International Journal of Bifurcation and Chaos, Vol. 4, No. 1 (1994} 823-841

© World Scientific Publishing Company

CONSTRUCTING HOMOCLINIC ORBITS AND
CHAOTIC ATTRACTORS

BO DENG

Department of Mathematics and Statistics, University of Nebraska

Lincoln,

Lincoln, NE 68588, USA

Recetved July 9, 1993; Revised February 20, 1994

Homoclinic orbits and chaotic attractors are constructed progressively by singnlar perturba-
tions. More specifically, lower dimensional slow subsystems and fast subsystems are constructed
separately as building blocks. The former are then modulated onto the latter via homotopy.
This gives a systematic way to imnplement Réssler's dual principle for mathematical modeling.
Systems constructed in this way are simplc, robust, and ideal for the purposes of experimental

and theoretical analyses.

1. Introduction

An important stage in mathemalical modeling
occurs when a sct of equations is written down
according to certain idealized physical laws, It is
usually not feasible, if not altogether impossible,
to take into account all the properties of the sys-
tem. A further mathematical idealization thus fol-
lows. The latter process is very much apparent in
the normal form theory in which normal forms arce
derived from real systems yet stripped of all phys-
ical meanings. Studies on the normal forms have
contributed a great deal to our understanding on
nonlinear structures of dynamical systermns.

Therc is little difficulty involved in writing down
a normal form for, say, the Hopf bifurcation. How-
ever, it is a completely different matter to write
down a system having a homoclinic orbit to a
Shil'nikov's saddle-focus equilibrium point, or a ho-
moclinic orbit whose unstable manifold twists like
the M&bhius band. or a system having an attracting
strange toroid. Most important of all, if such a phe-
nomenological modeling is indecd possible, what is
the guiding principle behind it, il anv? An answer
to this question will undoubtedly shed somc light on
how natural systems build themselves and provide

us with a greater degrec of freedom in choosing sim-
pler models for future experimental and theoretical
investigations.

It turns out that an answer to this question
lies in a practicable version of the so-called dual
principle first postulated by Rossler in 1976. 1t was
stated in Rossler [1976] that “(cach of his artificially
constructed systems) consists of (1) an ordinary
two-variable chemical oscillator and (2) an ordinary
single-variable chemical hysteresis system.” He also
went on by claiming that “according to the sane
dual principle, many more analogous systems can
be devised, no matter whether chemical, biochem-
ical, biophysical, ccological, sociological, economic,
or electronic in nature.” For implementation of his
dual principle, he suggested a trail-and-error pro-
cess as he wrote ..., the described system is just
one out of a huge variety of possible combinations
of an oscillator, on the one hand, and a switching
system, on the other.” However impractical, his ap-
proach has delivered a few unexpectedly, including
the Rassler attractor; see Réssler [1976,1979).

The purpose of this paper is to describe a svs-
tematic method to implement the Rassler dual prin-
ciple. It has two key components, onc deals with
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the construction of the switching, or fast subsys-
tem €2 = h(z, ¥, z, ) and the other the oscilla-
tor, or the slow subsystem & = f(z, v, 2, €),§ =
g(z, y, 2, €). The resulting system is in this singu-
larly perturbed form & = f(z,y,2,€),9y =
_l](l', Y, %, E)s ez = h(g‘, Yz, 5)-

Roughly speaking, our method calls for the fol-
lowing forms for functions f, g, h. For ¢ = 0,
Rz, y, 2,0) = (¢ — z1)(2 — 2z2)p(w, ¥, 2) and
f(x, ¥, 2, 0) = (z — z0)fu(z, ¥) + (z = 2)fa(z, ¥),
where z(, z2 are constants, p, fi, f2 arc some care-
fully chosen polynomials with £ = (f, g),fi =
(fi. 1), f2 = {(fa, g2). Thus, z = z, 22 arc two
branches of the slow manifold and the reduced slow
subsystem is & = (21 — 22)fa(z,9), ¥ = (21 — 22)
@z, y) on z = z1 and & = (22 — 21)falz,y), ¥ =
(22 = 21)g1(z,y) on z = 23 respectively. The prop-
erties of this type of singular pertnrbations that are
critical to our method include:

(1) By choosing the factor p accordingly, one can
construct a hysteresis so that those parts of
2z = z1, 23 that are contained in thc hysteresis
are asymptotically attracting.

(2) Because orbits from certain region containing
the hysteresis stay in a small neighborhood of
these attracting branches of the planes most of
the time, the dynamics in that region is com-
pletely determined by our choices of fj, fa.
Thus, the virtually unlimited combinations in
choosing p, fi, f2 enable us to construct models
according to our specifications. This is what
we want to demonstrate in this paper. Exam-
ples are organized according to the types of hys-
tereses, which we will refer to as switches from
now on.

