the energy eigenvalues of the electron in the
periodic lattice, i.e., the energy bands, are not appreciably modified through
the quantum confinement. Therefore, we use the effective mass approxima-
tion to describe the free motion of electrons and holes.

The Hamiltonian for one electron–hole pair is

H = He +Hh + Vee + Vhh + Veh , (20.4)

where the kinetic terms are

He = − �
2

2me

∫
d3r ψ̂†

e(r)∇2ψ̂e(r) + Eg

∫
d3r ψ̂†

e(r) ψ̂e(r) , (20.5)

and

Hh = − �
2

2mh

∫
d3r ψ̂†

h(r)∇2ψ̂h(r) , (20.6)

and the Coulomb interaction is described by

Vee =
1
2

∫ ∫
d3r d3r′ ψ̂†

e(r) ψ̂
†
e(r

′)V (r, r′) ψ̂e(r′) ψ̂e(r) , (20.7)

Veh = −
∫ ∫

d3r d3r′ ψ̂†
e(r) ψ̂

†
h(r

′)V (r, r′) ψ̂h(r′) ψ̂e(r) , (20.8)

and

Vhh = Vee(e→ h) , (20.9)
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where V (r) is the effective Coulomb interaction potential inside the quan-
tum dot.

The Coulomb interaction between two point charges in a spherical dot,
which is embedded in a material with different background dielectric con-
stant, is

V (r1, r2)|R = V (r1, r2)|R=∞ + δV (r1, r2) , (20.10)

where V (r1, r2)|R=∞ is the usual bulk Coulomb interaction, and the addi-
tional term is caused by the induced surface charge of the sphere,

δV (r1, r2) = Q1(r1) +Q1(r2)∓Q2(r1, r2) , (20.11)

with -(+) for charges with opposite (equal) sign, respectively (Brus, 1984).
The different contributions in Eq. (20.11) are

Q1(r) =
∞∑
n=0

Q1,n(r) , (20.12)

with

Q1,n(r) =
e2

2R
αn (r/R)2n , (20.13)

and

Q2(r1, r2) =
∞∑
n=0

Q2,n(r1, r2) , (20.14)

with

Q2,n(r1, r2) = αn
e2

R

(r1r2
R2

)n
Pn
[
cos(θ)

]
, (20.15)

where θ is the angle between r1 and r2, Pn is the n-th order Legendre
polynomial and

αn =
(ε2/ε1 − 1)(n+ 1)
ε2(n ε2/ε1 + n+ 1)

. (20.16)

Obviously, the surface polarization term δV vanishes for ε1 = ε2.
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20.2 Single Particle Properties

The eigenstates and energy eigenvalues for a single electron in the quantum
dot are determined by the Schrödinger equation

H|ψe〉 = Ee |ψe〉 . (20.17)

The eigenstate is of the form

|ψe〉 =
∫
d3r ζe(r)ψ̂†

e(r) |0〉 , (20.18)

where |0〉 is the crystal ground state, i.e., the state without excited electrons
or holes. The coefficients ζ(r) in Eq. (20.18) have to be determined from
Eq. (20.17). Using the Hamiltonians (20.6) – (20.9) in Eq. (20.17), we find

Vee |ψe〉 = Veh |ψe〉 = Vhh |ψe〉 = Hh |ψe〉 = 0 . (20.19)

However, we have

He |ψe〉 = − �
2

2me

∫
d3r′[∇2ψ̂†

e(r
′)] ψ̂e(r′)

∫
d3r ζe(r) ψ̂†

e(r) |0〉

+Eg

∫
d3r′

∫
d3r ψ̂†

e(r
′)ψe(r′) ζe(r) ψ̂†

e(r) |0〉 ,

which can be written as

He |ψe〉 = − �
2

2me

∫
d3r′

∫
d3r ζe(r) δ(r − r′) [∇2ψ̂†

e(r
′)] |0〉

+Eg

∫
d3r′

∫
d3r ζe(r) ψ̂†

e(r) δ(r− r′) |0〉

= − �
2

2me

∫
d3r [∇2ζe(r)] ψ̂†

e(r)|0〉+ Eg

∫
d3r ζe(r) ψ̂†

e(r) |0〉

= Ee

∫
d3r ζe(r) ψ̂†

e(r) |0〉 . (20.20)

This equation is satisfied if

− �
2

2me
∇2ζe(r) = (Ee − Eg) ζe(r) , (20.21)
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which is the one-electron eigenvalue equation. Similarly, we find for the
one-hole state

− �
2

2mh
∇2ζh(r) = Eh ζh(r) . (20.22)

The problem is completely defined with the boundary conditions

ζe(r) = ζh(r) = 0 for |r| ≥ R . (20.23)

The solution is

ζe,nlm(r) =

√
2

R3

jl(αnlr/R)

jl+1(αnl)
Yl,m(Ω) , (20.24)

single-particle wave function in quantum dot

where jl is the spherical Bessel function of order l and Yl,m denotes the
spherical harmonics. The boundary condition (20.23) is satisfied if

jl(αnl) = 0 for n = 1, 2, · · · (20.25)

and

α10 = π, α11 = 4.4934, α12 = 5.7635, α20 = 6.2832 ,

α21 = 7.7253, α22 = 9.0950, α30 = 9.4248 · · · . (20.26)

Since the wave function (20.24) depends only on R and not on any physi-
cal parameters which are specific for the electron, the corresponding wave
function for the hole must have the same form, and we can drop the index
e/h of the functions ζ(r) from now on. Inserting (20.24) into Eq. (20.22),
we obtain the discrete energies

Ee,nlm = Eg +
�
2

2me

α2nl
R2

(20.27)

and

Eh,nlm =
�
2

2mh

α2nl
R2

. (20.28)

The nl eigenstates are usually referred to as 1s, 1p, etc. The lowest two
energy levels given by Eqs. (20.27) and (20.28) are shown schematically
in Fig. 20.1. In practice, however, the single-particle spectrum is rather
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uninteresting since it is not observed in optical absorption measurements.
As discussed before, the absorption is always given by the electron–hole–
pair excitation spectrum.

E

k

E

e, 1p

e, 1s

h, 1s

h, 1p

Fig. 20.1 Schematic plot of the single-particle energy spectrum in bulk semiconductors
(left). The single-particle energies for electrons (e) and holes (h) in small quantum dots
are shown in the right part of the figure.

20.3 Pair States

For the electron-hole-pair eigenstates, we make the ansatz

|ψeh〉 =
∫ ∫

d3re d
3rh ψeh(re, rh)ψ̂†

e(re)ψ̂
†
h(rh) |0〉 (20.29)

and obtain the Schrödinger equation for the pair

[
− �

2

2me
∇2
e−

�
2

2mh
∇2
h−V (re, rh)

]
ψeh(re, rh)=(E−Eg)ψeh(re, rh) .

(20.30)

Because of the boundary conditions

ψeh(re, rh) = 0 if |re| > R or |rh| > R , (20.31)

it is not useful to introduce relative and center-of-mass coordinates in con-
trast to the case of bulk or quantum-well semiconductor materials.

If the quantum dot radius is smaller than the bulk-exciton Bohr ra-
dius, R < a0, electron and hole are closer together than they would be in
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the corresponding bulk material. This leads to a dramatic increase of the
pair energy with decreasing quantum-dot size. As function of quantum-dot
radius, the kinetic part of the energy varies like

〈He +Hh〉 ∝ 1
R2

, (20.32)

whereas the interaction part behaves like

〈Vij〉 ∝ 1
R

. (20.33)

To obtain an estimate of the pair energy for small dot radii, R << a0,
it is a reasonable first-order approximation to consider the electrons and
the holes essentially as noninteracting and ignore the Coulomb energy in
comparison to the kinetic energy. This yields

Eeh,nlm = Ee,nlm + Eh,nlm , (20.34)

i.e., an energy variation proportional to R−2. Experimentally, this increas-
ing pair energy is observed as a pronounced blueshift of the onset of ab-
sorption with decreasing dot size.

It is not analytically possible to solve the pair Schrödinger equation
(20.30) including the Coulomb interaction. Therefore, one has to use nu-
merical or approximation methods. One method consists of expanding the
full pair-state into the eigenstates of the system without Coulomb interac-
tions,

|ψeh,lm〉 =
∑
n1, n2
l1, l2

Cn1,n2,l1,l2 |n1n2l1l2; lm〉 . (20.35)

For such an expansion, it is important to note that the total angular mo-
mentum operator L̂ commutes with the Hamiltonian, i.e., the angular mo-
mentum is a good quantum number and the eigenstates of the Hamiltonian
are also eigenstates of L̂2 and L̂z. A convenient choice of the one-pair-state
basis functions is

|n1n2l1l2; lm〉 =
∑
m1m2

〈l1m1l2m2|lm〉 |n1l1m1〉e |n2l2m2〉h , (20.36)

where 〈l1m1l2m2|lm〉 is the Clebsch-Gordan coefficient and l and m the
angular momentum quantum numbers of the pair state.
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Using the expansion (20.36), we compute the expectation value of the
Hamiltonian truncating the expansion at finite values of n, l and m. This
transforms the Hamiltonian into a matrix. Eqs. (20.32) – (20.33) show
that for the regime of sufficiently small quantum dots, the single-particle
energies are much larger than the Coulomb contributions. Therefore, the
off-diagonal elements in the Hamiltonian matrix are small in comparison
to the diagonal elements and the truncation of the expansion introduces
only small errors. The magnitude of these errors can be checked by using
increasingly large nilimi values. Numerical diagonalization of the resulting
matrix yields the energy eigenvalues and the expansion coefficients of the
pair wave function (Hu et al., 1990). Examples of the results are shown in
Fig. 20.2, where we plot the ground-state energy E1s for one electron–hole
pair as function of the quantum-dot radius. This figure clearly shows the
sharp energy increase for smaller dots expected from Eq. (20.34).

-2

0

2

4

6

8

10

0 1 2 3 4 5

E
/E

0

R/a0

Fig. 20.2 Plot of the ground-state energy of one electron–hole pair in a quantum dot.
Energy and radius are in units of the bulk–exciton Rydberg E0 and Bohr radius a0,
respectively. The electron–hole mass ratio has been chosen as me/mh = 0.1.

For convenience, we also use the notation 1s, 1p, etc. for the situa-
tion with Coulomb interaction. This notation indicates that the leading
term in the wave function expansion is the product of the 1s single-particle
functions,

ψeh(re, rh) � ζ100(re) ζ100(rh) + other states . (20.37)

Note, however, that if one keeps only this product state and neglects the
rest, one may get completely wrong answers for quantities like binding
energies or transition dipoles.
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In Fig. 20.3, we show an example of the radial distributions, which is
defined as

Pr = r2e

∫
dΩe d

3rh r
2
h |ψeh(re, rh)|2 (20.38)

for the electron and correspondingly for the hole in the quantum dot.
Fig. 20.3 shows that, as a consequence of the electron–hole Coulomb in-
teraction, the heavier particle, i.e., the hole, is pushed toward the center of
the sphere.

0

1

2

0 0.5 1

e
h
sc

P
r

r/R

Fig. 20.3 Plot of the distribution, Eq. (20.38), of an electron (e) and a hole (h) in a
quantum dot with R/a0 = 1. The lowest curve (sc) shows the distribution if one neglects
the Coulomb interaction.

In addition to the numerical solution, one can also find an approximate
analytical solution for the state with one electron–hole pair in quantum
dots if the electron–hole mass ratio, me/mh, is very small. In this case,
the motion of the particles may be approximately decoupled, as in the
hydrogen-atom problem, and

a0 � �
2

me e2
. (20.39)

Since the electron states are well separated in energy, we may concentrate
on the lowest single electron states. The single-particle hole states are
closer in energy and correlations between the states are more important.
Therefore, we use the ansatz for the pair wave function

ψeh,nlm (re, rh) � ζnlm(re)ψh(rh) . (20.40)

Inserting (20.40) into Eq. (20.30) and projecting with ζ∗nlm(re), we obtain
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[
− �

2

2me
∇2
h −

∫
d3re |ζnlm(re)|2 V (re, rh)

]
ψh(rh)

=
(
Eeh − Eg − �

2

2me

α2nl
R2

)
ψh(rh) . (20.41)

Eq. (20.41) describes the motion of the hole in the average potential induced
by the electron. The potential is attractive and if we take (nlm) = (100) it is
spherically symmetrical. This effective potential is responsible for pushing
the hole toward the center of the sphere, as shown in Fig. 20.3.

20.4 Dipole Transitions

In order to compute the optical response of semiconductor quantum
dots, we need the dipole transition matrix elements between the different
electron–hole–pair states. The interaction Hamiltonian is written as

Ĥint = −P̂ · E(t) , (20.42)

where P̂ is the polarization operator and E(t) is the light field. The po-
larization is a single-particle operator, which can be written as

P̂ =
∫

d3r
∑

i,j=e,h

ψ̂†
i (r) er ψ̂j(r)

or, evaluating the summation,

P̂ =
∫
d3rer

[
ψ̂†
e(r)ψ̂e(r) + ψ̂h(r)ψ̂

†
h(r) + ψ̂†

e(r)ψ̂
†
h(r) + ψ̂h(r)ψ̂e(r)

]
.

