
From Newton's second law to Huygens's principle: visualizing waves in a large array of

masses joined by springs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 Eur. J. Phys. 30 1217

(http://iopscience.iop.org/0143-0807/30/6/002)

Download details:

IP Address: 157.92.44.72

The article was downloaded on 12/08/2010 at 20:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0143-0807/30/6
http://iopscience.iop.org/0143-0807
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 30 (2009) 1217–1228 doi:10.1088/0143-0807/30/6/002

From Newton’s second law to
Huygens’s principle: visualizing waves
in a large array of masses joined by
springs

A E Dolinko

Instituto de Fı́sica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 Bis, 2000 Rosario,
Argentina
and
Departamento de Fı́sica, Facultad de Ciencias Exactas, Ingeniera y Agrimensura,
Universidad Nacional de Rosario, S2000BTP Rosario, Argentina

E-mail: andres.eze.d@gmail.com

Received 11 May 2009, in final form 16 July 2009
Published 8 September 2009
Online at stacks.iop.org/EJP/30/1217

Abstract
By simulating the dynamics of a bidimensional array of springs and masses,
the propagation of conveniently generated waves is visualized. The simulation
is exclusively based on Newton’s second law and was made to provide
insight into the physics of wave propagation. By controlling parameters
such as the magnitude of the mass and the elastic constant of the mesh
elements, it was possible to change the properties of the medium in order to
observe the characteristic phenomena of wave mechanics, such as diffraction
and interference. Finally, several examples of waves propagating in media
with different configurations are presented, including the application of the
simulation to the study of frequency response of a complex structure.

M This article features online multimedia enhancements

1. Introduction

There exist two ways of describing the nature in physics. One is through the concept of
particles which is based on the idea of trajectory and is described by Newton’s laws in
classical mechanics. On the other hand, certain phenomena are better described by means
of the concept of waves. The concept of particles is, in principle, opposite to the concept of
waves since the first one refers to a localized entity while the second one refers to an entity
whose description takes sense when an extended region of space is considered. The wave
phenomena are well described by Huygens’s principle, in which it is stated that the wavefront
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of a propagating wave at any instant conforms to the envelope of spherical wavelets emanating
from every point on the wavefront at the prior instant and it seems to be irreconcilable with the
image of trajectory. However, it appears that there exists an underlying relationship between
both formalisms [1].

One demonstration of this underlying connection is shown in this work, in which a
simulation of the phenomenon of wave propagation is presented on the basis of the description
of a bidimensional array of masses linked by springs. No wave equation is included a priori,
and Newton’s second law exclusively governs the system. The waves are generated by an
adequate excitation of the masses and they propagate through the entire space of simulation.
It is verified that the generated waves respond accurately to the behaviour predicted by
Huygens’s principle. Moreover, the known phenomena of wave mechanics, such as reflection
and refraction, are also observed.

The proposed simulation allows observing the movement of the array of masses at the
same time it is running. Consequently, the evolution of the wavefronts corresponding to
the collective movement of the masses can be clearly visualized. Therefore, this work is
intended for undergraduate students of physics or engineering, who may find the proposed
simulation particularly useful since it permits insight into the dynamics of wave propagation to
be obtained. Although several works on simulations of wave propagation have been reported
[2–4], the present work has the advantage of being based on a very simple and intuitive
algorithm that can be implemented by students to observe and visualize the dynamics of
mechanical waves. Consequently, the proposed approach could represent a valuable tool in
the field of physics education.

The characteristics and the size of the simulation space are easily determined by a set
of digital pictures with the same size in pixels. A similar approach was also implemented in
[5] to determine the medium characteristics in a simulation of heat propagation. The pictures
define bitmaps in which each pixel corresponds to the location of a mass element of the array.
In this manner, the number of masses in the array is automatically established by the size of
the picture. The grey level of the pixels in each bitmap codes the magnitude of a physical
characteristic of the corresponding mass element in the array. One of the bitmaps codes the
mass value of the elements, and therefore, the grey level of each pixel will be proportional
to the mass value of the corresponding array element. A second bitmap codes the value
of the damping for the corresponding mass and a third bitmap codes the magnitude of the
force externally applied to it. Since these pictures can easily be generated by means of any
photo-editor program, the dynamics of the waves propagating in any bidimensional structure
can easily be visualized and studied.