2. Simple Switches

2.1. Shil’nikov’s saddle-focus
homoclinic orbit

A system having such an orbit satisfies the condi-
tion that there is a homoclinic orbit of a saddle-
focus equilibrium point at which the lincarization
of the vector ficld has cigenvalues A £ iw, u,

Fig. 1. The construction of a Z-switch. + are the sign for the fast component 2 in the regions partitioned by the nullclines

for (a}e < 0,(b) £ =0, (c) e > 0.



satisfying 0 < A < —p, w # 0, see {Shil'nikov, 1970].
Our model system is

t=—(z2+2)d(z—a)+(2-2)

L]

(x—2)*+y*
]

y=—(+Dy-b+(2-2) m

o2y 2
X [ﬂ(a; -2)+ay— ayL%)zﬁ] )

X {a(z—z)—ﬂy—a(x—iz)

g2 = (4—2%)[2 + 2 — m(z +2)] — ecz,

where a, b, ¢, d, m, R, @, § arc parameters and &
the singular paramecter.

For the switching subsystem, the nullcline
consists of the roots of the cubic polynomial
Rz, y,z,6) =4 -2 z+2—mz +2)] —ccz in
2. Ate=0,z=22and z+2—m(z+2) =0 for
h(z,y, 2,0) = 0. For 0 < ¢ < 1, the two intersec-
tion points ¢ =z = -2 and x =4/m — 2, z =2 of
the three plancs bifurcate into four turning points
due to the fact that & is a cnbic polynomial. By
the continnity in 0 < € <« 1, the rest of the planes
remains almost unchanged. That is, the nullcline
rearranges itself into three connected components
and a Z-shaped hysteresis emerges in the middle
as depicted in Fig. 1(c). Moreover, when treating
the 2, y variables as parameters, the two horizon-
tal planes z = +2 consist of attracting equilibrium
points of the fast subsystem. We will call such a
hysteresis curve a Z-switch. We remark that this
technique was used in Réssler [1979] and we will
use it in this paper to construct all fast switching
subsystems.

For the perturbed system (1) with 0 < e < 1,
orbits near the Z-switch fall quickly into a neigh-
borhood of either of the horizontal planes z = +2
and stay there most of the time. When that is the
case for an orbit, it is approximated by the reduced
two-dimensional slow subsyster on z = £2. More
specifically, near z = 2,

& =-dd(x—a), y=-4(y-b),
which is obtained by substituting 2 for z in the first
two equations of Eq. (1}. Note that ford > 0, ¢ > 5,
every trajectory from the left of z = 4/m — 2 moves
to the right until it reaches the top turning points
¢ =4/m—2, 2 = 2 of the Z-switch, see Fig. 2(a). Tt
makes a downward turn at the turning points and
then behaves approximately like the fast subsystem.
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So, the trajectory quickly falls into a neighborhood

of the lower branch z = —2 of the Z-switch and is
approximated by the slow subsystem on z = —2:
. z—2) +y?
&= 4[a(x — )~ By —als - 2)%} ,
. z— 2% +y?
g = 4[,6(:z -2+ ay— a;u%] .

Expressing this cquation in terms of the polar
coordinates for (z — 2,y) yields

2 "
7'~=4ar(1—r—), 6=8.

)
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Fig. 2. The construction of the slow subsysters on {(a) z = 2
and (b) z = —2 respectively. The right dotted linc indicates

the top turning edge while the left dotted line the bottom
turning edge. m — 1 and e > 4/m — 2 arc shown here.
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Note that. for o« > (), there is a repelling equi-
librium point 7 = 0, or (2. 0). and an attracting
periodic orbit r = I?, see Fig. 2(b). Thus, every tra-
jectory originated from the center (2, 0, ~2) spirals
ouiwards until it reaches the bottom turning points
2 =2 = —2of the Z-switch. When that happens, it
makes an upward turn and behaves like the fast sub-
system again, quickly jummping to the upper branch
2 = 2 of the Z-switch. This sets ofl another cycle
of relaxation oscillations.

Due to its normal hyperbolicity (c¢f. Fenichel
[1979]). the center equilibrium (2, 0, —2) persists
for small £ > 0 and the eigenvalues of the lineariza-
tion at the center are approximately 4(a + i3) +
O(¢g) and ~16m/e - ¢ + Ofe). For € > 0 small,
it is a saddle-focus of the Shil’'nikov type. When

)

Fig. 3. Dotted lines in {(a) roughly outline the Z-switch, A
Shil'nikov’s orbit for Eq. {1} with ¢ — 7, 6 - 1435, ¢ = L
d=15m=1543 R=86. =105, 7=4 and ¢ = (LO&.

¢ = (0, the top turning edge & = 4/m — 2.2 =2 is
parametrized by m. So, its projection onto the slow
branch » = —2 can be made to cross the equilibrium
poimt (2, 0, —2) at m = 1. Thus, it is plausible to
see that m can be chosen as a function m* of other
parameters so that for 7n = m* there is a homoclinic
orbit for 0 < € « 1. This observation together with
the fact that the dynamics of Eq. (1) is determined
by parameters a, b when it is near the top branch
= = 2 of the Z-switch and respectively by a, 3 near
the bottom branch z = —2 enable us to generate a
numerical homoclinic orbit shown in Fig. 3(a). It
was a trial-and-error process to fix the parameter
values in Fig. 3.