(20.43)

The field operators are expanded as

ψ̂e(r) =
∑
nlm

ψenlm(r) anlm (20.44)

and

ψ̂h(r) =
∑
nlm

ψhnlm(r) bnlm , (20.45)
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where ψ(r) is the single-particle wave function (20.2) with ζ(r) given by
(20.24), and anlm and bnlm are the annihilation operators for an electron
or hole in the state nlm, respectively. Inserting the expansions (20.44)
and (20.45) into (20.43) yields an explicit expression for the polarization
operator. In the evaluation, we basically follow the line of argumentation
explained in Sec. 10.1. This way, we obtain for the first term in Eq. (20.43)

∫
d3rerψ̂†

e(r)ψ̂e(r) �
∑
nlm

n′l′m′

a†nlman′l′m′
∑
unit

cells

eRζ∗nlm(R)ζn′l′m′(R) .

(20.46)

Replacing the sum over the unit cells by an integral yields

∫
d3r er ψ̂†

e(r) ψ̂e(r) =
∑
nlm

n′l′m′

a†nlm an′l′m′

∫
d3ReR ζ∗nlm(R) ζn′l′m′(R)

≡
∑
nlm

n′l′m′

pnlm;n′l′m′ a†nlm an′l′m′ . (20.47)

Using the symmetries of the functions ζnlm, Eq. (20.24), one can verify that

pnlm;nlm = 0 ,

and

pnlm;n′l′m′ �= 0 for n �= n′ ; l − l′ = 0 , ±1 ; m−m′ = 0 , ±1 .

(20.48)

The second term of Eq. (20.30) is evaluated by making the appropriate
e → h replacements in Eqs. (20.46) and (20.47). The result shows that
these two terms do not involve creation or destruction of electron–hole
pairs. Their only effect is to change the state of either the electron or the
hole, leaving the respective state of the other particle unchanged. These
terms therefore describe ”intraband” transitions.
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The last two terms in Eq. (20.43) involve creation and annihilation of
electron–hole pairs, i.e., ”interband” transitions. For these terms, we get

∫
d3r er ψ̂†

e(r) ψ̂
†
h(r) = dcν

∑
nlm

n′l′m′

a†nlm b†n′l′m′

∫
d3R ζ∗nlm(R) ζn′l′m′(R)

= dcν
∑
nlm

a†nlm b†nlm , (20.49)

where

dcν =
∫
d3r eru∗c(r)uv(r) . (20.50)

Hence, we see that this term introduced transitions between states in dif-
ferent bands, creating pairs of electrons and holes with the same quantum
numbers.

1p, 1p
1p, 1s

1s, 1p

1s, 1s

0

Fig. 20.4 Energy level scheme for the states with zero or one electron–hole pair. The
”interband transitions” are indicated by the arrows connecting the ground state to the
1s, 1s and the 1p, 1p state. The ”intraband transitions” are shown as dashed arrows.

In Fig. 20.4, we plot schematically the energy spectrum of the ener-
getically lowest one-electron–hole–pair states with total angular momentum
l = 0, l = 1. The solid lines indicate the most important dipole-allowed
interband transitions. The dashed lines show the intraband transitions in-
volving a change of the state of the electron or the hole.
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20.5 Bloch Equations

In this section, we derive the optical Bloch equations for quantum dots
using density matrix theory (compare Chap. 4). The reversible part of the
dynamic equation for the density matrix is given by the Liouville equation

i�
∂

∂t
ρ = [H +HI , ρ] , (20.51)

where H is the total Hamiltonian of the electronic excitations in the quan-
tum dot, and HI describes the dipole coupling to the light field. Damping
can be modeled microscopically by explicitly introducing the respective
interactions, however, for our purposes it is sufficient to simply use the
appropriate phenomenological damping constants in the final equations.

After the diagonalization, the quantum-dot Hamiltonian can be written
in the form

H =
∑
e

�ωe Pee +
∑
b

�ωb Pbb , (20.52)

where the indices e and b refer to the one-pair and two-pair states, and �ωe
and �ωb are the numerically computed energy eigenvalues, respectively. The
operators Pij are projectors which in the bracket formalism have the form
|i〉〈j|. The interaction Hamiltonian is then

HI = −
∑
e

µeo Peo −
∑
eb

µbe Pbe + h.c. , (20.53)

where

µij = dij · E(t) (20.54)

and the index o refers to the ground state without any electron–hole pairs.
The density matrix is the sum of all diagonal and off-diagonal contribu-

tions

ρ = ρoo|o >< o|+
∑
ee′

ρee′ |e >< e′|+
∑
bb′

ρbb′ |b >< b′|

+
∑
e

(ρeo|e >< o|+ h.c) +
∑
be

(ρbe|b >< e|+ h.c)

+
∑
b

(|b >< o|+ h.c.) . (20.55)
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Inserting Eq.(20.55) into Eq.(20.51) and projecting the resulting equation
onto the different states, one obtains for the matrix elements the equations
of motion

i�
dρeo
dt

= �ωeρeo +
∑
e′
µe′oρee′ −

∑
b

µebρbo − µeoρoo

i�
dρbe
dt

= �(ωb − ωe)ρbe −
∑
e′
µbe′ρe′e +

∑
b′
µb′eρbb′ + µoeρbo

i�
dρee′

dt
= �(ωe − ωe′)ρee′ + µoe′ρeo − µeoρoe′ −

∑
b

(µebρbe′ − µbe′ρeb)

i�
dρbb′

dt
= �(ωb − ωb′)ρbb′ +

∑
e

(µeb′ρbe − µbeρeb′)

i�
dρbo
dt

= �ωbρbo −
∑
e

(µbeρeo − µeoρbe)

ρoo = 1−
∑
e

ρee −
∑
b

ρbb . (20.56)

multilevel Bloch equations for quantum dots

If one wants to compute optical properties of semiconductor quantum
dots, it is in general necessary to numerically evaluate Eqs. (20.56) for the
relevant excitation conditions. Using these solutions the optical polarization
is then obtained as

P (t) =
∑
e

doeρeo(t) +
∑
eb

debρbe(t) + h.c. , (20.57)

where dij is the dipole matrix element in field direction.

20.6 Optical Spectra

In the following, we calculate the steady-state optical properties for pump-
probe excitation and different levels of the pump intensity. To gain some
insights, we first analyze the linear absorption properties. For an unexcited
system, only transitions between the ground state and the one-pair states
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contribute. Hence, the linear polarization can be written as

Pl =
∑
e

doe ρeo + h.c. , (20.58)

where ρeo has to be evaluated linear in Ep. The susceptibility is then ob-
tained from

χ
l
(ω) =

Pl(ω)
Ep(ω) , (20.59)

where Ep(ω) is the amplitude of the weak test beam.
Introducing a phenomenological damping constant γe and keeping only

terms that are of first order in the field, we obtain from Eqs. (20.56),

∂

∂t
ρ(1)oe = −(iωe + γe)ρ(1)oe + idoe

Ep(t)
�

. (20.60)

Solving Eq. (20.60) and inserting the result into Eq. (20.58), we obtain
the linear susceptibility as

χ
l
(ω) =

i

�

∑
e

|doe|2
[

1
γe + i(ωe − ω) +

1
γe − i(ωe + ω)

]
. (20.61)

The corresponding absorption coefficient is then

αl(ω) =
4πω

�c
√
ε2

∑
e

|doe|2
γe

γ2e + (ωe − ω)2
, (20.62)

linear absorption coefficient for quantum dots

where only the resonant part was taken into account.
Eq. (20.62) shows that the absorption spectrum of a single quantum dot

consists of a series of Lorentzian peaks centered around the one-electron–
hole–pair energies �ωe. To compare the theoretical results with experimen-
tal measurements of real quantum dot systems, however, one has to take
into account that there is always a certain distribution of dot sizes f(R)
around a mean value R̄. Since the single-particle energies depend strongly
on R, the R-distribution introduces a pronounced inhomogeneous broaden-
ing of the observed spectra. Theoretically, this can be modeled easily by
noting that αl in Eq. (20.62) is actually αl|R , i.e., the linear absorption
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Fig. 20.5 Linear absorption for CdS quantum dots with a Gaussian size distribution
around a mean radius of 20 Å. The different curves are for the widths of the Gaussian
size distribution indicated in the figure.

spectrum for a given radius R. The average absorption is then computed
as

αl(ω)|aν =
∫ ∞

0

dR f(R)αl(ω)|R . (20.63)
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Fig. 20.6 Computed probe absorption spectra for increasing pump generated popula-
tions of the one- and two-pair states. The detuning is (�ω−Eg)/E0. The arrow indicates
the frequency of the pump laser. [From Hu et al. (1996).]
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Using for f(R) simply a Gaussian distribution around R̄ = 20 Å, we obtain
for CdS quantum dots the results shown in Fig. 20.5. One clearly sees
the energetically lowest one-pair resonances, which merge to a continuous
structure with increasing width of the size distribution. Absorption spectra
similar to those in Fig. 20.5 are experimentally observed in many quantum
dot systems.

In the nonlinear regime, one has to solve the full set of Bloch equations
(20.56). Assuming a pump–probe configuration, we obtain increasing levels
of one- and two-pair-state populations with increasing intensities of the
pump beam. For such a situation, Hu et al. (1996) computed the series of
probe absorption spectra, shown in Fig. 20.6. We see a gradual bleaching
of the energetically lowest transitions until, at sufficiently high excitation
level, negative absorption, i.e., optical gain occurs. This gain can be used
to produce semiconductor lasers with quantum dots as active material.
For these lasers, one typically uses arrays of quantum dots based on III-V
materials. More details can be found, e.g. in Bimberg et al. (1999).
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PROBLEMS

Problem 20.1: Compute the effective Coulomb interaction potential be-
tween two point charges in a dielectric sphere of radius R and background
dielectric constant ε2 which is embedded in a medium with background
dielectric constant ε1.

Problem 20.2: Solve Eq. (20.21) for a quantum-box. Discuss the single-
particle energy eigenvalues as function of box-length.

Problem 20.3: Evaluate the Liouville equation (20.51) for the density
matrix given in Eq. (20.55). Show, that the density-matrix elements obey
the multilevel Bloch equations (20.56).

Problem 20.4: Expand the multilevel Bloch equations (20.56) in third
order in the pump field and derive the corresponding nonlinear optical
susceptibility.
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Coulomb Quantum Kinetics

In this final chapter, we come back to the discussion of the scattering terms
in the semiconductor Bloch equations (12.19). So far, we have treated
only scattering of carriers with LO-phonons (see chapter 12). However,
for the proper analysis of configurations with finite carrier densities, we
have to include carrier–carrier scattering and the screening of the Coulomb
potential.

Screening by optically generated carriers in a semiconductor can be
treated quite naturally in the framework of nonequilibrium Green’s func-
tions, where the interaction is described by a dynamical two-time-dependent
propagator. This allows us to investigate, e.g., the dynamical build-up of
screening after ultrafast carrier excitation. This dynamics reflects the time
it takes the generated carriers to rearrange themselves in order to optimally
screen their mutual interaction potential.

Because nonequilibrium, or Keldysh Green’s functions may be less fa-
miliar to the reader, we present a relatively simple introduction into this
technique in Appendix B. For a more complete coverage, we refer to the
books quoted at the end of the chapter.

We note at this point, that the theory of reduced density matrices also
allows us to treat screening. Here, one has to include the equations of
motion of all two-particle (or four-point) density matrices, as has been
known in plasma physics for quite some time. Because this treatment is less
explored and quite involved in a two-band semiconductor, we refer again to
the literature quoted at the end of this chapter. Generally, it turns out that
both methods have their own advantages and are particularly well suited
for specific approximations, as will be shown below.

After presenting the general formulation of the problem, we proceed in
this chapter by first treating the interaction as a given statically screened

401
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object. This is a good assumption for time scales that are long compared
to the inverse plasma frequency. We evaluate the scattering integral by
including the direct and exchange contributions. This approximation is
called the second Born approximation.

The quantum kinetics of the femtosecond build-up of screening is then
treated in the last section of this chapter. The screening develops roughly
within the period of a plasma oscillation. In a next step, we then treat the
combined dynamical interactions by the exchange of longitudinal plasmons
and optical phonons. In order to reduce the complexity, the exchange
interaction is neglected in this discussion.

21.1 General Formulation

As derived in Appendix B, the scattering integral for the single-time density
matrix ρ(t) in a spatially homogeneous situation is given by

∂ρk(t)

∂t

∣∣∣∣
scatt

= −
∫ t

−∞
dt′
[
Σ>
k (t, t

′)G<
k (t

′, t)− Σ<
k (t, t

′)G>
k (t

′, t)

− G>
k (t, t

′)Σ<
k (t

′, t) +G<
k (t, t

′)Σ>
k (t

′, t)
]
. (21.1)

quantum kinetic collision integral

Here, the density matrix, the particle propagators G<, G> and the scat-
tering self-energies Σ<,Σ> are all matrices in the band indices. Eq. (21.1)
shows that the dynamics of the single-time density matrix is coupled to
two-time propagators, so that one does not have a closed equation for the
density matrix. Without scattering, i.e., for free particles or particles which
experience only a mean field interaction, one can show that the two-time
propagators can be expressed in terms of single-time density matrices and
a retarded or advanced Green’s function which describes the correlation
between the times t and t′:

G<(t, t′)= i〈a†(t′)a(t)〉 = −Gr(t, t′)ρ(t′)+ρ(t)Ga(t, t′) . (21.2)

generalized Kadanoff–Baym ansatz

This equation is often called generalized Kadanoff–Baym ansatz. It holds
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in systems where the interaction is weak. Once the scattering self-energies
are also expressed in terms of the particle propagators, the generalized
Kadanoff–Baym ansatz allows one to close the equation. Naturally, the
retarded and advanced Green’s functions have still to be evaluated self-
consistently in the mean-field approximation. By self-consistently we mean
that both quantities have to be computed jointly within the numerical
integration of the coupled equations for ρ and the spectral functions. In this
way, these spectral functions can still describe nontrivial renormalizations
such as the Hartree–Fock band-edge renormalizations, excitonic effects, or
the optical Stark effect.