2. The physical model

The model consists in a bidimensional array of p × q masses contained in the x–y plane and
joined to their four nearest neighbours by means of elastic springs separated by a distance d.
The movement of each mass is constrained to the z-axis, that is, to the direction that is normal
to the plane formed by the bidimensional array. The net force on each mass is null when all
the masses are at rest and their z coordinate is zero. Therefore, the system is in equilibrium
under these conditions. In order to generate a transversal wave, an external force along the
z-axis is applied on the masses to be excited. When this is made on one of the masses of the
array, it is separated from the equilibrium and a restoring force generated by the neighbouring
masses appears. Due to Newton’s action–reaction principle, these forces also displace the
neighbouring masses from the equilibrium and this movement propagates away through the
entire set of masses, generating the wave.
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Figure 1. Interpretation of the bitmap M.

In the limit p, q → ∞, the array of masses can be considered as a continuous medium
representing an elastic membrane of any shape, homogeneously stretched with a tension
T = Fe/lT and a superficial density mass μ = mNm/s, where Fe is the elastic force, lT is the
transversal section, which in this case is one dimensional and corresponds to a longitude, m
is the mass of the mesh element and Nm is the number of masses per unit area s. The speed
of the waves in the elastic membrane will be v = √

T/μ. If we consider the medium with
a given superficial density mass being the ground level, the waves will have the maximum
speed in this region and lower speed in regions with higher superficial density mass. In this
manner, the waves travelling through regions of different superficial density mass will behave
like light waves travelling through regions with a different refraction index. If the masses at
the ground level region have a value m0 and the waves travel here with speed v0, the refraction
index will be

nR = v0

v
=

√
m

m0
, (1)

where v < v0 is the speed of the waves in the regions with a value of mass m > m0.

3. Description of the simulation

The simulation begins by defining a bidimensional space that is determined by a digital picture
or bitmap M with a size of p × q pixels. The bitmap defines a matrix with coordinates (i, j)

contained in the x–y plane with i = 1, 2, . . . , p and j = 1, 2, . . . , q. The elements (i, j) of
the matrix determine the position of oscillating masses separated by a distance d measured in
meters and joined by springs of elastic constant k so that each pixel in the bitmap represents
a mass and the grey level, ranging from 0 to 255, codes its magnitude. A second bitmap D of
the same size as M codes in grey levels the damping constant of the corresponding mass. In
this manner, an array of p×q masses, each one with a magnitude M(i, j), a damping constant
D(i, j), and joined by springs of elastic constant k is defined, as is shown in figure 1.

An additional bitmap E with a size of p × q pixels defines the masses that will be excited
by the application of an external force. The grey levels in this bitmap determine the magnitude
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of the external force applied on each mass. In this case, a grey level of 128 indicates that
no force is applied on the mass. On the other hand, grey levels with a value over 128 are
interpreted as a positive force and grey levels with a value under 128 are interpreted as a
negative force.

The next step consists in defining the physical constants of the model. It is necessary
to convert the values of mass, damping constant and externally applied force coded in grey
levels to adequate physical units. Therefore, three matrices Mphys,Dphys and Ephys of size
p × q containing the physical values of mass, damping constant and externally applied force
are defined. These matrices are related to M,D and E as follows:

Mphys = m0 + Mmp, (2)

Dphys = Dμp, (3)

Ephys = rp(E − 128), (4)

where m0 in (2) is a ground level mass, which is included to avoid the existence of a
zero mass element producing infinite acceleration if the corresponding grey level becomes
zero. The proportionality constant mp in (2) has units of (kg/grey level) and the constant
μp in (3) has units of (N s/m/grey level. rp in (4) is a proportionality constant with
units of (N/grey level) that converts the value of grey level provided by the bitmap E
to a value of force. The elastic constant k has already been defined, and it is the same
for all the elements. We define a set of additional matrices of size p × q to store the
dynamic variables of each mass. H(i, j), V (i, j), A(i, j) and F(i, j) will store the normal
displacement, speed, acceleration and total applied force on each mass located at the coordinate
(i, j). Additionally, we also define a set of auxiliary matrices of the same size called
F (−)

x (i, j), F (+)
x (i, j), F (−)

y (i, j), F (+)
y (i, j) to store the forces on the mass located at (i, j) due

to the neighbour masses located at (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1), respectively.
In analogy with optics, the intensity of the collective movement of the masses will be

calculated by integrating the square of the displacements of each mass, to give a diagram of
the intensity distribution of the waves. The intensity will be stored in a matrix I (i, j).