Note thai a chaotic attractor is evident in
Fig. 3(b) and that is mainly due to the nonlinear
terms in the slow subsystem on z = -2, e.g., the
attracting periodic orbit r = R. The existence of a
Shil’'nikov’s homoclinic orbit will not be affected by
the absence of these nonlinear terms. But it would
be not so casy to demonstrate experimentally the
existence of a strange attractor as we did here.

We point out that the existence of Shil’nikov’s
saddle-node homoclinic orbits in other dynamical
systems has been considered by, e.g., Arneodo et al.
[1982] and Gaspard & Nicolis [1983}. The associated
strange attractor has also been found in simulations
of Chua’s circuit, see Chua [1992,1993], Chua et al.
[1993] and the reference wherein.

2.2. Double spirals

Replacing the slow subsystem on the top branch of
the Z-switch of Eq. (1) by an oscillatory one yields
the following system:

= (z+2)

N2 a2
x [/\(:lf —k)— py — Alw— A)Mj,?#]

+@-2)

N2 .2
) [‘*‘(x -2) -y —oalz - 2)%] ’
g (z42) (2)

(i '
ple = k)= Ay = Ay

e

+(2- =) P(:r - 2]+ ay - u’y(il: e et

g3z (4= 2Y) 242 —mix +2)] — ec

(5]




Fig. 4. A strange attractor for Kq. {2) with e = 7. b= 1435, c = 1, m = 1.543, & = -

(b)

34, =6, 0- 05 F=4 . . =

/=4 and £ = 0.08. (a} The attractor projected on the zy-plane; (b) a three-dimmension view of the attractor.

Fig. 5. Generated for Eq. (2} with the same parameter values as in Fig. 4 except that & =

(b)

3.3, = -1 (1) The attoacor

projected ou the zy-plane; (b) a three-dimension view of the atiractor.

where X > (0,p and k < —2 are new parameters.
Figures 4 and 5 correspond to the cases of p > 0
and g < 0 respectively. In the former case, orbits on
both the top and bottom branches of the Z-switch
spiral in the same counterclockwise direction while
in the latter case they do s0 in opposite directions.

We  remark that the co-directional-spiral
attractor has also been observed in the global un-
folding of Chua’s circuit, see Chua [1993] and Chua
et al [1993]

2.3. Twisted homoclinic orbit

Roughly speaking, a system having such an orbii
satisfies that the unstabie {or stable) manifold twists
like: & MoObius band. On the other hand. the mani-

fokl around a nontwisted homoclinic orbii soks Lk
a cylindrical band. The following system exhibits
the bifurcation from one twisting type to the other:

E=(2-z)a{e—-2)+(2+2)
Xl ~ za) + By - o) .
¥=2-2)db-a)z—2)/4+by]+ (=1 2) (5
X [=B(x - ) + aly - w)].
ei=(4— )42 mlx+2)) - vz

The reduced slow systems on the top
bottom branches of the Z-switch are henriaticuiiz il
lustrated in Fig. 6 with the first beig repioe-
senied by dashed curves. 1t can be directle chockeo
that the reduced slow sysiem on the bottom
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Fig. 6. The right and left dotted lines in each diagram in-
dicate the top and botlom turning edges respectively. The
dashed curves represent the pbase portraits for the reduced
slow subsystems on the top branch of the Z-switch. (a) A
twisted case: (b) a nontwisted case.

branch is

= dofxr—2), §G=db-a)a—2)+4by.

which satisfies the condition that the eigenvalnes
for the linearization at the only equilibrium point
(2, 0) arc 4a,4b and the corresponding eigenvec-
tors arc {4, —d} and (0.1} respectively. The pa-
rameter d 18 used to represent the itersection of
the (straighl} trajectory from the uustable cigen-
vector {4, —d} and the bottom turning edge = =
z = —2. Note that {4, —d) is the principal unsta-
ble eigenvector if a < b and the intersection point
{—2,d) in this case deterinines roughly where the
npturn of the botiom slow fow takes place. On the
top branch. however, the spiral center at (2. yg)

is used to either add or subtract twists from the
three dimensional structure. In fact, half twists of
any even number, say 2n, can be purposely added
around the homoclinic orbit by simply adding n
more full spirals to the unstable manifold of (zg, yo)
on the top slow branch before switching it down-
wards. This can be done by adjusting the parame-
ter value of 3 accordingly. As numerically shown in
Fig. 7 the unstable manifold of the hyperbolic equi-
librium point near (2, 0, —2) is twisted for d = —3.5
and nontwisted for d = ~0.2. Hence, the bifurca-
tion of twist must take place somewhere along a

(b}
Fig. 7. {a} A twisted homoclinic orbit for Eq. {3) with o = 1.
b=10c=2,m = 11845 a = 0.01. 3 —- 5. ¢ = 01
Yo = —2. ¢ = 0.0} and d = —3.5: (b} a nontwisted homoelinic
orbit lor the same parameter values except for d = =12,




one-paramcter family of the systemn and that fam-
ily can be parametrized by d. We remark ihat
bifurcations of chaotic dynamics must take place
in this example (cf. Deng [1993a]).