Let us now turn to the evaluation of the scattering self-energy. Instead
of formulating the perturbation theory in terms of unperturbed Green’s
functions and bare interaction potentials, we apply a self-consistent scheme
in which the self-energies are expressed by the dressed particle propagators
and screened interaction potentials. In Fig. 21.1, the Feynman diagrams
are given for those terms that are included in this treatment. The first
diagram, called the GW approximation, would actually be the exact one, if
the full vertex correction was included. The second diagram of Fig. 21.1 is
the first vertex correction or the exchange self-energy, as can be seen from
the crossing particle lines.

t’t t
1 2

k’’−k’k’−k

+
k k

t t’ t
k’’k’ k’

k’ − k

k+k’’−k’

Fig. 21.1 Feynman diagrams for the scattering self-energy with the GW self-energy and
the exchange self-energy, also called first vertex correction.

To show that the second diagram in Fig. 21.1 is indeed a vertex correc-
tion, we redraw it in the way shown in Fig. 21.2. This way, we obtain the
same type of diagram as the first one in Fig. 21.1, however, the left vertex
(or interaction point) is renormalized. Naturally, an infinite series of higher
and higher vertex corrections should be included to make the self-energy
exact. Unfortunately, such a procedure is not possible.

Not even the summation of a selected class of vertex corrections, called
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t
k+k’’−k’k−k’

t1

2t t’

k’’−k’k’

Fig. 21.2 The scattering exchange self-energy drawn as vertex correction of the GW
self-energy.

the ladder diagrams shown in Fig. 21.3, have so far been evaluated in the
nonequilibrium many-body theory, because of its complexity.

It is important to remember that all nonequilibrium Feynman diagrams
have to be evaluated for times which are ordered on the Keldysh contour
which runs from minus infinity — where the system was in equilibrium —
through the two times of the Green’s function back to minus infinity (see
Appendix B). The first part of this contour is called the positive branch,
the part running backwards the negative branch. In order to be sure that
in a “lesser” function the first time argument is always earlier (less) than
the second one, the first argument has to be on the positive and the second
one on the negative branch of the Keldysh contour. The GW self-energy is
thus

Σ< GW
k (t, t′) = i�

∑
k′
G<
k−k′(t, t′)W>

k′ (t′, t) . (21.3)

Here, the propagators always start at the vertex at the right time argument,
and run to the vertex at the left time argument. Therefore, the time argu-
ments of the interactionW are interchanged. Because t > t′ on the contour

= +   

Fig. 21.3 The ladder approximation for the Coulomb vertex.
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W is a “greater” function W>(t′, t). In a next step, we want to express
this “greater” potential in terms of the retarded and advanced interaction
potential, W r(t, t′) and W a(t, t′), which determine the dielectric response.

= +

W V V W
L

Fig. 21.4 Integral equation for the screened potential W .

The screened potentialW obeys in contour time space an integral equa-
tion shown symbolically in Fig. 21.4. Similarly, the retarded potential obeys
a simple Dyson equation in the form

W r
q(t, t

′) = Vqδ(t, t′) + VqL
r
q(t, t1)W

r
q(t1, t

′) . (21.4)

Here, a matrix notation for the real time arguments is used and it is implied
that one has to integrate over repeated time arguments. Vq is the bare
Coulomb potential, and Lr(t, t′) is the retarded irreducible polarization
function.

If we write Eq. (21.4) for the lesser part of the potential, the first term
Vqδ(t, t′) does not contribute, because the two time arguments are on differ-
ent branches of the contour and therefore cannot be equal. In the random
phase approximation (RPA), Lr(t, t′) is simply a bubble of Green’s func-
tions describing intraband scattering. The lesser part of the potential is
then

W<
q (t, t′) = Vq[Lq(t, t1)Wq(t1, t′)]< , (21.5)

where all times are considered still on the contour. With the Langreth
theorem described in Appendix B, the product (LW )< can be evaluated
and one finds

W<
q (t, t′) = VqL

r
q(t, t1)W

<
q (t1, t′) + VqL

<
q (t, t1)W

a
q (t1, t

′) , (21.6)

where now all times are real times, i.e., no longer contour times.
If we now multiply Eq. (21.4) with V −1, we find (V −1 − L)W r = 1, so

that W r,−1 = V −L. Similarly, Eq. (21.6) gives (V −1−L)W< = L<W a =
W r,−1W<. Multiplying the last equation with W r yields the result



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

406 Quantum Theory of the Optical and Electronic Properties of Semiconductors

W>,<
q (t, t′) =W r

q (t, t1)L
>,<
q (t1, t2)W a

q (t2, t
′) . (21.7)

optical theorem for the scattering potential

This relation is called optical theorem. Here, we have implied that the
same relation can be derived for the greater function if the polarization L
is also taken as a greater function (see also Problem 21.3). The relation
(21.7) shows that the GW scattering self-energy is actually quadratic in the
spectral functions W r and W a.

t t’

k+q

k

Fig. 21.5 Polarization bubble.

If we evaluate the polarization diagram of Fig. 21.5 in RPA we find

L<q (t, t
′) = −i�

∑
k

G<
k+q(t, t

′)G>
k (t

′, t) . (21.8)

The GW scattering self-energy becomes

Σ< GW
k (t, t′) = �

2
∑
k′,k′′

∫
dt1

∫
dt2G

<
k′+k(t, t

′)W r
k′(t′, t2)

× G>
k′′(t1, t2)G<

k′′+k′(t2, t1)W a
k′(t1, t) . (21.9)

The three propagatorsG<,> yield in the scattering rate the initial and final
state occupation factors, if one expresses the functions G<,> by the density
matrices via the generalized Kadanoff–Baym ansatz.

The evaluation of the exchange scattering self-energy is considerably
more involved. Still in the contour time formalism, we get from the diagram
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of Fig. 21.2

Σex
k (t, t′) = −�

2
∑
k′,k′′

Gk′(t, t1)Wk′−k(t2, t)

× Gk′′(t1, t2)Wk′′−k′(t′, t1)Gk−k′+k′′(t2, t′) . (21.10)

In order to write this diagram in real time, the most efficient way is to
sum for each contour time integral over its branch index α, which is +
for the positive branch and − for the negative branch. In this notation,
Σ<(t, t′) = Σ+−(t, t′), showing that the time t is on the earlier positive
branch while t′ is on the later, negative branch. Symbolically written, the
exchange self-energy yields four terms with the following combination of
Keldysh indices:∑

α1,α2

G+α1Wα2+Gα1α2W−α1Gα2−

=
∑
α2

(G++Wα2+G+α2W−+Gα2− +G+−Wα2+G−α2W−−Gα2−)

= G++W++G++W−+G+− +G+−W++G−+W−−G+−

+ G++W−+G+−W−+G−− +G+−W++G−+W−−G−− . (21.11)

The second term in the final result contains three G<,> propagators and
the ++ and −− components of the potential. With the relations

W++ =W r −W+− , W−− =W a +W+− , (21.12)

we can transform this term into a scattering rate with two spectral func-
tions of the potential and three particle propagators, which has again the
structure of the GW term. This term is thus the exchange Coulomb scat-
tering rate which belongs to the direct Coulomb scattering rate of the GW
scattering self-energy. One sees, however, that generally the vertex correc-
tion contains also contributions of third and fourth order in the interaction
potential, if one expresses the potential via the optical theorem by the re-
tarded and advanced components of the potential. We will not consider
these higher order terms any further.

The second-order vertex contribution to the scattering self-energy is

Σ< ex
k (t, t′) = −�

2
∑
k′,k′′

∫
dt1

∫
dt2G

<
k′(t, t1)W r

k′−k(t2, t)

× G>
k′′(t1, t2)W a

k′′−k′(t′, t1)G<
k−k′+k′′(t2, t′) . (21.13)
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So far, in the literature, this exchange contribution has been considered
mainly in the long-time regime, where a quasi-equilibrium screened poten-
tial can be assumed.

21.2 Second Born Approximation

We now explicitly derive the scattering rates as determined by the GW
and exchange scattering self-energies in the long-time limit. The quantum
kinetic study of the time-dependent build-up of screening will show that
this approximation is reasonable on time scales that are large compared to
the inverse electron–hole plasma frequency.

Under these, with respect to the screening dynamics, quasi-stationary
conditions, the two-time retarded and advanced statically screened poten-
tial becomes singular in the time difference

W r,a
k (t1, t2) =Wk(t1)δ(t1 − t2) , (21.14)

where Wk(t) is the quasi-equilibrium statically screened Coulomb poten-
tial, which still depends parametrically on the carrier densities. Note that
the form (21.14) holds only for a statically screened potential, a frequency-
dependent screening would result in a potential which depends on the dif-
ference time coordinate. With (21.14), all time integrals in the scattering
self-energy vanish, and only the time-integral in the scattering rate (21.1)
remains. Consistently with the above assumptions, we will make a Markov
approximation for this last integration. Naturally, all particle propaga-
tors are still matrices in the band index. After applying the generalized
Kadanoff–Baym ansatz (21.2) to all particle propagators in the self-energies
and the scattering rates, only spectral, i.e., retarded and advanced, Green’s
functions and single-time density matrices remain.

Since we are in the long-time limit, we assume that the off-diagonal
spectral functions have already decayed. As a further simplifying approx-
imation, we take the diagonal elements of the spectral functions in the
effective-particle approximation. With Ga(t, t′) = [Gr(t′, t)]∗ we get

Gr
ii,k(t, t

′) = − i
�
Θ(t− t′)e− i

�

(
εi,k−iγ

)
(t−t′)

Ga
ii,k(t, t

′) =
i

�
Θ(t′ − t)e− i

�

(
εi,k−iγ

)
(t−t′) . (21.15)

Here, εi,k are the mean-field renormalized single-particle energies and γ

is a quasi-particle broadening. In the Markov approximation, the slowly
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varying density matrix elements are pulled out of the time integral with
the time argument taken at the upper boundary t. The remaining integral
leads to a Lorentzian resonance denominator g(ε)

∫ t

−∞
dt′ e

i
�
(ε+iΓ)(t−t′) = �g(ε) � �

[
πδ(ε) + i

P
ε

]
. (21.16)

In the electron–hole picture with the quasi-equilibrium Fermi functions
fe = f c and fh = 1 − fv, we obtain the following equation of motion for
the coherent interband polarization:

[
i�
∂

∂t
− εek(t)− εhk(t)

]
Pk(t) +

[
1− fek(t)− fhk (t)

]
Ωk(t)

= i
[
−SDk (t) + SODk (t) + V D

k (t)− V OD
k (t)

]
. (21.17)

The LHS of Eqs. (21.17) is again the polarization equation of the semicon-
ductor Bloch equations (12.19) with the Hartree–Fock renormalizations of
the energies and the Rabi frequency

εak(t) = εak −
∑
k′

Vk−k′ fak′(t), (21.18)

�Ωk(t) = dcv · E(t) +
∑
k′

Vk−k′ Pk′(t) . (21.19)

The terms on the RHS of Eq. (21.17) are derived from the scattering in-
tegral and describe dephasing of the macroscopic polarization due to car-
rier scattering and polarization interaction, as well as the corresponding
renormalizations of the Hartree–Fock self-energies. Keeping all terms up
to second order in the statically screened interaction potential, we get the
scattering rates in the second Born approximation:
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SDk =
∑
k′,k′′

∑
a,b

g
(
εak + εbk′+k′′ − εbk′′ − εak′+k

) (
2W 2

k′ − δabWk′Wk−k′′
)

×Pk
[
(1−f bk′+k′′)f bk′′fak′+k + f bk′+k′′(1−f bk′′)(1−fak′+k)− Pk′+k′′P ∗

k′′
]
,

(21.20)

SODk =
∑
k′,k′′

∑
a,b

g
(−εak − εbk′+k′′+εbk′′+εak′+k

)(
2W 2

k′ − δabWk′Wk−k′′
)

×Pk′+k
[
(1 − fak)(1 − f bk′+k′′)f bk′′ + fakf

b
k′+k′′(1 − f bk′′)− P ∗

k′+k′′Pk′′
]
,

(21.21)

V D
k =

∑
k′,k′′

∑
a

g
(
εak − εāk′+k′′ + εāk′′ − εak′+k

)
Wk′Wk−k′′

×Pk
(
P ∗
k′+k − P ∗

k′+k′′
)
Pk′′ , (21.22)

V OD
k =

∑
k′,k′′

∑
a

g
(−εak + εāk′+k′′ − εāk′′ + εak′+k

)
Wk′Wk−k′′

×
{
Pk′+k

[
(1 − fak)f āk′+k′′(1− f āk′′) + fak(1− f āk′+k′′)f āk′′

]
−Pk′+k′′

[
(1− fak)(1− f āk′′)fak′+k + fakf

ā
k′′(1− fak′+k)

]}
, (21.23)

where the distribution functions and the statically screened potential para-
metrically vary in time if the total number of carriers changes. The notation
ā = h(e) for a = e(h) is used.

The scattering terms which originate from the direct and exchange in-
teraction are called S. Scattering terms which are solely connected with
the vertex correction are called V . Depending on whether these rates are
diagonal (or off-diagonal) in the momentum variable of the polarization
component Pk the terms are divided into V D, SD and V OD, SOD. In other
words, the terms V D, SD are ∝ Pk, while the off-diagonal parts depend
on other polarization components Pk′ �=k. In SD and SOD, we find direct
(GW) contributions, ∝ W 2

k′ , as well as exchange (vertex) contributions,
∝Wk′Wk−k′′ .