4. Running the simulation

The simulation consists in an algorithm that begins by sweeping all the elements of the matrices
of size p × q from left to right and from up to down to refresh the dynamic variables during
an integer number of loops n. We suppose that the applied force on each mass determined by
the bitmap E varies harmonically over time so that

Et = Ephys sin(ωτn + ϕ), (5)

where Et is the harmonically varying external force applied, ω is the angular frequency of
the excitation, ϕ is the initial phase of the harmonic excitation and τ is an adapting constant
with units of (s/loop cycle) that converts the number of loop cycles to a variable with units
of time, and therefore, the product τn represents the discretized time variable. On the other
hand, the product ωτ in the expression (5) should be smaller than π in order to fulfil the
Nyquist–Shannon sampling theorem that states a criterion in which the frequency of signal
sampling must be at least twice the highest signal frequency component. In our case, the
sinusoidal wave form of the externally applied force with period 2π should be sampled at
twice its frequency, that is, with a period of π or shorter every loop cycle n. This criterion
basically ensures that the alternating nature of the external excitation is preserved after the
sampling.



From Newton’s second law to Huygens’s principle: visualizing waves 1221

Figure 2. Elastic force between the masses.

Due to the fact that in general few masses are excited to generate wavefronts with a simple
symmetry (i.e., circular or plane waves), the matrix E will be generally a mask with all the
pixels in grey (null applied force) and those pixels to be excited in white (positive applied
force) or black (negative applied force).

The next step consists in calculating the total force on each mass. The total force includes
the applied external force Et , the damping force Fdamp and the elastic force applied by the
four neighbouring masses given by matrices F (−)

x (i, j), F (+)
x (i, j), F (−)

y (i, j) and F (+)
y (i, j).

So the total force for the mass located at (i, j) can be expressed as

F(i, j) = Et(i, j) + F (−)
x (i, j) + F (+)

x (i, j) + F (−)
y (i, j) + F (+)

y (i, j) + Fdamp(i, j). (6)

The damping force is given by

Fdamp(i, j) = Dphys(i, j) ∗ V (i, j), (7)

where the matrix multiplication is a point-to-point multiplication, each element of Dphys being
multiplied by its corresponding element of V .

The modulus of the elastic force Fe on a mass a due to a neighbour mass b is given by

|Fe| = |k(l − l0)|, (8)

where l is the separation between the masses and l0 is the natural length of the spring. The
masses move only in the z-direction that is normal to the plane of the array so that the
component in the z-direction is obtained by projecting (8) and results in

Fe = k(l − l0)
hb − ha

l
, (9)

where ha,b are the positions of the masses along z (see figure 2). Now, we make the
approximation in which the strings are prestretched and where l0 → 0 [1]. In this manner, the
elastic force can be approximated as

Fe = k(hb − ha). (10)

Consequently, the forces F (−)
x (i, j), F (+)

x (i, j), F (−)
y (i, j) and F (+)

y (i, j) on the mass
located at (i, j) due to the neighbour masses located at (i − 1, j), (i + 1, j), (i, j − 1) and
(i, j + 1) are calculated in terms of the previously defined matrices as

F (−)
x (i, j) = k(H(i − 1, j) − H(i, j)) (11)

F (+)
x (i, j) = k(H(i + 1, j) − H(i, j)) (12)

F (−)
y (i, j) = k(H(i, j − 1) − H(i, j)) (13)

F (+)
y (i, j) = k(H(i, j + 1) − H(i, j)). (14)
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(a) (b) (c)

Figure 3. Definition of the simulation space: (a) density mass, (b) excitation and (c) damping.

