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Foreword by the Editors 

Martin Golubitsky and Ian Stewart started their mathematical lives in 1970 and 
1969 by looking at Lie groups and Lie algebras, respectively. For a decade, their 
work contributes to differential geometry and algebra, focussing on Lie theory, 
symplectic geometry and singularity theory. 

In 1978, Marty publishes a paper with the title "An introduction to catastro­
phe theory and its applications" and in 1980, the same words "catastrophe theory" 
appear in the title of a paper by Ian, "Catastrophe theory and equations of state: 
conditions for a butterfly singularity". They had met not long before. From this 
point onwards, both Marty and Ian become concerned with bifurcation theory 
and their first joint publication appears in 1984 in the Bulletin of the AMS, "Hopf 
bifurcation in the presence of symmetry" . Their publications total more than 200 
papers as well as the commonly referred to as "volume I" and "volume 2", whose 
full titles are "Singularities and Groups in Bifurcation Theory - vol. I" by Golu­
bitsky and Schaeffer and "Singularities and Groups in Bifurcation Theory - vol. 
2" by Golubitsky, Stewart and Schaeffer, both published by Springer. Volume 2 is 
said to be the book that inspired the largest number of PhD theses ever. What may 
or may not be referred to as "volume 3" has now been published by Birkhauser 
under the title "The Symmetry Perspective: From equilibrium to chaos in phase 
space and physical space". This volume was produced by Ian and Marty in part 
for a summer school, organized by Castro, Dias and Labouriau, which followed the 
conference in their honour whose Proceedings are hereby presented. The text used 
by Marty and Ian was then developed to win the 2001 Ferran Sunyer i Balaguer 
Prize. 

Other than with their own research, Marty and Ian contributed to the dis­
semination of state of the art mathematics by the edition of several volumes of 
Conference Proceedings. They have organized or helped organize several confer­
ences throughout the years. 

The presence of Ian and Marty in both the conference and summer school 
amounted to three weeks during which they were fully available to the participants' 
questions and expositions of mathematics. This is one of their major contributions 
to mathematics: it is not just that their list of publications is long and of excellent 
quality, providing considerable advances in the field, but that so many mathemati­
cians have profited from personally talking to Marty and Ian. The impact of Ian 
and Marty in mathematics may also be perceived when we see that they have had 
a total of 56 PhD students and research associates. 

Marty and Ian have delivered hundreds of invited talks in places as far apart 
as Iceland, China, Brazil, Singapore, Australia, Canada and Japan as well as in the 
United States of America, the United Kingdom and several other european coun-
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tries. In all countries they have been invited by the most prestigious mathematical 
institutions. 

The recognition of their work is widespread and has awarded them several 
honours such as the aforementioned Ferran Sunyer i Balaguer Prize, the Farfel 
Award (University of Houston -- MG) and the Michael Faraday Prize (Royal So­
ciety - IS). 

Finally, mathematics as a whole, and not just the fields of mathematics that 
attracted Ian and Marty's attention, has seen its image improved through popular 
and non-technical books signed by Ian and/or Marty. These have probably made 
many a mathematician's social life considerably less painful. 

The papers appearing in these Proceedings reflect well the scope of the work 
of Martin Golubitsky and Ian Stewart. They illustrate their point of view sym­
metry as a form of organizing knowledge, symmetry as means of obtaining model­
independent results. Most of the papers include results by one or both in the 
bibliography; the ones that do not, rely on results based on work by Marty and/or 
Ian - second generation results, they might be called. 

Stewart, Elmhirst and Cohen address a central problem in evolutionary bi­
ology, that of speciation. They adopt the viewpoint that speciation is driven by 
natural selection acting on organisms, with the role of the genes being secondary. 
Their methods include numerical simulations and analytic techniques from equi­
variant bifurcation theory, and the conclusions are related to field observations of 
various organisms. The models are biologically interpreted as speciation appearing 
as an emergent property at the organism level. 

Chillingworth and Golubitsky consider the Landau-de Gennes model for the 
free energy of a liquid crystal. They discuss the geometry of its equilibrium set 
for spatially homogeneous states. Using equivariant bifurcation theory they classify 
square and hexagonally periodic patterns that arise when a nematic state becomes 
unstable. 

The relation between symmetric attractors and ergodic theory is the main 
subject of Field's paper. It describes recent analytic results on the coexistence 
of symmetry and chaotic dynamics in equivariant dynamics, studying the impor­
tant phenomenon of persistent ergodicity and emphasizing the case of stably SRB 
attractors. 

Nicol, Sidorov and Broomhead deal also with questions from ergodic theory, 
although from a different angle. They consider an IFS (iterated function system) 
which contracts-on-average. They describe the relation between the Hausdorff di­
mension of the stationary invariant measure, the entropy and the Lyapunov expo­
nent and the semigroup generated by the functions which define the IFS. 

Pattern formation in physical systems is one of the major research themes in 
mathematics. Quoting Golubitsky and Stewart: "Many instances of pattern for­
mation can be understood within a single framework: the viewpoint of symmetry". 
Examples of this include the following papers. 

Ashwin's paper is concerned with the asymptotic behaviour of evolving pat­
terns on unbounded domains. It discusses appropriate topologies for studying this 
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class of problems, and for overcoming the lack of compactness inherent in them. It 
develops concepts of attraction and stability for evolution equations on unbounded 
domains, without reference to spectral properties of the equations. The concepts 
are illustrated with a discussion of evolving spirals. 

Symmetry of attractors is also treated by Goetz and Mendes in the context 
of Euclidean piecewise rotations, which in a sense constitute the most basic two­
dimensional generalizations of interval exchange maps. A new example of attractor 
is illustrated. 

A model for radially forced thermoconvection of a fluid in an annulus based on 
the two-dimensional Boussinesq fluid equations is considered by Rusu and Lang­
ford. They use 0(2)-equivariant bifurcation theory to classify steady-state pat­
terns and rotating waves corresponding to spatio-temporal vortex patterns for the 
thermoconvection problem. 

Callahan uses equivariant bifurcation theory to study three-dimensional pat­
tern formation by Hopf bifurcation in a system that is homogeneous and isotropic 
in all three directions, such as a reaction-diffusion system. Callahan restricts at­
tention to solutions that have the periodicity of the face-centered or body-centered 
cubic lattices. This is one more example where the symmetries of the system are 
used to predict mechanisms of pattern-formation that are model-independent. 

Rucklidge, Silber and Fineberg present an interesting interplay of theory and 
experiments. The main point is to explain in terms of symmetry and secondary 
bifurcation three experimentally observed patterns. Two of them can be obtained 
from the bifurcation and symmetry analysis; for the third the method provides 
two possible group representations and the Fourier spectrum has to be used to 
decide between them. 

Alonso, Net and Sanchez present , in terms of 0(2) symmetry, numerical 
results on a Boussinesq fluid, for a low Prandtl number, in the case of 1:2 resonance. 
Results are presented mainly in the form of figures. It also includes an explanation 
of the distinction between 0(2) annular symmetry and the periodic planar Benard 
convection, where there is an additional reflectional symmetry that reduces the 
effect of resonance. 

The onset of convection in systems that are heated via current dissipation in 
the lower boundary or that lose heat from the top boundary via Newton's law of 
cooling is posed as a bifurcation problem by Prat, Mercader and Knobloch. They 
reformulate the convection problem in order to define a bifurcation parameter that 
remains constant under fixed external conditions. The solutions obtained are then 
compared with the ones obtained via the standard formulation. 

Bayliss, Matkowsky and Aldushin report interesting numerical results on a 
model for flame propagation in a cylinder, considering the modes known as bound 
states or asymmetric travelling waves. 

Glendinning's paper deals with an interesting and original case within the 
extremely rich world of "tent maps". Despite its conciseness, the paper contains a 
stimulating and careful survey of some properties of this special map, which shows 
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its relevance in the analysis of the phenomenon of transition to chaos occurring 
via a sequence of bifurcations. 

Diekmann and van Gils explore the dynamics of age structured populations 
with a single reproductive age class. They begin by obtaining a symmetric formu­
lation for the projection matrix in this case, and show the existence of invariant 
manifolds in the equal-sensitivity case. 

Cigogna's paper describes recent results on properties of Poincare-Dulac nor­
mal forms and their normalizing transformations for bifurcation problems with 
resonances. It also discusses how, by imposing that the formal change of coor­
dinates into normal forms is convergent, the normal forms can be used to find 
multiple periodic solutions. 

The more classical work on bifurcation, either using symmetry or not, ap­
pears in the papers by Cox and Matthews, where systems with Galilean and Eu­
clidean symmetry are studied, and in the paper by Georgescu, Rocsoreanu and 
Giurgiteanu, concerning the FitzHugh-Nagumo equations. 

The papers now presented in this Proceedings volume, despite their width 
and breadth, do not necessarily describe all the scientific contributions to the 
Conference. Some of the invited lecturers did not present a paper for these Pro­
ceedings, in most cases because their lecture covered results which had already 
been submitted for publication elsewhere. This was the case of P. Chossat, B. 
Dionne, B. Fiedler , E. Knobloch, M. Krupa, J. Lamb, I. Melbourne, M. Roberts 
and H. Swinney. 

The Editors would like to acknowledge the various institutions which par­
tially contributed to the support of the Conference and of the publication of 
these Proceedings, either through funding or logistics. So we take the opportu­
nity of explicitly thanking: CIM (Centro Internacional de Matematica), CMAUP 
(Centro de Matematica Aplicada da Universidade do Porto), CAMGSD (Centro 
de Analise Matematica, Geometria e Sistemas Dinamicos of Instituto Superior 
Tecnico), Fundac;iio Calouste Gulbenkian, FCT (Fundac;iio para a Ciencia e Tec­
nologia), FLAD (Fundac;iio Luso-Americana para 0 Desenvolvimento), University 
of Porto, directly and through the Faculties of Economics (FEP) and Sciences 
(FCUP) , particularly Departamentos de Matematica Pura and Matematica Apli­
cada. Most of the editorial work done by SC took place at the Mathematics De­
partment of the University of Aarhus, Denmark, whose hospitality is gratefully 
acknowledged. JB would also like to acknowledge the invaluable support of Prof. 
Joao Palhoto de Matos, of the Departamento de Matematica of Instituto Superior 
Tecnico, whose technical expertise helped enormously in the process of bringing 
these Proceedings to print. 

The Editors, J. Buescu 
S.B.S.D. Castro 
A.P.S. Dias 
1.S. Labouriau 
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Symmetry-Breaking as an Origin of Species 

Ian Stewart, Toby Elmhirst, and Jack Cohen 

Abstract. A central problem in evolutionary biology is the occurrence in 
the fossil record of new species of organisms. Darwin's view, in The Ori­
gin of Species, was that speciation is the result of gradual accumulations of 
changes in body-plan and behaviour. Mayr asked why gene-flow failed to pre­
vent speciation, and his answer was the classical allopatric theory in which a 
small founder population becomes geographically isolated and evolves inde­
pendently of the main group. 

An alternative class of mechanisms, sympatric speciation, assumes that 
no such isolation occurs. These mechanisms overcome the stabilising effect of 
gene-flow by invoking selection effects, for example sexual selection and as­
sortative mating. We interpret sympatric speciation as a form of symmetry­
breaking bifurcation, and model it by a system of nonlinear ODEs that is 
'all-to-all coupled', that is, equivariant under the action of the symmetric 
group S N. We show that such bifurcations can be interpreted as speciation 
events in which the dominant long-term behaviour is divergence into two 
species. Generically this divergence occurs by jump bifurcation - 'punctuated 
equilibrium' in the terminology of evolutionary biology. Despite the disconti­
nuity of such a bifurcation, mean phenotypes change smoothly during such a 
speciation event. So, arguably, do mean-field genotypes related to continous 
characters. 

Our viewpoint is that speciation is driven by natural selection acting on 
organisms, with the role of the genes being secondary: to ensure plasticity of 
phenotypes. This view is supported, for example, by the evolutionary history 
of African lake cichlids, where over 400 species (with less genetic diversity 
than humans) have arisen over a period of perhaps 200,000 years. Sympatric 
speciation of the kind we discuss is invisible to classical mean-field genetics, 
because mean-field genotypes vary smoothly. 

Our methods include numerical simulations and analytic techniques from 
equivariant bifurcation theory. We focus on two main models: the generic 
cubic-order truncation of a symmetry-breaking bifurcation in an SN-equivari­
ant system of ODEs, and the BirdSym system introduced by Elmhirst in which 
the biological interpretation of variables is more explicit. 

We relate our conclusions to field observations of various organisms, includ­
ing Darwin's finches. We also offer a biological interpretation of our models, in 
which speciation is represented as an emergent property of a complex system 
of entities at the organism level. We briefly review questions about selection 
at the level of groups or species in the light of this interpretation. 
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'A broken or interrupted range may often be accounted for by the extinction of species in 
the intermediate regions. ' 

Charles Darwin, The Origin of Species 

'Unnatural selection was a fact, but the wizards knew, they knew, that you couldn't start 
off with bananas and get fish. ' 

Terry Pratchett, Ian Stewart, and Jack Cohen, The Science of Discworld 

1. Introduction 

How do new species arise in evolution? Well before Darwin, it was known that 
animals and plants could be persuaded to change, in small ways, by the artifi­
cial application of selective pressure. Breeding techniques could produce bigger 
or smaller dogs, redder roses, more nutritious cereal crops. However, no amount 
of selective breeding seemed able to persuade an organism to change species, let 
alone generate an entirely new species. Darwin 's revolutionary insight was to re­
alise that nature provides its own source of selective pressure - competition for 
survival. He assembled a wealth of evidence for the 'mutability of species', without 
human intervention and over long periods of time. However, despite the title of his 
magnum opus The Origin of Species, he did not propose any detailed mechanism 
by which entirely new species could arise , other than the slow accumulation of 
small changes. 

One of the most persuasive arguments against gradual drift as a cause of 
speciation is the fact that (sexual) organisms breed. For example, consider the 
divergence of chimpanzees and early hominids from a common ancestral species 
about 5 Myr ago. Somehow, a single species became two. On the basis of Darwin 's 
proposal, gradual transition, a difficulty arises. As the two incipient species begin 
to diverge, the initial changes are so small that the organisms can still interbreed. 
Exchange of genetic material - what Mayr [57, 58] calls gene-flow - will cancel out 
that small divergence as their descendants 'regress to the mean ' , Galton [33]. It 
seems that speciation by gradual changes is a non-starter. 

Mayr's answer to this dilemma, building on work of Dobzhansky [25], was 
the mechanism of allopatric speciation. Here some (small) 'founder population' 
becomes isolated from the main group, perhaps by migration or geographical ac­
cident. Once separated, the new group evolves independently of the main one -
gene-flow between the groups is switched off - until eventually the two groups are 
no longer able to interbreed even if they are brought back into contact. When and 
if they come together again, the two groups will remain separate species: gene-flow 
between them will have ceased, permanently. 

Attractive though it may seem, the allopatric theory also has difficulties - for 
example, the frequency with which the allegedly divergent groups must have man­
aged to reoccupy the same territory after lengthy periods of isolation stretches 
credulity. An alternative class of mechanisms, collectively known as sympatric 
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speciation, propose various methods for maintaining divergence in the presence 
of gene-flow. In addition, Eldredge and Gould [26] suggest , in their theory of 
'punctuated equilibrium', that speciation might be a sudden evolutionary event. 
Ridley [67] chapter 16 gives a good overview of conventional theories of speciation, 
and Rice and Hostert [65] survey experimental evidence for or against a variety of 
theories. 

Over the last few years the tide of debate has turned, and sympatric speci­
ation is now considered to have been a common - though by no mean universal 
- route to new species, see for example Higashi et al. [42], Kondrashov and Kon­
drashov [53], Dieckmann and Doebeli [23] and references therein, Pennisi [64], 
Rundle et al. [69], Huey et al. [44], and Winker [81]. Behind this change of atti­
tude is a growing realisation that the old gene-flow arguments involve several tacit 
assumptions: for example that gradually changing causes must produce gradually 
changing effects , and that uniform behaviour in uniformly changing conditions 
should remain uniform. Even when made explicit, those assumptions seem plau­
sible; how much more persuasive must they have been when they remained tacit? 
They are, however, wrong. In the terminology of modern nonlinear dynamics , the 
first says that jump bifurcation is impossible and the second tells us that symme­
tries cannot break. In fact, jump bifurcation and symmetry-breaking are generic 
phenomena in nonlinear dynamical systems. 

In this paper we describe recent work, much of it previously unpublished, 
which applies the viewpoint of nonlinear dynamics to derive a general mathemat­
ical setting in which a form of sympatric speciation is both natural and inevitable 
under appropriate conditions. The ideas apply to an entire class of models, de­
pending on the biological interpretation of the system and its parameters. In order 
to illustrate these possibilities we describe a more specific model, BirdSym, intro­
duced by Elmhirst [28] in the context of speciation in birds. 

This paper is addressed to several audiences, primarily the nonlinear dy­
namics community (which will find the biology unfamiliar) and the evolutionary 
biology community (which will find the mathematics unfamiliar). For this reason 
we shall discuss some basic biological and mathematical background, and illustrate 
the mathematics with simple examples. Technical details, for the experts , are col­
lected in the appendix. Our main focus is on the mathematical techniques, but we 
also attempt to relate our models to possible biological mechanisms. The general­
ity of the mathematical phenomena leads us to suspect that sympatric speciation 
can occur through a wide variety of mechanisms, differing from each other only in 
fine detail: the search for a unique biological mechanism for sympatric speciation is 
almost certainly misguided. However, the same 'meta-mechanism' probably covers 
most instances of sympatric speciation, and it can be summarised for a nonlinear 
dynamics audience in simple terms: 

• Speciation in a system of nominally identical organisms occurs when the 
single-species state loses dynamic stability and no alternative stable single­
species state is available. 



6 Ian Stewart, Toby Elmhirst, and Jack Cohen 

The biological problems are to understand the nature of such instabilities 
and to interpret the consequent bifurcations: again there is no reason to expect 
a unique explanation. Equally, there is no reason to suppose that the particular 
mathematical context described here is the only reasonable one. On the contrary, 
we have deliberately idealised the context in order to emphasise a number of 
phenomena that might otherwise appear counter-intuitive. 

The main mathematical conclusions of our models are: 

• Sympatric speciation is a generic phenomenon in nonlinear systems. 
• The most common divergence is to two species, but intermediate stages with 

three species can occur for some parameter values. 
• Speciation occurs through a jump bifurcation. 
• Mean phenotypes change continuously throughout the bifurcation. 
• In contrast, the variance of the equilibrium phenotype across the whole pop­

ulation changes discontinuously at the bifurcation point. 

Our main biological conclusions are: 

• Sympatric speciation is driven by the interactions of organisms and their 
environment, especially other organisms. 

• Sympatric speciation occurs when a 'generalist' strategy for exploiting the 
environment becomes less successful than a 'specialist' division of labour. 

• The role of genes is to render phenotypes plastic: genetics affects speciation 
only indirectly. 

• The important plasticity results from recombination, not from mutation. 
• Speciation involves no change to the frequency with which any particular 

allele occurs in the mean-field gene pool: instead, what changes is how com­
plexes of alleles are associated in organisms that survive to breed. 

2. Speciation Mechanisms in Biology 

About 5 Myr ago a small group of bedraggled finches was blown by a storm to 
an isolated Pacific archipelago, the Galapagos Islands. The new arrivals found few 
predators and their main competition was sea-birds; they prospered. As the finch 
population grew, it diversified. When Darwin arrived at the islands on board the 
Beagle in 1837-38 he found 13 distinct species of finch. A fourteenth, found in the 
Cocos Islands, has since been added to the list. Collectively, these 14 species are 
known as 'Darwin's finches' , Fig.I. See Lack [54], Grant [37]. 

At first sight, Darwin's finches are a classic example of allopatric speciation: 
a small founder population plus geographical isolation. All that is missing (and it 
is not essential) is the eventual reunification with the original source. 

However, some features of Darwin's finches do not fit the allopatric model so 
convincingly. In particular, their diversification occurred after their arrival at the 
new habitat. The Galapagos Islands are tiny, and close enough for a finch to fiy 
from one to another. So why did the population split? There is a term for such 
behaviour: radiation. A large enough change in environment can trigger a burst 
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of diversity as organisms explore a wide array of potential environmental niches. 
Different organisms from the same species specialise on different features of the 
environment. 

However, as just stated, the Galapagos Islands are tiny, and close enough for 
a finch to fly from one to another. This implies that the potential environment -
or range of environments - is the same for all finches. In other words, radiation 
is closer to sympatric speciation than it is to allopatric speciation. 'Radiation' is 
more a description than an explanation. 

Speciation is complicated because a wide range of distinct factors could be 
- in some sense must be - involved. These factors can be split into at least three 
broad classes: 

• Genotype 
• Phenotype 
• Environment 

Genotype (genetic makeup) and phenotype (bodily form and behaviour) dif­
fer from one bird to another. They are related, but not trivially so - forget simpli­
fied images of genes being the 'blueprint' for an organism. Many genetic changes 
are cryptic, with no obvious effect - indeed no effect - on phenotype. Many phe­
notypic changes have no obvious -- indeed no - genetic cause. See Cohen and 
Stewart [15]. 

'Environment' is an even broader term. An organism's environment may vary 
both spatially (geography) and temporally (history). Even in a limited local region, 
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many different environmental strategies may be available- hide in shade, bask in 
sunshine, exploit the top/ middle/ bottom of a tree, eat insects/seeds/cactus. And 
environmental factors can include climate, weather, terrain, and other organisms ­
especially those of the organism's own species, its main competitors. Disentangling 
all of these possibilities and their interconnections is difficult, perhaps impossible; 
not surprisingly, the whole area is riddled with controversy. 

The mathematician's reflex response to a complex system of interactions is 
not to catalogue them, but to simplify them. Many factors are omitted, others are 
replaced by idealised versions. This process is easily misunderstood. Its aim is not 
to impose such artificial simplicity on the complexities of reality. Instead, it is a 
way of exploring which features of the system are important , by removing details 
and seeing what happens. The test of a mathematical model does not lie in the 
accuracy of its assumptions, but in the accuracy of its conclusions. 

In this spirit, we focus on a way to model speciation that may illuminate 
some aspects of that process. The most relevant question, for the purposes of this 
paper, is: 

• Is it reasonable for a single species to split into two or more species, on the 
assumptions that all individuals are potentially able to interbreed (panmixis) 
and that at any instant all organisms are exposed to the same environment 
as the others (sympatry)? 

Thus we ask whether selective breeding patterns or diverse geography are 
actually necessary for speciation - not whether they occur. We will show that they 
are not necessary, by exhibiting a general class of processes in which speciation 
can occur in a panmictic sympatric population. We do not claim that all speci­
ation occurs in such a manner: merely that it can. Notice that our simplifying 
assumptions tend to strengthen the message, not weaken it: we remove two of the 
most obvious sources of species divergence and show that even in their absence, 
such divergence can still occur. The widely held intuition that selective breeding 
or geographical discontinuities are necessary for speciation is thereby challenged. 
Nonetheless, if either factor is present , it may render speciation more likely. 

3. Bifurcation and Symmetry-Breaking 

Until fairly recently - the main trend set in around 1960 and became full-blown by 
about 1980 - most mathematical modelling employed linear equations. There were 
glorious exceptions, such as celestial mechanics, shock waves, and the Hodgkin­
Huxley equations for the nerve impulse, but in most areas of applied science the 
straight line graph ruled. In many areas (sociology springs to mind, and educational 
theory) it still does. 

Linear models were employed for two good reasons: 

• They are simple to describe and relatively easy to analyse 
• They capture many phenomena adequately and thereby aid understanding 
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On the other hand, it turns out that the world of nonlinear phenomena is far richer 
than the linear world, and that most of these phenomena seem counterintuitive to 
a mind raised on linear mathematics. This might not matter, except that in most 
respects nature seems to behave nonlinearly. 

Many authors model speciation in terms of dynamical systems (systems of 
ODEs), and we shall follow their lead. See for instance Kawecki [50], Dieckmann 
and Doebeli [23], and Hofbauer and Sigmund [43]. We introduce a class of nonlinear 
models that will allow us to examine the effects of nonlinearity in the speciation 
process. 

Bifurcation 

One characteristic feature of nonlinear dynamics is bifurcation ~ a rapid change in 
effect brought about by a small change in cause. The next example illustrates this 
phenomenon in a simple model. 

Example 1. Let x E R represent the state of some system, let A E R be a pa­
rameter, and suppose that the time evolution of the system is determined by the 
ODE 

dx/dt = AX + 2x2 - x:> 

The dynamics of this system is illustrated in Fig. 2. The solid and dotted lines show 
how the equilibria dx / dt = 0 vary with A: a solid line indicates a stable equilibrium, 
a dotted line an unstable one. The arrows show the direction in which x changes 
when the system is not in equilibrium. Two values of A (namely -1 and 0) are 
special: qualitative changes in the dynamics occur as A varies through them. 

x 
B, 

JUMP 1\""" 
JUMP 

A~ 

FIGURE 2. Bifurcation diagram illustrating jumps and hysteresis. 