2.4. Relazation-fold attractor

Being the same type as Eq. (1), the following system
was constructed by Deng {1992] for a relaxation-fold
attractor:

F=Az{z—a)+(3-2)

z+0.5)2+ ulJ
x —_—,

n:(:zr+0.5)fﬁyfr_x(:zf+().5)( 2
y=ux{y—b)+(3-2) {4)

z+0.5 2 2
X [ﬁ(:ﬂ-{—(],ﬁ)—&-uy—ayu&] ,

i?
e2=2(3—2)(x+2z—1.5)+d{x—c).

The attractor is shown in Fig. 8. The actual folding
mechanism js sketched in Fig. 9 in which one bot-
tom trajectory is tangent to the top turning edge
when projected onto the bottom branch along the
fast flow direction. The resulting fold is referred
to as a relaxation fold in Deng |1992]. We remark
that. the Réssler attractor has a different fold type
called branching-reinjection fold. For more details
ou these two fold types, see Deng [1992).

2.5. Invariant toroid

Using a different switch referred to as a toroid-
switch, we obtain an attracting invariant toroid in
the following system:

7= 2(Ar — py) + {2~ 2)

2, 2
x° 4
Xo|ox — By — ax—- R—ZL] )

Y=z + Ay) = (2—z2)
2 (5)

xre+
: w2

I v
N !,3.7 + ey — vy '——J N

s z(2 iz 4wl P — h)

m

ofz—1).

where ., by, RoX < 0, pooe > 0.8 are paramoe-
ters aud £ (he singular parameter.
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Fig. 8. A relaxation-fold attractor for Eq. (1) with a = —5.5,
b=-02c=00R=6,a=62 0~ 20, A=—12, =107,
d = 0.015, ¢ = 0.006; (a) projected on the zy-planc, (b} a
three-dimensional view

Fig. 4. The doiwed fine is the projection of the top: terning
edge onto the botiom slow branch, A volaxavion fold takes
place when an orbit from the botiow branch iv tangeni o
the projection to the first orden.
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(b)

Fiz. 10. A cross section of the toroid-switch. 4: are the sign
for the fast component % in the regions partitioned by the
nullclines for {(a) £ = 0, (b) € >> 0.

Figure 10(a) shows the cross section of the level
set 2(2 ~ 2)[z + m(z? + y?) — ] = 0 on a typi-
cal plane containing the z-axis while Fig. 10(b) the
crass section of the switch for € > 0. Note that the
switch is rotationally symruoetric with respect to the
z-axis. More specifically, the top and bottom turn-
ing edges are given by the circles 22 + 3% = h/m — 2
and z? + y? = h/m respectively with the former
interior to the latter when projected onto the zy-
plane. The equilibrium points for the reduced slow
flows on the top and bottom branches are sink and
source respectively so that all bottom trajectories
from the center are pushed outward to the upturn
circle while all top trajectories from far are pulled
inward to the downturn circle. In addition, these
two equilibrium points can be made either clock-
wise or counterclockwise spirals depending on the
signs of p, 4. Numerical siinulations are shown in
Fig. i1.

2.6. Folided tore

Note that the reduced slow vector field on the bot-
tom branch of the toroid-switch of Eg. (5) is

(b)

Fig. 11. (a} A knotted periodic orbit for Eq. (5) with m =
01, h=36c= L LR=1I0, A= ~4 p=2 a=203=
3.0005. It is attracting on the invariant toroid with rotation
vector (é %) (b) For the same parameter values except for
p= —4, = 4, it appears to be an irrational flow or a periodic
orbit with an extremely long period.

transverse not. only to the bottom turning circle but
also to the projection of the top turning circle on
the bottom branch. The same is also true for the
reduced slow vector field on the top branch. This
prevents the system from developing chaos prone
folds, see Deng [1992]. Such transversality is a re-
sult of many syminetrical and special arrangements
in Eq. (5). To namnc a few, circular spirals are
used for both the top and bottom slow flows; both
equilibria are aligned on the same z-axis; the top
and bottom branches are parallel planes; and the
side branch is a rotationally symmetric paraboloid.
Chaotic motion emerges if any one of these features
is purposely changed.

Io the first example that follows, chaos is pro-
duced by slightly tilting the top branch of the toroid-
switch. This is done by replacing the factor (2—
the z-equation of Eq. (5) by (2—2){a(z—2)%~b)
Here. & is near 1, ¢ is small, and a is not necessarily

z)in




small for being the coefficient of the high order term
(= = 2)® when =z is near 2. The modified system is

= z(Aw — py) + (2 - 2)

2 + P
R |
Y= z2(puxr + Ay} + (2 - 2)

X [aa‘—ﬁy—az

o2 L2
X {'Ba"ﬁ—ay—ayll?;z"},

m
T

z[(2 — 2)[a{z — 2)* + b] — da]
x [z +mfz? +y%) — b] — ec(z — 1),
where «a, b, d arc the additional parameters.