By means of Newton’s second law, we calculate the acceleration matrix A determining
the acceleration of each mass. This matrix is computed as

A(i, j) = F(i, j)/Mphys(i, j), (15)

where the matrix division is a point-to-point division, each element of F being divided by its
corresponding element of Mphys.

The speed matrix V is obtained by integrating the acceleration. In this manner, the values
of the speed matrix V (n − 1) in the previous loop cycle (n − 1) are refreshed for the present
loop cycle as

V (n)(i, j) = V (n−1)(i, j) + A(n)(i, j). (16)

The new displacement matrix H is also obtained by refreshing as

H(n)(i, j) = H(n−1)(i, j) + V (n)(i, j). (17)

The intensity is calculated by integrating the square of the displacement matrix as

I (n)(i, j) = I (n−1)(i, j) + (H (n)(i, j))2. (18)

In this point, the integer variable n is incremented by 1, and all the simulation cycle is
repeated from equation (5).

5. Examples

5.1. Visualizing the wave dynamics

Figure 3(a) shows a bitmap M with a size of 200 × 200 pixels that gives the density mass
distribution and defines the simulation space. The separation among the masses is d = 1 mm
so that the simulation space represents a real space of 20 × 20 cm2. The bitmap shows a
circle in grey, corresponding to a region of different refraction index in relation to the rest of
the medium, in black. The region in black has a ground density mass μ0 = 1 kg m−2 and the
circle has a density mass μ = 1.7 kg m−2. Therefore, according to (1) the equivalent refraction
index of the circle is approximately nR = 1.3. The elastic constant was set to k = 0.3 N m−1.
Figure 3(b) shows the bitmap E that indicates the masses to be excited harmonically, which
in this case are those contained in a vertical line on the left side of the bitmap, in white. In
this manner, a plane wave travelling from the left to the right of the simulation space will
be generated. The frequency of the harmonic excitation was set to ω = 250 rad s−1 and the
adapting constant, which was defined in (5), was set to τ = 1 ms/loop cycle. Figure 3(c)
presents the bitmap D showing in grey levels the region with damping constant. Regions of
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Figure 4. A sequence of snapshots showing the propagating waves in the simulated space.

Figure 5. Bitmap M for a transparent medium having a spherical interface of radius Rs and focal
distance f0.

graded damping constant different from zero were placed in the border of the bitmap D in
order to minimize the reflection of the travelling waves at the edges of the simulation space
having clamped boundary conditions. Figure 4 presents a sequence of snapshots taken at
different equispaced times for the simulation space defined with the set of bitmaps shown in
figure 3. In sequence, it is possible to observe the travelling wavefronts and their interaction
with the circular region for elapsed times of 20, 105, 190, 275 and 360 ms after the start of the
simulation.

5.2. Refraction at a spherical surface

In this example, the wave focusing properties of a spherical surface are reproduced with the
proposed simulation and related to the results obtained by means of geometrical optics. The
refraction of a wave through this type of surface is of great importance in optics since it
represents the basic principle of lens focusing and image formation. According to the laws of
geometrical optics, an incident plane wave will be focused inside a transparent medium with
a spherical surface of radius Rs and refractive index nR at a focal distance f0 from the surface
given by the following expression [6]:

f0 = 1

nR − 1
Rs. (19)

Figure 5 shows a bitmap M with a size of 840 × 345 pixels that defines a density mass
distribution corresponding to the section of a spherical surface where d = 87 μm, which
represents a real simulation space of 73 × 30 mm2. The ground density mass was set to
μ0 = 1 kg m−2 and the elastic constant was set to k = 0.3 N m−1. The region in grey has
a density mass μ = 2.25 kg m−2 and it can be interpreted as a glass transparent medium
having a refractive index nR = 1.5. In this case, the radius Rs of the spherical interface is
20 mm, which according to (19) gives a focal distance f0 = 40 mm. Rs and f0 are indicated in
figure 5.