Point A, where A = 0, is a point of trans critical bifurcation. For A < 0 the 
equilibrium x = 0 is stable, but it becomes unstable for A > O. Meanwhile a 
previously unstable 'branch' ~ a segment of the parabola A = x2 - 2x between 
points B and A ~ becomes stable for A > O. There is an 'exchange of stability' 
between the two branches. 
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Point B, where A = -1, is a different kind of bifurcation, a fold or saddle­
node point, see Arrowsmith and Place [1]. For A < -1 there are no equilibria near 
B (only the distant one at x = 0). As A increases through -1, two new branches 
- one stable, the other unstable - separate from B. 

Suppose the system starts out with A < -1, and let A slowly increase. We 
assume quasi-static variation, in which x settles down to the closest available 
equilibrium much faster than A is changing. The system therefore remains at x = 

o when A becomes greater than -1, even though a new stable equilibrium has 
appeared. However, as A passes through 0, the value of x suddenly changes to the 
only available stable equilibrium, on the top branch that emanates from B. This is 
a jump bifurcation, and we see that when A makes a very small change through -1, 
the value of x changes substantially. Indeed, in an idealisation where the timescale 
for A is infinitely slow compared to that for x, we see that a continuous change in 
A causes a discontinuous change in x. 

In short: small changes in the cause can sometimes have big effects. Not 
always: here, if A =f. -1,0 then small changes in the cause have small effects. Big 
effects are rare, but can still be unavoidable as a parameter varies. 

Suppose that after the jump has occurred, we decrease A back below O. Be­
cause the top arc of the parabola is stable for .\ > -1, the system does not reverse 
its previous change and jump back to x = 0 when .\ passes through O. Instead, it 
remains on the top branch until .\ gets below -l. Only then does it jump back 
to x = o. We therefore observe 'irreversible' effects as the parameter varies - the 
phenomenon of hysteresis. 

Symmetry-Breaking 

Bifurcation, jumps, and hysteresis are typical in nonlinear dynamical systems, 
along with considerably more complex behaviour. Linear systems display bifurca­
tion only in a very trivial way (a stable equilibrium suddenly becomes unstable). 
Because a linear system always has a unique equilibrium, it cannot display hys­
teresis. 

The other key phenomenon for this paper is symmetry-breaking: here a sym­
metric system of equations can have solutions with less symmetry, or none. 

Example 2. Consider the system of ODEs on R3 given by 

dx / dt .\x - (x + y + z) + x 2 

dy / dt .\y - (x + y + z) + y2 (1) 
dz/dt .\z-(x+y+z)+z2 

This system is symmetric under the group S:l of all permutations of (x, y, z). There 
is a trivial solution x = y = z = 0 and the linearisation about this solution has 
matrix 

,\-1 

-1 
-1 

-1 
,\-1 

-1 

-1 1 -1 
.\-1 
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with eigenvectors and eigenvalues as follows: 

Vo (1,1,1)1' : eigenvalue A - 3 

VI (1,-1,0)",: eigenvalue A 

V2 (0,1, -If: eigenvalue A 

Here the T indicates the transpose, to avoid printing column vectors. 
When A < 0 the trivial solution is stable (all eigenvalues negative) but it loses 

stability when A > O. The kernel of L is two-dimensional when A = 0, spanned by 
VI,V2. Note that VI +V2 = (1,0,-1)1' and R{VI,V2} = {v: x+y+z = O}, the 
nontrivial irreducible representation of S:l. 

We look for equilibria of (1) with A and x near O. Then 

AX + x2 = AY + y2 = AZ + z2 = X + y + Z 

It is easy to show that near (A, x) = (0,0) these equations imply that at least 
two of x, y, Z are equal, and that all three are equal only when x = y = Z = o. 
(However, there is another bifurcation at A = 3 where the kernel of L is the trivial 
representation of S3 , and a new branch with x = y = Z i- 0 bifurcates there.) 

By symmetry we may assume x = y and Z i- x. Then 

AX + x 2 = 2x + Z 

(2) 

(3) 

Equation (2) implies that A(X-Z)+(x+z)(x-z) = 0, so that x+z = -A, whence 
Z = -x - A. Then (3) implies that AX + x2 = X-A. Solving the quadratic equation 
and retaining only the solution near the origin, we find that a nontrivial solution 

x=y 
Z 

- A+1 - v'A 2 - fiA+I 
2 

- A-1 + v'A 2 - fiA+1 
2 

(4) 

exists for all A near O. By symmetry, two other 'conjugate' branches also exist, in 
which x , y, Z are permuted. 

We investigate the geometry of these new solutions. For A rv 0 we have 

by the binomial theorem, so 

x A + 2).2 + O().:l) 

y ). + 2).2 + O().:l) 

Z -2A - 2).2 + O().:l) 

This is a transcritical branch, existing for all A near o. There are two other branches 
obtained by permuting (x, y, z). Schematically, the bifurcation diagram looks like 
Fig. 3. 
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(x,Y,Z) ----------------~~~~-------------------

FIGURE 3. Bifurcation diagram for symmetry-breaking example. 

What about stability? We now show that the above primary branch, and 
therefore also its conjugates, are unstable both before and after bifurcation. The 
Jacobian is 

J = -1 >. - 1 + 2y [ 
>. -1 + 2x -1 

-1 -1 1 
-1 -1 >. - 1 + 2z 

One eigenvector is (1, -1, O)T with eigenvalue 

/OJ = >. + 2x 

(we here use the fact that x y). We compute the other two eigenvalues by 
defining 

u (1,1,0)", 

v (0,0, If' 

We have 
Ju = (>. - 2 + 2x)u - 2v, Jv = -u + (>. - 1 + 2z)v 

Thus R{ u, v} is invariant under J. On this space the matrix of J is 

[ >. - 2 + 2x -2 ] 
K = -1 - >. - 1 - 2x 

where we have replaced z by -x - >.. The trace of K is 

T= -3 

and the determinant is 

D = -(>' + 2x - 2)(>' + 2x + 1) - 2 

Therefore the eigenvalues of K are 

-3 + v9 - 4D 
2 

-3 - V~9 -----,-4D= 

2 
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When), is small, C2 rv 0 and C3 rv -3. Computing to first order in A, we find 

Cl 3), + O(),2) 

C2 -), + O(),2) 

C3 -3+),+O(),2) 

Near the origin, Cl and C2 have opposite signs, so the solution branch is unstable 
near the origin. By symmetry, the same applies to the two conjugate branches. 
So locally there are no nontrivial stable branches other than the origin, and the 
origin is stable only when), < O. 

Thus, although the equations (1) of Example 2 have branches of equilibria 
corresponding to two species, those branches are unstable. As it stands, this is a 
highly unsatisfactory conclusion: we want the speciation process to lead to stable 
branches. To make matters worse, it turns out that the same difficulty arises for 
S N-symmetric models: generically, all primary branches of equilibria are unstable 
near the origin. That is, the classic 'exchange of stability' does not occur (later we 
explain why: symmetry is the cause). 

Another feature of the calculation deserves attention. Along each bifurcating 
branch, 

x + y + z = 2),2 + O(),:l) 

which is quadratic in ),. Therefore the branches are all tangent to the plane x + 
y + z = 0 at the origin. Moreover, to first order in ), we have x + y + z = 0 on 
all branches, including the trivial branch, so the mean x+g+z is approximately 
constant (the constant being zero) throughout the bifurcation. 

Fold Points and Secondary Branches 
We return to the instability of the branches in Example 2. This deficiency of 
the model is also visible in Example 1, where the branches near the origin are 
unstable. However, in that example the presence of a cubic term in the ODE 
causes a primary branch to 'turn round' at a fold point, where it regains stability. 
We therefore expect to rectify the instability of primary branches by including 
cubic terms in the model , as well as linear and quadratic. 

Experience with the case N = 3, which is well understood (see Golubitsky and 
Schaeffer [34] and Golubitsky et al. [36] Chapter XV §4) reinforces this expectation. 
The group S3 ~ D3 and the relevant action is the standard action of D3 on R 2 . 

Singularity-theoretic methods reduce the problem to the normal form 

[
x ] _ [ x(x2 + y2 _),) + (x2 _ y2)(x2 + y2 + f.L(x 3 - 3xy2) - a) ] 

F y - y(x2 + y2 _ ),) + 2xy(x2 + y2 + f.L(x 3 _ 3xy2) - a) 

where a, f.L are parameters and), is the bifurcation parameter. For purposes of 
illustration, we assume that this normal form has been derived from a model whose 
variables are population sizes, so that the branches can be interpreted in terms of 
species. Depending on the signs of a, f.L, there can exist secondary branches with 
trivial symmetry (that is, three-species branches). The geometry of the bifurcation 
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diagrams is shown in Figure 4. When 0' < 0, j1 > 0 the three-species branch can 
be stable, but it exists only for a finite interval of values of >... 

Notice that the presence of cubic terms in the normal form here causes the 
primary branch to turn round at a fold point, and (in this case) it regains stability 
there. It can also lose stability by encountering a secondary branch, or regain 
stability by encountering a secondary branch, depending on delicate features of 
the equations. 

~ies 
: jump 

one species 
------..:.-::::- -- - -- --_. 

IwospeClC:s \-- - - - --

• three species 

i Jump ~Cles 
ont: species ... _ - ... 

----~~------------

phenotypic 
variables 

?/WO SJXCiCS .-----

/ ' 
~ I : 
, I : jump 
: I : 

: Jump /: IWO species 
/' . .---

one species ... ,------
-------==---.... .:::: - - - - - - - - -

en vironmental parameters 

FIGURE 4. Existence of 3-species secondary bifurcations in the case 
N = 3. (Top) 0' > O. (Middle) 0' < 0,j1 > O. (Bottom) 0' < 0,j1 < O. 

We show later that similar (but slightly more complicated) features occur in 
SN-equivariant bifurcation problems for N > 3, with interesting implications for 
our model of sympatric speciation. 

4. Methods of Equivariant Bifurcation Theory 

The general context for a symmetry-based analysis of pattern formation in equi­
variant dynamical systems is symmetric (or equivariant) bifurcation theory. This 
is surveyed in Golubitsky et al. [36]. We briefly summarise the main ideas and 
state the basic existence and stability theorems for steady-state bifurcation. 

Let r be a Lie group of linear transformations of Rn. We say that f is r­
equivariant if 

fhx, >..) = ,f(x, >..) (5) 
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for all "( E r. Consider a r-equivariant ODE 

dx 
dt + f(x , )...) = 0 

15 

(6) 

where x ERn, )... E R. Steady states are zeros of f. The symmetry of f implies 
that zeros come in symmetrically related sets. Specifically, if x E Rn then the orbit 
of x under r is 

rx = hx : "( E r} . 
If f : V --+ V is r-equivariant, then the zero-set of f is a union of r-orbits, for if 
f (x) = 0 then f bx) = "( f (x) = "(0 = O. It is convenient to consider solutions in 
the same r-orbit as being 'the same solution' up to symmetry. 

The isotropy subgroup of x E V is 

~x = {a E r : ax = x}. 

Isotropy subgroups of points on the same orbit are conjugate. Indeed ~'"Y x = 

"(~x"(- l. We therefore tend not to distinguish between isotropy subgroups and 
their conjugates. The isotropy lattice is the partially ordered set formed by all 
conjugacy classes of isotropy subgroups, with ordering induced by inclusion. It is 
a finite partially ordered set but, despite its name, it is not always a lattice in the 
strict algebraic sense. 

If Her is any subgroup, we define the fixed-point subspace 

Fix(H) = {x E V : "(x = x \1"( E H}. 

We have FixbH"(-l) = "( Fix(H). 
For simplicity, assume that f(O,)...) == 0, so there exists a 'trivial branch' of 

solutions x = O. The linearisation of f is 

L>. = Dxflo.>.' 

Local bifurcation at )... = 0 occurs when the trivial branch undergoes a change 
of linear stability, so that Lo has eigenvalues on the imaginary axis (often called 
critical eigenvalues) . There are two cases: 

• Steady-state bifurcation: Lo has a zero eigenvalue. 
• Hopf bifurcation: Lo has a complex conjugate pair of purely imaginary eigen­

values. 

Hopf bifurcation leads to time-periodic solutions and will not be considered in this 
paper. 

A bifurcating branch breaks symmetry if the corresponding isotropy subgroup 
is not the whole of r. We can detect broken symmetry using fixed-point subspaces. 
A crucial feature of fixed-point subspaces is that they are dynamically invariant: 
if f is r-equivariant and Her then f leaves Fix(H) invariant. The proof is 
trivial, but the result is very useful. Suppose we are seeking a branch of solutions 
to a r-equivariant bifurcation problem f(x,)...) = 0, breaking symmetry to ~. Then 
x E Fix(~), and it suffices to solve fIFix( E ) = O. Since Fix(~) has smaller dimension 
than n, in the symmetry-breaking case, this is in principle a simpler problem. 
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To study local bifurcations, we look at the critical eigenspace: the real gen­
eralised eigenspace E for the critical eigenvalues. This is the kernel of L[) in the 
steady-state case. By equivariance, E is a r -invariant subspace of R n. The analysis 
now proceeds in a sequence of stages. First, we determine the generic possibilities 
for the action of r on E. By 'generic' we mean 'unable to be destroyed by a small 
perturbation of 1'. For steady-state bifurcation, generically E is absolutely irre­
ducible, meaning that the only equivariant linear maps are scalar multiples of the 
identity. Next, we use Liapunov-Schmidt or centre manifold reduction to reduce 
the problem to one posed on the E. With sensible choices in the reduction pro­
cedure, the reduced problem is r-equivariant. See Golubitsky et al. [36]. Next, we 
apply the Equivariant Branching Lemma (see below) or more detailed analysis to 
show existence of symmetry-breaking solutions. Finally, we study the stability of 
bifurcating solutions. 

The Equivariant Branching Lemma is the simplest and most widely used 
existence theorem for steady-state branches. To state it we require the concept 
of an axial subgroup: this is an isotropy subgroup ~ for which dim Fix(~) = 1. 
For such isotropy subgroups we have the following basic existence theorem of 
Vanderbauwhede [80] and Cicogna [14]: 

Theorem 3. (Equivariant Branching Lemma). Let f(x, A) = 0 be a r-equivariant 
bifurcation problem where Fix(r) = O. Let ~ be an axial subgroup. Then generically 
there exists a branch of solutions to f(.1', A) = 0 emanating from the origin with 
symmetry group ~. 

For a proof see Golubitsky et al. [36] Chapter XIII Theorem 3.3 p.82. 
Next, we discuss stability of the solutions. A bifurcating steady state (xo, AO) 

is stable if all eigenvalues of L(.L'".>-.,,) = Drfl(.rll'>-''') have real parts < 0, and 
unstable if at least one eigenvalue has real part > O. There is one situation in 
which we can guarantee that all branches predicted by the Equivariant Branching 
Lemma are generically unstable, and this situation arises in the speciation model 
and influences its analysis and development. 

Theorem 4. Assume that 

• r acts absolutely irreducibly on the critical eigenspace E. 
• D.Tfl(o.>-.) = C(A)J where c: R -+ R. 
• c(O) = 0 and c'(O) < O. 
• ~ is an axial subgroup of r. 
• Some term in the Taylor series of fIFix(L:)x{O} lS nonzero. 
• (Dxq)xo has eigenvalues off the imaginary axis, where q is the quadratic part 

of f and Xo E Fix(~). 

Then the branch of solutions in Fix(~) x R guaranteed by the Equivariant 
Branching Lemma consists of unstable solutions. 

This theorem is originally due to Ihrig. For a proof and qualifying remarks, 
see Golubitsky et al. [36] Chapter XIII Theorem 4.4 p.90. The key feature here 
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is the existence of a nonzero quadratic term in the Taylor series of j, which for 
some group actions is a generic feature. In particular, this is the case for SN in its 
standard absolutely irreducible action on R N -1. 

5. Model Equations 

In order to model speciation with ODEs we need to discretise the distribution of 
phenotypes into a fixed number of 'tokens'. These tokens provide a coarse-graining 
of the population into N clumps, which we call PODs (Placeholders for Organism 
Dynamics). The choice of N is a modelling convention: something in the range 10 
to 100 seems reasonable in practice. 

The use of PODs avoids the problem of individual organisms dying and new 
ones coming into existence. A POD is similar to the existing concepts of a de me 
(Salthe [70]) or lineage (Rollo [68]). Its biological meaning might, perhaps, be 
interpreted in the following manner. In field observations, animals in a given species 
are commonly seen to have different habits. Some range widely, some accept low 
quality food locally, and so OIl. These are behavioural qualities that would define 
PODs subjectively in the field. 

Associated with POD i, for 1 ::; i ::; N, is a phenotypic variable Xi E Rk 
representing a vector of k continuous characters. For purposes of illustration we 
usually take k = 1, but the entire theory goes through to the general case with 
only minor technical modifications. The value of Xi is interpreted as the average 
phenotype in POD i. 

We have SN acting on RN by permutations, and we model speciation by a 
parametrised system of SN-equivariant ODEs on R Nk : 

dx ;j dt = F ( Xl, ... , X N: ai, ... , a r ) 

Here X = (Xl, ... , XN) represents the phenotypes of the population of N PODs, 
and a = (al' ... , aT) represents 'environmental' parameters. 

Equivariance restricts the form of F considerably. It is well known (see Ap­
pendix 1) that polynomial invariants for SN on RN have a Hilbert basis given by 
sums of kth powers 

N 

7rk = LX?· 
i=l 

where k = 1, ... , N. We define SN-equivariants Ek, for k = 0, 1,2, ... by 

(7) 

We prove in Appendix 1 that the SN-equivariant polynomial mappings are gener­
ated over the SN-invariant polynomial functions by Eo, ... ,EN -1. 

In particular, there are two independent quadratic equivariants, 7rlE1 and 
E2 . This turns out to make Theorem 4 applicable, implying that an adequate 
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model should include terms to at least cubic order. The general cubic-degree S N­

equivariant ODE has 13 parameters: 

dx;/dt Fi(X) 

ao + bl 1f1 + b2Xi + C31ftXi + C4X~ (8) 
+dl1fr + d21f11f2 + d;j1f:l + d41fIX i + dr;1f2Xi + d6xl 

Axial Subgroups 

It is easy to compute the isotropy subgroup ~x of SN acting on RN, for arbitrary 
x. If a E SN and a.x = x, then the only entries Xi, Xj of X that can be permuted 
by a are those with equal values, Xi = Xj' We therefore partition {I , ... , N} into 
disjoint blocks B I , ... , Bk with the property that Xi = Xj if and only if i, j belong 
to the same block. Letting be = IBel, we find that 

where Sb, is the symmetric group on block B e. 
Up to conjugacy we may assume that 

BI {I, ... , bd 
B2 {b 1 +l , ... , b1 +b2} 

Moreover, we can assume that bl ::; b2 ::; . .. ::; bk. Therefore conjugacy classes of 
isotropy subgroups of SN are in one-to-one correspondence with partitions of N 
into nonzero natural numbers arranged in ascending order. 

Suppose that ~ is an isotropy subgroup corresponding to the simplest non­
trivial partition P = {p, q} where p + q = Nand p ::; N /2. It is then easy to see 
that Fix(~) consists of all vectors 

(u , . .. ,u,v, ... ,v) ______ '-v--' 

p q 

for real numbers u, v. (Here u and v may be equal, or not.) Therefore dim Fix(~) = 
2. Similarly, if ~ corresponds to a partition of N into k blocks, then dim Fix(~) = k. 

Finally, we restrict the action of SN onto the standard irreducible RN-I , by 
imposing the relation Xl + ... + XN = O. The isotropy subgroups remain the same, 
but the dimension of every fixed-point subspace is reduced by 1. In particular the 
isotropy subgroups Sp x Sq, where p+q = N, are the ones that have I-dimensional 
fixed-point subspaces, so these are the axial subgroups. By the Equivariant Branch­
ing Lemma, generically there exist branches of equilibria with isotropy subgroups 
Sp x Sq . We call these primary branches. Not surprisingly, these subgroups will 
playa major role from now on. 
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FIGURE 5. Simulation of speciation for 100 PODs. 

Preliminary Simulations 

Before embarking on an analysis of the bifurcations of (8) we give a preview of 
the likely behaviour, by numerical simulation. We take b2 = >. as bifurcation 
parameter , and set b1 = -1, C4 = 1, dr; = -1 and all other parameters equal O. 
Thus the ODE takes the form: 

Figure 5 shows a numerical simulation of a solution of these equations for N = 100. 
The picture is obtained by increasing>' by a tiny amount at each step of a numerical 
integration, while using the values of Xi obtained on the previous step as initial 
values for the next step. This technique is called ramping the bifurcation parameter. 

Initially the system is at the origin. There is a relatively rapid jump bifur­
cation, after which the values of the X i settle down into two clusters. One cluster 
contains 48 of the 100 variables X i , and the common value is positive; the other 
cluster contains 52 of the variables and the common value is negative. Again we 
see symmetry-breaking. In fact the isotropy subgroup of the bifurcating branch is 
S48 x S52 <.;; S100. 

Figure 6 shows histograms of the distribution of phenotypes in a typical case: 
note the rapid initial broadening into a highly non-normal distribution, and the 
subsequent clustering into two peaks, with some intermediate transitions. 

Linear Analysis 

We begin by carrying out a linear analysis. We normalise the phenotypic vari­
ables to represent the deviation from the initial phenotype (single species), which 
removes the constant term Eo. Thus we assume that prior to bifurcation the phe­
notype is X = (0, ... ,0). 
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FIGURE 6. Typical sequence of histograms of phenotype distribution 
during a speciation event. 

There are two linear equivariants because RN is a direct sum of two absolutely 
irreducible subspaces Vo, VI , where 

Vo R(l,l, . .. ,l) 

VI {(Xl, ... ,XN):Xl+···+XN=O} 

The map El is the identity, and 0"1 Eo = M where 

1 
1 

1 

1 
1 

1 

The general linear equivariant is therefore 0:1 + 13M where 0: ,13 E R are our 
previous b2 , b1 respectively. The eigenvalues and eigenvectors are: 

Uo (1,1, ... , l)T eigenvalue 0: + Nf3 

Ul (1,-1,0, ... ,0)'1' eigenvalueo: 

U2 (0 , ... , 0, 1, -1) T eigenvalue 0: 

There are two potential local bifurcation points: one where 0: + N 13 = 0 and 
one where 0: = o. These are distinct when 13 #- 0, a nondegeneracy condition 
that prevents the occurrence of a mode interaction point and is generically valid. 
If 0: + N 13 = 0 then the kernel is Vo, whereas if 0: = 0 then the kernel is VI. 
We therefore choose 0: to be the bifurcation parameter, and arrange for the first 
bifurcation to have kernel VI, with the trivial solution stable for 0: < O. This is 
the case provided 13 < o. By scaling x we may assume 13 = -1, leading to a vector 
field of the form 

F(x) = 
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This is the form required for simulating the full system on R N. However, it 
is much simpler to analyse the centre manifold reduction onto VI (or if all we are 
interested in is the equilibrium states, the Liapunov-Schmidt reduction) as we now 
describe. 

Centre Manifold Reduction 

As already indicated, the general cubic truncation of an Swequivariant ODE 
involves 13 parameters, which is too complicated for detailed analysis. Here we 
describe work of Elmhirst [27] on the dynamics of the centre manifold reduction of 
such a cubic truncation to the space VI, see also Cohen and Stewart [17]. Carr [13] 
is a useful source for information on the generalities of centre manifold reduction. 

In Appendix 2 we show that the general cubic centre manifold reduced equa­
tions on VI take the form 

dx;/dt = AXi + (Nx;- ~2) + C(Nx; - ~3) 
+D(Nxi(xi + ... + xLI + X7+1 + ... + xJv) - ~12) 

(9) 

where 1 :; i :; Nand 

2 2 x1+",+xN 
'3 3 xl + ... + x N 

L X7X j 
i#j 

This equation has been analysed in considerable detail by Elmhirst [27], and 
we state some of his results without proof. We study the primary branches of 
equilibria, on the spaces Wp = Fix(Sp x Sq) where p + q = Nand 1 :; p :; 
N /2. These are the branches guaranteed by the Equivariant Branching Lemma. 
We also study the stabilities of these branches. We coordinatise Wp by a E R, 
corresponding to the point 

Define 

a(q, ... ,q; - p, .. . , -p) '---v---' _________ 

p q 

n N(N - 2p) 

C C(N2 - 3Np + 3p2) 

d D(N2 - N(N + 3)p + (N + 3)p2) 

Then the branching equation on Wp turns out to be 

A=-an -a2 N(c-d) 

which is a parabola passing through the origin. Together with the trivial solution, 
the bifurcation diagram on Wp looks like Figure 2. Let 000 be the a-coordinate of 
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the other point at which the parabola crosses the Q-axis, and let P.e, Qe) be the 
coordinates of the vertex of the parabola. Then 

n 
Qo 

N(d - c) 
n 

Q c 
2N(d - c) 

AO 
n 2 

4N(c - d) 

Stability 

In order to compute the eigenvalues along the primary branches we use the isotypic 
components of the action of the isotropy subgroup to block-diagonalise the Jaco­
bian. We therefore compute the isotypic components. The isotypic decomposition 
of VI for the action of ~ = Sp x Sq is 

(10) 

where 

Yo {(qu, . .. , qu; -pu, ... , -pu) : u E R} 
~ '---v--------' 

p q 

YI {(XI, ... ,Xp;0, ... ,0):X1+···+ Xp=0} 
~'-v--'" 

p q 

Y2 {(O, . . . , 0;Xp+1, . .. , XN) : Xp+1 + ... + XN = O} 
'-v--"'~ 

p q 

Note that when p = 1 the component Y1 should be omitted. Note also that Yo = 
Fix(~). 