Eqs. (21.20) and (21.22) can be formally divided into shift and damping
terms:

i
[−SDk (t) + V D

k (t)
]
=
[
∆k(t) + iΓk(t)

]
Pk(t) . (21.24)
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Γk(t) describes a momentum-dependent diagonal damping rate that gen-
eralizes the T2 time and ∆k(t) yields the corresponding corrections to the
Hartree–Fock renormalizations of the free-particle energies in Eq. (21.17).
Similarly, Eqs. (21.21) and (21.23) yield momentum-dependent off-diagonal
damping and shift contributions:

i
[
SODk (t)− V OD

k (t)
]
=
∑
k′

[−∆k,k′(t) + iΓk,k′(t)]Pk′(t) , (21.25)

which couple various k-states of the interband polarization. Note, that the
k-sum of the RHS of Eq. (21.17) vanishes since

∑
k(S

D
k −SODk ) =

∑
k V

D
k =∑

k V
OD
k = 0. This clearly shows that dephasing of the coherently driven

interband polarization is an interference effect, also known as excitation-
induced dephasing.

On the other hand, correlation contributions combine with the un-
screened Hartree–Fock renormalizations of the free particle energies and
the Rabi energy to a momentum-dependent band-gap shift and a renor-
malized Rabi energy in second Born approximation. Correspondingly, the
reduction of the exciton binding energy, the band-gap renormalization and
the damping are computed including all first and second order terms in the
screened Coulomb interaction. The fact that both, screening corrections
to the Hartree–Fock contributions and scattering (damping) contributions
originate from the same correlation terms underlines the common micro-
scopic origin of scattering and screening.

In the limiting case of a weak field E, the polarization Pk depends only
linearly on the field, fak becomes field-independent, and cubic polarization
terms vanish. This situation is realized in the quasi-equilibrium limit when
a weak test field probes the pre-excited system which contains thermalized
carriers described by Fermi–Dirac distribution functions.

The polarization equation (21.17) together with the scattering terms in
the second Born approximation has been used extensively to investigate de-
phasing and correlations in quasi-equilibrium electron–hole systems. As an
example, we show in Fig. 21.6 the computed gradual saturation of the exci-
ton resonance due to the increasing population density. This saturation due
to excitation-induced dephasing occurs without loss of oscillator strength,
i.e., the integral over the 1s-exciton line remains basically constant during
the saturation.

Excitonic saturation can be observed in a pump–probe configuration
using resonant short pulse excitation, see Chaps. 13 – 15 for details. An
example of a measured spectrum for a multiple quantum-well structure is
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Fig. 21.6 Calculated (left figure) and measured (right figure) saturation of the exci-
ton resonance of an InGaAs/GaAs quantum-well structure. According to Jahnke et al.
(1996).

shown in the RHS part Fig. 21.6. The main qualitative features of the
experimental results are in nice agreement with the microscopic theory.
Especially, it has been verified that the 1s-exciton oscillator strength is
well conserved.

From a slightly different perspective, the microscopic analysis of dephas-
ing is nothing but a detailed line-shape theory. Hence, the results can also
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Fig. 21.7 Calculated (solid lines) and measured (dots) gain spectra for a In-
GaAs/AlGaAs quantum-well laser structure. The inset shows the band structure com-
puted on the basis of the k · p theory discussed in Chap. 3. According to Hader et al.
(1999).
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be used to predict the optical spectra in systems with elevated electron–
hole–plasma densities where part of the absorption becomes negative, i.e.,
optical gain is realized. These gain media are the basis for semiconduc-
tor laser operation (see Chap. 17). The calculation of the proper gain
line shape has been a long standing problem since the use of a constant
dephasing approximation leads to the prediction of unphysical absorption
energetically below the gain region. As it turns out, the numerical solutions
of the semiconductor Bloch equations, where dephasing is treated according
to the second Born approximation, provide a solution of the laser line-shape
problem yielding very good agreement with experimental results, as shown
in Fig. 21.7. For more details of the microscopic semiconductor laser and
gain theory see, e.g., Chow and Koch (1999).

21.3 Build-Up of Screening

If a sample is excited by a femtosecond pulse, some time is needed until the
optically created carriers rearrange in order to screen their mutual Coulomb
interaction. The characteristic time in this problem is the period of a
plasma oscillation. For an electron-hole gas, e.g., in GaAs, with a density
of about 1018cm−3, the energy of a plasmon is in the same order as that
of a longitudinal optical phonon. Hence, the corresponding time scale is
in the order of 100 fs. With modern femtosecond spectroscopy where the
pulses can be as short as a few fs, the regime of the build-up of screening
is accessible in experiments. As a test for the predictions of the quantum
kinetic calculations of the build-up of screening, which we will discuss below,
an optical pump and THz probe experiment is ideally suited to detect
the delayed build-up of a plasma resonance. Other experiments which are
performed within this build-up regime of screening are femtosecond FWM
experiments with and without coherent control. In this ultrashort time
regime, we have to give up the quasi-equilibrium assumptions used in the
previous section and calculate the two-time-dependence of the screening and
of the spectral functions self-consistently. In detail the following elements
have to be included in the treatment:

• Self-consistent calculation of the two-time-dependent screened
Coulomb potential
The two-time-dependent retarded screened Coulomb potentialW r

q(t, t
′)

(21.4) has to be calculated. We restrict ourselves to the RPA polar-
ization function (21.8). This approximation is in general not sufficient
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in the full two-time-dependent treatment of quantum kinetics, because
it is not a conserving approximation. We refer, for a more detailed
discussion of this subtle point, e.g., to the investigation of Gartner et
al. (2000). Because RPA violates the charge neutrality one gets a
long wave length divergence q → 0 if one attempts to solve the inte-
gral equation (21.4) using only two-time-dependent Green’s functions.
Fortunately, if one uses the generalized Kadanoff–Baym ansatz (21.2)
to eliminate the G<,>(t, t′) in favor of the single-time density matrix
and the spectral functions the divergence cancels. Therefore, we will
use the reduction to the density matrix by the generalized Kadanoff–
Baym ansatz. As an input for the solution of the integral equation, we
need the density matrix and the spectral functions at each time step.
Therefore, the integral equation can only be solved self-consistently to-
gether with the Bloch equations and the spectral functions. Note, that
in the polarization loop we have at each vertex a summation over the
band index. Therefore, the polarization diagram does not only include
the electron and hole particle propagators, but also the off-diagonal
elements connected with the interband polarization.
• Self-consistent calculation of the spectral functions
We will calculate the matrix of the retarded and advanced Green’s
functions in the mean-field approximation. Due to the Hartree–Fock
exchange term the mean-field Hamiltonian depends on the density ma-
trix. In this way, the band-gap shrinkage due to the Hartree–Fock self-
energy as well as excitonic correlations and the renormalizations due to
the optical Stark effect are included. The mean-field Hamiltonian can
be written as

Hmf =
∑
ij,k

Hmf
ij,k(t)a

†
i,kaj,k , (21.26)

where i, j are band indices. The retarded Green’s function is defined
as

Gr
ij,k(t, t

′) = − i
�
Θ(t− t′)〈[ai,k(t), a†j,k(t′)]+〉 . (21.27)

The equation of motion for the retarded Green’s function under the
mean-field Hamiltonian is

i�
∂Gr

ij,k(t, t
′)

∂t
= δ(t− t′)δij +

∑
i′
Hmf
ii′,k(t)G

r
i′j,k(t, t

′) . (21.28)
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The initial value for the integration is

Gr
ij,k(t

′, t′) = − i
�
δij . (21.29)

For the damping, we will use a phenomenological damping constant,
which is compatible with the collision broadening of the considered
situation. This ansatz can be improved by using a phenomenological
non-Markovian damping which results not in an exponential decay, but
in a decay in the form of an inverse hyperbolic cosine, which is Gaussian
for short and exponential for long times.
• Self-consistent solution of the Bloch equations in the GW ap-
proximation
Together with the integral equation of W r

q(t, t′) and the differential
equation for the retarded Green’s function Gr

k(t, t
′), we have to solve

the semiconductor Bloch equations. Because the momentum integra-
tions in the exchange terms in the scattering self-energy are too de-
manding for this program we use only the GW scattering self-energy
(21.3), together with the optical theorem.
• Self-consistent treatment of the screening of the LO-phonon
and Coulomb interaction
One advantage of the described program is that one can include the
screening of the interaction with LO-phonons relatively easily. This is
necessary because the energies of LO-phonons and plasmons are com-
parable for a highly excited electron–hole gas. Indeed, the screening
is determined by the LO-phonon and the plasmon pole. Formally, one
only has to replace the inhomogeneous term Vq in the integral equation
of Wq by the bare phonon and Coulomb interaction W 0

q(t, t′):

W 0
q(t, t

′) = g2qDq(t, t′) + Vqδ(t, t′) , (21.30)

where g2q ∝ q−2 is the Fröhlich interaction matrix element between elec-
trons and LO-phonons, and Dq(t, t′) is the propagator of the thermal
phonon bath. Diagrammatically the integral equation for the effective
particle–particle interaction is shown in Fig. 21.8. Only the deconvolu-
tion from the Keldysh contour times to the real times is more involved.
For details we refer to Vu and Haug (2000).

In the following, we present some numerical results of such calculations for
actual femtosecond experiments. Here, we have calculated the two-time-
dependent screened effective interaction potentialW r

q(t, t
′) self-consistently

for GaAs following an 11 fs pump pulse. We have taken an incomplete
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Fig. 21.8 Integral equation for the screened effective potential W for LO-phonon and
Coulomb interaction.

Fourier transformation of the retarded potential which is compatible with
the condition t ≥ t′:

W r
q(ω, t) =

∫ t

−∞
dt′W r

q(t, t
′)eiω(t−t′) =

Vq
εq(ω, t)

. (21.31)

The imaginary part of the inverse dielectric function is plotted in Fig. 21.9
for various times for an excitation density of n = 1.1 · 1018cm−3. One
sees the LO-phonon resonance at about 36 meV. At the chosen density, the
plasmon pole evolves gradually on the high energy side of the LO-phonon.
The plasmon pole is fully developed after a few hundred femtoseconds. The
dispersion of the plasmon pole can be seen to be of quadratic form. It should
be noted that it is quite demanding to calculate the Fourier transform of
such a sharp structure as the LO-phonon pole. The slight shift from the
transverse to the longitudinal frequency as the plasmon pole evolves it not
resolved in these calculations. It should be noted that in the described
experiment the THz field was focused strongly on the sample, so that it
was no longer a purely transverse field and thus sensitive to longitudinal
excitations (see Sec. 16.1).

Recent experiments with an optical femtosecond pump pulse and a
single-cycle THz probe pulse of Leitenstorfer et al. confirm the calculated
picture of a gradual build-up of screening. Particularly, in recent experi-
ments on InP where both resonances lie well within the resolution of the
experimental set-up, the mentioned shift of the phonon resonance and the
complete build-up of the LO-phonon-plasmon mixed mode picture has been
detected clearly.

Using two delayed 10 fs pulses, the above described model has been ap-
plied to a time-integrated FWM experiment of Wegener et al. In agreement
with the experiment, we find from a fit to the calculated data a plasma-
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Fig. 21.9 The calculated imaginary part of the inverse dielectric function εq(ω, t) for
GaAs after an 11 fs pulse which excited n = 1.1 · 1018cm−3 for various delay times.
According to Vu and Haug (2000).

density-dependent dephasing time τ with the following form

1
τ
= γ0 + an

1
3 , (21.32)

where a is a constant and the density-independent term is due to LO-
phonon scattering. The calculated and measured dephasing times in this
experiment on GaAs get as short as 10 fs.

In a FWM experiment again with 10 fs pulses, the pump pulse was
split into a double pulse. The two pulses are coherent with respect to each
other and the coherent control delay time can be varied with attosecond
precision. Again the described theory and the experiment yield LO-phonon-
plasmon oscillations on the decaying time-integrated FWM signal, which
can be switched on and off by varying the coherent control delay time.
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In this way, the plasmon oscillation can even be seen in real time. The
resulting oscillation frequencies from the quantum kinetic calculations and
the experiment are shown in Fig. 21.10. One sees clearly from the density-
dependence of the oscillation period that the oscillations belong to the
upper branch of the mixed phonon–plasmon mixed mode spectrum.

Fig. 21.10 Comparison of computed oscillation frequencies (T) and experimental results
(E). The filled symbols are two-pulse photon echo experiments (2P) and the open symbols
are coherent control experiments (CC). Triangles (squares) correspond to measurements
at 77 (300) K. The two dashed curves correspond to the bare LO-phonon and the plasmon
oscillation period. According to Vu et al. (2000).
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PROBLEMS

Problem 21.1: Derive the generalized Kadanoff–Baym ansatz
(a) for free particles
(b) for particles governed by a mean-field Hamiltonian.

Problem 21.2: Show that the ladder integral equation of Fig 21.3 yields
after the first iteration the vertex diagram of Fig. 21.2.

Problem 21.3: Proof the optical theorem (21.7) for the “greater” function
explicitly.