Figure 12(a) shows a side view of the limiting switch
at £ = 0 while Fig. 12(b) is the projection onto the

(by

Fig. 12, {a) The cross section of the perturbed toroid-switch
on the wz-plane when £ = 0. (b The projection of the per-
turhed switch onto the ay-plane.
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(1)

Fig. 13. 1n {b), the dashed curve is the projection of the top
turning edge. A quadratic type tangency with an orbit on
the bottom branch takes place at the relaxation-fold point p.

zy-planc. For comparison, dashed curves are used
to indicate the original, unperturbed counterparts.
Note that for b > 0 the top branch is lifted at one
end and lowered at the other end as the inner turn-
ing circle distorts and shifts to the right. These
changes amount to in effect pinching part of the
invariant toroid and folding it back 1o the surface
as illustrated in Fig. 13(a). The folding mechanism
is the same relaxation-fold as in Eq. (4) and it is
depicted in Fig. 13(b). Numerical simulations are
shown in Tig. 14. We remark that simply tilting
the top branch will result in the same phenomenon
aud the cubic nonlinearity, especially when it starts
to fold the wop branch imo a Z-switch for 6 < 0, is
made primarily for a different use later.

The next folded toroid example is taken from
Deng [1992 in which the circular spiral on the bot-
tom branch of the roroid-switeh from Eq. (5) is
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Fig. 14.

(b)

A folded toroid attractor for Kq. (6} witha =3, b =08, c=1,d = 0.1, o = 0.05, h = 3312, R - 10, A = —2,

p=10=284—5and e =0.1. {a) The projeclion of the attractor onto the xy-plane. The arrow marks the place where
the relaxation fold takes place. (k) A three-dimensional view of the attractor.

(a)

Fig. 15.

A folded toroid attractor for Eq. (7) witha =5, ¢ =1, h =276, m — 0.26, R~ 5, A = -2, p=-10, - 1, 3=4,

¢ = 08, (a) The projection onto the ry-ptanc; (b} a three-dimensional view of the attractor.

replaced by an elliptic one. The constructed system
1s as follows:

&= A — uy)+ (2-2)

.'172 + y'Zj

X [(y.r - afy - ar I

U= x{pr + Ay} 4 (2 2)

pe [s’?.r + oy

f

22 2(2 - 2la ol 4 ) - M

- gelz - 1,

where the new parameter a is used to distort the
circular spiral into an elliptic spiral. A strange ai-
tractor is shown in Fig. 14,

Strange tori attractors have also been demon-
strated in Rossler [1979] as well as in Chua’s circuit.
{Chua, 1993 aud Chua et al. 1993

3. Combination Switches

3.1. ZZ-switch

Recall from Bq. (1) that the Shil'nikov saddle-foens
homoclinie orbit lies entirely on one branch of the
stable manifold of the equilibrium point. Making



the other branch of the stable manifold into another
homoclinic orbit yields the following system:

T =—z(z+ 2}z — ) — 2{2 = 2)(z — z2)
+(4- zZ)[a;r - By — aa:mzl;yQ] :

y=—2(z+2)(y—y) ~ 2(2 - 2){y — y2)
+(4—z2)[5m+ayvay 7 J,

g2 = 2(4 — %)z — 2a(z/3 + 1))
X [z — 2b(x/3 — 1)} — ec(z + z),

(a)

Fig. 16.  The coustruction of a ZZ-switch. % are the sign for the fast component. 3 in the regions partitioned by the nuliclines

for (a) e =10, (b) ¢ > 0.

///ﬁ_
i

(a)
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where a, b, ¢, R, a, 3, 21, y1, T2, Yo are parameters
and ¢ the singular parameter. In this example, we
put one Z-switch on the top of another Z-switch
to get a ZZ-switch, which is illustrated in Fig. 16.
In order to direct the reduced slow flows to vari-
ous turning edges of the three branches we simply
use sacddle points in the top and bottom branches
(z = £2) and an outward spiral center in the mid-
dle (z = 0). Figure 17(a) shows what appears to be
our intended two homoclinic orbits and Fig. 17(b)
the attractor. We point. out that symmectry appears
in this system in many ways only because of its

\J N\

|
i
|
|
|
|
4
f
|
!
I
I
i

(b)

(b)

Fig. 17. {a) Two ShiPnikov’s orbits of the samnc equilibrinm poind, for Eq. (8) with ¢ = 1.15. b= 115, e - 1L R =4. 0 = 0.5
#—6, 0= -2~ L&, 4 = —yu = 0.5 and £ = 0.1. (b} The attractor generated by foliowing one orbit
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simplicity. It does nod plav any critical role in this
example.

Wr remark that the type of attractors shown
in Fig. 17(b) has also been found in the global uu-
folding of Chua’s eircuit. see Chua [1993] and Chua
1 al. |1993].

Next, we couple three oscillators together by a
I 7-switch and obtain this system:

i ezt 4+ (16— 2Ny = 2(r — ) f3,

=2z 4 d)g - (16 - 2P)g0 + 202 — gy, )

25 = 2(16 - 2%z - afx - ¢}

>

- Mr -4 —slz+m),
where
1= @y 05,3, 4,0),

fa— o,y 05,3,4.0) .