The action of ~ is absolutely irreducible on each isotypic component, and 
trivial on Yo. We define basis elements for the }j as follows (where for simplicity 
we henceforth omit underbraces): 

Yo ~=(q, ... ,q;-p,···,-pf 
Y1 T)1 = (l, - l,O, ... ,O;O, ... ,O)T 

T)2 = (O,l ,- l , O, ... , O;O, .. . ,of 

T T)p-1 = (0, ... ,0,1,-1;0, ... ,0) 

Y2 (l=(O, . .. ,O;l,-l,O, ... ,O)T 
T (2 = (0, ... , 0; 0, 1, -1 , 0, .. . ,0) 

T 
(q-1 = (0, ... ,0;0, ... ,0,1,-1) 
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Thus there are (at most) three distinct eigenvalues, one for each lj . We may 
therefore compute these eigenvalues by applying DGk, to ~, TIl , ( 1, from which we 
deduce that 

/Lo (Gll + ... + Glp ) - ~(G1.P+l + ... + GIN) 

/Ll G11 - G12 

/L2 Gp+1.p+l - Gp+1.p+2 

Putting all this information together we find that the eigenvalues of the linearisa­
tion along the primary branch in Fix(~) are: 

/Lo 
/Ll 
/L2 

o:n + 20:2 N(c - d) 
o:N2 + 0:2 N2(2N - 3p)(C - D) 
-o:N2 + 0:2 N2(3p - N)(C - D) 

(11) 

with multiplicities 1, p -1 , q -1 respectively. Note than when N = 3 we have p = 1 
so /Ll does not occur. 

Observe that near the origin, where the linear term in 0: dominates, the 
eigenvalues /Ll and /L2 have opposite signs. Therefore the bifurcating branches are 
always unstable near the origin. This is why we must work with (at least) the 
cubic truncation. 

We summarise a few of the main consequences of these computations. Ignor­
ing degenerate cases when C = D or c = d, each eigenvalue changes sign twice 
along the branch: once at the origin and once somewhere else. Let the non-zero 
value of 0: at which this sign change occurs be /3j for /Lj. Then 

/30 
n 

2N(d - c) 
= o:c 

/31 
1 

(2N - 3p)(D - C) 

/32 
1 

(3p - N)(C - D) 

Stability at Infinity 

One interesting condition is that the branch should be stable for sufficiently large 
0: ('stable at infinity'). This ensures that the speciation event persists for all suf­
ficiently large A ~ it is 'permanent'. It is easy to derive a necessary and sufficient 
condition for stability at infinity, as follows. The sign of /Lj near infinity is domi­
nated by the coefficient of 0:2 , and we want all /Lj < O. Therefore we require 

c-d < 0 

(2N-3p)(C-D) < 0 

(3p-N)(C-D) < 0 
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where we are assuming C i= D and p i= N/3. If C > D then p > 2N/3, contrary 
to p ::; N /2, so we need 

C<D (12) 

This being so, we deduce that p > N /3, and these conditions ensure that III < 
o and 112 < O. It remains to consider 110 ' This is negative provided c < d, or 
equivalently 

C < D (1 _ Np(N - p) ) 
N'2 - 3Np+ 3p:2 

(13) 

Both Np(N - p) and N 2 - 3Np + 3p:2 are positive, and it is easy to prove 
that whenever 1 ::; p::; N/2 we have Np(N - p) > N 2 - 3Np+ 3p2, implying that 

(1 - N:':~::;:~p2) < O. Thus if D > 0 inequality (13) implies (12) , but if D < 0 
then inequality (12) implies (13). 

We deduce that necessary and sufficient conditions for a branch to be stable 
at infinity are: 

1. If D > 0 then C < D(l - N~:::~;~-~)~ 2) and p > N/3 
. ' I' . P 

2. If D < 0 then C < D and p > N/3 

The most interesting condition here is that in either case p > N /3, which 
goes a long way towards verifying a conjecture of Cohen and Stewart [17] to the 
effect that the bifurcating species must contain more than one third of the total 
number of PODs, and (since p + q = N) less than two thirds of the total number of 
PODs. That is, in this model, on the extra assumption of stability at infinity, the 
'founder populations' are large. This is very different from the common assumption 
of a small founder population in the allopatric mechanism. 

Of course, stability at infinity is an artificial condition, because it allows A to 
increase without limit . Stable speciation can occur for bounded A when p ::; N /3; 
indeed it can occur for p = 1. Nonetheless, there is a general tendency for speciation 
to 'prefer' large values of p in this model. 

6. Simulations 

We describe the results of some numerical simulations of (8). In these simulations 
we begin with a random initial condition near O. At each time-step we 'ramp' the 
bifurcation parameter. That is, we increment A by some fixed small amount and use 
the previous value of x as the initial condition for a single time-step in a numerical 
algorithm for solving the ODE (8). Here we have used the Euler method because of 
its simplicity, although a Runge-Kutta algorithm would be more usual. We add a 
small amount of random noise to each component of x: see Appendix 3. A low level 
of noise aids the numerics by preventing variables from becoming 'trapped' very 
close to zero. Finally, we found that if (8) is integrated without further precautions 
numerical solutions can diverge from Vl and blow up. We therefore project x back 
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onto VI at each integration step by subtracting the mean of the x(j) from each 
component. 

Figure 7 shows a typical speciation event, occurring for the parameter values 
shown in the caption. Here the number of PODs is N = 25, and the initial single­
species state splits into a state with p = 8, q = 17. The curves are slightly irregular 
because we have included a moderate amount of noise. The bifurcation is relatively 
rapid, but may appear not to deserve the 'jump' description . There are two reasons 
for this. First, if the bifurcation parameter is ramped sufficiently slowly, the jump 
can be made as close to the vertical as desired. Second, it is well known that 
ramping can lead to the phenomenon of 'tunnelling through the bifurcation'. Prior 
to bifurcation, x = 0 is a stable equilibrium so solutions converge rapidly towards 
it . Immediately after bifurcation x = 0 is only weakly unstable, so it takes some 
time before x starts to diverge from O. We have not taken steps to eliminate this 
'slow passage' effect because we feel that ramping the bifurcation parameter is very 
much in the spirit of real evolutionary dynamics, where each generation forms the 
'initial conditions' for the next, and the environment slowly changes. There is 
an extensive literature on slow passage effects: references include Baer et al. [3] , 
Candelpergher et al. [12], Diener and Diener [24], Hayes [40], Neihstadt [62, 63], 
and Su [76, 77]. Of these, references [3, 62, 63] point out that noise destroys slow 
passage effects. 

Since 8 < 25/3 we know from general theory that when A becomes sufficiently 
large, the solution depicted must become unstable. Nevertheless, we see that it can 
remain stable for a broad range of A values. 

FIGURE 7. Numerical simulation of (8). Here A runs horizontally from 
-50 to 1000, and each component of x is plotted on the same vertical 
axis. Parameters are N = 25, C = -1, D = -.2. 

In Figure 8 we have drawn the parabolas formed by the primary branches 
on each fixed-point space Wp , where for clarity we shown only p :S 6. A thick 
line shows where all eigenvalues are negative, that is, the primary solution on that 
branch is stable. The vertical scale for the parabolas bears no meaningful relation 
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to that for the x j. In this simulation we have set the noise to a very low level, and 
the curves are smooth. 

Immediately after bifurcation no primary branches are stable. Before this 
causes a problem, however, the bifurcation parameter ramps to a value at which 
the p = 1 branch becomes stable, and we see that the solution does indeed converge 
to a state with p = 1. Subsequently, as A increases further, the states p = 2 and 
p = 3 become stable. Next, p = 1 loses stability. Then state p = 4 becomes stable, 
then p = 5, and so on (off the picture). 

The numerical solution remains in the p = 1 state until shortly after that state 
loses stability. It then makes a rapid transition to a p = 3 state, which is stable 
at that value of A. (So are p = 2,4: presumably different random perturbations 
might have taken the system to one of those states; or there may be some general 
constraints on such transitions of which we are unaware. In other simulations 
at these parameter values, with different initial seeds for the random number 
generator, we have seen a transition to a p = 2 state.) Again, there is a slight 
delay resulting from tunnelling through the bifurcation. 

FIGURE 8. Numerical simulation of (8) illustrating a secondary bifur­
cation. Here A runs horizontally from -50 to 1000, and each component 
of x is plotted on the same vertical axis. Parameters are N = 25, C = 
-.31, D = -.2. 

In Figure 9 we have removed the parabolas, using horizontal black lines to 
show the intervals in which all eigenvalues are negative. Here p is 1 for the lowest 
such line and increases by 1 for each upward step. Again we set the noise to a very 
low level. This time N = 11. 

Again, immediately after bifurcation no primary branches are stable. The 
bifurcation parameter ramps to a value at which the p = 1 branch becomes stable, 
and the solution converges to a state with p = 1. When that state loses stability, 
it switches to a state with p = 2. When that state loses stability, it switches to a 
state with p = 3. Since 3 < 11/3 we can predict that for larger A, off the picture, 
the state would switch again, probably to p = 4 which is stable at infinity (but 
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p = 5,6 are also possible). Again, we see a slight delay resulting from tunnelling 
through the bifurcation. 

i---i===fi!=t=!=-=- ·t=====-.:-~=~·:=::::.::~~::::.:: ~::.:~t-:.:.:·~:~!!~~;.: .:.::::::::.':".:.:::'.:'::::::.::.:':.::::::'.: 
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FIGURE 9. Numerical simulation of (8) showing two successive sec­
ondary bifurcations. Here A runs horizontally from -50 to 1000, and 
each component of x is plotted on the same vertical axis. Parameters 
are N = 11,C = -1O,D = -9. 

Figure 10 repeats this scenario but with higher noise. The noise broadens 
the curves into bands. It also causes 'premature bifurcation' in which the solution 
moves away from an equilibrium before it loses stability. What is happening here 
is that at least one eigenvalue, though still negative, is getting close to zero, and 
the size of the basin of attraction is becoming very small. Large enough noise can 
kick the system out of that basin into some other, more robust basin. 

FIGURE 10. Numerical simulation of (8) at same parameter values as 
Figure 9, but with higher noise. The noise causes premature secondary 
bifurcations. 
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7. Abstract Analysis 

We now show that the general methods of equivariant bifurcation theory, outlined 
in §4, make it possible to analyse the equilibria of (8) by exploiting the symmetry 
explicitly. 

We can find symmetry-breaking equilibria of a symmetric dynamical system 
by applying the Equivariant Branching Lemma. The number of species present 
in a solution x of (9), or any other Swequivariant system of ODEs, is given by 
the number of distinct entries in x, and we can find the number of species by 
computing the isotropy subgroup I: x of x. 

We have seen that bifurcation occurs when the linearisation DFlo becomes 
singular. Generically the kernel of the linearisation is one of the two irreducible 
components Vo, VI of R N. Both of these are absolutely irreducible. If the kernel 
is Vi)' then symmetry does not break: we just get a new branch of SN-invariant 
equilibria and the population remains a single species, though the species as a 
whole experiences a continuous change in phenotype. The case where the kernel 
is Vi leads to symmetry-breaking and bifurcation to more than one species. We 
therefore restrict our analysis to this case. 

By the Equivariant Branching Lemma, if there is a steady-state bifurcation 
with kernel VI then there exist branches of solutions for all axial isotropy sub­
groups. The axial subgroups of SN in this representation are, up to conjugacy, 
those of the form Sp x Sq where p + q = Nand 1 :S p :S [N/2]. So there exist 
branches of solutions with these isotropy subgroups. Such solutions lie in fixed­
point spaces of the form (u, ... , u; v, ... , v), with exactly two distinct values u and 
v for phenotypic variables. Such solution branches therefore correspond to a split 
of the population of N identical PODs into two distinct species consisting of p and 
q PODs respectively. One species has the phenotype u and the other species has 
the phenotype v . So in this example speciation is a consequence of symmetry­
breaking. Indeed we predict the occurrence of bifurcations to dimorphism - two 
species. 

We can also make an interesting universal quantitative prediction: on the 
above branches the mean value of the phenotypic variables changes smoothly dur­
ing the bifurcation. As we have seen, the fixed-point space of Sp x Sq is spanned 
by all vectors of the form 

(u, ... ,u;v, ... ,v) 
where there are p u's and q v's. Since we are working in VI the entries must sum 
to zero: 

pu + qv = 0 (14) 

Therefore the mean value of the phenotypic variable after bifurcation is computed 
as (pu + qv)/N = o. Before bifurcation it is also 0, because we are looking for 
bifurcations from the trivial equilibrium and have normalised the phenotypic vari­
ables to be zero for the original single species. So here the mean remains constant 
throughout the bifurcation. However, we are working with the centre manifold re­
duction, which involves a nonlinear change of variables. Therefore the mean varies 
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FIGURE 1l. Generic S wequivariant steady-state bifurcation: jump 
transition from one species to two, with smoothly varying mean. 
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smoothly in the original phenotypic variables, and is thus approximately constant, 
as illustrated schematically in Figure 11. 

8. BirdSym 

Our analysis so far has been abstract: not based on any explicit interpretation 
of the phenotypic variables. The results obtained are thus model-independent: 
they are valid whatever that intepretation may be. However, we can make fur­
ther progress by specialising the model to phenotypic variables with a specific 
biological interpretation. 

Elmhirst [28] has investigated a simulation, BirdSym, loosely based on Dar­
win's finches, whose variables have specific biological interpretations. It can be 
reduced to an SN-equivariant dynamical system. We summarise the construction 
of the BirdSym model and describe sample results from simulations. 

We assume a population of N PODs, composed of birds. POD i has phenotype 
Zi = (Xi, Yi) where Xi is beak length and Yi is beak variance. The environment 
provides a single resource (which we refer to as seeds but think of as exploitable 
energy). The resource continuum is discretised and the resource mean is al, its 
variance is a2, and the global abundance is a:l. The amount of energy available in 
size 1 seeds, in appropriate units, is 
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The efficiency with which birds in POD i can eat seeds of size I is assumed to be 

The total amount of energy that bird i accumulates is therefore 

where 

N 

Fr(lj) = L !;(I) 
i = 1 

On the assumption that PODs move up energy gradients , the dynamics can be 
described by a system of ODEs 

where 

(15) 

and the parameter C > 0 is a measure of how fast the pods can adapt. This ODE 
is determined by an S wequivariant smooth vector field, but is not polynomial. 

A typical numerical solution of (15) is shown in Figure 12. Note the repeated 
bifurcations as the bifurcation parameter A increases, which is typical of BirdSym. 
We return to this phenomenon in §10 in connection with the periwinkle Littorina 
saxatilis and various subspecies of grasshopper. 

Elmhirst relates BirdSym to (8) by approximating the exponentials by their 
Taylor series. He then uses the analysis of (8) to study the bifurcation behaviour, 
and compares the analytic results with numerical ones. The correspondence is 
excellent. He also derives further features of BirdSym, showing that for the full 
equations (15) there exist parameter values at which all primary branches are sta­
ble. He also, intriguingly, finds that there exist parameter values at which solutions 
oscillate periodically: an example is shown in Figure 13. 

The main conclusion of Elmhirst [28] is that sympatric speciation occurs 
because the common 'generalist' strategy used by the single-species population to 
exploit its environment becomes dynamically unstable, and is replaced (because of 
symmetry) by a combination of two 'specialist' strategies. That is, the task space 
- the space of different ways to exploit the environment - becomes partitioned 
between different subsets of the population. 
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FIGURE 12. Simulation of BirdSym with N = 120. 

FIGURE 13. Periodic oscillations in a BirdSym simulation. 

9. Darwin's Finches and Other Field Observations 

Is there any evidence in favour of the symmetry-breaking model of sympatric spe­
ciation? Some studies reported in the existing literature are reasonably consistent 
with its predictions, especially the 'constant mean' prediction. These include var­
ious biologically motivated models, such as Higashi et al. [42], Kondrashov and 
Kondrashov [53], Dieckmann and Doebeli [23], and Tregenza and Butlin [79]. 

In particular, Higashi et al. [42] argue that sympatric speciation can be ac­
complished through sexual selection without disruptive natural selection. Their 
model comprises a population of sexually reproducing organisms, from which N 



32 Ian Stewart, Toby Elmhirst, and Jack Cohen 

males and N females are chosen at random at each step. They study how the 
probability distributions of female preference and male phenotype coevolve, find­
ing that each splits into two groups, diverging from the original mean in opposite 
directions, Figure 14. 
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FIGURE 14. Sympatric speciation through sexual selection, after Hi­
gashi et al. [42]. 

Similarly Dieckmann and Doebeli [23] develop a model with multilocus ge­
netics and assortative mating. They remark that when the original phenotype 
(ecological character) loses stability, it can then be successfully invaded by other 
phenotypes, and the result is branching. Their simulations show that the branches 
split off from the mean in opposite directions, Figure 15. 

The process of speciation cannot be observed directly on geological timescales , 
for obvious reasons, although a certain amount can be inferred from the fossil 
record. It is also sometimes possible to make direct observations of speciation 'in 
miniature' in such organisms as Darwin's finches , African lake cichlids, stickle­
backs, and fruit flies. More commonly, we can observe what appears to be the 
end result of a speciation transition, with two closely related species or subspecies 
coexisting in a given environment (which may be a 'hybrid zone ' where the two 
species's normal habitats are adjacent). This is the 'allopatric' context. Having ob­
served the phenotypes that occur in the allopatric context , we can compare them 
with the corresponding phenotypes for the two species when only one of them 
exists (ideally in the same environment as for the allopatric situation). This is the 
'sympatric' context. 

With this interpretation, the predictions of the model, especially that the 
mean should be the same in either allopatric or sympatric populations, are also 
consistent with some field observations, some of which we now list . Beauchamp and 
Ulyett [10] report a preference for temperature ranges in the flatworms Planaria 
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FIGURE 15. Sympatric speciation through assortative mating, after 
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montenegrina and Planaria gonocephala which occupy similar ranges in the al­
lopatric case but non-overlapping ranges in the sympatric case. Huey et al. [46, 44], 
Huey and Pianka [45] describe phenotypic differences (vent-snout length) in sub­
terranean skinks Typhlosaurus lineatus and Typhlosaurus gariepensis. Bantock and 
Bayley [4] and Bantock et al. [5] discuss shell sizes in the snails Cepea nemoralis 
and Cepea hortensis resulting from selective predation by birds. Fenchel [29, 30] 
reported differences in allopatric and sympatric populations of the mud-snails Hy­
drobia ulvae and Hydrobia ventrosa (but see Barnes [7, 8, 9] for caveats). 

Polymorphism in Darwin's Finches 
A celebrated instance of polymorphism is the changes in beak size that occur 
among various species of Darwin's finches in the Galapagos Islands, and we de­
scribe this as a typical example. The evolution of the different finch species in the 
Galapagos Islands is thought to have occurred around five million years ago, and 
so cannot be observed (although small-scale evolution remains rapid enough that 
significant phenotypic changes can be observed from one year to the next). How­
ever, as just explained, we can observe a surrogate for actual evolution: differences 
in the phenotype of a given species in allopatric and sympatric populations. The 
transition in phenotype from sympatric populations to allopatric ones should be 
just like the bifurcations in the speciation model: in particular, we expect to see 
approximately the same mean in either situation. 

Lack [54] showed that mean beak size varies between islands, and Grant et 
al. [38] showed that the standard deviation of beak size is similarly variable. Here 
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FIGURE 16. Beak sizes in allopatric and sympatric populations of 
Geospiza in the Galapagos Islands. After Lack [54J. 

we focus upon the two species G. fortis and G. fuliginosa, which occur in both 
sympatric and allopatric populations. G. fortis is allopatric on Daphne, and G. 
fuliginosa is allopatric on Crossman; the two species are sympatric on a number 
of islands which Lack placed in three groups for data analysis: Abingdon, Bind­
loe, James, Jervis; Albemarle, Indefatigable; and Charles, Chatham. Figure 16, 
adapted from Lack [54J, shows the differences in beak size between these species 
on the cited groups of islands. The mean beak sizes of both G. fortis and G. fulig­
inosa are approximately 10mm in allopatric populations. In all three (groups of) 
sympatric populations, the mean for G. fortis is about 12mm, while that for G. 
fuliginosa is about 8mm. These figures are consistent with the 'constant mean' pre­
diction. Simply from the biology, constant mean would not be expected; therefore 
we find confidence in the mathematical model from its prediction of a biologically 
'unnecessary' constraint. 
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10. Biological Interpretation 

The usual story told to explain changes in an organism's phenotype is that genetic 
mutations change its genotype, and this in turn modifies the phenotype. Pheno­
typic change is therefore seen as the result of a gradual accumulation of mutations, 
with the principal agent of change being the gene. 

Sometimes this is an appropriate picture. For example, Ridley [66] discusses 
the lacewing species Chrysopa carnea and C. downesi. Carnea is light green (in 
summer, brown in autumn), downesi dark green. They have different habitats and 
different breeding times: no natural hybrids occur. They can be made to interbreed 
by artificially varying the hours of 'daylight', so in this sense they are 'really' one 
species. It is generally thought that a colour polymorphism arose sympatrically 
via a single mutation, after which natural selection favoured habitats that made 
good camouflage - light-coloured grass, meadows and deciduous trees for carnea, 
dark coloured conifers for downesi. A subsequent mutation in a gene that changed 
the photoperiodic response then made the breeding times diverge. 

Such cases may not be entirely representative, however. The rate at which a 
given DNA base-pair mutates is about 1 mutation every 109 years, Ridley [67]. In 
the human genome (3 x 109 base pairs) this amounts to 3 point mutations per year, 
so gradual accumulation must be very gradual. In the orthodox, mutational view, 
many mutations have no effect - they are 'neutral' - because of redundancy in the 
genetic code, because they are in unexpressed segments of the genome, or because 
they are lethal and promptly eliminated. The concept of neutral mutations was 
proposed by Kimura [52] to account for the enormous variety of alleles in natural 
populations, discovered by Lewontin and Hubby [55], and totally unexpected by 
classical population genetics. Superficial expectations that alleles would be neutral 
in some cases (for example if they code for the same amino acid) have been shown 
to be mistaken (because different transfer RNAs for different co dons are available 
in different quantities in different cells). It was also believed that natural selection 
would be unable to discriminate between alleles with different numbers of repeats 
in 'satellite' sequences, but we now know that many human diseases - for example 
'fragile-X'- have this basis. The 'neutral allele' hypothesis has largely failed. Allele 
differences do make a difference: not singly, but in combination. 

Recombination, not Mutation 

A far more potent force for phenotypic change, in sexual species but also in others 
(for example bacteria) is recombination. The offspring inherit two alleles at each 
genetic locus: one from the father, one from the mother. They are homozygous at 
a locus if these alleles are the same, and heterozygous otherwise. In Fisher's popu­
lation genetics, it was expected that organisms would be homozygous at almost all 
loci. Lewontin and Hubby [55] showed that, on the contrary, a typical individual is 
heterozygous at about 10% of loci, while over 30% of loci are heterozygous across 
the entire population. This implies that genetic variability between and among 
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individuals is vastly greater than Fisher believed. As a result , recombination of al­
leles from parents creates far more genetic diversity than mutations, and it does so 
without fail at every reproductive step. Each generation shuffies the alleles of the 
previous generation: cryptically inherent in the gene-pool of the species is a huge 
range of potential phenotypes. Changes in environment or selective pressure lead 
to a rapid change in the phenotypes observed in surviving adults. Many species 
produce far more offspring than can survive to adulthood. For example a female 
starling lays about 16 eggs during her lifetime, of which on average 14 die without 
breeding; a f emale frog lays some 10,000 eggs, of which on average 9,998 die with­
out breeding; a female cod lays 40,000,000 eggs, of which on average 39,999,998 
die without breeding. Such environmentally-dependent elimination of large num­
bers of genotypes from the next generation accelerates the process of phenotypic 
change. This post-1970s view of the genetic basis of evolutionary change more 
Wallace than Darwin - is much more congenial to our mathematical model. 

Non-Genetic Influences 

There are also numerous non-genetic or quasi-genetic influences on phenotype. For 
example: 

• Maternal-effect genes: the early development of the egg is controlled by cer­
tain genes of the mother , not of the developing organism. 

• Privilege: the parents can provide non-genetic assistance to the developing 
offspring such as yolk, milk, a nest, food. 