Problem 21.4: Give the two by two matrix of the mean-field Hamilto-
nian (21.26) with coupling to the light field and Hartree–Fock Coulomb
corrections explicitly.
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Appendix A

Field Quantization

In this appendix, we review the general quantization procedure for a given
classical field. As a result, we obtain a formulation of quantum mechanics
in terms of generation and annihilation operators, which is well suited to
describe many-body systems. In this language, the transition from state l
to state m is described as annihilation of the respective quasi-particle in
state l and simultaneous creation of that quasi-particle in state m.

Formally, one can also apply the quantization procedure to the one-
particle Schrödinger field, which is the origin of the name second quantiza-
tion, which is often used instead of field quantization. In this appendix, we
discuss the general formalism of field quantization and illustrate it with
three examples: i) the electromagnetic field, ii) the displacement field,
iii) the Schrödinger field. In the process, we introduce the appropriate
quanta, namely, photons for the electromagnetic field, phonons for the dis-
placement field, and electrons for the Schrödinger field. Anticipating the
introduction of these quanta, we use their names as headings for our sub-
sections. For the electromagnetic and displacement fields, we use the or-
dinary commutator (with a minus sign), while for the electrons we use
anti-commutators. These simple choices automatically yield the correct
statistics, namely Bose-Einstein statistics for the electromagnetic and dis-
placement fields and Fermi-Dirac statistics for the electrons.

A.1 Lagrange Functional

We denote by φj(r, t) the general field variable, which may be the vector
potential Aj , the displacement field ξj , or any other field. Generalizing
Lagrangian and Hamiltonian point mechanics to the continuum case, we

421
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introduce a Lagrange functional which depends on fields according to

L[φj ] =
∫
d3rL(φj , ∂φj/∂t, ∂φj/∂xi, r, t) . (A.1)

The Euler–Lagrange equations (field equations) are obtained from Hamil-
ton’s principle

δ

∫ t1

t0

Ldt = 0 = δ

∫ t1

t0

dt

∫
d3rL(φj , ∂φj/∂t, ∂φj/∂xi, r, t) . (A.2)

In Eq. (A.2), the variation δ acts on the fields (not on the coordinates)

δL =
∑
j

(
δL
δφj

δφj +
δL
δ
∂φj
∂t

δφ̇j +
∑
i

δL
δφij

δφij

)
, (A.3)

where we introduced the abbreviations φ̇ = ∂φ/δt, φij = ∂φj/∂xi. δL/δφj
denotes the functional derivative of L with respect to the j-th component
of the vector field φ. Assuming as usual that variations and derivatives
commute, we can use partial integration. Since δφ(t0) = δφ(t1) = 0 and
since δφ also vanishes at the boundaries of the system, we obtain

δ

∫ t1

t0

dtL =
∫ t1

t0

dt

∫
d3r

(
δL
δφj
− ∂

∂t

δL
δ
∂φj
∂t

−
∑
i

∂

∂xi

δL
δ
∂φj
∂xi

)
δφj = 0 . (A.4)

The variations δφj are arbitrary, so that Eq. (A.4) can be satisfied only if

δL
δφj
− ∂

∂t

δL
δ
∂φj
∂t

−
∑
i

∂

∂xi

δL
δ
∂φj
∂xi

= 0 . (A.5)

These equations are the Euler–Lagrange or field equations.

i) photons

Photons are the quanta of the electromagnetic field. To keep things as
simple as possible, we restrict our discussion to the electromagnetic field in
vacuum. For this, we have∫

dt L =
∫
dt

∫
d3r

1
8π

(E2 −H2) , (A.6)

where

H = ∇×A = curlA , (A.7)
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A is the vector potential,

E = −∇φ− 1
c

∂A
∂t

, (A.8)

and φ is the scalar potential. Using Eqs. (A.7) and (A.8) in Eq. (A.6), we
write the Lagrangian density as

L =
1
8π

[(
∇φ+

1
c

∂A
∂t

)2

− (curlA)2
]
. (A.9)

The components Ai of the vector potential and the scalar potential φ are
the elements of the general field variable φi(r, t) discussed above, i.e.,

φi = Ai for i = 1, 2, 3 and φ4 = φ . (A.10)

To obtain the field equations, we need the results

δL
δAj

=
δL
δφ

=
δL
δ ∂φ∂t

= 0 , (A.11)

δL
δ
∂Aj

∂t

=
1

4πc

(
∂φ

∂xj
+

1
c

∂Aj

∂t

)
, (A.12)

δL
δ ∂φ
∂xi

=
1
4π

(
∂φ

∂xi
+

1
c

∂Ai

∂t

)
, (A.13)

and

δL
δ
∂Aj

∂xl

= − δ

δ
∂Aj

∂xl

∑
εimk

∂Ak

∂xm
εiqn

∂An

∂xq

1
8π

= − 1
8π

∑
εilj εiqn

∂An

∂xq
− 1

8π

∑
εimk

∂Ak

∂xm
εilj

= − 1
4π

∑
εilj εiqn

∂An

∂xq

= − 1
4π

(
∂Aj

∂xl
− ∂Al

∂xj

)
. (A.14)

In Eq. (A.14), we have used the so-called Levi–Civita tensor εijk, which has
the following properties

ε123 = 1 , ε213 = −1 , εiij = 0 , (A.15)
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where cyclic permutations of the indices do not change the result, i.e., ε123 =
ε312 = ε231, etc. For the product of the tensors, we have the rule∑

i

εijlεimn = δjmδln − δjnδlm . (A.16)

The Levi–Civita tensor is very useful when evaluating vector products, curls
and the like. For example, the curl of a vector is

curlA =
∑
ei

∂

∂xj
Al εijl . (A.17)

Combining Eqs. (A.9) – (A.14) with the Euler–Lagrange equations, we get

1
4π

[∑ ∂

∂xi

(
∂Aj

∂xi
− ∂Ai

∂xj

)
− 1
c

∂

∂t

(
∂φ

∂xj
+

1
c

∂Aj

∂t

)]
= 0 (A.18)

or, using Eqs. (A.7) and (A.8)

curl H =
1
c

∂

∂t
E , (A.19)

which is one of Maxwell’s equations. Analogously we obtain

∑ ∂

∂xi

(
∂φ

∂xi
+

1
c

∂Ai

∂t

)
= 0 , (A.20)

which is nothing but

div E = 0 . (A.21)

The other two Maxwell equations are just the definitions of the potentials.
Equation (A.8) yields

curl E = −1
c

∂H
∂t

, (A.22)

since

∇× E = ∇×
(
−∇φ− 1

c

∇A
∂t

)
= −1

c

∂

∂t
∇×A (A.23)

and from Eq. (A.7) we have

div H = 0 (A.24)



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Appendix A: Field Quantization 425

since

∇ · (∇×A) = 0 . (A.25)

Equations (A.19), (A.21), (A.22) and (A.24) are the complete Maxwell
equations in vacuum, which occur here as our field equations.

ii) phonons

As second example, we treat waves in an elastic medium. The quanta of
these waves are the phonons. We denote by ξi(r, t) the i-th component of
the displacement field at point r and time t. The displacement field satisfies
the classical wave equation

∂2

∂t2
ξi − c2∇2ξi = 0 . (A.26)

The corresponding Lagrangian is

L =
1
2
ρ


∑

i

(
∂ξi
∂t

)2

−
∑
ij

c2
(
∂ξi
∂xj

)2

 , (A.27)

where we have the density ρ as a prefactor so that L has the correct unit
of an energy density. We arrived at Eq. (A.27) by an educated guess and
by verifying that the field equations are indeed just Eq. (A.26).

iii) electrons

As we see below, the electrons appear through the quantization of the
Schrödinger equation. This is the origin of the name second quantization,
although the name field quantization is generally more appropriate. Here,
we consider the single-particle Schrödinger equation as our classical wave
equation

i�
∂ψ

∂t
−Hsch ψ = 0 , (A.28)

where

Hsch = −�
2∇2

2m
+ V (r) (A.29)

and ψ is the complex wave function. We treat ψ and ψ∗ as the quan-
tities that have to be varied independently. Our educated guess for the
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Lagrangian is

L = ψ∗ (i�ψ̇ −Hschψ) , (A.30)

which can be verified by evaluating Eq. (A.5). The variation with respect
to ψ∗ yields

δL
δψ∗ −

∂

∂t

δL
δ ∂ψ

∗
∂t

−
∑ ∂

∂xi

δL
δ ∂ψ

∗
∂xi

= 0 . (A.31)

The last two terms on the LHS of this equation are identically zero and

δL
δψ∗ = 0 = i �

∂ψ

∂t
−Hschψ , (A.32)

which is the Schrödinger equation (A.28). The variation with respect to
ψ is more lengthy, but it can be shown to yield the conjugate complex
Schrödinger equation

−i�∂ψ
∗

∂t
−Hschψ

∗ = 0 . (A.33)

A.2 Canonical Momentum and Hamilton Function

The next step in our general procedure is to introduce the canonical mo-
mentum and the Hamilton functional. As in point mechanics, the canonical
momentum Πi(r, t) for φi(r, t) is defined as

Πi =
δL
δ ∂φi∂t

(A.34)

and the Hamilton density is defined as

h =
∑
i

Πi
∂φi
∂t
− L , (A.35)

where all variables have to be expressed in terms of Π and φ.

i) photons

Using the Lagrangian (A.9) in Eq. (A.34), we obtain

Πi =
δL
δ ∂Ai

∂t

=
1

4πc

(
∂φ

∂xi
+

1
c

∂Ai

∂t

)
, (A.36)
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so that Πi = −E/4πc. Solving (A.36) for ∂Ai/∂t yields

∂Ai

∂t
= 4πc2Πi − c ∂φ

∂xi
. (A.37)

The momentum density canonical to the scalar potential φ vanishes iden-
tically because L does not depend on ∂φ/∂t. Therefore, we cannot treat
φ in the same way as A. Actually, as we will show below, the Hamilton
density is independent of φ. Therefore, we can completely eliminate φ from
the discussion by choosing the gauge φ = 0 .

The Hamilton density is

h =
∑

Πi

(
4πc2Πi − c ∂φ

∂xi

)
− 1

8π
[(4πcΠ)2 − (curl A)2]

= 2πc2Π2 +
1
8π

(curl A)2 , (A.38)

since the term cΠ·∇φ vanishes. To prove this, we make a partial integration
of the total Hamiltonian. This transforms cΠ · ∇φ into −cφ∇ · Π. We can
drop this term if we limit the treatment to solutions for which ∇ · Π =
∇ · E = 0. To see that this is possible, we consider the Hamilton equation
for Π,

∂Π
∂t

= − 1
4π
∇×∇×A = 0 . (A.39)

This equation shows that ∇ · Π always remains zero if we choose it to be
zero initially.

ii) phonons

Using the Lagrangian (A.27) in Eq. (A.34), we obtain the canonical mo-
mentum

Πi =
δL
δ ∂ξi∂t

= ρ
∂ξi
∂t

. (A.40)

This result is the continuum version of the well-known relation from point
mechanics, where p = mẋ. The Hamiltonian is computed as

h =
Π2

2ρ
+
ρc2

2

∑
ik

(
∂ξi
∂xk

)2

, (A.41)
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where the first term on the RHS is the continuum version of p2/2m and
the second term is the potential.

iii) electrons

Here we use the Lagrangian (A.30) to obtain

Π = i�ψ∗ (A.42)

and

h = Πψ̇ − 1
i�

Πi�ψ̇ +
1
i�
ΠHsch ψ

=
1
i�

ΠHsch ψ . (A.43)

A.3 Quantization of the Fields

Now, we have prepared everything to come to the crucial step of field quan-
tization. First a reminder: the transition from classical mechanics to quan-
tum mechanics can be done formally by replacing the classical variables r
and p by operators r̂ and p̂ that fulfill the commutation relations

[r̂l , p̂j] = i�δlj ,

[r̂l , r̂j ] = 0 ,

and

[p̂l , p̂j ] = 0 , (A.44)

where here and in the following a commutator without a subscript always
denotes the minus commutator

[Â, B̂] ≡ [Â, B̂]− = ÂB̂− B̂Â . (A.45)

In this appendix, we use hats on top of the variables to denote operators.
The field quantization is now done by replacing the fields φi → φ̂i,

Πi → Π̂i and the Hamiltonian H → Ĥ. For the field operators, we demand
the commutation relations

[φ̂l(r, t), Π̂j(r′, t)]± = i�δlj δ(r− r′) ,

[φ̂l(r, t), φ̂j(r′, t)]± = 0 ,
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and

[Π̂l(r, t), Π̂j(r′, t)]± = 0 , (A.46)

where

[Â, B̂]+ = ÂB̂ + B̂Â (A.47)

and [Â, B̂]− is given by Eq. (A.45). Both commutators occur in nature,
the minus commutator for Bosons like photons and phonons, and the plus-
commutator, usually called the anti-commutator, for Fermions, e.g., elec-
trons. By choosing the appropriate type of commutator, we automatically
get the correct quantized field theory.

i) photons

In the φ = 0 gauge, we have Πi(r, t) = (1/4πc2) ∂Ai/∂t and Ai(r, t) as
canonical variables. After quantization, the commutation relations are

[Âl(r, t), Π̂j(r′, t)]− = i�δljδ(r− r′) , (A.48)

and the Hamilton operator becomes

Ĥ =
∫
d3r

[
2πc2Π̂2 +

1
8π

( curlÂ)2
]
. (A.49)

For many applications, we want to work in the Coulomb gauge

∇ ·A = 0 , (A.50)

where the electromagnetic field is transverse. In this gauge, the commutator
between A and Π is no longer given by Eq. (A.48) because the individual
components of these operators are connected by ∇ ·A = 0 and ∇ · Π = 0.
In the Coulomb gauge, the commutator (A.48) has to be replaced by

[Âl(r, t), Π̂j(r′, t)]− = i�δtlj(r− r′) , (A.51)

see Schiff (1968). Here, the transverse δ-function is defined as

δtlj(r− r′) = δljδ(r− r′)− 1
4π

∂

∂rl

∂

∂rj

1
|r− r′| . (A.52)
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In order to introduce photon operators (in vacuum), we expand the field
operators in terms of plane waves

uλk =
eik·r

L3/2
eλk , (A.53)

where eλk is the polarization unit vector, so that∫
d3ru∗λk(r) · uλ′k′(r) = δλλ′δk,k′ (A.54)

and∑
λ=1,2

eλk,l eλk,j +
klkj
k2

= δlj . (A.55)

If we wanted to quantize the electromagnetic field in a resonator or in some
other geometry we would use the appropriate eigenmodes instead of plane
waves.