As in the example presented in section 5.1, a plane wave travelling from the left to the
right of the simulation space was generated. In this case, the frequency of harmonic excitation
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(a)

(b)

Figure 6. (a) Propagation of the waves and orthogonal lines to the wavefronts, and (b) the
corresponding diagram of intensity.

was ω = 300 rad s−1 and τ = 1 ms/loop cycle. A bitmap D with a region of graded damping
constant similar to that shown in figure 3(c) and with the size of the bitmap M depicted in
figure 5 was also introduced to minimize the wave reflection at the edges of the simulation
space. Figure 6(a) shows in grey levels the generated wavefronts for a snapshot taken
2.3 s after the start of the simulation. Figure 6(a) also shows in white a set of dashed
lines that are locally orthogonal to the lines formed by the wavefronts. It can be observed
that these lines correspond to the rays predicted by geometrical optics for such a structure.
In addition, figure 6(b) shows the diagram of intensity, where it is possible to observe that
the energy is concentrated at the focus of the system, located at a distance f0, as expected.
Since the wavelength is not negligible in relation to the size of the structure, the focus is not a
well-localized spot. Because of that, the position of the focus was located more accurately by
detecting the pixel of maximum intensity at this spot. In this manner, it was determined that
the focal distance given by the simulation is f0 = 41.8 mm, which is in good agreement with
the theoretical value given by (19).

5.3. Diffraction by a single slit

In this section, the proposed simulation is applied to the study of the wave diffraction produced
by a single slit. The diffraction of a wave under the Rayleigh–Sommerfeld formulation of
diffraction [7] is described for a bidimensional space as

H(x, y) = − i

λ

∫
H(0, y ′)

eikwr

r
cos(θ) dy ′, (20)

where, following the notation used in this paper, H is the amplitude of the wave at the (x, y)

coordinate, λ and kw are the wavelength and wave number of the incident wave respectively,
and r and cos(θ) are defined as

r =
√

x2 + (y − y ′)2 (21)

and

cos(θ) = x/r. (22)
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(a) (b)

Figure 7. Diffraction by a single slit: (a) density mass and (b) damping maps.

The intensity of the diffracted wave is calculated as

I (x, y) = |H(x, y)|2. (23)

The diffraction pattern in the region near the slit is called the near field diffraction or
Fresnel diffraction, and it occurs when

w2
s

dsλ
� 1, (24)

where ws is the width of the slit and ds is the distance between the screen and the measurement
point. On the other hand, the diffraction pattern in the far field is called Fraunhofer diffraction,
and it occurs when

w2
s

dsλ
� 1. (25)

The projected intensity along a screen located in the far field can be calculated by means
of the expression (20), although it can be approximated to the simpler expression [6]

I (β) = I0

(
sin(β)

β

)2

(26)

with

β = πwsds

λr
, (27)

where r is as defined in (21) and x = ds in this case. Figure 7(a) shows a bitmap M with a
size of 525 × 390 pixels that defines a simulation space containing a wall with a single slit,
with d = 1 mm. The slit has a width ws = 51 mm and the walls forming the slit were made
by setting a very high superficial density mass in relation to the ground density mass μ0 of the
medium in order to produce a very high equivalent refraction index in the walls to prevent the
penetration of the waves, which will be mainly reflected. The region in black has a ground
density mass μ0 = 1 kg m−2 and the walls have a density mass μ = 250 kg m−2. The elastic
constant is k = 0.3 N m−1. Figure 7(b) shows the bitmap D which is similar to that shown in
figure 3(c), with the difference that in this case, high damping was also added in the region of
the walls to minimize any wave travelling inside them. The bitmap E is similar to that shown
in figure 3(b). The generated plane wave travelling from the left to the right of the simulation
space will be transmitted through the slits producing the diffraction pattern. The frequency of
the harmonic excitation was set to ω = 300 rad s−1 and the adapting constant to τ = 1 ms/loop
cycle. Therefore, the wavelength of the generated wave is λ = 11.5 mm. Figure 8(a) shows
in grey levels the waves transmitted through the slit for a snapshot taken 1.2 s after the start of
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(a)

(b)

Figure 8. (a) Propagation of the waves through a single slit and four different regions of intensity
measurement. (b) Normalized intensity IN obtained by means of the simulation (solid line) and
obtained theoretically (dashed line).