• Genetic assimilation and related effects, such as the Baldwin effect: environ­
mental stress can reveal the effects of cryptic genetics, giving rise to what 
superficially looks like Lamarckian evolution. 

• Molecular 'epigenetics ' : the genome can be labelled (methylation) to activate 
or suppress particular genes; many other molecular tricks of this kind are now 
known. Again the effect often looks superficially Lamarckian. See Wolffe and 
Matzke [82], Francis et al. [32]. 

• Prions: it is now known that the yeast genome specifies some proteins in the 
wrong configuration, and these are converted to the correct form by prions; 
the prions are inherited directly rather than being constructed afresh using 
a protein-coding sequence in parental DNA. 

• The chaperonin HP70 constrains mutated proteins into their unmutated 
shape. Only when 'stress ' uses HP70 for other functions are the mutations 
expressed. 

All this makes classical Fisherian genetics highly implausible, and poorly 
suited to discussing speciation. The linearity of classical genetics, in which a col­
lection of organisms is replaced by a mean-field gene-pool and fitness is a linear 
combination of proportions of alleles, adds to the implausibility. Indeed, we will 
argue that when sympatric speciation of the kind implied by our model occurs, it 
will be invisible to classical genetics. 
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Mean-Field Genetics 

The short story is that Fisherian genetics is a mean-field theory, and in our model 
speciation is invisible to the mean field (mean values of phenotypes do not undergo 
noticeable changes). 

As an aside: another way to say this is that 0"1 is not a symmetry detective 
for the breaking of symmetry from SN to Sp X Sq, in the sense of Barany et 
al. [6]. In contrast, the deviation from the mean 'sees' the speciation event, but 
cannot distinguish the number of new species. Appropriate statistical measures 
(and/ or symmetry detectives) for speciation events must involve the invariants 
O"k, the 'higher moments' of the data, and in carefully chosen combinations. There 
is scope here for some useful research. 

We explain this point in more detail. In the model (8) we have so far inter­
preted the Xi as phenotypic variables, but this interpretation is not mandatory. 
Suppose that some of the Xi are genetic variables, representing Fisher-style pro­
portions of alleles (within the organisms of a POD). Suppose that certain linear 
combinations of these allele proportions determine certain continuous characters 
Yj. Then, when speciation occurs, the means of the genotypic Xi remain constant, 
and the Yj remain constant as well. That is, the continuous characters to which 
Fisherian assumptions apply cannot change in any detectable way, even though 
speciation occurs as a jump bifurcation in this model. 

Of course, the model can be rejected. But it is still disturbing to realise that 
a linear mean-field theory is inherently insensitive to a reasonable mechanism for 
speciation, and that the reason for this insensitivity is reliance on means as primary 
observables. 

Does this, perhaps, mean that sympatric speciation according to our model 
falls apart because it is incompatible with reasonable genetics? We believe not 

and the key, again, is recombination, coupled with the fact that continuous 
characters are polygenic (and in a nonlinear, non-trivial way). We should also 
remember (as many Fisher-style models do not) the central role of selection. Se­
lection eliminates organisms, not alleles. Selection can mitigate against particular 
combinations of alleles without removing those alleles from the population, and 
even without changing their proportions. Mean field theories are insensitive to the 
distribution patterns of their ingredients. Bean-counting tells you how many beans 
there are, but not how they are arranged or associated. A cake could consist of a 
layer of flour, a lump of butter, a heap of sugar, and a pool of egg, and a mean-field 
observer would be none the wiser. 

Hybrid Zones 

An instructive example occurs in a hybrid zone and involves grasshoppers, see 
Butlin and Hewitt [11] and Neems and Butlin [61]. It involves two (sub)species of 
grasshopper, Chorthippus parallelus parallelus and Chorthippus parallelus erythro­
pus, which we henceforth call X and Y. 

Chorthippus parallelus is a common European grasshopper whose habitat is 
moist meadows. The subspecies X = C. p. parallelus occurs throughout most of 
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Europe, but is replaced by Y = C. p.erythropus in the Iberian peninsula. The sub­
species meet and hybridise in the Pyrenean mountains. In this 'hybrid zone' there 
is interbreeding, and the hybrid offspring are viable in the sense that they survive 
beyond the larval stage. However, they seldom survive to adulthood: instead, they 
die when they reach about a third of normal adult body-length. Genetically, the 
primary differences between the two species occur at about 20 loci, at each of 
which alleles can be of two types: call these A and B. In species X, all 20 alleles 
are of type A; in Y, they are all of type B. The hybrids have type A alleles at 
some loci and type B alleles at the other loci. 

Fisher-style genetics can obviously distinguish one species from the other. 
However, it cannot distinguish a random mixture of X and Y, occupying terri­
tory in and around the hybrid zone, from the hybrids themselves. The overall 
proportions of alleles will be essentially the same in the mixed and the hybrid 
populations. The difference between the species lies in which complexes of alleles 
occur in breeding adults. In every generation, cross-breeding between X and Y 
re-creates the same overall gene-pool of all possible combinations of As and Bs. In 
every generation, selection then prunes away all combinations other than all As or 
all Bs. 

Note that As and Bs are not 'good' or 'bad' genes. Those of X, labelled A, are 
not good in Y; those of Yare not good in X. Laboratory populations probably 
could carry either, but in the field the combinations do not permit maturity in 
competition with X (all A) and Y (all B). 

Agreed, differences of habitat do distinguish the species, and since fitness 
coefficients can be assumed habitat-dependent we cannot conclude that Fisherian 
genetics breaks down completely here. Nonethless, we see one serious limtation of 
mean-field genetics when it is applied independently to several loci. 

An example of a similar phenomenon, due to Reilly et al. [71, 72, 73], concerns 
cholesterol production in humans, which involves alleles at three loci. Again, no 
individual allele is good or bad in its own right, but particular combinations of 
alleles are. 

PODs in Field Observations 

How can PODs be observed? A POD is a coarse-grained cluster of organisms, 
but generally speaking, we have not specified how to determine such clusters in a 
reasonable manner, other than to point to the concepts of a de me (Salthe [70]) and 
a lineage (Rollo [68]). The important feature of a division of the population into 
PODs is that this division should reasonably support an evolutionary dynamic. 
This condition requires there to be a genetic link between successive generations 
of organisms belonging to the same POD. This condition holds for both lineages 
and demes, but we wish to propose an alternative that is often observed in the 
field. 

Field observers who become sufficiently familiar with populations of organ­
isms in 'the same' species often notice that the populations splits into clusters of 
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organisms with similar behavioural patterns. For example, this occurs for the peri­
winkle Littorina saxatilis. Although most members of this species have the same 
external appearance, analysis of their DNA shows that they fall into well-defined 
clusters: what appears to be one species is really a large complex of subspecies, 
all subtly different from each other. The same goes for grasshoppers. It would be 
reasonable to take such behavioural/genetic clusters as the field equivalent of the 
theoretical concept of a POD. 

11. Speciation Events 

How would a speciation event occur according to our model? In order to attempt 
to answer that question we must endow the model with additional baggage -
interpretations of the variables and parameters. Any such attempt will be tentative 
at this early stage. Nonetheless, if we graft on to the model a role for genetics that 
is consistent with current thinking, we can suggest a plausible scenario. 

There are three main features: genes, organisms, environment. Genes affect 
organisms via development; environment affects organisms via selection. (More 
properly: environment sets the arena in which competition is played out, and 
this determines the 'rules' of the competitive game.) Organisms affect genes via 
reproduction, and they affect environment by existing within it and exploiting it. 
See Figure 17. 

DEVELOPMENT SELECTION 

I I I I 

GENES ORGANISMS ENVIRONMENT 

l I I I 
REPRODUCTION EXPLOIT A TION 

FIGURE 17. Schematic of evolutionary influences. 

Note that the organism is where the whole picture comes together, not the 
gene. 

The arrows in the diagram are seductive, and they conceal a number of dif­
ficulties. The players of the game change as time passes, so arrows can associate 
events that occur at different times. Moreover, the arrows are not mappings: each 
depends on an appropriate context, which includes all the others (and more). 'Envi­
ronment' includes other organisms, especially those in the same species. Moreover, 
everything depends on local geography/habitat, which may vary in time as well 
as in space. 

Figure 17 suggests that speciation is most reasonably viewed as a phenome­
non occurring in a complex adaptive system: see Auyang [2], Kauffman [48, 49], 
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Mainzer [56]. This is a system of interacting entities (the organisms) whose states 
(phenotypes and genotypes) evolve according to some system of rules (selection). 
Speciation is an emergent property of the complex system, occurring on a higher 
level of description. By 'emergent' we mean that the derivation of the high-level 
property from the entities is computationally intractable, see Cohen and Stew­
art [15, 16]. 

A Finch Scenario 

Consider a population of finches whose environment consists of seeds of various 
sizes. The role of the finches' genes will be to determine the sizes of their beaks. 
Since beak-size is a continuous character, it is presumably polygenic, involving 
not only the production of proteins for making beaks and getting them to the 
appropriate places in the developing embryo, but also such characters as the ability 
to develop larger beaks as a result of exercise (trying to crack bigger or harder 
seeds, or more smaller ones). In practice, these alleles will not affect only beak size 
- most genes affect most characters. But for illustrative purposes we will focus 
solely on their effect on beak size. We therefore postulate a complex of genetic loci 
G 1 , ... ,Gk each with two alleles Aj or Bj . In general terms, Aj tends to produce 
short beaks, and B j long ones. Again, in realistic circumstances the As and Bs 
will also have recombinational effects on other features of each bird. This contrasts 
strongly with the Fisherian assumption that any given allele has a fixed 'fitness' 
in any organism of a given species, Cook [19]. 

In such a simplified model, beak length is assumed to be some function of 
which alleles are present. To be specific, we could define Cj to be -1 if locus Gj 

contains allele A j , and +1 if locus G j contains allele B j . Suppose that 

beak length = 0:(101 + ... + 10k) + (3 

for constants 0:, (3 E R. Here (3 is the mean beak size (assuming A j , B j are equally 
likely). A linear relation such as this will be at best an approximation, but if the 
functional relationship is smooth the approximation will be a reasonable one. 

Assume that the sizes of available seeds are distributed unimodally about 
some medium-sized peak value, well suited to beaks of average size. Initially, the 
most efficient way for the finches to exploit the seeds is to specialise on medium­
sized seeds. Most birds therefore have a mixture of alleles of types A and B, 
in roughly equal proportions (each A cancels one B and vice versa). All alleles 
A j , B j are abundant in the population and there is no systematic association be­
tween them in individual finches. (There are, however, global contraints on how 
these alleles associate: neither A nor B should predominate.) The finches are phe­
notypically indistinguishable and form a single species. 

Next, suppose that the environment changes, in a manner that affects all 
finches uniformly (no 'geographic' variability). Suppose, furthermore, that this 
change lowers the survival value of specialising on medium-sized seeds. This could 
happen, for example, if the finch population began to outstrip its resources at 
that size of seed, or if the seed distribution broadened. (It is not necessary to 
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assume that the seed distribution becomes bimodal, creating two 'niches' which 
the finch phenotypes follow: see Elmhirst [28] for mathematical justifications of 
these assertions. However, such bimodality might also lower the survival value of 
the medium-sized-seed strategy.) 

Previously, it paid for all finches to have the same sized beaks as the others, 
but now that does not work. Individual finches survive better by adopting some 
other strategy - but their survival also depends on what strategies the others 
adopt. For example, if all finch phenotypes switch to larger beaks, or they all 
switch to smaller ones, the problem just becomes worse. 

Of course, the finches cannot 'know' this (we are not talking species selec­
tion, kin selection, or any form of collective cooperation or knowledge, see below). 
Instead, random mating within the population produces individuals with more 
As than average, who eat smaller seeds, and with more Bs than average, who 
eat larger ones. In the changed conditions, both of these groups prosper; more­
over, they do not compete with each other because they prefer seeds of different 
sizes. Therefore, between them, they can now out-compete the finches that stick to 
medium beak sizes. 

Selection on individuals plus random recombination now favours a mixed 
strategy for the group: some finches with a predominance of As, others with a 
predominance of Bs. Others with a more balanced genome are eliminated. 

When the two groups start to separate, gene-flow between them is initially 
unimpeded. So why do not the two groups merge? The answer is that the same 
selective pressures eliminate those hybrids that happen to have As and Bs in 
roughly equal numbers. In each new generation the full range of genotypes is re­
created (all alleles remain present in the gene-pool); middle-of-the-road genomes 
are repeatedly weeded out by competition, as for the hybrid grasshoppers. 

In the longer run, other factors come into play that can stabilise this split, the 
most obvious being assortative mating. We assume environmental uniformity in 
order to show that even at this extreme of homogeneity, speciation is possible and 
sometimes inevitable. Additional environmental inhomogeneities make speciation 
easier, not harder; they probably occur in a geographically patchy way. Patchyen­
vironment reinforces assortative mating: the commonest opportunities for mating 
involve partners who prefer the same kind of environment. 

Our models add two important features, not intuitive in a verbal story. First, 
the initial separation is rapid, and the diverging phenotypes differ by a relatively 
large amount. For example, beaks sizes jump rapidly to new values, clearly dis­
tinguishable from old ones. Second, the split is hysteretic: once it has occurred, 
it does not necessarily reverse if the environment returns to its original state. (It 
can be reversed, perhaps temporarily, by bigger environmental changes, but not 
by small fluctuations.) 

Genetically, then, what we observe is a sudden and robust reassortment of the 
genomes of surviving, breeding adults into two types: one with mostly As, the other 
mostly Bs. The overall proportions of single alleles do not change significantly. 
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The scenario just described is qualitatively similar to what happens in the 
grasshopper hybrid zone descibed earlier. Our model makes certain quantitative 
predictions, notably the constancy of the mean, which in principle could be tested 
against field data. 

Species, Kin, Group, and Ecosystem Selection 
Our model sheds some light on a long-running disagreement . The core Darwinian 
story is one of selection acting on individual organisms. There have been numerous 
controversies about the possibility of a form of selection acting on other 'units', 
such as species, herds, or family groups, see Ridley [67] chapter 12. Neo-Darwinism 
(Dawkins [20, 21]) claims to reduce all selection on organisms to selection for effects 
of genes, and therefore considers all debates about 'the unit of selection' to be 
answered by one word: 'gene'. 

An excellent history of such controversies, with a substantial list of references, 
can be found in Hecht and Hoffman [41]. At the time when such issues were being 
debated, most analyses were couched in terms of the linear models of classical 
population genetics. In such models , selective advantages that operate on a group 
can normally be exploited by maverick individuals, who 'cheat ' by not cooperating 
with the group behaviour, see Ridley [67] p.326. This effect was generally deemed to 
have demolished any chance of selection on the group level - except perhaps when 
the group comprises closely related individuals with many shared alleles - because 
it eliminates any presumed 'evolutionary advantage' in the group behaviour. This 
approach has led to an extensive literature on the 'bean-counting' view of altruism: 
for example, risking your own life by jumping into a river to save your brother offers 
evolutionary advantages provided the chance of not drowning is greater than 50%, 
because he 'shares half your genes'. (See Ridley [67] p.321 for the general criterion 
for such choices.) On the other hand, doing the same for a total stranger is never 
worthwhile. 

The whole game goes out of the window, however, as soon as the linear models 
are rejected as unrealistic and it is realised that the collective behaviour of a group 
results from nonlinear interactions between its members. This is beginning to be 
understood. Dicks [22] quotes Joel Peck, an evolutionary theorist at the University 
of Sussex: 'There is no doubt that we were too hasty in trashing group selection. 
The theoretical models of the 60s and 70s were very oversimplified.' The same 
article discusses some fascinating experimental work of Swenson and Wilson [78] 
in which the unit of selection is expanded to an entire ecosystem. They discovered 
that it was possible to use selection on pond ecosystems, on the basis of ability to 
lower the acidity of water; or to improve the ability of soil ecosystems to digest 
pollutants by selecting at the ecosystem level. 

Some caution is needed in interpreting their work, however. It is 'unnatural 
selection' since it is carried out by experimentalists using test tube ecosystems. 
The experimentalists get to choose what constitutes an ecosystem, and they treat 
it as a group for the process of selection - they either keep the test tube or they 
don't. (However, similar circumstances arguably do occur in nature.) A common 
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mistake in this area is to use the term 'selection' as if it is independent of context. 
To see the error, imagine two species composed of individuals who are competing 
for some common resource. If the individuals in species P generally have an edge 
over those in species Q, then we expect to see species P surviving while Q is 
wiped out. In a sense, then, the two species have 'competed' and P has been 
'selected'. However, neither word has the same meaning that it has when applied 
to individuals. Individuals in P are competing not just with individuals in Q, but 
with the other individuals in P; selection on the level of individuals can choose 
some members from P and some from Q - it is not an 'all or nothing' choice. 
Neither of these possibilities occur with 'competition' and 'selection' using P and 
Q as the only possible units. 

How do we resolve these issues? Consider any system of organisms, be it a 
species or an ecosystem, as a complex system whose entities are organisms. The 
behaviour of the system is a consequence of interactions ('competition') between 
these organisms, resulting in some surviving to breed and others failing to do so 
('selection'). This description is pure Darwin, but using a few modern buzzwords. 
Such a system can be viewed on many levels of description, however: we can focus 
on family lineages, species, and other kinds of group. If these groups are meaningful 
descriptors, we will observe various emergent patterns of behaviour: for example, 
over time one group may dominate and another may fall by the wayside. Such be­
haviour looks very much like 'selection' on the emergent level. However, the under­
lying complex system is not pitting one such group against another, with the rule 
that just one wins. It is pitting one organism against another: the group behaviour 
is an emergent consequence and on the group level many other things might hap­
pen instead of win/lose. So it is unwise to use the same word 'selection'. If there is 
a flaw in the interpretation of the experiments of Swenson and Wilson, it is that 
the 'selection' in these experiments is not an emergent consequence of selection for 
individuals: it is a direct choice on the level of ecosystems (test-tubes). This makes 
its implications for the earlier controversies debatable. Nevertheless, it represents 
an experimental breath of fresh air that blows away decades of sterile talk based on 
inadequate theoretical models. What we now need is a sensible conceptual frame­
work for analysing group effects in evolution, and one necessary step is to recognise 
unexamined contextual differences in the meaning of terms like 'selection'. 

The scenario described above can be related to these questions. We have 
argued that speciation is an emergent property of a complex system whose entities 
are organisms. These emergent patterns of phenotypic/genetic divergence can be 
observed on many levels of description, and this is the source of concepts such as 
kin selection, species selection, or ecosystem selection. We have just suggested that 
using a single term 'selection' on different levels is a mistake; now we can reinforce 
that message. For example, on the level of species, the win/lose dichotomy is not 
the only possible behaviour: one interesting new alternative is speciation. 

We also see that the linear-theory objections to group selection, based on 
cheating by mavericks, do not apply in our scenario. To recap: we find that selec­
tion on individuals plus recombination leads to some finches with a predominance 
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of type A alleles, and others with a predominance of Bs. Mixtures of A and B 
are eliminated. The usual arguments about mavericks have no force in these cir­
cumstances, for two reasons. One is that the interactions are nonlinear. The other 
is that the groups are defined by the phenotypes of the individuals, rather than 
the groups being set up in advance with all individuals being assumed to follow 
the common group behaviour. Each individual could in principle belong to either 
group, so moving from one group to the other is not 'cheating'. Mavericks, who 
subvert the process (within the confines of our model) by employing neither of the 
group strategies, simply get wiped out. To put it another way, the speciated state 
is dynamically stable. 

Patchy Environments 

We add one final remark about patchy environments. In the scenario we have de­
scribed, potential genotypes of 'new' species are already present cryptically in the 
gene-pool before the speciation event itself happens. The divergence is triggered 
by environmental change. This has a consequence for patchy environments. Sup­
pose the environment consists of a number of patches, only loosely coupled by 
interbreeding. Now imagine that some change in the environment occurs, perhaps 
with a general overall trend, but setting in at different times in different patches. 
As each patch experiences a change in environment that triggers speciation, there 
will be a rapid divergence of species in that patch. If two distinct patches undergo 
essentially the same environmental changes, the selective effects of environment 
will be much the same in both patches, and the pool of potential genomes will also 
be much the same. Therefore both patches will experience speciation, with much 
the same result - even on the genetic level. That is, we would expect to observe 
multiple, independent repetitions of the same speciation event in many locations. 
This is highly reminiscent of what has occurred in the evolution of African lake 
cichlids: see Meyer [59] and Stiassny and Meyer [75] . 

12. Conclusions 

We have proposed a class of speciation models based on symmetric systems of 
ODEs posed in phenotypic space. These equations are nonlinear, so they can un­
dergo symmetry-breaking bifurcations. Such bifurcations correspond to speciation 
events in the model. Models of this kind display certain typical kinds of bifurca­
tion behaviour, independently of many details of the equations: we have discussed 
these 'model-independent' phenomena and used them to make predictions about 
sympatric speciation. 

We have also described possible biological interpretations of the speciation 
process observed in the model, in terms of both phenotype and genotype, linking 
these to hypothetical models of beak sizes in birds and to field observations of 
various species, including grasshoppers and Darwin's finches. 
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Our main conclusions include: 

• Speciation occurs in populations of organisms, not in a mean-field gene-pool. 
• Genes render phenotypes fluid, and recombination is the dominant source of 

fluidity, not mutation (except in some asexual species, where recombination 
seldom if ever occurs - for example, in amazonogenesis). 

• Speciation does not require environmental inhomogeneities, but can be as­
sisted if they are present. 

• Speciation does not require assortative mating, but can be stabilised rapidly 
by it. 

• Divergence of phenotypes during speciation is the result of selection, not 
mutation. 

• Mutations do playa role: they cryptically enlarge the gene-pool (genotypic 
space). 

• It is the distribution of genomes in the genotypic space of breeding adults 
that matters, not statistical projections of that distribution, one allele at a 
time. 

• The type of speciation that we have modelled is invisible to mean-field ge­
netics. However, it can be detected by monitoring variance about the mean. 
Details, such as the number of divergent species, require more subtle observ­
abIes. This is an area of considerable interest in field classification studies at 
the present time, and techniques based on symmetry detectives (Barany et 
al. [6]) might be applicable. 

• Nonlinear effects create stable splits, and cause jumps/hysteresis, making 
the speciation process robust and 'irreversible'. 

• Divergent phenotypes need not follow obvious changes in the distribution of 
'niches' (but often do). 

• Interchangeability of organisms within a species imply symmetry constraints 
on the dynamics, with significant effects on the typical behaviour. 

• 'Founder populations' in the sympatric case are typically, though not uni­
versally, large (at least one third of the total population). 

• Natural selection acts on organisms, not on genes. An evolutionary system is 
a complex system whose entities are the organisms. Speciation is an emergent 
consequence of selection on entities. 

Appendix 1 

We determine the SN-invariant smooth functions f : RN ----+ Rand SN-equivariant 
smooth mappings F : RN ----+ RN. It is well known (see Golubitsky et al. [36]) that 
there is a Hilbert basis {Pl, ... , P,.} of polynomial invariants, r finite, such that 
every smooth invariant can be expressed as g(Pl, . .. , P,.) for a smooth function 
9 : Rn ----+ R (Schwarz's Theorem). Furthermore, there is a finite set of polynomial 
equivariants Fa, . .. ,Fs such that any smooth equivariant F can be expressed as 

F = goFrJ + ... + gsFs 
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for smooth invariants 9j (Poenaru's Theorem). Thus the smooth case reduces to 
the polynomial case. 

Polynomial invariants for SN on RN have a Hilbert basis given by the ele­
mentary symmetric functions 

ai Xl+"'+XN 

a2 XIX2 + XIX:3 + ... + XN - IXN = LXiXj 
ii'j 

i 1 .... i, distinct 

or equivalently by sums of kth powers 

N 

7rk = LX~ 
i = I 

where k = 1, ... , N. For a proof see any text on Galois Theory, for example 
Stewart [74] Exercises 2.13 and 2.14. Note that the invariant polynomial p(x) = 1 
is included. 

The ak can also be defined by the identity 

(t - xd(t - X2)'" (t - XN) = t N - aItN- I + a2tN- 2 - ... ± aN (16) 

for any indeterminate t. We shall require this identity in the proof of the next 
proposition. 

Consider the S wequivariants. The group S N is generated by the N -cycle a = 

(123 . . . N) and the subgroup SN-I consisting of all permutations of {2 , ... , N}. 
Therefore a mapping is equivariant under S N if and only if its is equivariant under 
S N -1 and a-I. Suppose that F : RN ~ RN is an S wequivariant polynomial 
mapping with components F = (FI , . .. , F N ), and write FI in the form 

FI (x) = L Gd(X2, ... , XN )xf 
d 

Equivariance under SN-I implies that 

Fl (x) = L Gd(Xp(2), ... , Xp(N))xf 
d 

for all pES N -1, since S N -1 fixes the symbol 1. Therefore each G d is invariant 
under SN-I. In addition, a- 1-equivariance implies that 

Fi(X) LGd(Xi+l, ... ,Xi-dxf 
d 

L Gd(Xl, ... , Xi-I, Xi + l , "" XN )xf 
d 
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For any polynomial P(Xl,' .. , XN) we define 

[ 

P(Xl,X2, . .. ,XN-l,XN) 1 
P(X2,X;J, ... ,xN,xd 

iP(Xl, ... , XN)l = . 