Jo — é(r,9,0.5,2.0,0},
gr - ¥(x, y. 05,3, —4,0),
g2 = 0,y 0.5,2,0,0), gy —=(r.y, 0.5.3.4.0),
and
@l u, o 2, e, uo) — alr — 2o} — 3y — o)

A= z0)? + (y - yo)?
e B
Aoxoown) — Ha — wo) + oly — w)

- e — 1y

wie, g, a.
) - a)? t (y - wa)?

— ol — o) ——- Rz -

Mote that as shown in Fig. 18(b}. the top oscilla-
tar can also he connected to the bottom one directly
whereas in Figo 1R8(a) only adjacent oscillators

®in Lotrinde spiral aliracior for P (4] with o -

i cinl spiral o tor jor 1 (0wl ¢ = 275

1. oD feo = @l e LD A6 00 g -
G

can be switched 1o each other. One can also pur-
posely shut off the top or bottom oscillator by dis-
connecting the top or the bottom branch from the
switeh. This will results in an instantancous change
in size for the attractor.

3.2. Toroid-Z-switch

In this example. we simply put a Z-switch ou the
wop of a toroid-switchi. As mentioned earlier, such
coupling s easy to do by choosing b < 0 in Eq. (6).
TFigure 19 shows two side views of the resulting
switeh at the singular limit ¢ = 0. Figure 20 shows
a curl like attractor and Fig. 21 two different. views
of another attractor.

Note that ¢ = 0.5 in this example may be re-
parded as far away from the singular value ¢ — 0.
If the system were presented in a context different
than singular perturbations, it would be difficult to
trace the origin back to relaxation oscillations.

3.3. Toroid-toroid-switch

In this example. we will constrict an invariant don-
ble toroid. To do so. we need Lo attach two toroid-
switches together side by side. Key elements include
this polynomial function:

RC 2

. % — ot (4 y)?
Hx, y) - i *—”

64 2 4

and the cquation

i = z{a” — 8)/16.

{0
4. s .ot staleed o the woxi.
¢ o ; DoLbe - A 0
AL =l BE g = ey and g, —
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{a) 3]

Fig. 19.  For the perturbed toroid-switch of Bq. {6). the top branch folds inlo a Z-switch when b < 0. This gives rise to a
combined toroid-Z-switch. (a) The cross section of the combined swilch on the zz-planc at = = 0. (b) The cross section with
yz-plane.

(a) (b)

Fig. 20. A curl like attractor for Eq. (6) witha =2, b= 008, c= 1,d = T =026 h=27, R=>5 = -2, =1,
a=3, 8= -4, ¢ =05 (b) The same attractor with a longer integration time.

{a} {b)

Fig. 21, Generated with the same pararueter values as in Fig. 20 except for @ — 3. b.- 0.3, - 5. () Jooks like @ (desert)
storm wher (b) looks like a calligraphic but nonexisting Chinese character.
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It is casy to verify that the function z = 1 —
H(:, y) has one saddle point (0, 0) and two max-
imum points (£2+/2, 0) with the same maximum
value z = 2. It is also easy to sec that the -
equation has one saddle at z = 0 and fwo sources
at = :{:‘2\/§. The model system is

& = a(L5 — 2)z(z® — 8)/16 + bz[a(az + By)
x [8 = (az + fy)?]/16 - B(Bz — ay)],
¥ = a(l.5 - 2)y + bz[B(ax + By)

x [8 — (az + By)*]/16 + o Pz — ay)],
ez =2(1.5—2)[z — 1+ H(z,y)] +e(3/4 - 2),

(10)

where parameters a, b satisfy a = cosf, 3 = siné.
The switch’s cross scction on the zz-plane for
€ = 0 is shown in Fig. 22(a). The outer closed curve

(b)

Fig. 22. (a) The cross section of the combined toroid-toroid-
switch with the zz-plane when £ = 0. + are the sign for the
fast component 2 in the regions partitioned by the millclines.
The curved nullcline is the cross scction of the surface z =
1 — H(x,y) with the planc. (b) The bottomn and top turning
edges that correspond to the level curves z = 0, z = 1.5 of
z=1— H{x, y) respectively.

in Fig. 22(b) is the level set 1 — H(z,y) = 0. It
forms the bottom turning edge which switches the
bottom slow flow upwards. Similarly, the two inner
closed curves are the level set 1 — H(xz, y) = 1.5.
They form the top turning cdge, switching the top
slow flow downwards.

<

—2/2 22
P N (D

(b)

Fig. 23. (a) The phase portrait for the slow subsystem on
the bottom branch z = 0 of the combined switch. (b) The
phase portrait for the slow subsystem on the top branch z =
1.5 of the combined switch.

4
4

S

m
I

NN

Fig. 24. The invariant double toroid for Eq. (10) with a =
b= 1,8 — 0.08 and ¢ = 0.06. Arrows mark the attracting
periodic orbits. The two saddle points lie near the origin and
(0, 0, 1.5) respectively.