Since the electromagnetic field in the Coulomb gauge is transverse, we
know that k is perpendicular to eλk, implying that∇·u = 0. The expansion
of the field operators is

Â(r, t) =
∑
k,λ

[b̂λk uλk(r) + b̂†λk u
∗
λk(r)]Bλk (A.56)

and

Π̂(r, t) =
1

4πc2
∂Â
∂t

=
∑
k,λ

(
∂b̂kλ
∂t
uλk +

∂b̂†kλ
∂t
u∗λk

)
Bλk

4πc2
, (A.57)

where the expansion coefficients b̂, b̂† are the photon operators. We deter-
mine the quantity Bλk so that the photon operators fulfill simple commu-
tation relations.

To evaluate the time derivative of the photon operators, we make use
of the fact that the vector potential A satisfies the wave equation(

∂2

∂t2
− c2∇2

)
Â = 0 . (A.58)

Inserting the expansion (A.56), we obtain

∂2

∂t2
b̂λk = −ω2

k b̂λk



January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Appendix A: Field Quantization 431

and

∂2

∂t2
b̂†λk = −ω2

k b̂
†
λk , (A.59)

where ωk = ck. Equation (A.59) is fulfilled if

∂

∂t
b̂λk = −iωkb̂λk

and

∂

∂t
b̂†λk = iωkb̂

†
λk . (A.60)

Inserting Eq. (A.60) into Eq. (A.57) yields

Π̂(r, t) = − 1
4πc2

∑
iωkBλk(b̂λk uλk − b̂†λk u∗λk) . (A.61)

To determine the commutation relations of the photon operators, we insert
the expansions (A.56) and (A.61) into the commutator (A.48) to obtain

∑
λ,k
λ′,k′

−iBλkBλ′k′ωk′

4πc2
[(
b̂λkuλk,l(r) + b̂†λku

∗
λk,l(r)

)
,

(
b̂λ′k′uλ′k′,j(r′)− b̂†λ′k′u

∗
λ′k′,j(r)

)]
= i�δljδ(r− r′) . (A.62)

This commutator is satisfied if

[b̂λk , b̂
†
λ′k′ ] = δλλ′δkk′

and

[b̂λk , b̂λ′k′ ] = 0 = [b̂†λk , b̂
†
λ′k′ ] (A.63)

and the normalization constant is chosen as

Bλk =
[
2πc2�
ωk

]1/2
. (A.64)

Summarizing these results, we have

Â(r, t) =
∑
λk

√
2πc2�
ωk

[
b̂λk uλk(r) + b̂†λk u

∗
λk(r)

]
, (A.65)
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Π̂(r, t) = −i
∑
λk

√
�ωk
8πc2

[
b̂λk uλk(r)− b̂†λk u∗λk(r)

]
, (A.66)

and the Hamiltonian

Ĥ =
∑ �ωk

2
(b̂†λkb̂λk + b̂λkb̂

†
λk) =

∑
�ωk(b̂

†
λkb̂λk + 1/2) . (A.67)

ii) phonons

Here, we quantize the canonical variables into the field operators ξ̂i(r, t)
and Π̂i(r, t) = ρ ∂ξ̂i/∂t with the commutations relations

[ξ̂j(r, t) Π̂l(r′, t)]− = i�δjlδ(r− r′) . (A.68)

Again, we expand the field operators

ξ̂(r, t) =
∑

[b̂kuk(r) + b̂†ku
∗
k(r)]Bk (A.69)

and similarly for Π̂. Choosing the functions u as plane waves

uk(r) = ek
eik·r

L3/2
,

where ek = k/|k| and the normalization constant as Bk =
√

�/2ρωk, we
find the commutation relation between the phonon operators

[b̂k, b̂
†
k′ ] = δk,k′ , (A.70)

and the Hamilton operator becomes

Ĥ =
∑

�ωk(b̂
†
kb̂k + 1/2) . (A.71)

iii) electrons

Here, we introduce the field operators ψ̂ and Π̂ = i�ψ̂† and we use the
Fermi anti-commutation relations

[ψ̂, ψ̂]+ = 0 = [ψ̂†, ψ̂†]+ (A.72)

and

[ψ̂(r, t), Π̂(r′, t)]+ = i�δ(r− r′) , (A.73)
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which is equivalent to

[ψ̂(r, t), ψ̂†(r′, t)]+ = δ(r− r′) . (A.74)

From the Hamilton density, Eq. (A.43), we obtain

ĥ =
1
i�
Π̂(r)Hschψ̂(r) = ψ̂†(r)Hschψ̂(r) , (A.75)

which yields the Hamilton operator of the noninteracting electron system
as

Ĥ =
∫
d3r ψ̂†(r)Hschψ̂(r) . (A.76)

The derivation of the Hamiltonian for an interacting electron system is
discussed, e.g., in the textbook of Davydov. Here, we only want to mention
that one has to start from the N-particle Schrödinger Hamiltonian which
is then transformed into the Fock representation. One finally obtains

Ĥ =
∫
d3r ψ̂†(r)Hschψ̂(r)

+
1
2

∫
d3r

∫
d3r′ ψ̂†(r) ψ̂†(r′)V (r, r′) ψ̂(r′) ψ̂(r) . (A.77)

This expression shows that the interaction term has a similar structure as
the single-particle term, but instead of Hsch the electron density operator
ψ̂†(r) ψ̂(r) times the potential V appears. The whole interaction term is
thus the product of the density operators at r and r′ multiplied by the pair
interaction potential. The factor 1/2 appears to avoid double counting.

We now expand the field operators into the eigenfunctions φn of the
single-particle Schrödinger Hamiltonian.

Hsch φn = En φn , (A.78)

so that

ψ̂(r, t) =
∑

ân(t)φn(r) . (A.79)

These eigenfunctions could be any complete set, such as the Bloch or Wan-
nier functions. It is important to choose the appropriate set for the problem
at hand. The electron operators obey the anti-commutation relation

[âm, â†n]+ = δn,m , (A.80)
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and we obtain the single-particle Hamilton operator

Ĥ =
∑
n

En â
†
n ân . (A.81)

Similarly, from Eq. (A.77) we get the many-body Hamiltonian

Ĥ =
∑
n

En â
†
nân +

1
2

∑
Vm′n′mn â

†
m′ â

†
n′ âmân , (A.82)

where

Vm′n′mn = 〈m′n′|V |nm〉
is the matrix element of the interaction potential.
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Contour-Ordered Green’s Functions

In this appendix, we make the connection with the many-body techniques
which are appropriate to describe a nonequilibrium system on an advanced
level and which have been used in Chap. 21 to describe the quantum kinet-
ics in an interacting electron–hole plasma. We present a short introduction
to nonequilibrium Green’s functions and show that this formalism yields
quite naturally a method to determine the spectral and kinetic properties
of a many-body system, which is driven away from equilibrium by time-
dependent external fields. Naturally, we can only give a brief introduction
here, for further extensions we refer the reader to the existing literature.
We follow closely the introduction of the nonequilibrium functions by Haug
and Jauho (1996).

The nonequilibrium problem is formulated as follows. We consider a
system evolving under the Hamiltonian

H = h+H′(t) . (B.1)

The time-independent part of the Hamiltonian h is split in two parts: h =
H0+Hi, where H0 is a single-particle Hamiltonian and Hi contains many-
body interactions. It is further assumed that the nonequilibrium part H′(t)
vanishes for times t < t0. (We will take t0 → −∞ at a suitable point.) The
nonequilibrium part is, in the context of the present book, the interaction
of the carriers with a laser pulse.

Before the perturbation is turned on, the system is described by the
thermal equilibrium density matrix,

R(h) =
exp(−βh)

tr[exp(−βh)] . (B.2)

The task is to calculate the expectation value of a given observable, to

435
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which one associates a quantum mechanical operator O, for times t ≥ t0:
〈O(t)〉 = tr[R(h)OH(t)] . (B.3)

The subscript H indicates that the dependence is governed by the full
Hamiltonian, i.e., O is written in the Heisenberg picture.

B.1 Interaction Representation

We transform the time-dependence of OH with the full Hamiltonian to a
simpler form, namely to that of Oh with the stationary part of the Hamil-
tonian. To eliminate the time-dependent external perturbation, we use the
relation

OH(t) = v†h(t, t0)Oh(t)vh(t, t0) . (B.4)

Here,

vh(t, t0) = T {exp[− i
�

∫ t

t0

dt′H′
h(t

′)]} , (B.5)

the quantity H′
h(t) is the interaction representation of the time-dependent

perturbation H′(t)

H′
h(t) = exp[

i

�
h(t− t0)]H′(t) exp[− i

�
h(t− t0)] , (B.6)

and T is the time-ordering operator which arranges the latest times to left.
We now introduce contour-ordered quantities. The expression (B.4) can

be written in another, but equivalent, form:

OH(t) = TCt

{
exp

[− i
�

∫
Ct

dτH′
h(τ)

]
Oh(t)

}
, (B.7)

where the contour Ct is depicted in Fig. B.1. Where possible, we employ the
convention that time variables defined on a complex contour are denoted
by Greek letters, while Roman letters are used for real time variables.

t to

Fig. B.1 Contour Ct.
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The contour extends from t0 to t and back again. Here, the time arguments
are on the real axis or slightly above it; ifH′(t) can be analytically continued
no problems can arise. The meaning of the contour-ordering operator TCt

is the following: the operators with time labels that occur later on the
contour have to stand to the left of operators with earlier time labels. The
second part of the branch puts the exponential transformation operator to
the left of the operator Oh(t). For a formal proof, we refer to Haug and
Jauho (1996). The contour-ordering operator is an important formal tool,
which allows us to develop the nonequilibrium theory along lines parallel
to the equilibrium theory.

We now define the contour-ordered Green’s function:

G(1, 1′) ≡ − i
�
〈TC [ψH(1)ψ†

H(1′)]〉 , (B.8)

where the contour C starts and ends at t0; it runs along the real axis and
passes through t1 and t′1 once and just once (Fig. B.2).

t t0 1 t

Fig. B.2 Contour C.

Here, ψH and ψ†
H are the Fermion field operators in the Heisenberg picture.

Finally, we employ the shorthand notation (1) ≡ (Sx1, t1) [or (1) ≡ (Sx1, τ1),
when appropriate].

The contour-ordered Green’s function plays a similar role in non-
equilibrium theory as the causal Green’s function plays in equilibrium the-
ory: it possesses a perturbation expansion based on Wick’s theorem. How-
ever, since the time labels lie on the contour with two branches, one must
keep track of which branch is in question. With two time labels, which can
be located on either of the two branches of the contour of Fig. B.2, there
are four distinct possibilities. Thus, (B.8) contains four different functions:

G(1, 1′) =



Gc(1, 1′) = G++(1, 1′) t1, t1′ ∈ C1

G>(1, 1′) = G−+(1, 1′) t1 ∈ C2, t1′ ∈ C1

G<(1, 1′) = −G+−(1, 1′) t1 ∈ C1, t1′ ∈ C2

Gc̃(1, 1′) = −G−−(1, 1′) t1, t1′ ∈ C2

. (B.9)
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The notation with the contour time indices, which is used, e.g., in the book
by Schäfer and Wegener (2002), shows directly to which part of the contour
the time argument belongs.

In Eq. (B.9), we introduced the causal, or time-ordered Green’s function
Gc,

Gc(1, 1′) = − i
�
〈T [ψH(1)ψ†

H(1′)]〉 (B.10)

= − i
�
θ(t1 − t1′)〈ψH(1)ψ†

H(1′)〉+ i

�
θ(t1′ − t1)〈ψ†

H(1′)ψH(1)〉 ,

the “greater” function G>, also called hole propagator,

G>(1, 1′) = − i
�
〈ψH(1)ψ†

H(1′)〉 , (B.11)

the “lesser” function G<, also called particle propagator,

G<(1, 1′) = +
i

�
〈ψ†

H(1′)ψH(1)〉 , (B.12)

and the antitime-ordered Green’s function Gc̃,

Gc̃(1, 1′) = − i
�
〈T̃ [ψH(1)ψ†

H(1′)]〉 (B.13)

= − i
�
θ(t1′ − t1)〈ψH(1)ψ†

H(1′)〉+ i

�
θ(t1 − t1′)〈ψ†

H(1′)ψH(1)〉 .