P(XN,Xl,.": XN-2, xN-d 

If Pis SN_l-invariant, then iPl is Swequivariant, and conversely. 
We now define SN-equivariants E k , for k = 0, 1,2, ... by 

Ek = ixn (17) 

Proposition 5. The S N -equivariant polynomial mappings are generated over the 
S N -invariant polynomial functions by Eo, ... , EN -1. 

Proof. Let p be any S N -1 - invariant polynomial in (X2, ... , X N ), and denote its de-
gree by k. We claim that there exists an SN-invariant polynomial p in (Xl , ... , XN), 
whose degree is the same as that of p, and S N-invariant polynomials ql, ... ,qk in 
(Xl, ... , XN), such that 

- k P = P + Xlql + ... + Xl qk (18) 

To prove the claim, write p in the form 

p(X) = G(n-l,"" n-N-d 

where n-l = x~ + ... + x~. (This is possible since the n-{ for l = 1, . . . , N - 1 generate 
the SN_l-invariants.) Define 

Observe that by construction 

Therefore, considered as a polynomial in Xl with coefficients that are polynomials 
in X2, ... , X N, the difference p - p is divisible by X I (using the remainder theorem, 
see for example Fraleigh [31] page 276). Expanding in powers of Xl, the claim 
follows, except that at the moment the qj are only known to be S N - 1-invariant. 
However, since p and p have the same degree, all the qj have smaller degree than 
p. Inductively, it follows that we can write p in the form (18) where now the qj are 
S w invariant polynomials in (x 1 , ... , X N ). 

Suppose that E(x) is equivariant, and write it in the form E(x) = iQ(x)l 
Expanding Q as a polynomial in Xl over the remaining variables, we can write 

for some k, where the Qj are SN_l-invariants. By the claim above, we can rewrite 
Q in the form 
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where the R j are SN-invariants. Therefore 

E(x) fQ(x) l 

fRo + xlRI + ... + x~Ri1 
Ro f 11 + R I f x 11 + ... + Rl f xi 1 
RoEo + RIEl + ... + RiEl 

so that the SN-equivariants are generated by the E j over the SN-invariants. 
Finally, we must show that only Eo, ... , EN -I are necessary as generators. 

This is a consequence of identity (16). Setting t = Xl implies that 
N N-I N-2 

Xl = (TIX I - (T2 X I + ... =f (TN 

Repeatedly multiplying by Xl and applying induction, it follows that for all n 2: N 
V-I V-') x7 = SIXl + S2Xj ~ + ... + SN 

where the Sj are SN-invariants. Applying the operator f 1 we see that ETl is a 
linear combination of Eo, ... , EN _ lover the S N - invariants. 0 

Appendix 2: Centre Manifold Reduction onto VI 

Equation (9) is an SN-equivariant ODE with 13 parameters. Here we describe 
work of Elmhirst [27] on the dynamics of the centre manifold reduction of such a 
cubic truncation to the space VI, see also Cohen and Stewart [17]. This reduction 
contains all of the relevant bifurcation behaviour, but involves only 4 parameters, 
reducible to 3 by scaling. As such, it is much more tractable. Carr [14] contains 
general information on the process of centre manifold reduction. 

We can obtain the general form of the centre manifold reduction onto VI by 
restriction and projection from the general S N-equivariant mapping on R N. To 
cubic order, we do this by imposing the relation 7l'1 = 0 on (8) and then projecting 
the results onto VI. It is easy to check that only the following terms survive: 

1 1 1 
G=b2E 1 +C4(E2 - N7l'2 Eo)+dc,(7l'2 El- N7l'I7l'2EO)+do(E3 - N7l':~Eo) 

Cohen and Stewart [17] and Elmhirst [27] used different methods to obtain the 
equivalent form 

(19) 

(after scaling Xi, A by positive factors, which preserves orientation of the bifurcation 
diagram and stability and sets Cel = 1), where 
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For consistency with the calculations of Elmhirst [27] we work with (8) in §5. We 
also restrict attention to the case Cel = + 1. The case Cel = -1 can be recovered by 
transforming x into -x, which turns the bifurcation diagrams upside-down, and 
we consider the case C4 = 0 to be non-generic. 

Appendix 3: Imperfect Symmetry 

A common criticism of symmetry methods, especially in biology, is that real sys­
tems are seldom perfectly symmetric. Part of the answer is that the behavior of a 
dynamical system that is 'nearly symmetric' is much more like that of an idealised 
symmetric system than it is like the typical behavior of a completely asymmetric 
one. There are theoretical justifications of this assertion, such as the fact that 
'normally hyperbolic' invariant sets of a dynamical system persist under small 
perturbations, Arrowsmith and Place [1]. Here we show, by numerical simulation, 
that two different ways to make the symmetry of the speciation model imperfect 
lead to much the same conclusions as the ideal symmetric model even when both 
sources of imperfection are present together. These two ways are: 

• Change the equations so that they are no longer perfectly symmetric in the 
N variables . 

• Add stochastic terms to introduce a random element. 

We show, by numerical experiment and theoretical discussion, that the main phe­
nomena associated with (8) survive such modifications, so the quest for greater 
biological realism does not alter the main conclusions derived from the less realis­
tic, but far more tractable, idealised equations. 

We can break the SN symmetry of (8) by making the coefficients vary slightly 
with the index i, and by replacing the terms (Xl + ... + XN) and (xi + ... + x7v) by 
(rlxl + ... +rNxN) and (slxi + ... +sNx7v) where the rj and Sj differ slightly from 
l. Here 'slightly' is governed by a new parameter g, which is typically 0.1 or there­
abouts, indicating a 10% variation of the parameter values. In simulations, these 
variations are defined at the start of each run using a random number generator. 
The main change is that after bifurcation the traces do not converge as strongly, 
but they still clump. Figure 18 shows how Figure 9 changes under such perturba­
tions: the change is minimal, even when the asymmetry is quite substantial. 

FIGURE 18. Imposed broken symmetry in (6). 
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An alternative way to introduce variability within species is to convert (8) 
into a stochastic model by adding Gaussian random noise (Brownian motion). In 
simulations we discretise and iterate: 

Xi(t + E) = Xi(t) + EF(x(t)) + OTi(t) 

Here E is small (usually E = 0.0001) , cr determines the size of the noise , and ri 
is a r andom variable distributed uniformly between -0.5 and 0.5. Figure 10 of §6 
shows a typical bifurcation diagram for this case: as expected, it resembles noisy 
versions of Figure 9. 

In fact there are general theoretical reasons for expecting the effects of these 
changes to the model to be small. For the addition of random terms, we can invoke 
the theory of stochastic nonlinear differential equations 

dx = F(x, a)dt + crdw (20) 

whose statistical behaviour is governed by the Fokker-Planck equation 

au 2 
at = crV u - V . (uF) 

Here the function u = u(t) represents a time-varying smooth probability density, 
the term cr\l2u represents random diffusion, and V· (uF) represents the determin­
istic flow (cr = 0). Intuitively, solutions of (20) are like solutions of the determin­
istic equation subjected to random kicks at all instants of time, so for low noise 
(cr « 1) they look like slightly irregular versions of deterministic solutions. For­
malising these ideas requires substantial technical effort: see Ito [47], McKean [60], 
Gihman and Skorohod [39]. It is known that as t tends to infinity, any solution 
of the Fokker-Planck equation converges to a unique steady state U. This implies 
that if F is f-equivariant for some group f and the noise is f-invariant then U 
must be f-invariant. In particular if for specific parameter values a the attractors 
of the deterministic system are hyperbolic equilibria and cr « 1, then U has peaks 
near all stable equilibria and is small everywhere else, see Kifer [51], Zeeman [83]. 
This result reflects the very long term behavior: because Brownian motion is long­
range, the stochastic system can climb out of any potential well given enough time. 
However , that time scale is very long indeed, and what we see in simulations is 
more limited. Numerical evidence supports the conjecture that all attractors of 
(8) that bifurcate from the origin are equilibria, and these are generically hyper­
bolic: we assume this conjecture is true for the following discussion. In simulations, 
where the noise is taken to be short range (arguably more realistic for evolution­
ary biology) , almost all trajectories eventually become trapped inside the basin of 
attraction of some equilibrium once the attraction towards that equilibrium ex­
ceeds the discretised noise level. This explains why the bifurcation behavior of the 
stochastic system resembles that of the deterministic one when cr « 1. 

We can also explain why the bifurcation behavior of the deterministic modi­
fication resembles that of the ideal symmetric one when the amount 9 of imposed 
symmetry-breaking is small. The theoretical reason is normal hyperbolicity, which 
is a generic property in this context, Arrowsmith and Place [1]. 
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Bifurcation and Planar Pattern Formation 
for a Liquid Crystal 

Martin Golubitsky and David Chillingworth 

Abstract. We consider the Landau - de Gennes model for the free energy 
of a liquid crystal, and discuss the geometry of its equilibrium set (critical 
points) for spatially uniform states in the absence of external fields. Using 
equivariant bifurcation theory we classify (on the basis of symmetry consid­
erations independent of the model) square and hexagonally periodic patterns 
that can arise when a homeotropic nematic state becomes unstable, perhaps 
as a consequence of an applied magnetic or electric field. 

1. Introduction 

In the Landau theory of phase transitions for a liquid crystal the degree of coher­
ence of alignment of molecules is usually represented by a field of symmetric 3 x 3 
tensors Q(x), x E R3 with trace tr(Q) = 0 (the tensor order parameter) [15]. We 
think of Q as the second moment of a probability distribution for the directional 
alignment of a rod-like molecule. In a spatially uniform system, Q is independent 
of x E R3. When Q = 0 the system is isotropic, with molecules not aligned in 
any particular direction. If there is a preferred direction along which the molecules 
tend to lie (but with no positional constraints) the liquid crystal is in nematic 
phase. There are many other types of phase involving local and global structures, 
see [15]. 

SYMMETRIES IN THE ORDER PARAMETER. The complex linear space V of trace­
less symmetric 3 x 3 matrices Q is 5-dimensional over C with unitary basis 

1 
"2 {Mo) M±l) M±2} 

where 

C 0 

D M±, ~ (~ 0 11) M±, ~ (~i 
±i 

~) Mo = If ~ -1 0 -1 
0 ±1 0 

A state (phase) of the liquid crystal in R 3 is given by the real part of a map 
Q : R3 ---> V. At each point x in space the rod-like molecule is assumed to align 
along the eigendirection corresponding to the largest eigenvalue of Q(x). 
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The action of rigid motions in R :l on a state is defined as follows . Let , E 0(3) 
and let Ty be translation by y E R :l. Then 

(TyQ)(x) 
(r. Q)(x) 

Q(x - y) 
= ,Q(r-lxh- 1 . 

(1.1 ) 

That is, translations just translate Q(x) while rotations and reflections act simul­
taneously by rigid motion on the domain of Q(x) and by conjugacy in the range. 

THE FREE ENERGY FORI\IULATION. Equilibrium states of the liquid crystal (ig­
noring boundary effects which in physical situations do play a crucial role) are 
taken to be critical points of a smooth real-valued free energy func tional 

F(Q) = :01 J F(Q(x))dx 

defined for real Q, where the free energy density F is invariant under the Euclidean 
action (1.1). A standard free energy is given by the Landau-de Gennes model [9] 

F(Q) ~Ttr(Q2) - ~Btr(Q:l) + 1C (tr(Q2))2 
+C1 IVQI 2 + C2 1V . QI2 - 2D Q . V 1\ Q 

(1.2) 

where B , C, C1 , C2 , D are constants of the material and T represents deviation from 
a critical t emperature. The notation here is 

i.j 

Q,V I\ Q 

where Qj is the jth column of Q. This is a general 0(3)-invariant function of 
degree at most four in Q [8] and at most two in the first-order spatial derivatives 
of Q. 

In this paper we discuss aspects of bifurcations of spatially homogeneous 
states (Section 2) and spatially periodic nematic liquid crystal states (Section 3) . 

2. Spatially uniform equilibrium states 

For a spatially uniform state the derivatives of Q are zero and we are reduced to 
considering critical points of F : V --> R restricted to real matrices. Symmetry im­
plies that every equilibrium state corresponds to a group orbit of equilibria. Since 
every symmetric matrix can be diagonalized by an orthogonal matrix, it follows 
that every group orbit of equilibria contains a diagonal trace zero matrix. Thus, 
to study bifurcation of equilibria, we can restrict attention to the 2-dimensional 
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T range equilibria I stability 

T > TO Q=O stable 
TO> T > 0 Q =0 stable 

Q = Qi : = TJ;Q(O, 1) i = 1 stable 
TJI < TJ2 < 0 

Q = Qi : = - ~TJ;Q(±V3, 1) i = 2 unstable 
O>T Q =0 unstable 

Q=Ql,Ql, TJl < 0 stable 

Q = Q2,Q2 , TJ2 > 0 unstable 

TABLE 1. Equilibria as a function of T where TO = 2~~ and Q(p, TJ) is 
defined in (2.1). 

space of diagonal traceless matrices as in [8, XV,§6]. We express such Q in the 
form 

since, in these coordinates, 

6(p2 + TJ2) 

6TJ(3l - TJ2) = 6 Im(p + iTJ ):1. 

(2.1 ) 

(2.2) 

(2.3) 

The function F restricted to the space U ~ R2 of matrices (2.1) is invariant with 
respect to the action of D3 in the (p, TJ )-plane generated by rotation by 27r /3 and 
reflection in the TJ-axis. Thus 

Proposition 2.1. Every nonzero critical orbit of F meets U in a D3-symmetric 
configuration. D 

By first considering the restriction of F to the TJ-axis and then exploiting sym­
metry it is straightforward to deduce the description of equilibria for the system 
Q = - gradF(Q) on U given in Table 1. 

As T decreases through TO = 2~~ there are simultaneous saddle-node creations 
of pairs of equilibria at (p,TJ) = (O,TJo) and -~TJo(±V3,l) where TJo = - 2To/B; 
subsequently the innermost equilibria approach the origin and coalesce at a de­
generate critical point there as T decreases to 0, emerging on the other side as T 

becomes negative. See Figures 1 and 2. 
The physical interpretation is that for T > TO the only stable phase is isotropic 

(Q = 0) while for T < TO there are further stable nematic phases with molecules 
aligned in a particular direction: anyone alignment has the same free energy as any 
other. The isotropic phase loses stability when T becomes negative. This familiar 
transition is described for example in [15]. 
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FIGURE 1. Bifurcation diagram for critical points of grad F on U . 

• Stahle 

to> t > 0 

11 

t=O t<O 

FIGURE 2. Schematic phase portraits for Q = - gradF(Q). 

REMARKS ON EQUILIBRIA IN A SHEAR FLOW. In the presence of a constant shear 
flow the system loses its 0(3) symmetry and most of the equilibria disappear. 
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However, some do remain, along with a variety of interesting dynamical phenom­
ena including Hopf bifurcations, Takens-Bogdanov bifurcation and period-doubling 
that come into playas T decreases [14, 16]. A rigorous geometric analysis of some 
of these phenomena is given in [3], where it is shown that all equilibria are in­
variant under reflection in the plane of the shear flow, with the curious exception 
of a continuum (ellipse) of out-of-plane equilibria that arise with codimension l. 
This non-generic behavior casts doubt on the robustness (structural stability) of 
the Landau-de Gennes model in the presence of a shear flow. 

3. Spatially periodic equilibrium states 

Suppose a spatially uniform equilibrium Qo loses stability to a spatially periodic 
state. In this section we use group representation theory (following [8, 7, 4]) to 
extract information about nonlinear behavior at bifurcation that is independent 
of the model. 

Specifically, we consider local bifurcation from a planar layer of a homeotropic 
nematic liquid crystal Qo that is assumed to have constant alignment in the vertical 
direction to one that has spatially varying alignment in the planar directions. We 
assume that the new states are spatially periodic with respect to some planar 
lattice. The symmetry group for this discussion is the planar Euclidean group 
rather than the Euclidean group in three dimensions, as in the previous sections. 

The fact that liquid crystals can display spatial periodicity with respect to 
a planar lattice is well known by experiment. For example, Figure 3 illustrates 
a so-called prewavy pattern [13, 10] while Figure 4 shows two types of chevron 
[10]. (We are grateful to the authors of the abstracts [11],[12] for these pictures.) 
Several striking photographs of periodic patterns can also be found in [6]. 

FIGURE 3. Prewavy pattern seen with crossed polarizers (a), and cor­
responding director field (b). The scale bar is 200/im. (Courtesy J.­
H.Huh.) 
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FIGURE 4. Two types of chevrons: (a) defect-mediated, (b) defect-free. 
The scale bar is 200flm. (Courtesy 1.-H.Huh.) 

Linear Theory 

Let L denote the linearization of the governing system of PDEs at Qo (for the 
free energy model we have L = D'2F(Q())). Bifurcation occurs at parameter values 
where L has a nonzero kernel. Planar translation symmetry implies that eigenfunc­
tions of L have the plane wave form 

e2;rik-xQ + c.c. 

where Q E V is a constant matrix and k E R2 is a wave vector. Let 

Wk = {e27rik-xQ + c.c. : Q E V} 

(3.1) 

(3.2) 

be the ten-dimensional L-invariant real linear subspace consisting of such functions. 
Rotations and reflections I E 0(2) act on Wk by 

(3.3) 

Rotation symmetry implies that ker L is infinite-dimensional, since it contains all 
possible rotations of the eigenfunction (3.1). Restricting to planar lattices (which 
restricts the allowable rotations to a finite number) typically makes the kernel 
finite-dimensional. 

When looking for nullvectors we can assume, after rotation, that k = k(l, 0, 0) 
and that nullvectors of L are in Wk. Bosch Vivancos, Chossat, and Melbourne [1] 
observed that reflection symmetries can further decompose Wk into two L-invariant 
subspaces. To see why, consider the reflection 

K,(x, y, z) = (x, -y, z). 

Note that the action (3.3) of K, on Wk (dropping the +c.c.) is 

K, (e27rik-XQ) = e27rihO (k).x K,QK,-l = e27rik-x K,QK,-l. 

Since K,2 = 1, the subspace Wk itself decomposes as 

Wk = W: EBW; (3.4) 
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where K, acts trivially on W; and as minus the identity on W; . We call functions in 
W; even and functions in W; odd. Bifurcations based on even eigenfunctions are 
called scalar and bifurcations based on odd eigenfunctions are called pseudoscalar. 

To determine the form of the scalar and pseudoscalar matrices (that is, those 
matrices Q+, Q- appearing in W; and W; respectively), we need to compute 
the effect of conjugacy by K, E 0(3) on V. The subspace of V where K, acts as the 
identity is 

V + = span{ Mo, Ml - 1\Ll' M2 + lvL 2 } 

and the space where K, acts as minus the identity is 

V- = span{ MI + M-l , 1\h - M _2 }. 

A further simplification can be made. Consider R" E 0(3) given by (x, y, z) f-7 

(- x, -y, z). Since (dropping the + c.c.) 

R,,(Qe2nik-x) = RJr. Qe2rrik-R"( x ) = R,,· Qe- 2 ;rik-x = R7f· Q e27fik-x 

the associated action of R" on V is related to the conjugacy action by 

Rrr(Q) = R ,, · Q. 

Since L commutes with R ;r and R; = 1, the subspaces of the kernel of L where 
Rrr(Q) = Q and Rrr(Q) = -Q are L-invariant. Therefore, we can assume that Q 
is in one of these two subspaces. Note that translation by "- = t kj k2 implies that 
if v(x, Q) = e27rik-xQ is an eigenfunction then iv(x, Q) is a (symmetry related) 
eigenfunction. It follows from (3) that if Rrr acts as minus the identity on Q, then 
R7r acts as the identity on iQ. Thus we can assume without loss of generality that 

that is, Q is R7r-invariant. Therefore we have proved 

Lemma 3.1. Generically eigenfunctions in Vk have the form e27rik-xQ + c.c. where 
Q is nonzero, R7r -invariant, and either even or odd. 0 

Lemma 3.1 implies that typically eigenspaces are two-dimensional subspaces 
of W; or W; and have the form 

Vk+ {ze27rik-xQ+ : z E C} 

Vk- {ze27rik-xQ- : z E C} 

where Q+ and Q- are R7r-invariant. We check easily that 

R 7r • Mo = M o , R7r • M±l = MOfl , R 7r • M±2 = MOf2 

and so by R 7r-invariance we may assume that 

Q+ = aMo + b(M2 + M_ 2) + ic(Ml - M-d, 
Q- = g(Ml + M_ 1 ) + ih(M2 - M _2), 

a,b,c E R 
g,h E R 

where a, b, c, g, hER are specific values chosen by L (cf. [7, §5.7]). 

(3.5) 
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The Planforms 

We now consider 2-dimensional patterns by disregarding the z-coordinate in x 
(but not in Q) and restrict attention to equilibrium states that are periodic with 
respect to a square or hexagonal lattice in the x, y-plane. 

THE SQUARE LATTICE. The holohedry (the rotations and reflections that pre­
serve the lattice) is D4 generated by K and~, where ~ is counterclockwise rotation 
of the plane by ~. We study the case where the critical dual wave vectors have 
shortest length and the kernel of L is four-dimensional: 

Therefore, we can write the general eigenfunction in the scalar case as 

R+ (x) = Zl e27riklX Q+ + Z2e27rik,x ~Q+ C 1 + c.c. (3.6) 

and in the pseudoscalar case as 

(3.7) 

In each case there are two axial subgroups (isotropy subgroups with I-dimen­
sional fixed-point spaces, that we call axial directions), so the equivariant branching 
lemma [8, 4, 7J predicts that bifurcations from a spatially uniform nematic state 
will occur along these axial directions at least. Up to conjugacy by an element 
of D4-t-T2, the direction (Zl,Z2) = (1,0) corresponds to rolls and the direction 
(Zl' Z2) = (1,1) corresponds to squares. 

To visualize the patterns of bifurcating solutions we assume a layer of liquid 
crystal material in the x, y-plane, possibly with an applied magnetic field in the z 
direction. We assume that the initial solution corresponds to a nematic phase with 
all molecules oriented in the z direction and that a symmetry-breaking bifurcation 
occurs as the strength of the magnetic field, temperature or other parameter is 
decreased. At each point (x, y) we choose the eigendirection corresponding to the 
largest eigenvalue of the symmetric 3 x 3 matrix Q(x) at x = (x , y) and we plot 
only the x, y components of that line field. In this picture, a line element that de­
generates to a point corresponds to a vertical eigendirection, so the initial solution 
looks like at array of points. In Figures 5 and 6 we plot solutions corresponding 
to scalar and pseudoscalar rolls and squares. Note that pseudoscalar rolls form a 
chevron pattern that can be compared to Figure 4(b). 

THE HEXAGONAL LATTICE. The holohedry is DB and is generated by K and ~, 
where ~ is counterclockwise rotation of the plane by ~. The action of ~ on Q is 

On the hexagonal lattice, we also study the case where the dual wave vectors 
have shortest length and the kernel of L is six-dimensional. The dual wave vectors 
can be chosen to be 

k 1 =(1,0) 
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FIGURE 5. Square lattice with scalar representation: (left) rolls; (right) 
squares. 

FIGURE 6. Square lattice with pseudoscalar representation: (left) anti­
rolls; (right) anti-squares. 

The eigenspaces are then 

Therefore, we can write the general eigenfunction in the scalar case as 

zle2rrik"xQ+ + z2e2rrik2'XeQ+~4 + z3e2rrik3>XeQ+e + c.c. 

and in the pseudoscalar case as 

zle2rrik,>xQ- + z2e2rrik2>XeQ-e + z:le2rrik3>XeQ-e + c.c. 

It is well-known from analyses of Benard convection (see [8]) that on the 
scalar hexagonal lattice there are two branches of axial solutions - hexagons and 
rolls - and that the hexagons come in two types hexagons+ and hexagons-. For 
rolls we may take (Zl, Z2, Z3) = (1,0,0) and for hexagons+ and hexagons- we may 
take (Zl,Z2,Z3) = ±(1,1,1). Sample hexagon planforms are shown in Figure 7. 
Rolls are the same as those in Figure 5. 
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FIGURE 7. Hexagons on hexagonal lattice with scalar representation: 
(left) hexagons+; (right) hexagons-. 

Bosch Vivancos et al. [1] and Bressloff et al. [2] show that in the pseu­
doscalar representation hexagons are given by (Zl, Z2, z;,) = (I, I, I), triangles by 
(Zl,Z2,Z3) = (i,i,i), and rectangles by (Zl,Z2,Z:;) = (1,-1,0). Rolls are the same 
as in Figure 6. The remaining planforms are shown in Figure 8. 