(a)

Fig. 25. (a) A strange attractor for Eq. (11) with a = 15,

periodic orbit for a = 10, b =1, ¢ = 2, ¢ = 0.1745 and ¢ = 0.06.

As shown in Fig. 23(a), the reduced bottom

system is

# = 15ax(x® — 8)/16, ¢ =15ay
which has one saddle at the origin and two sources
at (£2v/2, 0). And, the reduced top vector field
is obtained by reversing the reduced bottom vector
field in time, followed by a # degree rotation, see
Fig. 23(h). Figurc 24 shows an invariant double
toroid on which there are two saddle points, two
attracting and two repelling periodic orbiis, and the
rest are heteroclinic orbits.

Similar to Egs. (6, 7) on folded invariani
tori, it is also easy to introduce chaotic motions
in this casc. Presented here is one of such per-
turbed systems. Replacing the reduced bottom
flow hy oscillations produced by this perturbed
Hamiltonian system & = —9H/dy, y = 8H/dx+cy,
we have

& =a{lb— z)( - %) + bz[ofax + By)
x 8 — (e + By)?)/16 — B(Bx — o),
y=a(l.b— z)((;? +ry) +bz[B(as + By) (1)

X 8 = (aw + By)*)/16 + a(fz ~ ay)],
ez =2(15—2)[z — 1 + H(z,y)] + £(3/4 — 2).

Note that Fig. 22(b) can also be regarded as three
periodic orbifs on two typical level surfaces of the
Hamiltonian H for the unperturbed system & =
-0H /0y, y = 0H/Bx. The perturbation term cy
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(b)

=3,¢c=105 8 =0and ¢ = 0.03. (b) A knotted attracting

is purposely used to break up all such closed or-
bits and make them spiral outwards when modu-
lated onto the bottom branch. Figure 25(a) shows
a chaotic attractor and Fig. 25(b) a knotted attract-
ing periodic orbit.

4. A Three-Time-Scale Switch

The method presented above can also be used pro-
gressively to construct systems as building blocks
for higher dimensional systems which in turn are
used as building blocks for even higher dimensional
systems, and so on. The following example taken
from Deng, [1993b] is used to illustrate this point.

In contrast to all previous examples, this cx-
ample has a two-dimensional fast subsystem and a
onc-dimnensional slow subsystem. Moreover, instead
of through a turning point, it switches the fast flow
to the slow flow through a homoclinie orbit.

To be precise, the system satisfies the follow-
ing properties. When parametrized by the slow
variable x, the fast subsystem in y, z has a branch
of stable equilibrium points that terminates at a
saddle-node point. It also has a branch of attract-
ing periodic orbits that terminates at a homoclinic
orbit, see Fig. 26{(a). For the perturbed system,
any orbit that starts near the atiracting cquilib-
rium branch moves to the right until it rcaches the
saddle-node turning point. In a neighborhood of
that turning point, it makes an upward turn and
quickly jumps into a ncighborhood of the periodic
orbit branch. Then, it winds around the periodic or-
bit. branch leftwards until it rcaches the separatrix
homoclinic orbit. After passing the homoclinic or-
bit, the orbit falls into the other side of the unstable
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bxy

()

Fig. 26.  (a) A depiction of Rinzel's geometrical mechanism
for bursting oscillations. It represents the phase portraits of
the fast subsystem parametrized by the slow variable . The
nulletine for the d-equation of Eq. {12) is z — k& which is de-
picted here for & = 0. The two horizontal arrows indicate the
directions in which the r-variable moves when the z-variable
is either above or below the plave of nulicline 2z - k. (b)Y A
bursting-oscillation orbit for Eq. (12} with o = 6, 6 = 0.8,
e=3d=06,6=005 f=0585g=1h=—-1Ln=11,
e = 0.8, z0 = 1.9, 21 = =04, 1 — 0.021, g5 = 0.0065 and
k — (11.15612.

manifold and is altracied to the attracting equilib-
rinm  branch again. setting off another round
of so-called bursting-oscillations.  This two-time-
scale mechanisim was first used by Rinzel [1985]
as a qualitative model for the glucosc-induced
bursting-oscillations for the membrane potential of

pancreatic J-cells. It has been demonstrated in
Terman {1992] that the dynamics generated by this
geometrical mechanism must be chaotic and it can
also give rise to complicated bifurcations as observed
in many numerical simulations, sec the references in
Deng [1993b].

In Deng [1993b], we first constructed the fast
subsystem in variables y,> as another singularly
perturbed svstem, treating variable @ as a parame-
ter. We then coupled the fast and slow subsystems
together by turning « into a slowly drifting variable.
The resulting system is given as follows:

=alk—z),

I

—by(y — yo)iyol= ~ z0) + nzay]

0]
- Elif(y — ?) N

g2z = d(yo — ¥)[f(z — 21)(2 — hz) + € — gy,

£261Y

(12)

where a, b, ¢, d, €, [, g, b, k, n are parameters and
€1, €2 are singular parameters. The differentiation
here is taken with respect to a time variable, say t.
Casting this system in terms of the slow time-scale
7 = gyt, &9 > 0 with respect to the singular variable
g4 results in the following system:

7' = eyalk — 2),
e1y’ = —byly — o) o (2 — 20) + nzpy]

(13)

) Yo
- Elu(y — 7) N

z' = d(yo — y) {f(z - z1)(z — hx) + rf} —gy-

The [ast subsystem with respect to o is ob-
tained by setting ¢y = 0 in Xq. (13). The resulting
system below is two-dimensional with the x-variable
as a parameter:

a1y’ — —byly - yo)ive(z — 20) + nzoy!