Since Gc +Gc̃ = G< +G>, there are only three linearly independent func-
tions. This freedom of choice is reflected in the literature, where a number
of different conventions can be found. For our purposes, the most suit-
able functions are G>,< (which are often also denoted by a common name,
“correlation function”), and the advanced and retarded functions defined as

Ga(1, 1′) =
i

�
θ(t1′ − t1)〈[ψH(1), ψ†

H(1′)]+〉
= θ(t1′ − t1)[G<(1, 1′)−G>(1, 1′)] , (B.14)

and

Gr(1, 1′) = − i
�
θ(t1 − t1′)〈[ψH(1), ψ†

H(1′)]+〉
= θ(t1 − t1′)[G>(1, 1′)−G<(1, 1′)] . (B.15)

Obviously, Ga(1, 1′) = Gr(1′, 1)∗. We observe further that Gr − Ga =
G>−G<. Actually, the knowledge of two nonequilibrium Green’s functions
is sufficient to calculate all of them. Because of their different physical
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content, we prefer to work with the particle propagatorG<, which describes
the kinetics of the system and the spectral Green’s function Gr, which
determines the time-dependent renormalizations in the system. One can
show further that one can do perturbation expansions, apply Wick’s and
use Feynman diagrams just as one can for equilibrium systems.

For the practical use of the nonequilibrium Green’s functions, one has
to replace the contour integrals by real time integrals. This procedure is
called the analytic continuation, and many different formulations exist in
the literature, see Haug and Jauho (1996) for details.

The contour-ordered Green’s function has the same perturbation expan-
sion as the corresponding equilibrium time-ordered Green’s function. Con-
sequently, given that a self-energy functional can be defined, the contour-
ordered Green’s function has the same Dyson equation as the equilibrium
function:

G(1, 1′) = G0(1, 1′) +
∫
d3x2

∫
Cv

dτ2G0(1, 2)U(2)G(2, 1′)

+
∫
d3x2

∫
d3x3

∫
C

dτ2

∫
C

dτ3G0(1, 2)Σ(2, 3)G(3, 1′) . (B.16)

Here, we assume that the nonequilibrium term in the Hamiltonian can
be represented by a one-body external potential U . The interactions are
contained in the (irreducible) self-energy Σ[G].

B.2 Langreth Theorem

In considering the Dyson equation (B.16), we encounter terms with the
structure C = AB, or, explicitly,

C(t1, t1′) =
∫
C

dτA(t1, τ)B(τ, t1′ ) , (B.17)

and their generalizations involving products of three (or more) terms. Since
we are presently only concerned with temporal variables, we suppress all
other variables (spatial, spin, etc.), which have an obvious matrix structure.
To evaluate (B.17), let us assume for definiteness that t1 is on the first half,
and that t1′ is on the latter half of C (Fig B.3).
In view of our discussion in connection with (B.10) – (B.15), we are thus
analyzing a “lesser” function.
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t1

t1

C1

C’1

t’1

t’1

Fig. B.3 Deformation of contour C.

The next step is to deform the contour as indicated in Fig. B.3. Thus
(B.17) becomes

C<(t1, t1′) =
∫
C1

dτA(t1, τ)B<(τ, t1′)

+
∫
C′

1

dτA<(t1, τ)B(τ, t1′ ) . (B.18)

Here, in appending the sign < to the function B in the first term, we made
use of the fact that as long as the integration variable τ is confined on the
contour C1 it is less than (in the contour sense) t1′ . A similar argument
applies to the second term. Now, we consider the first term in (B.18), and
split the integration into two parts:∫

C1

dτA(t1, τ)B<(τ, t1′) =
∫ t1

−∞
dt A>(t1, t)B<(t, t1′)

+
∫ −∞

t1

dt A<(t1, t)B<(t, t1′)

≡
∫ ∞

−∞
dt Ar(t1, t)B<(t, t1′) , (B.19)

where we used the definition of the retarded function (B.15). A similar
analysis can be applied to the second term involving contour C′

1; this time
the advanced function is generated. Putting the two terms together, we
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have the first of Langreth’s results:

C<(t1, t1′) =
∫ ∞

−∞
dt
(
Ar(t1, t)B<(t, t1′) +A<(t1, t)Ba(t, t1′)

)
. (B.20)

The same result applies to the “greater” function: one just replaces all <’s
by >’s. It is easy to generalize the result (B.20) for a (matrix) product of
three functions: If D = ABC on the contour, then, on the real axis, one
has

D< = ArBrC< +ArB<Ca +A<BaCa . (B.21)

Once again a similar equation holds for the “greater” functions. One often
needs the retarded (or advanced) component of a product of functions de-
fined on the contour. The required expression is derived by repeated use of
the definitions (B.10) – (B.15), and the result (B.20):

Cr(t1, t1′) = θ(t1 − t1′)[C>(t1, t1′)− C<(t1, t1′)]

= θ(t1 − t1′)
∫ ∞

−∞
dt[Ar(B> −B<) + (A> −A<)Ba]

= θ(t1 − t1′)
[∫ t1

−∞
dt(A> −A<)(B> −B<)

+
∫ t1′

−∞
dt(A> −A<)(B< −B>)

]

=
∫ t1

t1′
dtAr(t1, t)Br(t, t1′) . (B.22)

In our compact notation, this relation is expressed as Cr = ArBr.
When considering the various terms in the diagrammatic perturbation
series, one may also encounter terms where two Green’s function lines
run (anti)parallel. For example, this can be the case in a polarization
or self-energy diagram. In this case, one needs the “lesser” and/or re-
tarded/advanced components of structures like

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) ,

D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) , (B.23)

where τ and τ ′ are contour variables. The derivation of the required for-
mulae is similar to the analysis presented above. One finds

C<(t, t′) = A<(t, t′)B<(t, t′) ,

D<(t, t′) = A<(t, t′)B>(t′, t) , (B.24)
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and

Cr(t, t′) = A<(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′) +Ar(t, t′)Br(t, t′) ,

Dr(t, t′) = Ar(t, t′)B<(t′, t) +A<(t, t′)Ba(t′, t)

= A<(t, t′)Ba(t′, t) +Ar(t, t′)B<(t′, t) . (B.25)

As earlier, the relations (B.24) can immediately be generalized to “greater”
functions. For a quick reference, we have collected the rules provided by
the Langreth theorem in Table B.1.

contour real axis
C =

∫
C AB C< =

∫
t

(
ArB< +A<Ba

)
Cr =

∫
t

(
ArBr

D =
∫
C
ABC D< =

∫
t

(
ArBrC< +ArB<Ca +A<BaCa

)
Dr =

∫
t
ArBrCr

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C<(t, t′) = A<(t, t′)B<(t, t′)
Cr = A<(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′)
+Ar(t, t′)Br(t, t′)

D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) D<(t, t′) = A<(t, t′)B>(t′, t)
Dr = A<(t, t′)Ba(t′, t) +Ar(t, t′)B<(t′, t) .

Table B.1 Rules for analytic continuation

B.3 Equilibrium Electron–Phonon Self-Energy

The retarded electron–phonon self-energy Σr
ph is a central object in the

analysis of many physical properties of metals and semiconductors. At
finite temperatures, one conventionally uses the Matsubara technique to
perform the analytic continuation. The Langreth theorem can be used to
give a very compact derivation of Σr

ph. In lowest order in the electron–
phonon matrix element Mq, we have

Σph(k, τ, τ ′) = i
∑
q

|Mq|2G(k − q, τ, τ ′)D(q, τ, τ ′) . (B.26)

Here, G is the free-electron Green’s function while D is the free-phonon
Green’s function. Equation (B.26) is in a form where we can apply (B.25).
In equilibrium, all quantities depend on time only through the difference
of the two time labels, and it is advantageous to work in frequency space.
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Performing the Fourier transform gives

Σr
ph(k, ω) = i

∫
dε

2π

∑
q

|Mq|2[G<(k − q, ω − ε)Dr(q, ε)

+ Gr(k − q, ω − ε)D<(q, ε) +Gr(k − q, ω − ε)Dr(q, ε)] . (B.27)

The expressions for the free equilibrium Green’s functions are (the reader
is urged to verify these relations!):

D<(q, ω) = −2πi[(Nq + 1)δ(ω + ωq) +Nqδ(ω − ωq)] ,
Dr(q, ω) =

1
ω − ωq + iη

− 1
ω + ωq + iη

,

G<(k, ω) = 2πinF(ω)δ(ω − εk) ,
Gr(k, ω) =

1
ω − εk + iη

. (B.28)

Substituting these expressions in (B.27), one finds after some straightfor-
ward algebra

Σr
ph(k, ω) =

∑
q

M2
q

[
Nq − nF(εk−q) + 1
ω − ωq − εk−q + iη

+
Nq + nF(εk−q)

ω + ωq − εk−q + iη

]
. (B.29)

The shortness of this derivation, as compared to the standard one, nicely
illustrates the formal power embedded in the Langreth theorem.
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absorption, 6
average, 398

absorption change, 253
absorption coefficient, 10, 81, 297

quantum dots, 397
absorption spectrum, 188, 189, 290,
301, 359
quantum wire, 190

additional boundary condition, 199
adiabatic approximation, 237
adiabatic switch-on, 19, 138
Airy function, 351
amplitudes, 311
analytic continuation, 439
angle-averaged potential, 287
angular momentum, 43, 173, 389
anti-commutation relations, 90, 432
anti-commutator, 150, 429
atomic optical susceptibility, 17
Auger recombination, 324
average absorption, 398
averaged susceptibility, 356

bad cavity limit, 313
Balmer series, 181
band

heavy-hole, 46
light-hole, 46

band edge absorption spectrum, 188,
189

band structure, 39
quantum well, 63

band-filling factor, 84
band-filling nonlinearities, 86
band-gap reduction, 292, 316
band-gap shrinkage, 286
bath, 329
beam diffraction, 318
biexciton, 263, 264
bistable hysteresis, 314
bistable semiconductor etalons, 315
bleaching, 399
Bloch equations, 237

multi-subband, 221
multilevel, 396
optical, 24, 75

Bloch function, 33
Bloch theorem, 33
Bloch vector, 74, 75, 77
blueshift, 236, 264, 389
Bohr radius, 120
Boltzmann distribution, 95, 103
Boltzmann scattering rate, 229

electron–phonon, 228
Bose commutation relations, 98
Bose–Einstein condensation, 101
Bose–Einstein distribution, 98, 100
Boson, 89
bound states, 299
bound-state energies, 175, 179
boundary conditions

periodic, 34
bra-vector, 66
Bragg reflectors, 206

445
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Brillouin zones, 32
bulk exciton electroabsorption, 367

canonical momentum, 426
carrier equation, 309, 334
carrier life time, 310
Cauchy relation, 5
causality, 4
cavity, 325
cavity eigenmodes, 325
cavity loss rate, 325
chaotic behavior, 340
charge density operator, 110, 129
charge density oscillations, 8
chemical potential, 84, 93, 96, 102,
103
2D Fermions, 97

coherent dynamics, 258
coherent oscillations, 254
collective excitations, 129
collision integral, 402
commutation relations, 428, 429, 431
commutator, 428
completeness relation, 65
conditional probability, 115
conduction band, 41
conductivity sum rule, 147
confinement potential, 56, 59, 383
conservation law, 238, 257
continuum

electron–pair excitations, 136
continuum states, 300
contour

deformation, 440
correlation contributions, 261, 262
correlation effects, 255
correlation energy, 118
correlation function, 116, 150, 164,
261

Coulomb correlation contributions,
264

Coulomb enhancement, see excitonic
enhancement

Coulomb enhancement factor, 187
Coulomb gauge, 429
Coulomb Hamiltonian, 107, 109

Coulomb hole, 118
Coulomb hole self-energy, 158
Coulomb interaction, 384

mesoscopic systems, 55
Coulomb potential, 142, 377

angle-averaged, 287
dynamically screened, 139
multi-subband, 220
one-dimensional, 124
quantum well, 122
three-dimensional, 113
two-dimensional, 119

Coulombic memory effects, 264
critical temperature, 99
current density, 7
cyclotron frequency, 373

damping constant, 330
dc Stark effect, 349, 360
Debye model, 28
Debye–Hückel screening, 142
degenerate Fermi distribution, 93
degenerate four-wave mixing, 272
degenerate hole bands, 60
degenerate valence bands, 45
density matrix, 70

one-particle, 164
phonon-assisted, 224
reduced, 165
thermal equilibrium, 435

density of states, 56, 84, 376
dephasing, 288
dephasing kinetics, 274
dephasing time, 222
dephasing times, 235
detuning, 74
diagonal damping rate, 411
diagonal element, 71
dielectric function, 6, 139, 144, 307

exciton, 194
differential absorption, 236, 254, 265
differential gain, 316
differential transmission spectroscopy,
217

diffraction length, 307
diffusion coefficient, 310, 333
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diodes, 321
dipole approximation, 68, 166
dipole interaction, 66
dipole moment, 2, 18
dipole transitions, 392
Dirac identity, 14
Dirac state vectors, 65
direct gap semiconductors, 80
dissipation–fluctuation theorem, 331,
333