FIGURE 8. Hexagonal lattice with pseudoscalar representation: (upper 
left) hexagons; (upper right) triangles; (lower) rectangles. 
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Free energy interpretations 

These results imply that there are two types of steady-state bifurcations, scalar 
and pseudoscalar, that can occur from a spatially homogeneous equilibrium to 
spatially periodic equilibria. If a scalar bifurcation occurs, then generically all of 
the scalar planforms that we listed (rolls, squares, hexagons + , hexagons-) will be 
solutions. Similarly, if a pseudoscalar bifurcation occurs, then generically all of the 
planforms that we listed (anti-rolls, anti-squares, hexagons, triangles, rectangles) 
will be solutions. We have not discussed the difficult issue of stability of these 
solutions. 

What remains is to complete a linear calculation to determine when a steady­
state bifurcation occurs and whether it is scalar or pseudoscalar. The outline of 
such a calculation goes as follows. We need to compute a dispersion curve for both 
scalar and pseudoscalar eigenfunctions. That is, for each wave length k = Ikl we 
must determine the first value of the bifurcation parameter A where L has a nonzero 
kernel. Call that value Ak. The curve (k, Ak) is called the dispersion curve. We then 
find the minimum value A. = Ak. on the dispersion curve; the corresponding wave 
length k. is the critical wave length. We expect the first instability of the spatially 
homogeneous equilibrium to occur at the value A. of the bifurcation parameter. 

In principle, these calculations can be completed for the model equations 
(1.2) or a similar model, extending related calculations for bifurcation from the 
isotropic phase carried out by [9]. We defer the completion of this task to a future 
paper. 
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Patchwork Patterns: 
Dynamics on Unbounded Domains 

Peter Ashwin 

Abstract. We discuss some problems concerning the asymptotic behaviour 
of patterns generated by evolution equations on unbounded domains. We 
suggest an approach using a number of different topologies to examine the 
asymptotic behaviour of patterns. This highlights some problems that need 
to be understood in constructing a topological theory of dynamics for spatio­
temporal patterns. 

1. Introduction 

The spatio-temporal dynamics of evolution equations on unbounded (infinite) do­
mains is notoriously difficult to analyse, especially with regard to understanding 
the asymptotic dynamics or attractors. This is often due to subtleties of the func­
tional analytic setting that is required to give an adequate setting for these prob­
lems. However there is also a more fundamental problem that is also the root of 
many of the former difficulties; in the simplest terms this is the existence of two 
quantities that are unbounded, namely space and time. At best this gives rise to 
a tradeoff between two limiting processes; at worst it gives rise to lack of com­
pactness or completeness that mean that in many topologies the w-limit sets are 
empty. 

In the last ten years there has been considerable progress towards under­
standing the qualitative dynamics for specific PDEs on unbounded domains, see 
for example [5, 6, 10, 7, 12, 11] who use a variety of topologies on the space of 
unbounded patterns to obtain significant results on the existence, attraction and 
stability properties of global attractors. 

For example, in their work [10] Mielke and Schneider work with a function 
space consisting of the subspace of functions in the Sobolev space and a weighted 
norm such that the weighted norm remains finite under translations and the ac­
tion of translation is continuous. Using this they are able to prove many prop­
erties of a global attractor for the Ginzburg-Landau equation in this setting and 
relate this to properties of the Swift-Hohenberg equation. In particular they ob­
tain a compact attractor in the weighted norm, though it is not compact in any 
translation-invariant norm. 
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At the same time there has been a realisation that exploiting noncompact 
group structure that is often present in such systems can say a lot about the 
problem independent of the particular classes of equations. This has been par­
ticularly successful in describing many properties of localised patterns such as 
spiral waves [3, 12, 2]. In this paper we examine some issues in trying to com­
bine these approaches to give a topological description of continuous evolutions 
of patterns. Rather than examining specific models using properties of spectra we 
do not assume any differentiability and aim for a purely topological description 
on the premise that only when this is understood can one expect to get a good 
qualitative understanding of PDE or other spatially extended model equations. 

2. Topologies for patterns 

We consider JR./'-valued patterns on some space of patterns on some JR.d (d, r :2: 1) 
with a Lie group r that acts transitively on JR.d. Such a group must necessarily be 
noncompact; typically we consider r is the Euclidean group E(d) or some subgroup 
of this. Most of the ideas below can of course be easily extended to patterns on 
domains that are products ofJR.d with any compact connected space. The connected 
component of r we write as r o. 

We write p(y) to mean the action of pEr on y E JR.d and note that this 
action extends naturally to functions u : JR.d --> JR." in the usual way by action on 
the domain: 

p(u)(x) = u(p-1x). 

Let Cd be the space of all compact subsets of JR.d equipped with the usual Hausdorff 
metric h(A, B) = sUPaEA infbEH la - bl + sUPbEH infaEAla - bl. Let Ic(x) be the 
indicator function such that Ic(x) = 1 if x E C and Ic(x) = 0 otherwise. Consider 
the function space 

x c C~b(JR.d,JR.") 
of bounded uniformly continuous functions with a global norm (for example Iluli g = 
sUPx lu(x)l) and a local norm (for example Ilulil = J lu(xW dx); these define a 
global and a local topology on X. We assume that: 

1. X is complete with respect to II . Ilg. 
2. For any C E Cd and u E X we require that IIu1clil < 00 (though Ilulll itself 

may be infinite) . 
3. r acts continuously on X and the norms II . Ilg.1 are invariant under r , ie 

IIpullg.l = Ilullg.l for all u E X and pEr. 
Under these assumptions we say u E X is a pattern and X is a pattern space. 

2.1. Semiflows of patterns 

Suppose that <P : X x JR. + --> X is a semigroup on a pattern space X, i.e., a map 
such that 

<Pou = u 
<Ps 0 <Ptu = <Ps+tu 
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holds for any U E X and s, t 2 O. We require that <Pt(u) is continuous in t E jR+ 

and u E X w.r.t. the global topology on X. We suppose that <P t is equivariant 
under the action of r on X, i.e., 

(p 0 <Pt)u = (<pt 0 p)u 

for any t > 0, pEr and u EX. As usual, given a pattern u E X we define the 
isotropy of u to be 

~ ( u) = {r E r : iU = u}. 

This is a subgroup ofr that expresses its symmetry; for example 'roll-like' solutions 
of a system with E(2) symmetry on a planar unbounded domain have isotropy 
E(l). 

2.2. The patch topology 

The assumptions above ensure that there is another topology on the pattern spaces 
X, namely the weakest topology where 

u(x, t) -->p v(x) 

if and only if 

II(u(x, t) - v(x))Icllz --> 0 as t --> 00 

for all C E Cd. In other words, a set U is a neighbourhood of v E X in this topology 
if and only if there exists a positive function 1j; : Cd --> jR+ such that 

II(u(x) - v(x))Icllz < 1j;(C) 

implies that u E U. We refer to this as the patch topology 'Tp. 
Recall that a topology is Hausdorff if given any u i- v there exist disjoint 

neighbourhoods U of u and V of v; see for example [8, 13]. It is clear that the patch 
topology is Hausdorff; given any two u i- v we can find separating neighbourhoods 
by virtue of the assumption that they are subsets in C~~b' 

2.3. The patch orbit topology 

We now define a topology based on closeness over group orbits: the patch orbit 
topology 'Tpo, This is the weakest topology where 

if and only if 

u(x, t) -->po v(x) 

inf II(pu(x, t) - v(x))Iclll --> 0 as t --> 00 
pEr 

for all C E Cd. This topology is natural in the sense that in this topology, a 
pattern u is close to another pattern v if some translate of u matches v on patches 
of arbitrarily large area. 

Lemma 2.1. For any d > 0 the topological space (X, 'Tpo) is not Hausdorff. 
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Proof. We prove for d = 1; this can be extended easily to any dimension. Take 
U1 = sin x and U2 = sin 2x. Consider a function 

u(x) = sin x--( 2 + eX) 
I + eX 

or any similar function that behaves like sin x for large x > 0 and like sin 2x for 
large x < O. Note that any neighbourhood of u contains both U1 and U2. It follows 
(eg [S, pSS]) that the topology is not T1 and hence (X, 'Tpo) is not Hausdorff. 0 

Note that although (X, 'Tpo) is not Hausdorff the quotient obtained by iden­
tifying points on the same group orbit may be Hausdorff. 

2.4. Propagating Patch Topology 

The final topology we define sits between the patch and the patch orbit topologies. 
The propagating patch topology 'Tpp is the weakest topology such that 

u(x, t) --4pp v(x) 

if and only if there is a continuous function p : IR+ --4 r with p(O) = Id such that 

II(p(t)u(x,t) - v(x))Iclll --40 as t --4 00 

for all C E Cd. We refer to the function p( t) as the patch path that gives convergence 
of u to v. For any C E Cd we say p -1 (t) C is a propagating patch; this topology 
measures two patterns as close if they approach each other on all propagating 
patches of this form. 

In the case that r is not connected then p must remain within the connected 
component r o, for example SE(2) instead ofE(2). We write the set of propagating 
patch limits as 

lim u(x, t) = {v EX: u(x, t) --4pp v(x) as t --4 oo} 
pp 

and note that even if u(x, t) is time independent then its propagating patch limits 
may include more than just its group orbit under r. 

Theorem 2.2. For any u, v E X we have that u --4p v implies that u --4pp v implies 
that u --4po v. 

Proof. Note that for any C E Cd and u, v E X we have 

II(u - v)Iclll::::: inf II(pu - v)Iclll ::::: inf II(pu - v)Iclll 
pELo pEL 

and the result follows. o 
By adapting the examples in Section 3, one can demonstrate that implications 

of this theorem cannot be reversed. If we can choose the patch path p so that 

II(p(t)u(x,t) - v(x))Iclll 

decays exponentially fast then all its time derivatives will also decay. This suggests 
that if u approaches a relative equilibrium v such that ~(v) is compact then the 
patch path will converge to a one parameter group in r o, and this in turn may 
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Pattern (a) (b) (c) (d) (e) 
Isotropy Id E(l) Z x E(l) E(l) E(2) 

TABLE 1. Isotropy types of the limiting patterns depicted in Figure 2. 

provide a link to the generic drifts studied in [1]. In fact, the question of bounded 
or unbounded drifts of relative equilibria can be reinterpreted in the following way: 

Proposition 2.3. Suppose that u(x, t) = exp(~t)v(x) is an evolution of a relative 
equilibrium with ~ E Lfo. Then u ----;pp v. Moreover, u ----;p v if and only if the drift 
is bounded, i. e., if and only if {exp ~ t : t E IR} is a compact subgroup of f o. 

3. Case studies 

3.1. Convergence to a spiral wave 

A technique that is used both experimentally and numerically to construct planar 
spiral waves for reaction-diffusion systems that are excitable about a homogeneous 
steady state is as follows (see for example [9, 14, 4]). We use this example to 
illustrate the use of the propagating patch limit. 

1. Take a single infinite wavefront that is localised in Xl, propagating towards 
positive Xl, and parallel to the X2 direction. 

2. The wavefront in the half-plane X2 > 0 is replaced by the homogeneous 
state. This creates a semi-infinite wave with a discontinuous tip; the tip is 
immediately smoothed by diffusion. 

3. At certain parameter values the tip describes a circular motion and the wave­
front winds up to form a spiral. 

Figure l(i-iv) schematically shows the formation of a spiral by this 'kinetic' 
mechanism. If we use the global topology C~b on X, the pattern never approaches 
the spiral state; in fact its w-limit is empty! The only relative equilibrium that is 
approached by this pattern in the patch topology is the group orbit of an infinitely 
wound spiral shown in Figure 2(a); however in the propagating patch topology 
there are limits shown in Figure 2(a-e). This can be seen by taking patches that 
propagate with centres at the points marked (a-e) on Figure 1. 

Note that multiple limits in the propagating patch topology are possible. 
Moreover the limits can have a variety of isotropy types; in Figure 2 we see that 
the set limpp u(x, t) includes relative equilibria with a variety of isotropies listed in 
Table 1. Observe that some isotropies are compact and others noncompact. Each 
of these patterns propagates generically according to its symmetry. 

3.2. Relaxation of a defect in one dimension 

The second example we examine is the heat equation Ut = U xx in one dimension 
(see [6, p1294]). This has solutions of the form 

u(x, t) = A_ + (A+ - A_)erf(x/(2vt)) 
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e 

(i) (ii) (iii) (iv) 

FIGURE 1. Diagram showing formation of an infinite spiral wave from 
propagation of a semi-infinite wave as time progresses from (i) to (iv). 
The locations a-e on (iv) refer to centres of propagating patches that can 
be taken to get convergence to the patch path limits shown in Figure 2. 
The arrows show the sense of motion of the wavefronts and the squares 
the location of the centre of rotation. 

which are asymptotic to A± as x --. ±oo. Given any A E [A_, A+ 1 we can find 
a propagating patch such that u(x, t) --'pp A where A is the constant pattern 
v(x) = A. Thus the propagating patch limit may contain a continuum of patterns. 
This example can clearly be adapted to give convergence to a continuum of periodic 
patterns. 

3.3. Absolute and convective instabilities 
The fixed and propagating patch topologies suggest possible nonlinear analogies 
for absolute and convective linear stability respectively (see eg [5]). 

We say a pattern v(x) is fixed patch stable w.r.t. u if the evolution u(x , t) is 
such that u --'p v and given any evolution w(x, t) with Ilu(x,O) - w(x, 0)119 small 
enough we also have w --'p v. Similarly we say v(x) is propagating patch stable 
w.r.t. u(x, t) if all evolutions w(x, t) with sufficiently small Ilu(x,O) - w(x,0)11 9 
have w --'pp v. A long term aim would be to be able to use absolute/convective 
stability properties of spectra (e.g., [5 , 11]) to prove existence of fixed / propagating 
patch stable patterns. 

4. Discussion 

We suggest that there is a need to develop a 'pre-differentiable' theory for de­
scribing continuous evolutions of patterns. In doing so we have come up with 
some ideas of how one can describe attraction and (convective) stability of pat­
terns without reference to spectral properties of governing equations. Using this 
we see there may be many unbounded patterns that can be reasonably found in 
a single parametrized family of patterns; these patterns can have a range of sym­
metries and can translate and rotate differently in different parts of the domain. 
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~ ~ .. ........ ~ 
(a) (b) (e) 

(d) (e) 

FIGURE 2. The sequence of patterns shown in Figure 1 limits in the 
propagating patch topology to the pattern shown in this figure. The 
spiral shown in (a) is the unique limit in the patch topology. The group 
orbit (under SE(2)) of each of these patterns is contained in the set of 
propagating patch limits. 
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We do not say anything about the 'fronts' that may exist between patterns; this 
remains an interesting challenge. One intriguing question is whether these ideas 
can be usefully developed to understand evolutions on large domains where fi­
nite patches are observed; for example in weak spiral turbulence of the complex 
Ginzburg-Landau equation there are a number of spirals that jostle against each 
other. Given a sensible notion of convergence we can start to discuss attraction, 
stability and bifurcation of patterns on infinite domains, but until we have this 
it remains a very difficult problem (see for example the transition from spiral to 
retracting wave [4, 14, 2]). Linearised stability on unbounded domains is fraught 
with problems associated with the unboundedness; linearised eigenfunctions are 
often unbounded (and so are not in C~b) and we expect that they will describe 
behaviour on bounded regions. 
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Persistent Ergodicity and Stably Ergodic SRB 
Attractors in Equivariant Dynamics 

Michael Field 

Abstract. We describe some recent analytic results on the co-existence of 
symmetry and chaotic dynamics in equivariant dynamics. We emphasize the 
case of skew-products and stably SRB attractors. 

1. Introduction & Background 

It has been known for some time that the assumption of symmetry can lead to 
robust complex dynamics in low dimensional systems. At the same time, the pres­
ence of symmetry can also lead to regularity. It was observed in 1988 by Chossat & 
Golubitsky [10], that both complexity and regularity can co-exist in the dynamics 
of symmetric polynomial mappings of the plane. In this case, the regularity ap­
pears 'on average' and is best expressed in terms of the existence of a symmetric 
(physical) measure. In Figure 1 we show a characteristic example of a numerically 
computed attractor for a non-invertible planar polynomial map with D4 symmetry. 

FIGURE 1. Attractor of a planar map with D4 symmetry. 
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Although the image shown in Figure 1 appears to be D4 symmetric, the sym­
metry is only approximate. Exact symmetry can be obtained through a limiting 
process and is best expressed in terms of the existence of a symmetric physical or 
Sinai-Ruelle-Bowen (SRB) measure on the attractor (see §1.1). 

Although it is rather easy to find numerical examples of 'symmetric chaos' 
in planar polynomial maps, it is notoriously difficult to establish rigorous analytic 
results that prove the existence of chaotic dynamics and physical measures. Indeed, 
just as for one dimensional maps of the line, small changes in the map can lead to 
'windows' of attracting periodic points. 

FIGURE 2. The effect of slowly varying parameters 

In Figure 2 we show the effect of slowing varying a parameter in the map 
that generated Figure 1. The original map was given by 

j(z) = (1.52 - 1.391z12 - 0.0901Re(z5))z - 0.8005z3 . 

The sequence shown in Figure 2 was obtained by successively incrementing the 
coefficient of Izl2 by -0.00014. Reading from the top left, the second image is a 
periodic orbit (with Z5 symmetry). The fourth image may look like a periodic 
orbit but it is a 'Henon-like' attractor. In Figure 3 we show the magnification l of 
a very small region from Figure 3 which lies inside one of the 'dots'. 

The 'random' transitions between chaotic attractors and attracting periodic 
orbits shown in Figure 2 suggests that it is likely to be very difficult, if not im­
possible, to find computable conditions on the generating map that imply chaotic 
behavior. However, if we want to build a theory of chaotic dynamics for equivari­
ant maps, it is vital to have a library of good examples where we can analytically 
prove the presence of chaotic dynamics. To this end, for most of the remainder of 

IThe magnification is by a factor of 21,205 in both the x- and y-directions. 
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FIGURE 3. Magnification of a small region in Figure 2, image 4 

this article, we shall be assuming that maps are smooth and invertible and that 
attractors possess at least some uniform hyperbolic structure. 

1.1. Attractors 
It is time to be more precise about exactly what we mean by chaotic dynamics on 
an attractor. 

Definition 1.1. Let f : ]Rn ____ ]Rn be smooth2 . A compact f -invariant subset A of]Rn 
is an attractor if 

(a) There exists an open neighborhood U of A such that f(U) C U and 
nn?or(U) = A. 

(b) f: A ----A is transitive. 

Definition 1.2. An attractor A is SRB ('Sinai-Ruelle-Bowen'), if there exists an 
f -invariant ergodic measure jl on A, such that for Lebesgue almost all x E U, 

n-I 

lim ~"J f" (xl = jl . 
n----tOCl n ~ 

i=O 

The measure jl, necessarily unique, is called the SRB measure (on A). 

Remark 1.3. The reader is cautioned that there are several different definitions of 
SRB measure commonly used in the literature [28]. Under some of these definitions 
there may be more than one SRB measure on an attractor. However, for Axiom A 
attractors, all these definitions are equivalent [4]. If we do not assume Axiom A and 
there are zero Liapunov exponents, then, without further conditions, our definition 
does not imply the measure has absolutely continuous conditional measures on 
unstable manifolds or that the measure is an equilibrium state for the Jacobian 
potential. <> 

If A is an SRB attractor for f, we say A is robust if, for all g sufficiently 
CI-close to f, there exists a compact g-invariant set A(g), close to A, which is an 
SRB attractor for g. We also say A is stably SRB. 

In the following, we always assume an SRB attractor is connected and consists 
of more than one point. In particular, A will not be a fixed or periodic point and 
there will be complex dynamics on A. 

Let r be a compact Lie group and (]Rn , r) be a r-representation. A smooth 
map f : ]Rn ____ ]Rn is r-equivariant if fbx) = ,f(x), for all x E ]Rn, , E r. 

2That is, smooth enough. We usually assume Coo, though C1 or C 2 will often suffice. 
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Suppose that A is an attractor for the r -equivariant map f : JRn --* JRn. We 
define the symmetry group I:A of A by 

I:A {r E r I,A = A}. 

Using our definition of attractor, it is easy to show that ,A is an attractor 
for all, E r and that I: 'Y A = , I:A,-l . Moreover, if, E r \ I: A, then A n ,A = 0. 
See [10] for a proof and applications. 

In the remainder of this article, we shall describe recent results about the 
existence of robust SRB attractors for r -equivariant diffeomorphisms. We start by 
looking at the case where r is a finite group and then proceed to examine the case 
where r is a connected (non-finite) compact Lie group. 

2. Attractors for systems equivariant by a finite group 

In the case when there is no symmetry, there is a well-developed theory of hyper­
bolic invariant sets for diffeomorphisms (see [19]). In particular, if an attractor has 
a (uniform) hyperbolic structure, then it has a unique SRB measure. 

Ifr is finite, then there are no dimensional obstructions to hyperbolicity as r­
orbits are zero dimensional. Hence, it is natural to start by restricting to the class 
of connected hyperbolic H-invariant attractors of r-equivariant diffeomorphisms, 
where H is a subgroup of r. In this case (see above) , hyperbolicity implies that 
every H-invariant attractor admits a unique SRB measure. Further, the uniqueness 
implies that the measure is H-invariant. Referring to Figure 1, the conjectured 
SRB measure is D4-invariant. (However, the map used to generate Figure 1 is 
not invertible, the attractor is not hyperbolic and presently there are no available 
techniques to prove the existence of an SRB measure on the attractor.) 

If we assume that the symmetry group of the attractor acts freely on the 
attractor, then it is possible to give necessary and sufficient conditions on the rep­
resentation (JRn, r) for there to exist an equivariant diffeomorphism f : JRn --*JRn 
which has a connected hyperbolic SRB attractor with symmetry group equal to 
H3. Hyperbolic attractors with specified symmetry group may be constructed 
by combining Williams ' theory of expanding attractors [31] with symmetry argu­
ments. We refer the reader to [14] for proofs and statements of the general results 
(which also apply to flows). We give a special case of one general theorem proved 
in [14] as well as an example that illustrates some of the main techniques. 

Theorem 2.1 ([14, Theorem 1.4]). Suppose that n ::::: 4 and that r contains no 
reflections. Then for any subgroup H of r, we may find a smooth r -equivariant 
diffeomorphism of JRn which has a hyperbolic attmctor A with I:A = H. Further, 
we may require that H acts freely on A. 

'j Example 2.2. We take the action of Z2 on JR' defined by (x,y,z) f---' (-x,-y,z). 
This action has fixed point set Fix(Z2) equal to the z-axis. We briefly sketch the 

:lFor results on non-invertible maps, see[3]. 
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construction of a Z2-equivariant diffeomorphism of IR:~ which has a Z2-symmetric 
hyperbolic attractor. The construction goes in three stages. First we choose a 
smooth Z2-equivariant expanding map f of a smooth Z2-invariant graph G c IR:3 

that satisfies Williams' conditions at the vertices of the graph. Let T be a Z2-
invariant tubular neighborhood of G. Following Williams [31], we realize the inverse 
limit of f : G-+G as a solenoidal attractor of a smooth Z2-equivariant embedding 
F : T-+T. Finally, we must show that for our choice of f, F is smoothly equiv­
ariantly isotopic to the identity mapping of T. It then follows by the equivariant 
isotopy theorem that F extends smoothly to an equivariant diffeomorphism of IR3 . 
We have to be careful with the last step. For example, if we take G to be the unit 
circle in the x, y-plane and f(8) = 38, then we cannot equivariantly isotop the 
resulting F : T-+T to the identity map on T (the z-axis blocks any equivariant 
isotopy). 

·0 

w' 

FIGURE 4. A smooth Z2-invariant graph 

In Figure 4, we show a smooth Z2-invariant graph G with vertices v, wand 
(directed) edges al,b1,a2,b2. We regard the graph as Z2-equivariantly embedded 
in the x, y-plane. We define a smooth expanding map f : G-+G according to the 
Z2-symmetric set of edge rules 

f(ad a21b2 al, f(bd b21a2b1, 
f(a2) ai1bla2, f(b2) bi 1a lb2' 

Since the edge rules are Z2-symmetric, it is easy to see that we can require f to be 
Z2-equivariant. Finally, observe that the image of each edge E by f is an arc A(E) 
joining the two vertices v, wand that A(E) can be equivariantly isotoped to E 
within IR2. Using this it is not hard to see that we may require the corresponding 
map F : T -+T to be equivariantly isotopic to the identity on T. We refer to [14, 
§§3,4] for details. \! 

Our constructions provide a large class of stably SRB symmetric attractors. 
Indeed, every hyperbolic SRB attractor is stably SRB since hyperbolicity is an 
open condition for attractors and connected hyperbolic SRB attractors admit a 
unique SRB measure (of course, the SRB measure may change when we perturb 
the map). 

Matters are very different if r is not finite and r acts freely on an attractor 
A. In this case, the attractor can never be hyperbolic. 
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3. Skew extensions by compact connected Lie groups 

Let <P : N --+ N be a smooth diffeomorphism of the compact manifold N. Suppose 
that A c N is a hyperbolic attractor for <P. Set ¢ = <PIA. We say that a map defined 
on A is smooth if it extends to a smooth map defined on some open neighborhood 
of A (in N). 