Ceacu- )
sty 2/

2 =dlye — WIf(z — 21z — hxy+e] —gy.

(14)

This system is again singularly perturbed in ¢; and
variable 3 is the faster of the fast variables. The
Z-switch is sketched in Fig. 27(a) for ey > 0. It
consists of the roots of the cubic polvnomial —by{y—
unfyolz - zo) + nzgy] — crely — 1%'] iny lor £y > 0.




The slow subsystem of Eq. (14) is obtained by
setting 1 = (1. It is a one-dimensional system

#=dly —w)f(z — 21)(z — ha) + ] — gy

sitting on the singular surface ~by(y — yo)lyo(z —
20) + nzgy] = 0. When reduced to the singular
branch ¢ = 0, the slow subsystem is

2 =dyolf(z — 21)(z — hx) + ¢].

For e = (), there are two branches of equilibrium
pomts: z = z; = —0.4 and z = hx with h =~ -1,
as illustrated in Fig. 27(b). Being the toots of the
quadratic polynomial f(z—z,)(z —hz)+€ in 2, the
two branches bifurcate and reorganize themselves
into two new branches for 0 < e < 1 as illustrated
in Fig. 27(c). Note that each knee point of the new

Fig. 27.
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branches becomes a saddle-node bifurcation point:
with x as the bifurcation parameter. The slow sub-
system of Eq. (14) on the other singular branch
¥ = yu is simply 2 = —gyy with ¢ = 1, a flow with
constant velocity —gyp < 0. The paraietrized fast
phase portrait is shown in Fig. 26(a). Now, cou-
pling the slow system & = a(k — z) with Eq. (14)
gives rise to Eq. (12).

Intuitively, the resulting vector field of Eq. (12)
slowly drifts to the right near the stcady state
branch y &~ 0, z = z because = a(k —z) > 0
for k > 2. In contrast, the trains of rapid oscil-
lations in variables y, = move slowly to the lcft be-
cause & = a(k—z) < 0. The fast transition from the
steady state branch to the branch of periodic oscilla-
tions takes place near the knee point z =~ —2; = 0.4,
¥~ 0, 2 = z;. The reversed fast transition takes

(a) Solid curves are nullclines for the faster ¢'-equation of the fast system (14) with =) » 0. The Z-switch lies on its

side. & arc the sign for %' in the regions partitioned by the nuliclines. The two branches other than the Z-switch are outside
the region of interest. (b, ¢) By treating @ as a parameter, the solid curves consist of equilibrium points of the slow subsystem
of Eq. {14) on the branch of singular manifold y = 0. They correspond to e = 0, 0 < ¢ < 1 respectively. The left most knee
poimt s the saddle-node bifurcation point required by Rinzel's geometrical mechanism and the other knee is ontside the region

of interest.
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() Membrane potential record obtained from a single f-cell with a 6-min. exposure to cach gincose concentration.

{h) The z-variable time-scries for Eq. (12) with the same parameter values as in Fig. 26(b) and k = —0.222, —0.0976, 0.0268,
0.1512, 0.2756, 0.4 respectively from top down. Calibrating the graded glucose concentratious, the k values are also spaced

cqually with the step size 0.1244.

place near x = 0, y = 0, z = 0. Tn fact, the exis-
tence of a homoclinic orbit oceurs at some parame-
ter valuc of & = () and the only equilibrium point, for
the perturbed system is near z = &k, y = 0, « = z/h.
This realizes Rinzcl’s two-time-scale mechanism for
bursting-oscillations in two successive steps of sin-
gular perturbations and the order of time scales is
<z <y.

A numerical orbit of Eq. (12) is shown in
Fig. 26(b). Figurc 28 compares the time-series of
the z-variable with the glucose-induced bursting-
oscillations for the membranc potentials in pancre-
atic 3-cells. The numerical simulations match the
experimental data very well, see Deng [1993b)] lor
more details.

5. Conclusion

We have demonstrated a systematic, practical, and
simple way to construct homoclinic orbits and
chaotic attractors. The method is based on homo-
topy coupling of fast subsystems of the Rossler type
and slow subsystems which satisfy certain geometric
specifications. ‘This method can also be used pro-
gressively 10 construct systems as building blocks
for higher dimensional systems which in turn are
used as building blocks lor even higher dimensional
systems, and so on. Systcins constructed in this
way arc simple, robust, and ideal for experimen-
tal and theoretical manipulations. Tn this practical
sense, these models may be regarded as the origins
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as well as normal forms for the dynamical struc-
tures they are designed to portrait. Morcover, the
construction of such a model may provide us with
a better understanding about the geometry of the
natural system the model describes.
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