Dyson equation, 153, 154
for contour-ordered Green’s

function, 439

effective electron–hole–pair equation,
296

effective hole mass, 46
effective mass, 40, 44
effective mass tensor, 42
effective potential, 137
eigenmode equation, 198
eigenmodes, 325
elastic medium, 425
electric field, 349
electroabsorption, 354
electron correlation function, 116
electron gas

interacting, 107
electron gas Hamiltonian, 112, 130,
152

electron operators, 200
electron–hole liquid, 115
electron–hole plasma, 216
electron–hole representation, 80, 212
electron–hole susceptibility, 186
electron–ion interaction, 109
electron–pair excitations

continuum, 136
electron–phonon scattering, 229
electrons, 425
Elliot formula, 187, 188
energies

renormalized, 155
energy subbands, 59
ensemble averages, 89
envelope approximation, 54

envelope function, 57
envelope function approximation, 384
envelope wave function, 54
equation hierarchy, 131
Euler–Lagrange equations, 422
exchange energy, 115, 156
exchange hole, 117, 153
exchange repulsion, 117
exchange self-energy, 154, 168, 403
exchange term, 153, 155
excitation-induced dephasing, 411
exciton, 175

dielectric function, 194
exciton binding energy, 176
exciton Bohr radius, 176
exciton electroabsorption, 360

bulk, 367
exciton enhancement, 367
exciton Green’s function, 243
exciton operators, 202
exciton resonances, 216, 290
exciton wave function, 178
exciton–photon Hamiltonian, 203, 207
exciton–polaritons, 194
excitonic enhancement, 286, 290, 294
excitonic optical Stark effect, 253, 264
excitonic saturation, 411
extinction coefficient, 10

Fabry–Perot resonator, 311
feedback, 305, 311, 340, 345
Fermi distribution, 78, 283
Fermi energy, 93
Fermi surface, 137
Fermi wave number, 121
Fermi–Dirac distribution, 92
Fermion, 89

noninteracting, 90
Feynman diagrams, 403
field amplitudes, 312
field equations, 422
field operators, 164, 392
field quantization, 421, 425, 428
flip-flop operators, 45
fluctuation operator, 331
fluctuations, 328
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Fock term, 153
four-operator correlations, 131, 256
four-wave mixing, 217, 272
Fourier transformation, 108
Franz-Keldysh effect, 355
Franz-Keldysh oscillations, 354
Franz-Keldysh spectrum, 359

quantum confined, 357
free carrier

optical susceptibility, 80
free carrier absorption, 78, 81
free electron mass, 33
free induction decay, 76

perturbed, 254
Fröhlich coupling parameter, 224
Fröhlich Hamiltonian, 223

gain, 85, 285, 322
gain coefficient, 324
gain spectra, 86
gauge

Landau, 372
symmetric, 372

generalized Kadanoff–Baym ansatz,
402, 414

generalized Rabi frequency, 215
grand-canonical ensemble, 90
grating, 249
Green’s function

advanced, 438
antitime-ordered, 438
causal, 437

definition, 437
contour-ordered, 435

definition, 437
correlation function, 438
exciton, 243
greater, 438
Keldysh, 401
lesser, 438
phonon

equilibrium, 442
retarded, 12, 149, 151, 438
time-ordered

definition, 437
ground-state wave function, 113

group velocity, 198
GW approximation, 403

Hamilton density, 427
Hamilton functional, 426
Hamilton’s principle, 422
Hamiltonian, 432

electron gas, 112, 130, 152
exciton–photon, 203, 207
polariton, 205

Hartree term, 153
Hartree–Fock approximation, 113
Hartree–Fock energy, 115
Hartree–Fock Hamiltonian, 220
Hartree–Fock terms, 214
heavy-hole band, 46
heavy-hole light-hole mixing, 62
heavy-hole valence band, 255
Heisenberg equation, 130, 167
Heisenberg picture, 260, 436, 437
high excitation regime, 216
hole operator, 200
holes, 80
Hulthén potential, 297
hydrogen atom, 171

ideal Bose gas, 97
ideal Fermi gas, 90
index of refraction, 11
induced absorption, 316
induced absorption bistability, 319
injection pumping, 323
insulator, 41
integral equation, 415
intensity, 310, 341
intensity gain, 340
interacting electron gas, 107
interaction Hamiltonian, 220
interaction picture, 260
interaction potential, 108
interband polarization, 164, 184, 409
interband transitions, 67, 163
interference, 311
interference oscillations, 254
intersubband transitions, 72
intraband interactions, 163
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intraband relaxation, 226
intraband transitions, 393, 394
intrinsic optical bistability, 317
intrinsic semiconductor photon echo,
275

inversion factor, 285
ion–ion interaction, 109
ionization continuum, 290

jellium approximation, 152
jellium model, 107

Keldysh contour, 404
Keldysh Green’s function, 401
Keldysh indices, 407
ket-vector, 66
kinetic properties, 163
k · p theory, 41
Kramers–Kronig relation, 6
Kramers–Kronig transformation, 302

ladder approximation, 404
Lagrange functional, 421
Lagrangian, 425
Lagrangian density, 423
Landau ladder, 375
Landau states, 374
Lang–Kobayashi equations, 342
Langevin equation, 328, 329
Langreth theorem, 405, 439
Laplace operator, 172
laser diodes, 321
laser frequency, 327
laser spectrum, 340
laser threshold, 327
lattice matched conditions, 60
lattice potential, 29
lattice vector, 30

reciprocal, 31
Levi–Civita tensor, 423
light emission, 323
light-emitting diodes, 321
light-hole band, 46
light-induced shift, 236
Lindhard formula, 139, 140
line-shape theory, 412

line-width enhancement factor, 338,
341

linear polarization, 397
linear response theory, 20
Liouville equation, 70, 395
localization energy, 61
logic functions, 316
long wave-length limit, 134
long-time limit, 228
longitudinal eigenmodes, 139, 197
longitudinal optical phonons, 222
longitudinal relaxation time, 76
longitudinal wave equation, 307
longitudinal-transverse splitting, 197
Lorentz force, 371, 374
Lorentzian line shape, 8
low excitation regime, 216
luminescence spectrum, 379
Luttinger Hamiltonian, 47
Luttinger parameters, 47

magnetic field, 374
magneto-excitons, 371
magneto-luminescence, 378
magneto-plasma, 371, 375
many-body Hamiltonian, 434
Markov approximation, 218, 264, 331,
408

Markovian noise, 336
Markovian scattering kinetics, 227
Maxwell’s equations, 9, 424
mean-field Hamiltonian, 225
memory function, 4
memory structure, 227
mesoscopic scale, 35
mesoscopic structures, 384
mesoscopic systems

Coulomb interaction, 55
metal, 41
microcavity, 206
microcavity polariton, 207
microcrystallites, 383
mixing

heavy- and light hole, 62
mode pulling, 327
Mott criterion, 299
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Mott density, 286, 290
multi-subband Bloch equations, 221
multi-subband situation, 123
multiband configuration, 256
multilevel Bloch equations, 396

narrow band-gap semiconductors, 291
nearly free electron model, 50
non-Markovian quantum kinetics, 227
nonlinear optical response, 310
nonlinearity

density-dependent, 307
nonradiative recombination, 324
number operator, 91
numerical matrix inversion, 289
Nyquist noise, 334

occupation number, 91
off-diagonal damping, 411
off-diagonal elements, 71
one-component plasma, 131
one-particle density matrix, 164
operator

contour-ordering, 436, 437
Fermion, 437
time-ordering, 436

optical bistability, 305, 311
optical Bloch equations, 24, 75
optical Bloch equations for quantum
dots, 395

optical dielectric function, 290
optical dipole matrix element, 69
optical dipole transition, 65, 68
optical feedback, 340
optical gain, 23, 85, 290, 399, 413
optical matrix element, 72, 197
optical nonlinearities, 86
optical polarization, 79, 169
optical pumping, 84
optical resonator, 311
optical response, nonlinear, 310
optical spectrum, 184, 300
optical Stark effect, 27, 237
optical Stark shift, 23
optical susceptibility, 2, 3, 21, 185,
295, 307, 356

atomic, 17
free carrier, 80

optical switching devices, 291
optical theorem, 406
optically thin samples, 271
orthogonality relation, 65
oscillations, coherent, 254
oscillator, 2
oscillator potential, 374
oscillator strength, 21, 186
oscillator strength sum rule, 22
overlap integral, 359

Padé approximation, 96, 294
pair correlation function, 118, 121
pair energy, 389
pair function, 165
pair wave function, 391
paraxial approximation, 307
particle propagator, 150
Pauli blocking, 219, 264
Pauli exclusion principle, 89
periodic boundary conditions, 34
perturbed free induction decay, 254
phase, 311, 341
phase-space filling, 219, 262
phonon Hamiltonian, 225
phonon-assisted density matrix, 224
phonons, 425
photon echo, 78, 275, 280

intrinsic, 275
photon operators, 430
photons, 422
picture

Heisenberg, 260, 436, 437
interaction, 260

plasma eigenmodes, 139
plasma frequency, 6, 134, 143
plasma screening, 137, 296
plasma theory, 296
plasmon, 129, 140
plasmon frequency, 147

effective, 146
plasmon pole, 416
plasmon–pole approximation, 146,
147, 158
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Poisson’s equation, 138
polariton, 193

microcavity, 207
polariton branch, 204
polariton dispersion, 196, 199, 207
polariton Hamiltonian, 205
polariton operators, 203
polariton spectrum, 204
polarization, 2, 20

interband, 164
linear, 397

polarization diagram, 406
polarization equation, 261
polarization fluctuations, 334
polarization function, 133, 138, 405
polarization operator, 392
polaron shifts, 231
positive charge background, 108
power series expansion, 175
principal value, 5
probe susceptibility, 252
probe transmission, 249
pump rate, 323
pump–probe delays, 253
pump–probe experiment, 235

quantized states, 58
quantum beats, 274
quantum coherence, 218, 235
quantum confined Franz-Keldysh
spectrum, 357

quantum confinement, 55
quantum dot, 54, 383

Bloch equations, 395
quantum kinetics, 227
quantum wire, 54, 123, 189, 292, 372,
380
absorption spectrum, 190
thin, 180

quantum-dot Hamiltonian, 395
quantum-well band structure, 63
quantum-well structures, 53, 292
quasi-equilibrium, 73
quasi-equilibrium assumption, 168
quasi-equilibrium regime, 216
quasi-particles, 194

quasiclassical approximation, 361

Rabi flopping, 76
Rabi frequency, 25, 215

renormalized, 284
Rabi sidebands, 26
radial distributions, 391
radial equation, 298
radial exciton wave functions, 178
random phase approximation, 131,
167

rate equation, 310, 314, 322
reciprocal lattice vector, 31
recombination, nonradiative, 324
redshift, 236, 264
reduced density matrix, 165, 213, 219
reduced mass, 170
refraction, 6
refractive index, 322
relaxation oscillation, 337, 342
relaxation oscillation frequency, 342
relaxation times, 222
renormalized band gap, 281
renormalized energies, 155
renormalized frequencies, 168
renormalized single-particle energies,
215

representation
interaction, 436

reservoir, 329
resonator, 312, 325
resonator transmission, 313
retardation effects, 271
retarded Green’s function, 12, 149,
151, 414

retarded potential, 416
retarded self-energy, 154
rotating wave approximation, 25, 74
Rydberg energy, 177

scattering terms, 401
Schawlow–Townes line-width formula,
339

Schrödinger equation, 425
screened exchange self-energy, 157
screened potential, 405
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screening, 140
build-up, 413
Debye–Hückel, 142
Thomas–Fermi, 142

screening length, 141, 144
screening wave number, 141, 142
second Born approximation, 408, 409
second moments, 331
second quantization, 89, 110, 421, 425
selection rules, 43, 256
self-consistency equation, 295
self-energy, 108

Coulomb hole, 158
exchange, 154, 168
irreducible, 439
retarded, 154
screened exchange, 157

self-energy corrections, 231
self-sustained oscillations, 342
semiconductor, 41
semiconductor Bloch equations, 168,
211, 216

semiconductor microstructures, 53
shot noise, 334
sidemodes, 340
signal amplification, 316
single-particle energies, 213, 388, 390

renormalized, 215, 284
single-particle spectrum, 387
size distribution, 398
Sommerfeld factor, 190
spatial dispersion, 195, 198
spectral hole burning, 342
spectral properties, 163
spin echo, 275
spin–orbit interaction, 45
spontaneous emission, 323, 324, 333
Stark effect, dc, 349, 360
state mixing, 63
statistical operator, 90
stimulated emission, 323, 334
stochastic laser theory, 335
strained layer structures, 60
subband structure, 72
sum rule

oscillator strength, 22

superconductivity, 101
superfluidity, 101
surface charge, 385
surface polarization, 385
susceptibility, 290

electron–hole–pair, 186
optical, 2, 3, 21, 185, 307, 356

susceptibility component, 379
susceptibility function, 287, 309
susceptibility integral equation, 288
switching devices, 315

thermal distributions, 102
thin samples, 270, 271
thin wires, 180
Thomas–Fermi screening, 141, 142
tight-binding approximation, 36
tight-binding bands, 39
tight-binding wave function, 37
total carrier density, 309
transient transmission oscillations,
254

translation operator, 30
transmission resonator, 313
transverse eigenmodes, 195
transverse field equation, 308
transverse relaxation time, 76
transverse wave equation, 306
truncation scheme, 256
tunnel integral, 370
two electron–hole–pair excitations,
263

two-band approximation, 69
two-band model, 166
two-level model, 26
two-point density matrix, 269
two-pulse wave mixing, 269
type-I structures, 53
type-II structures, 53

ultrafast regime, 217
Urbach rule, 198

valence band, 40
valence bands, degenerate, 45
vector potential, 372
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vertex correction, 404
vertex function, 289
vertex integral equation, 289
virial, 94
virtual excitations, 238

Wannier equation, 169, 171
Wannier excitons, 173, 193
Wannier functions, 36
wave equation, 9, 324

longitudinal, 307

transverse, 306
wave number, 10
wave propagation, 306
Whittaker functions, 183
Wigner distribution, 270
Wigner–Seitz cells, 32
WKB method, 360

Yukawa potential, 141

zero-point energy, 58, 82, 102
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