We assume that f is a compact and connected Lie group. Let Coo (A, r) 
denote the space of smooth cocycles f : A--+f. For 00 2: r 2: 0, we define the 
corresponding CT topology on COO(A, f). If f E COO(A, r), define ¢! : f x A--+f x A 
by 

¢!(r, A) = (rf(A), ¢(A)), (r E f, A E A). 

We have a natural left action of f on f x A and, with respect to this action, 
¢! is f -equivariant. We say that ¢! is a f -extension or skew extension of ¢ by f. 

Let p, denote the SRB measure on A and h denote Haar measure on f. Set 
v = h x p,. Then, for all co cycles f, ¢! is a v-measure preserving diffeomorphism 
of f x A. 

Basic questions: Can we choose f so that f x A is an SRB attractor with SRB 
measure v? Can f x A be a robust SRB attractor for ¢ f (within the class of 
f-equivariant diffeomorphisms of f x N)? 

3.1. An example: The skew cat map 

Let A denote the area measure on the 2-torus ']['2 = ]R2 I'll} induced from Lebesgue 
measure on ]R2. Take the Thom-Anosov diffeomorphism (cat map) A : ']['2--+']['2 de-

fined by the matrix A = (i ~). Since det(A) = 1, A is a A-measure preserving 

diffeomorphism of ']['2. It is well known that A is A-ergodic [29] and hence A is SRB 
(A is already Lebesgue). Let c E SO(2) and define the SO(2)-extension 

Ac : SO(2) x ']['2--+S0(2) x ']['2, 

by Ac(O, t) = (0 + c, A(t)). Although k is never hyperbolic, it is hyperbolic trans­
verse to the action of SO(2). That is, transverse to the group orbits. The map Ac 
is an example of a partially hyperbolic diffeomorphism [7, 25]. 

It is easy to verify that Ac is ergodic if and only if c defines an irrational 
rotation. Of course, Ac can never be stably SRB. Nevertheless, there is a CO-open, 
Coo dense set of smooth co cycles f for which A! is stably SRB. With slightly 
different hypotheses and conclusions, this result follows from a general theorem of 
Brin [5,6]. Much later, Adler, Kitchens, Shub [1] reproved the result and obtained 
an elegant characterization of stably SRB related to the Livsic periodic point 
theorem. Specifically, they proved that A! is stably SRB if and only if there exists 
a pair of periodic points p, q of A with the same period, N say, such that 
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The CO-openness, Coo density result follows immediately from this inequality. 
Later, Burns & Wilkinson [8J showed4 that if A! is stably SRB within the class of 
skew extensions, then it is stably SRB within the class of smooth volume preserving 
diffeomorphisms of SO (2) X 'Jr2 . 

3.2. Stable Ergodicity 

Before describing some recent results on robust ergodicity for attractors of equivari­
ant maps, we briefly review some of the recent developments on stable ergodicity 
both for symmetric and for volume preserving diffeomorphisms (no symmetry). 

A (volume preserving) diffeomorphism of a compact manifold is called stably 
ergodic if it is ergodic and any small volume preserving perturbation of it remains 
ergodic. 

A basic question is to understand the typicality of ergodicity for smooth 
dynamical systems. In 1967 Anosov [2J proved that hyperbolic diffeomorphisms 
preserving a measure equivalent to a volume are ergodic. Since hyperbolicity is a 
(C1_) open condition, Anosov systems give examples of open sets of stably ergodic 
transformations. Unfortunately, hyperbolicity is a very strong condition. In 1994, 
Grayson, Pugh & Shub [18J showed that the time-l map of the geodesic flow 
on a surface of constant negative curvature was stably ergodic (within the class 
of volume preserving diffeomorphisms). The time-l map is not hyperbolic but is 
partially hyperbolic (hyperbolic transverse to trajectories of the flow). Later, Pugh 
and Shub [25J conjectured that among partially hyperbolic volume preserving C 2 _ 

diffeomorphisms stable ergodicity is dense (and automatically open). Recently, 
many new results have been proved on stable ergodicity for volume preserving 
diffeomorphisms. We refer to [9J for a recent survey. 

The first results on stable ergodicity within the class of skew extensions by 
compact Lie groups were obtained by Brin in 1975. Brin, in the context of frame 
flows on negatively curved manifolds, proved that skew extensions over an Anosov 
system were generically Cl-stably ergodic [6J. Using results of Parry [23J, Parry and 
Pollicott [24J extended Brin's results to a large class of toral extensions (connected 
compact abelian Lie groups). Specifically, they proved the following 

Theorem 3.1. Let A be a hyperbolic basic (locally maximal) set. Assume that either 
A is a subshift of finite type or A is connected and ¢*: Hl(A,Z)-'>Hl(A,Z) does 
not have one as an eigenvalue. Then there is an open (CD: -topology, ex > 0) and 
dense (COO-topology) subset U of COO(A, 'Jr"') such that for all fEU, ¢! is ergodic 
and mixing. In case, A is connected, openness holds in the CO -topology. 

In Field & Parry [17], results were obtained on extensions by general com­
pact connected Lie groups over basic sets. For simplicity of exposition we restrict 
attention to extensions over SRB at tractors and make use of results in [15, 16J. 
We recall that a compact connected Lie group r is semisimple if and only r has 
finite center. 

4The results of [8] hold for a large class of f-extensions oyer general Anosoy systems. 
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Theorem 3.2. Let r be a compact connected Lie group. Suppose that ¢ : A--'>A is a 
hyperbolic attractor. Then ¢! will be stably SRB for f in a CO -open and Coo -dense 
subset of COO (A, r). The same result holds for principal bundle extensions of ¢. 

If r is semisimple, then ¢! is ergodic if and only if it is stably ergodic. 

Remark 3.3. Generic stably SRB holds within the class of r -equivariant diffeo­
morphisms [15]. <) 

There are examples [17] where there is generic stable ergodicity of skew ex­
tensions over a non-uniformly hyperbolic base. 

The proof of Theorem 3.2 is relatively straightforward when r is semisimple. 
In this case one can exploit the fact that the set of topologically generating pairs 
for r form a (Zariski) open subset of r 2 (see [17, 13]). 

4. Partially Hyperbolic Symmetric Attractors 

Thus far in our examples of stably SRB attractors, we have always assumed that 
the action of r was free. We now remove this restriction. 

Throughout this section, we assume that <I> : M --'> M is a smooth r -equivariant 
diffeomorphism of the compact riemannian r-manifold M. We also assume that A 
is a compact connected r- and <I>-invariant subset of M. We denote the restriction 
of <I> to A by ¢ and let ¢ denote the map induced on the orbit space Air by ¢. 

In the context of maps equivariant with respect to a compact connected Lie 
group, it is useful to make a small change in our definition of attractor. Rather than 
~emanding that ¢ : A--'>A is transitive, we only require that the orbit space map 
¢ is transitive. With this proviso, our definition of SRB attractor is unchanged. 

4.1. Transverse hyperbolicity 

When r is not finite, we replace our hypothesis of hyperbolicity by one of partial 
hyperbolicityor transverse hyperbolicity [15]. Roughly speaking, we assume that 
on A, ¢ is hyperbolic transverse to r-orbits (partial hyperbolicity with center 
foliation given by r-orbits). For this to make sense, we need to assume that all 
r-orbits are of the same dimension. As a further simplification we assume that (a) 
all r -orbits of points in A have dimension equal to that of r, and (b) that there is 
an open and dense subset of points of A on which A acts freely. 

Definition 4.1. The attractor A is transversally hyperbolic for <I> if 

(a) All r -orbits in A have dimension equal to the dimension of r. 
(b) There exists a 'JTf>-invariant splitting ES EB ElL EB TA of TAM into continuous 

sub bundles, and constants c, C > 0, ,\ E (0,1), such that for all n E N, 

II Tx<I>n (v) II 
II Tx<I>n (v) II 

< c),nllvll, (v E E~,x E A) 

> c,\-nllvll, (v E E~,x E A) 

( 4.1) 

( 4.2) 
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Example 4.2. Let f : N ----) N be a smooth diffeomorphism, and X c N be a 
hyperbolic attractor of f. Every skew extension of f by a compact Lie group is 
automatically transversally hyperbolic. c:; 

Example 4.3 (Twisted cat map extension). Let f : '['2----)SO(2) be a smooth co cycle 
and consider the corresponding SO(2)-extension of the cat map defined in § 3.1: 

Af : SO(2) x '['2----)SO(2) x '['2; (8, t) f---> (8 + f(t), ¢(t)) 

Observe that minus the identity map on]R2 induces an involution Ii of '['2 which has 
four fixed points. Set 2 2 (1i) = 22 and note that the cat map A is 2 2-equivariant. 

We have a free action of 22 on SO(2) x '['2 defined by 

1i(8, t) = (8 + 7r, lit) 

Let SO(2) x Z2 '['2 denote the orbit space of the 2 2-action- the twisted product 
of SO(2) and '['2 (by 22) . 

The action of SO(2) on SO(2) x '['2 drops down to a non-free action on 
SO(2) XZ2 '['2 - there are four singular SO(2)-orbits corresponding to the four 
fixed points of the 2 2-action on '['2. 

Suppose that the co cycle f : '['2----)SO(2) is 2 2-invariant: 

f(lit) = f(t), (t E '['2). 

Then Af induces a smooth SO(2)-equivariant diffeomorphism Aj of SO(2) XZ2 '['2. 
The volume measure on SO(2) x '['2 drops down to a volume measure on the twisted 
product and Aj is volume preserving. 

The map Aj : SO(2) xZ2 '['2----)SO(2) xZ2 '['2 provides an example of a partially 
hyperbolic attractor which is not a skew or principal extension. For this example, 
we may follow Brin's original quadrilateral argument and perturb within the class 
of 2 2-invariant cocycles so as to show that Aj is generically stably SRB. c:; 

4.2. Results 

We define a map f : M ----) r to be r -equivariant if 

f(rx) = ,f(xh- 1 , (x E M" E r). 

We let Cr(M, r) denote the space of smooth r-equivariant maps from M to r. 
Observe that if f E Cr(M,r), then 1>f = f 0 1> : M----)M is a r-equivariant 
diffeomorphism. Clearly, 1> f and 1> induce the same map on the orbit space M Jr. 

The next result was obtained jointly with Matthew Nicol. 

Theorem 4.4 ([15]). Let r be a compact connected Lie group, and A be a transver­
sally hyperbolic attractor of the smooth r -equivariant diffeomorphism of M. For 
a CO-open, COO-dense subset of maps f E Cr(M, r), ¢f : A----)A is stably SRB 
(within the class of equivariant diffeomorphisms on M). 

Remark 4.5. The theorem holds for a wide range of locally maximal transversally 
hyperbolic sets and for general equilibrium states defined by a r-invariant Holder 
continuous potential on A. We refer to [15] for detailed statements. <; 
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4.3. Notes on the proof of Theorem 4.4. 
In general, matters are more complicated than might be expected from the situa­
tion described in example 4.3. 

Roughly speaking, the proof of Theorem 4.4 depends on showing that Air 
admits 'Markov partitions' and so symbolic dynamics. Using methods based on 
earlier results of Ruelle & Sullivan [26], we can then prove absolute continuity 
results for the stable and unstable foliations of A and then deduce Livsic regularity 
theorems that allow the proof of strong results on ergodic components (cf [23, 24]) . 
Finally we are able to apply a theorem of Ledrappier & Young [21] to deduce that 
A is SRB. 

As far as the construction of Markov partitions on the orbit space goes, we 
remark that if the action of r is not free, then ¢ : Air -tA/r is never expansive. In 
spite of this, it is possible to construct a reasonable (finite) symbolic dynamics on 
Air [15]. The symbolic dynamics turn out to playa crucial role in the construction 
of equilibrium states - including SRB measures - on A [15]. 

Stable manifold through the origin 
w· 

x/Y 

Unstable leavei ___ / 

~~"""'" 

Unstable manifold through the ergin 

/ 
-Lu 

-yf'-x 

~ Stable leaves 

FIGURE 5. Failure of expansiveness 

Example 4.6 (cf [11, 15]). The orbit space of the twisted product discussed in 
example 4.3 is naturally identified with '['2/22 which is homeomorphic to the 2-
sphere 8 2 . Let A denote the map induced by Aj on 8 25 . We claim that the induced 

map A on 8 2 is not expansive. In Figure 5, we show the stable and unstable 
manifolds of the cat map near the fixed point of the 2 2-action corresponding to 
the origin of ]R2. Referring to Figure 5, choose two points x, y which lie on the 
same unstable leaf Lu and are on opposite sides of, and equidistant along L u , from 

54> is an example of a pseudo Anosov map. 
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the stable manifold W S through the origin. Let -x, -y denote the Z2-symmetric 
images of x, y. It follows by equivariance that -x, -y E - L u , and by linearity that 
x, -y lie on the same stable leaf. Let E > O. Fixing L u , we may choose x, y so close 
to WS, that for some N > 0, we have 

IAn(x) - An(y)1 < E, 0::; n < N, and IAN (x) - AN (- y)1 < E. 

Since A expands Lu and contracts L s, it follows that for all nEZ, the distance 
from An (x) to {An (y), An ( - y)} is less than E. Since x, y define different points of 
the orbit space, it follows that A cannot be expansive. C/ 

Remark 4.7. The argument given in example 4.6 is quite general and can be 
shown to apply to any transversally hyperbolic locally maximal set which contains 
singular group orbits [15]. <> 
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Bistability of Vortex Modes 
in Annular Thermoconvection 

Dan D. Rusu and William F. Langford 

Abstract. Spatio-temporal vortex patterns arise in radially forced thermo­
convection of a fluid in an annulus. A model based on the two-dimensional 
Boussinesq fluid equations is analyzed using O(2)-equivariant bifurcation the­
ory, coupled with asymptotic numerical analysis. Calculation of the center 
manifold equations and normal form coefficients allows us to identify and 
classify the steady-state patterns as well as rotating waves. In particular, we 
show that the type of secondary transition between the pure mode solutions 
varies according to the Prandtl number of the fluid. 

1. Introduction 

The general theory of steady-state mode interactions (of co dimension two) in the 
presence of 0(2) symmetry was presented first by Dangelmayr [8] and was dis­
cussed further in [2, 10]. Based on this general theory, an analysis of the model­
independent aspects of pattern formation in annular convection of a fluid was pre­
sented in [15]. This model-independent analysis gives a variety of spatio-temporal 
patterns near the codimension-two point; for example, a prediction that one of 
two mutually exclusive transitions would occur between the two primary branches 
of pure mode solutions in a physically-relevant annular convection model: either a 
discontinuous transition involving bistability and hysteresis , or a continuous tran­
sition along a stable mixed mode branch. Another possibility is the existence of 
rotating waves, determined by higher order coefficients. It was proposed in [15] 
that a more detailed description of the model, taking into account physical prop­
erties of the fluid and involving explicit numerical computations, would answer 
the question of which transitions actually occur in a given physical context. That 
question is resolved in this paper, for annular thermoconvection of a fluid in the 
Boussinesq approximation, at various Prandtl numbers. We find that the types 
of transition which occur depend on the Prandtl number: lower Prandtl number 
fluids such as mercury or gas-giant planetary atmospheres behave differently from 
higher Prandtl number fluids such as water or air. 

The algebraic and analytical methods in [8 , 15] have been augmented with 
numerical algorithms to compute the center manifold and the values of the coeffi­
cients of the normal form which decide this dichotomy. Generically, only a small 
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number of modes associated with the PDEs of fluid mechanics go neutrally sta­
ble at one time, this number being the codimension of the corresponding point in 
parameter space. In this paper we consider only codimension-two points involving 
steady-state modes (corresponding to real zero eigenvalues). The neutrally stable 
modes define a finite dimensional center manifold at the codimension-two points 
and allow questions about the behavior of solutions of the original PDE system to 
be reduced to (local) questions about solutions of an ODE system on this center 
manifold. An essential feature of this reduction is that the symmetry properties of 
the solutions are preserved, and as a result the equations on the center manifold 
take an especially simple form , the equiyariant normal form. This normal form 
determines the bifurcations of various nontrivial solutions, which represent both 
steady-state and spatio-temporal patterns in the fluid. 

The organization of this paper is as follows. Section 2 describes the geophys­
ical systems which motivated this study, together with their governing PDEs and 
symmetry properties. The neutral stability curves and the codimension-two bifur­
cation points are determined numerically in Section 3. The primary bifurcations 
from the trivial solution to nontrivial patterns occur along these neutral stability 
curves. An asymptotic center manifold reduction is described in Section 4, and im­
plemented numerically, making possible the determination of the coefficients of the 
normal form. In Section 5, the analytical/ numerical analysis of pattern formation 
in annular thermoconvection is summarized and some of the numerical predictions 
are presented in the form of bifurcation diagrams. 

2. Geophysical Annular Thermoconvection 

Geophysical fluid dynamics deals with the motions of the Earth's atmosphere and 
oceans. This study is motivated in part by geophysical convection occurring in the 
equatorial plane. Also relevant is equatorial convection in the mantle of planets 
such as the Earth, and in the thick atmospheres of Jovian planets. 

2.1. Thermoconvection in the Equatorial Plane 

Consider the Earth as a sphere and the Earth's atmosphere as a spherical shell. 
Assume the equatorial plane is a plane of reflectional symmetry of the Earth. The 
equatorial plane intersects the atmosphere in an annulus . The forces acting on the 
atmosphere normal to this plane are negligible; only tangential forces in the plane 
are significant. Assuming this idealized symmetry, there is the possibility of flow 
patterns for which the equatorial plane is invariant. This provides a justification 
for assuming a three-dimensional fluid to behave as if it were two-dimensional. 

The flow in the annulus is convective, driven by the radial gravitational force 
and buoyancy due to heating at the Earth's surface. This convective force is mod­
elled using the Boussinesq approximation, described in the next subsection. The 
Coriolis and the centrifugal forces due to the rotation of the planet may be con­
sidered negligible in this model [4, 18]. As a consequence of this assumption, the 
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system has 0(2)-symmetry and the primary bifurcations are to steady vortex so­
lutions. Recent observational work has revealed unexplained large-scale waves in 
the equatorial plane of the troposphere [ll]. 

A similar situation occurs in the earth's mantle, which acts as a fluid with an 
extremely high Prandtl number. The driving force is convective, due to the intense 
heat at the earth's core. However, the validity of the Boussinesq approximation is 
questionable for the earth's mantle [20]. 

2.2. Boussinesq Approximation 

Consider a two-dimensional incompressible viscous fluid flow in an annular region 
n, described by the velocity vector field v(t, x) == (u, v), where x := (r,8) is 
position in polar coordinates, at time t. The boundaries of n are r = Rk (k = L 2), 
0< Rl < R2 , or in nondimensional form (with d := R2 ~ Rl as the unit of length) 
r = rk (k = 1,2), with r] = 7]/(1~7]) and r2 = 1/(1~7]). Here 7]:= RdR2 E (0,1) 
is the radius ratio. Let X:= (u,v,T,p) be a vector-valued function of (t,r,8) E 

IR+ x (r], r2) x IR/27fZ, where p is pressure and T is temperature. 
Annular thermoconvection may be modeled in a first approximation, and 

after appropriate scaling, by the nondimensional Boussinesq system [15] 

1 dv 
Pr dt = Ra [~gradp + v6.v + (T ~ To) e r ], divv=O, dT = 6.T (1) 

dt ' 

considered together with nonslip BCs for the fluid velocity v, and with the tem­
perature T kept fixed at the two boundaries: JT:= TII'=l'l ~ TI,.=r2 > 0. In the 
above, To denotes a reference value of the temperature, Pr is the Prandtl number 
(an intrinsic physical property of the fluid), and Ra is the Rayleigh number (pro­
portional to JT). The total time derivative operator d/dt:= a/at + V· grad in 
the equations is the source of the nonlinearity that makes our problem nontrivial. 

There exists an equilibrium satisfying (v,a/at) == 0, with the heat trans­
ported purely by thermal conduction. This motionless radially conducting solution 
Xe = (0, 0, Pe(r), Te(r)) of the Boussinesq system may be determined analyti­
cally: the temperature at equilibrium is given by Te(r) = (JTo/ln 7]) In(r /r1) + To· 

2.3. Symmetries 

The annular geometry and the Euclidean symmetry of the Boussinesq system (1) 
imply that our system is invariant under the action of the continuous group 0(2), 
generated by the special orthogonal subgroup 80(2) consisting of planar rotations 
R<p, rp E [~7f,7f], and the finite subgroup Z2 = Z2(")' where" is the reflection 
about the x-axis. 

A finite subgroup of 0(2) of interest is the dihedral group D n , identified with 
the group of 2 x 2 matrices generated by R27f In (n E N) and ". In the asymptotic 
limit of a small gap the geometry becomes that of flow between two parallel walls, 
with the symmetry Z2 EEl Z2 and periodic BCs. 
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3. Linear Stability Analysis 

The first step of the analysis is to determine in the (ry, Ra) plane the neutral sta­
bility curves which separate the domains where the equilibrium solution is linearly 
stable from those where it is linearly unstable. Off of these neutral curves, hyper­
bolicity implies that the nonlinear system and its linearization have locally the 
same asymptotic stability/instability, for the equilibrium solution. 

3.1. Nonlinear Initial-Boundary Value Problem 

Translate the equilibrium solution of the Boussinesq system to the origin (trivial 
solution). Then the system may be written in the form of a nonlinear initial­
boundary value problem, with homogeneous BCs, of the form 

L(~)X + N( X,X; ~) III 0, 

CX!t=o Xo in 0, (2) 
CX 0 on 00. 

Here ~ := (Ra, ry), C:= diag(l, 1, 1, 0), L(~) is a linear differential operator 
with non-constant coefficients, and N(., .;~) is a quadratic operator satisfying 
N( 0, 0; ~) = o. It includes the advection terms derived from the material time 
derivative of CX, see [20]. 

The pressure variable p may be eliminated from the system by any of several 
techniques, see [20]. Here, we consider pressure as a Lagrange multiplier associated 
with a constraint of the form of the divergence-free condition, and thereby maintain 
p in the system. Numerically, this leads to treating p as a secondary variable defined 
on a mid-point grid, where also the incompressibility constraint is discretised [17, 
19]. The use of a mid-point grid stabilizes the numerical method; if pressure is 
calculated at the same points as velocities, then there is a risk of unstable numerical 
solutions with an "oscillatory pressure". In addition, it avoids the need for BCs 
for the pressure. 

3.2. Normal Modes 

The PDE system (2) has a linearization of the form OtCX = L(~)X. The sub­
stitution X( t, r, e) = eAt X( r, e) reduces this to a generalized eigenvalue problem 
L(~)X = A CX with homogeneous BCs. The general solution is then a superposi­
tion of normal modes of the form Xm (r, e) = Y m (r) ® 3( me), where ® indicates 
dyadic product, Y m := (U,V,T,P), 3(0:):= (eiC>,_ieiC>,eie>,eie», and U,V,T,P 
are real-valued functions. The linear stability computations (which are Prandtl in­
dependent) are thus reduced to solving a linear two-point boundary value problem 
for Y m(r), rl::; r ::; r2. 

3.3. Neutral Stability Curves 

The generalized eigenvalue problem with homogeneous BCs yields a countable 
infinity of neutral curves Ra = Ra(m) (ry), mEN, where an eigenvalue is zero. The 
bicritical point (ryc, Rae) is the transverse intersection of two consecutive neutral 
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curves, Ra = Ra(ml(7]) and Ra = Ra(l) (7]), l = m + 1. These were computed using 
finite differences on a staggered mesh, for mode numbers m = 2, ... ,15. The mesh 
size was successively refined to test for numerical convergence. All computations 
were implemented in Matlab. Neutral stability curves corresponding to consecutive 
values of the mode number m are shown in Figure 1. For example, with (m, l) = 

(2,3) the codimension-two point is (7]e, Rae) = (0.2633,1896) [20]. All of the results 
in Figure 1 are independent of Prandtl number. Note that the neutral stability 
curves become successively closer as m gets bigger. 
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FIGURE 1. Consecutive Neutral Stability Curves. The trivial solution 
is stable at all points below the envelope of these curves. 

4. Center Manifold Reduction 

Under reasonable conditions satisfied by many PDE systems such as this one [12], 
there exists a center manifold we, tangent to the center eigenspace at the origin, 
and of the same dimension (four-dimensional at these codimension-two points). If 
the remainder of the spectrum is bounded away from the imaginary axis in the 
left half-plane, as in the cases considered here, then locally all solutions near we 
will approach it exponentially with increasing time. Thus the study of the long­
time behavior of solutions of the PDE system near the origin is reduced to that 
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of solutions of an ODE system on this center manifold. Symmetry properties are 
preserved by this reduction. 