the simulation. The black dashed lines labelled as S1, S2, S3 and S4 and located at 25, 95, 195,
355 mm from the wall, respectively, show the regions where the intensity will be measured and
they represent four different positions of a screen. According to (24) and (25), the diffraction
observed over the lines S1, S2 and S3 corresponds to the region of Fresnel diffraction, while
the diffraction observed over the line S4 corresponds to the region of Fraunhofer diffraction.
Figure 8(b) presents the curves of normalized intensity IN taken over the lines S1, S2, S3 and
S4. The intensity obtained with the simulation is shown by the solid line, while the theoretical
intensity obtained by means of (20) is shown by the dashed line. It can be observed that
there is good agreement among the intensities obtained with the simulation and the intensities
obtained theoretically. The slight differences between the simulated and theoretical curves
may be due to the waves reflected at the edges of the simulation space that are not cancelled
completely by the damping and are not considered in the theoretical calculation.
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Figure 9. Structure with periodic inclusions to be analysed.

Figure 10. Spectrum of transmittance of the periodic structure for different inclusion separations.

5.4. Response to frequency of complex structures

Frequency response of complex structures is relevant in the field of photonic crystals, which
are crystals with a specific refraction index distribution. The typical sizes of the regions of
different refraction index are in the order of the wavelength of light and because of that, the
laws of geometric optics are not suitable to analyse this kind of problem. The fabrication
of photonic crystals generally aims to obtain certain transmittance spectra that result from
effects of resonant scattering produced inside the structure. Due to the complexity of the
structures, any analytic treatment generally becomes quite complex. Because of that, the use
of simulations becomes very adequate in these types of systems.

As an example, we present here the application of the proposed approach to analyse the
frequency response of a structure with a periodic refraction index distribution. Since the wave
mechanics involved in dielectric optical phenomena is similar to that in mechanical waves,
the response obtained in our case will be equivalent to the response that would be obtained
with a similar dielectric optical structure. Figure 9 shows a bitmap M with a size of 250 ×
186 pixels representing a structure consisting in a periodic arrangement of inclusions with a
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refraction index nR = 1.65. In this case, the separation between pixels represents a distance
d = 48 nm and the simulation space represents a real space of 12 × 9 μm2 approximately.
The spectrum of transmittance of the structure to an incoming plane wave was analysed for
an interval of frequencies with a wavelength ranging from 340 to 912 nm, corresponding
to light waves in an interval from the near ultraviolet to the far infrared. The spectrum of
transmittance of the structure was obtained by measuring the transmitted intensity at the point
shown in figure 9. The separation di among the inclusions was of the order of the optical
wavelength. Figure 10 shows the resulting transmittance spectrum for different inclusion
separations di as a function of the wavelength of the incident wavefront obtained by exploring
a set of 46 equispaced frequencies. From this figure, it is observed that there is a predominant
peak of transmittance for each inclusion spacing that is shifted as the separation di is varied. It
can also be observed that there exists a nearly linear correlation between the inclusion spacing
and the transmitted wavelength.

6. Conclusion

This paper presents a very simple approach to simulate with a computer the collective
movement of a bidimensional arrangement of masses joined by elastic springs. We can
extrapolate the results to a continuum medium by making the arrangement of masses large
enough. Although the only physical law considered in the simulation was Newton’s second law
and no a priori laws concerning wave mechanics were included, it reproduces accurately the
properties of propagating waves in a continuum medium, showing the underlying connection
among the wave and particle descriptions of this particular system.

Furthermore, we presented a method based on the interpretation of digital images or
bitmaps that directly allows us to determine the size and shape of the medium and to ‘code’
its physical characteristics by means of the grey levels of the image pixels.

Several examples showing the propagation of the waves in different configurations were
discussed. The analysis of the spectrum of transmittance of a structure with periodic inclusions
of different refractive index was included among the examples, such as an application of the
proposed approach to the field of photonics, in which this type of analysis is of great interest.
It was found that there exists a nearly linear correlation between the inclusion spacing and the
transmitted wavelength.
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