We use an asymptotic method for extracting amplitude equations for the 
ODE system on the center manifold from the PDE model of the physical system, 
when the system is near points of codimension-two bifurcation. The solutions on 
the center manifold are computed approximately using Taylor series about the 
bicritical point. See [20] for a detailed description of this reduction procedure. It 
requires solving a sequence of linear nonhomogeneous two-point boundary value 
problems, similar to the generalized eigenvalue problems in the previous section. 
Similar ideas have been used in [3, 6, 19], for other bifurcation problems. 

4.1. Numerical Analysis 

In order to solve the sequence of linear nonhomogeneous boundary value problems 
at each step of the asymptotic procedure, we consider again a stagger-cd mesh. 
All computations were performed twice, employing independently both a spectral 
method and a finite difference method, as a test of accuracy. The results obtained 
in the two approaches agreed very well [20]. 

Our final conclusions, based on equivariant bifurcation theory, require only 
the knowledge of the signs of several quantities defined in terms of the numerically 
computed coefficients of the normal form. Small errors in the computations will not 
affect the signs of these coefficients; this implies that our qualitative predictions 
are robust to the inherent numerical errors. 

5. 0(2) Mode Interactions 

The general context for a symmetry based analysis of pattern formation is equi­
var-iant bifurcation theor-y, presented for the first time as a complete theory in [10]. 
The application of this theory to annular convection was summarized in [15]. 

5.1. 0(2) Equivariant Normal Form 

The action of 0(2) on ([:2 is given by: (). (ZI,Z2) = (eimeZl,eitez2), ,"" (ZI,Z2) = 
(ZI,Z2), where () E [0, 27f). The normal form for the 0(2)-equivariant ODE system 
is 

[;~ ] =Pl [ ~ ] +P2 [ ~2 ] +ql [ Zi-~Z2' ] +q2 [ZiZ~I-I] (3) 

together with the two complex conjugate equations for ZI and Z2· Here PI, P2, ql, q2 
are invariant real functions of (u,v,w;p,), such that Pl(O,O,O) = P2(0,0,0) = 0, 
and {u,v,w} is a Hilbert basis, with u:= IZ112, v:= IZ212, w:= ZiZ2 + ZiZ2' 

The lattice of isotmpy subgmups (m ~ 2) provides a valuable way to organize 
conceptually the bifurcation analysis. For our case, the initial bifurcations lead to 
waves with maximal isotropy subgroups Dm or D/; the secondary instabilities of 
these waves lead further to motions with submaximal subgroup Z2. Each isotropy 
subgroup determines a corresponding fixed-point subspace, which is invariant for 
the time-evolution of solutions. Since Fix(Z2) contains both Fix(Dm) and Fix(Dt) 
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and there are no steady-states of (3) other than in Fix(Z2), we may restrict the 
system to Fix(Z2) and solve it there. Thus symmetry has further reduced the 
dimension of the problem for steady-states from four to two. However, since in­
teresting dynamics (such as rotating waves) may be expected to occur off of the 
subspace Fix(Z2) ~ ]R2 of (:2, amplitude-phase equations also are employed. 

Based on the experimental evidence, and confirmed by our numerical calcu­
lations, the codimension-two points of neutral stability involve only consecutive 
mode numbers as shown in Figure l. Therefore, we take l = m + 1 with m ~ 2 in 
the following. 

5.2. Z2 E8 Z2 Symmetric Approximation 

For large m, the m-dependent terms are higher order, and the resulting equations 
are essentially equivalent to the Z2 E8 Z2-symmetric normal form [10, 15]. There 
are two primary pitchfork branches from the trivial solution, and secondary mixed 
mode branches with both of x, y i- 0, occurring as four conjugates (±x, ±y) under 
the Z2 E8 Z2 symmetry. The secondary Z2-branches may link the two primary 
branches in two different ways. Either the secondary branch is itself unstable but 
effects an exchange of stabilities with bistability and the possibility of hysteresis 
between the two primary branches, or the secondary branch is itself stable and 
effects a continuous transition between the primary branches, along a stable mixed 
mode branch. Which of these two mutually exclusive possibilities actually occurs is 
determined by the (numerically computed) normal form coefficients. In the present 
study, the leading order normal form coefficients were computed for (3) in the 
case q] = q2 = W = ° (the Z2 E8 Z2 symmetric approximation), for m ranging 
from 2 to 15. In all cases, the type of secondary bifurcation found was that of 
bistability /hysteresis between primary branches, and not a continuous transition 
along a stable mixed mode branch, see [20]. 

The m-dependent terms in the normal form (3) break the Z2E8Z2 symmetry, 
as described in [15]. A single Z2-equivariance remains: (x, y) -+ (-x, y) if m odd, 
and (x, y) -+ (x, -y) if m is even. The effects of this can be seen in the "imperfect" 
pitchfork bifurcations in the bifurcation diagrams below. Another consequence of 
this broken symmetry is that the four-dimensional normal form reduces only to a 
three-dimensional amplitude-phase system for time-dependent solutions. 

5.3. Normal Form Restricted to Fix(Z2) 

With l = m + 1 in (3), the flow on the center manifold is approximated by the 
truncated system (retaining leading order terms in P1 ,P2, q1 , q2) 

(a + a30 u + a12 v) Z1 + a22 zmz;''' (4) 
((3 b b) b m+1-m-l + 21 U + O:l V Z2 + :31 z1 z2 , 

together with the conjugate equations. For the numerical computations, we have 
taken 

a22 b31 i= 0, for m = 2 (strong mode interactions), 

a22 = b31 = 0, for m ~ 4 (weak mode interactions). 
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Note that the approximation a22 = b31 = ° in (4) reduces the system to the third 
order Z2 EEl Z2-equivariant bifurcation problem on ]R2 described above. For large 
m, these terms cause only small symmetry-breaking perturbations of the Z2 EEl Z2 
case. For m ;;::: 4, these symmetry-breaking terms are of order at least 8. For m = 3, 
these terms are order 6; just one higher than the symmetric fifth order terms in 
PI Z I and P2 Z2 of (3) , which have been omitted from (4). We have not computed 
the normal form to order 6 in the case m = 3; however, we do present here, for the 
first time, the effects of the Z2 EEl Z2 symmetry-breaking terms in the case m = 2. 

The truncated bifurcation equations restricted to Fix(Z2) are 

0, (5) 

0. 

where we assume a;{O b03 =1= 0, .0. := a:lob03 - a12b21 =1= 0. The steady-state solutions 
for the normal form restricted to Fix(Z2) are: 
• Trivial solution T, with x = y = 0. 
• Pure mode solutions Sm and Sl given by primary bifurcations from T: Sm : x2 = 
-a/ a30, y = 0, and Sl : x = 0, y2 = -/3/ bo;{, respectively. Note that Sm exists if 
and only if a30 a < 0, and Sl exists if and only if b03 /3 < 0. 
• Mixed mode solutions S± arising in pairs as secondary bifurcations from Sm or 
Sl, with both x , y =1= 0, given when m = 2 by 

0, (6) 
2 ( 2 2) /3l - .0.x +x a12b:llx -a22b03Y 0, 

where a m := b21 a - a30 /3 and /3 l := -bm a + a12 /3. Note that S± exist if and 
only if .0. am > ° and .0. /3l > 0. 

The corresponding bifurcation points lie on the following lines in parameter 
space (see Figures 2 and 3) 

Sm n T: a = 0, and Sz n T: /3 = 0, and S± n Sz: /3l = 0, 

S± n Sm: am = 0, if m ;;::: 4 and am ± 0(3/2) = 0, if m = 2. 

Transversality implies the persistence of these solutions (in the parameter-phase 
space) and of the stability assignments , when the higher-order terms are reintro­
duced in the normal form. 

5.4. Amplitude-Phase Equations 
In this section we work with general land m, although our main interest is the 
case l = 3, m = 2. With Zl = rei '!', Z2 = sei 'lj; , and B := l'{J - m'lj; in (3) , we obtain 
the reduced amplitude-phase system 

r rPl+rl-1smqlcosB, s = sP2+rzsm-lq2cosB, (7) 

iJ _rZ- 2sm- 2 (ls2ql + mr2q2) sinB, 

which is a closed system, since r2q2 if + s2ql ;p == ° [8, 10] . The emergence of the 
mixed phase B and the corresponding reduction is a consequence of the SO(2)­
symmetry. Note that B = ° and B = 7f are invariant planes under the flow. 
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The following steady-states of the amplitude-phase system with () 0,7r 
(<p = 0, ?j; = 0) correspond to true steady-states of the original normal form: pure 
modes Sm: s = 0, r "I- 0, Sl: r = 0, s "I- 0, and mixed modes S±, when r "I- 0, s "I- ° 
and sin () = 0, PI ± r l- 2 SmqI = 0, P2 ± rl Sm-2 qI = 0. 

Steady-state solutions of the amplitude-phase system with () "I- 0, () "I- 7r are 
determined by ls2 qI +mr2 q2 = 0, and PI +rl- 2 s7nq} cos () = 0, P2+r1 sm- 2q2 cos () = 
0. They represent quasiperiodic solutions of the original normal form (rotating 
waves RW) in which () remains constant, but 'P and 'lj; both increase/decrease 
linearly with time. They come in pairs and exist if q1 q2 < 0, which locally holds 
in the case m = 2, l = 3, if 

a22b:ll < 0. (8) 

They are examples of relative equilibria: "rigidly rotating" motions which become 
true equilibria in a suitable rotating coordinate frame. Their isotropy group is the 

-- 2 spatia-temporal subgroup SO(2) C SO(2) x Sl, where SO(2) C 0(2) acts on C 
by an m-fold rotation on the first component, an l-fold rotation on the second 
component, and the circle group SI stems from the temporal oscillations [8, 10]. 
The stabilities of these steady-state solutions are determined in [20]. 

5.5. Bifurcation Predictions 

From the numerically computations of the coefficients of the normal form, we 
obtain a complete classification of the types of steady-state solutions (and some 
time dependent solutions). The case m = 1 is quite different from the others 
[2] and will not be discussed here. We consider only two cases: m = 2 (strong 
mode interactions) and m ) 4 (weak mode interactions). The intermediate mode 
interaction m = 3 was not considered because of the complexity of the calculations 
involved in computing the normal form to sixth order. For brevity, we present here 
the bifurcation diagrams only for the (m, l) = (2,3) case. 

In our calculations: a := alE E +al x x and (3 := bEl E + bx1 x, where the bifur­
cation parameters are E (corresponding to the temperature gradient or Rayleigh 
number) and x (corresponding to the annular radius ratio). In the x,E- plane we 
have (see Figures 2 and 3): 
• primary bifurcation lines: i) (PLm): a = ° and ii) (PLl): (3 = 0, both indepen­
dent of the Prandtl number . 
• secondary bifurcation half-lines (in the existence domain of Sm and Sz): iii) 
(SLm): am = ° and iv) (SLl): (31 = 0. Actually for m = 2, the line (SLm) no 
longer leads to the simultaneous bifurcation of S+ and S_ , but is split into iii) 
(SLm)±: am ± 0(3/2) = 0. These curves are infinitesimally close to each other 
and terminate tangential to the half-line (SLm) at the origin. 

From our numerical calculations a30 < 0, b0.'3 < ° and alE> 0, bEl > 0, see 
[20], we obtain two supercritical pitchfork branches Sm existing for a > ° and 
Sl existing for (3 > 0. Since .0. < 0, S± exist if and only if am < ° and (31 < 0. 
These mixed modes bifurcate from the pure modes along the secondary bifurcation 
half-lines (SLm) and (SLl), located in the existence domain of the pure modes. 
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(iii) 

S+,S-(--++), SI(---), Sm(---), T(+++ ) 
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j SI(-++), Sm(--~f,-TJ++++) 

~ (ii) 
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'" '0; 

~ 
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~ 0 Sm(---), T(--++) 

"t~ 
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FIGURE 2. Bifurcation Lines and Stability Assignments for (m, l) 
(2,3): Mercury (Pr = 0.027). 

(iv) , 

S+,S-(--++), SI(---), Sm(---), T(++++) 

(iii) , 
SI(-++), Sm(---), T(++++} , 

(Ii) 
Sm(-++), SI(---), T(++++) 
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Sm(---), T(--++) SI(---), T(--++) 

(i) 
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(ii) 

_1L--------------~------------~ 
-1 

(radius ratio I critical radius ratio) - 1 

FIGURE 3. Bifurcation Lines and Stability Assignments for (m, l) 
(2,3): Air (Pr = 0.7) and Water (Pr = 7.0). 
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T"" 

il:," 

L, 

T''' 

(a) Mercury (Pr = 0.027) (b) Air (Pr = 0.7), Water (Pr = 7.0) 

FIGURE 4. Gyrant Bifurcation Diagrams, for (m, i) = (2,3). 

The stability ofS± is determined by the eigenvalues { 0, e±, (.\d±, ('\2)± }. 
S± are unstable since (.\d± and ('\2)± are real and of opposite sign. The eigenvalue 
e± will change sign if and only if condition (8) on fourth order coefficients holds 
in the existence domain of S±, which implies the existence of RW n S±. We find 
that S± may encounter a bifurcation to a pair of RW only for the case of a very 
low Prandtl number fluid, such as mercury (see Figures 4(a), 4(b)). We conjecture 
that RW is unstable. We conjecture further that these RW may appear also in the 
case of the gas-giant planets (which are believed to be very low Prandtl number 
fluids) but not in the Earth's atmosphere. 

5.6. Bifurcation Diagrams 
We collect all pieces of information together in gyrant bifurcations diagrams with 
(E, x) moving in a circular path around a circle (the trivial solution) centered at 
the bicritical point, see Figures 4(a)(b). 

The superscript (s) indicates the stable branches and the superscript (u) 
indicates the unstable branches. Labelling of bifurcation points is consistent in 
all the figures and the label key is (i): bifurcation of m-mode from the trivial 
solution; (ii): bifurcation of i-mode from the trivial solution; (iii): bifurcation of 
mixed modes from the m-mode; (iv): bifurcation of mixed modes from the i-mode; 
(v): bifurcation of rotating waves from the mixed modes. 

6. Conclusions 

We draw four conclusions from the computations on which Figures 2, 3 and 4(a)(b) 
are based. First, at all Prandtl numbers, the case of bistability /hysteresis between 
the primary branches occurs, and not the case of a stable mixed mode branch 
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joining the primary branches. Second, the region of bistability exists only for ra­
dius ratios to the left of the codimension-two point when the Prandtl number is 
low, but extends to both sides for higher Prandtl numbers. Third, we predict the 
existence of rotating waves in the case of lower Prandtl number fluids (such as 
mercury, and possibly gas-giant planetary atmospheres). Finally, in the case of 
the earth's atmosphere (high Prandtl number and very large mode number m), 
our calculations are consistent with the coexistence of stable large scale waves or 
vortices in the equatorial plane, phase-shifted systematically with longitude, as 
observed for example in [11]. 
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Secondary Instabilities of Hexagons: 
A Bifurcation Analysis of Experimentally 
Observed Faraday Wave Patterns 

A.M. Rucklidge, M. Silber, and J. Fineberg 

Abstract. We examine three experimental observations of Faraday waves gen­
erated by two-frequency forcing, in which a primary hexagonal pattern be­
comes unstable to three different superlattice patterns. We analyse the bifur­
cations involved in creating the three new patterns using a symmetry-based 
approach. Each of the three examples reveals a different situation that can 
arise in the theoretical analysis. 

1. Introduction 

The classic Faraday wave experiment consists of a horizontal layer of fluid that 
spontaneously develops a pattern of standing waves on its surface as it is driven by 
vertical oscillation with amplitude exceeding a critical value. Recent experiments 
have revealed a wide variety of complex patterns, particularly in the large aspect 
ratio regime and with a forcing function containing two commensurate frequen­
cies [1, 2, 3]. Transitions from the flat surface to a primary, spatially periodic, 
pattern can be studied using equivariant bifurcation theory [4]. These group theo­
retic techniques may also be applied to secondary spatial period-multiplying tran­
sitions to patterns with two distinct spatial scales (so called superlattice patterns) 
as demonstrated by Tse et al. [5]. 

We apply the method of Tse et al. [5] to the analysis of three superlattice pat­
terns observed when secondary subharmonic instabilities destroy the basic hexag­
onal standing wave pattern in two-frequency Faraday wave experiments. We can 
make use not only of the general symmetry-based approach from [5] but also of 
many of the detailed results. The reason for this is that in their paper, Tse et al. 
considered instabilities of hexagonal patterns that broke the translation symmetry 
of the hexagons, but that remained periodic in a larger hexagonal domain com­
prising twelve of the original hexagons. The instabilities under consideration here 
satisfy exactly the same conditions (though in fact they remain periodic in smaller 
domains as well) . 

We begin by specifying the coordinate system and symmetries we will use 
in section 2, then describe the symmetries of the three experimental patterns in 
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I 

I Y 

FIGURE 1. The coordinate system and certain elements of the symme­
try group f. The origin of the coordinate system is at the centre of the 
diagram, and the point (1,0) is indicated. The small hexagons represent 
the primary pattern, which is invariant under reflections (K,x and K,y), 
60° rotations (p) and translations (71 and 72)' The secondary patterns 
are all periodic in the larger hexagonal box. The three corner points 
labelled with solid circles are identified through the assumed periodicity. 

section 3. In section 4, we apply Tse et al. 's method of analysis to these three 
patterns, and present normal forms and stability calculations in section 5. We 
conclude in section 6. 

2. Coordinates and symmetries 

The primary pattern is made up of regular hexagons, which are invariant under 
the group D6 (made up of 60° rotations and reflections) combined with translation 
from one hexagon to the next (see figure 1). Tse et al. [5] studied experimental 
patterns reported in [6], which had the feature that after the secondary instability, 
the pattern remained periodic in the larger hexagonal box in figure 1. The 144-
element spatial symmetry group of the primary hexagonal pattern within this box 
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is r, generated by the following reflection "'x, rotation P and translations T] and T2: 

"'x: (x,y) --> (-x,y) ( 3 J3) T] : (x,y) --> (x,y) + 2' 2 

T2 : (x, y) --> (x, y) + (0, J3) 
We also define "'y = "'xp3 , and note the following identities: 

2 2 6 6 6 2 2 ·d . "'x = "'y = p = T] = T2 = T1 T2 = I entity, 

P"'x = "'xp5, 

a 
TIP = pTI T2, 

(1) 

(2) 

(3) 

(4) 

(5) 

The time translation TT advances time by one period T of the forcing function, 
which is the same as the temporal period of the hexagonal pattern. This time 
translation is combined with the spatial symmetries above to give spatio-temporal 
symmetries. 

3. Experimental patterns 

The three experimentally observed patterns are shown in figure 2(a-c), visualised 
using the techniques described in [7]. Patterns (a) and (b) are both obtained 
using Dow-Corning silicone oil with viscosity 47 cSt and layer depth 0.35 cm, while 
pattern (c) was found using a 23 cSt oil layer of depth 0.155 cm. All three patterns 
are obtained with forcing function containing two frequencies in the ratio 2 : 3; 
pattern (a) is found with frequencies 50 and 75 Hz, pattern (b) with frequencies 
70 and 105 Hz, and pattern (c) with 40 and 60 Hz driving frequencies. Pattern 
(c) was reported previously in [7]. Typically, the secondary bifurcations occur at 
forcing amplitudes between 10 and 50% larger than the critical acceleration for 
the primary hexagonal state. Further experimental details can be found in [7, 8]. 

For the purposes of the analysis, we consider the idealised versions of these 
experimental patterns, shown in figure 2(d-f). The first pattern in figure 2(a,d) 
retains the D6 symmetry of the original hexagons but breaks certain translation 
symmetries. It is periodic in the medium-sized dashed hexagon in figure 2(d), 
which implies that the pattern is invariant under the translations Tf and T] T2 . 

It has no spatio-temporal symmetries. The second pattern is similar , although 
it possesses only triangular (Da) symmetry instantaneously. Moreover , it has the 
spatio-temporal symmetry given by a 60° rotation combined with advance in time 
by one period T of the forcing, as in figure 2( e,g). In fact, this spatio-temporal 
symmetry was first suggested by the analysis below, and found to be consistent 
with the experimental observations. The third pattern in figure 2(c,f) is quite 
different: the dark lozenges in figure 2(f) represent the enlarged gaps between 
the hexagons in figure 2(c). The pattern is periodic in the medium-sized dashed 
hexagon in figure 2(f), so is invariant under translations Tf and Ti = T{. It is 
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(g) (h) 

FIGURE 2. Experimental and idealised secondary patterns. (a-c) Exper­
imental patterns, visualised from above. (d-f) Idealised versions of (a-c). 
(g-h) patterns (e-f) but seen one forcing period T later. The idealisations 
are all rotated by about 30° compared with the experimental pictures. 

also invariant under the group of symmetries of a rectangle D 2 , and possesses the 
spatio-temporal symmetry of the translation T2 combined with advance in time by 
one period T of the forcing, as in figure 2(f,h). 

Using the information above, we write down the instantaneous (spatial) sym­
metry groups of the three patterns from figure 2(a-c) in terms of their generators: 

~a = (K,x,P,T{,TIT2) , ~b = ("'x , p2,T{,TIT2), ~c = (K,x , "'yT2,Tf)· (6) 

These groups are of order 48, 24 and 12 respectively. For the full spatio-temporal 
symmetry groups, we would also include pT1' in the generators of ~b, and T2T1' 
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a b c d e f g h j k m n 0 

id Tf Tt 
:l :l p2 p3 ? :l 3 

Kx Ky T! Kx T 1 K",T2 Kx T 1 KyT1 P P- T 1 P T1 

1 6 18 6 2 3 12 12 6 18 24 8 3 16 9 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 -1 - 1 1 1 1 - 1 -1 -1 -1 1 1 1 1 1 
3 1 1 -1 1 1 1 1 -1 -1 -1 1 -1 
4 1 -1 1 1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 
5 2 0 0 2 2 2 0 0 0 0 1 -1 -2 -1 -2 
6 2 0 0 2 2 2 0 0 0 0 -1 -1 2 -1 2 
7 2 2 0 -1 -1 2 -1 -1 2 0 0 2 0 - 1 0 
8 2 -2 0 -1 -1 2 1 1 -2 0 0 2 0 -1 0 
9 3 1 1 -1 3 -1 -1 1 -1 -1 0 0 3 0 -1 

10 3 -1 1 -1 3 -1 1 -1 1 -1 0 0 -3 0 1 
11 3 -1 -1 -1 3 -1 1 -1 1 1 0 0 3 0 -1 
12 3 1 -1 -1 3 - 1 -1 1 -1 1 0 0 -3 0 1 
13 4 0 0 -2 -2 4 0 0 0 0 0 -2 0 1 0 
14 6 -2 0 1 -3 -2 -1 2 0 0 0 0 0 0 
15 6 2 0 1 -3 -2 1 -1 -2 0 0 0 0 0 0 

TABLE 1. Character table of the group r, taken from Tse et al., with 
corrections. A representative element is shown on the second line for 
each conjugacy class (see also figure 3) , and the number of elements in 
the class is on the third row. The next fifteen rows give the characters 
associated with each conjugacy class for each of the fifteen representa-
tions. 

in the generators of I:c , but initially we will work with the spatial symmetry 
groups. The reason for this is that the instantaneous (spatial) symmetries can 
be determined reliably from a single experimental image, while extracting spatio­
temporal symmetries from the experimental data is more involved. 

Each of the three instabilities that generates the three different patterns will 
be associated with a set of marginally stable eigenfunctions; the new pattern, at 
least near onset, can be thought of as (approximately) a linear combination of 
these marginal eigenfunctions and the original hexagonal pattern. Which linear 
superpositions are consistent with the nonlinearity inherent in the pattern for­
mation process is determined by our bifurcation analysis. The symmetries in r 
all leave the primary hexagonal pattern unchanged, so they must send marginal 
eigenfunctions onto linear combinations of marginal eigenfunctions, which induces 
an action on the amplitudes of these functions. In other words, if there are n mar­
ginal eigenfunctions iI, ... , in, with n amplitudes a = (al, ... ,an) E IRn, each 
element 'Y E r sends a to R"(a, where the set of n x n orthogonal matrices R"( forms 
a representation Rr of the group r. For subharmonic instabilities of the type of 
interest here, this will generically be an irreducible representation (irrep) [4]. Tse 
et al. [5] have computed all the irreps of the group r; the character table of these 
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representations is reproduced in table 1. Recall that the character of a group el­
ement 'Y in a representation is the trace of the matrix R-y , and that conjugate 
elements (which form a conjugacy class) have the same characters. 

Once the representation associated with each of the three transitions is iden­
tified, we can write down the normal form, work out what other patterns are 
created in the same bifurcation, and compute stability of the patterns in terms of 
the normal form coefficients. 

4. Method 

The first task is to identify which representation is relevant for each bifurcation. 
Tse et al. [5] outlined a two-stage method to accomplish this. First , any symmetry 
element that is represented by the identity matrix in a particular representation 
must appear in the symmetry group of every branch of solutions created in a bifur­
cation with that representation. This can be used to eliminate from consideration 
any representation that has an element with character equal to the character of 
the identity that does not appear in the symmetry group of the observed pattern. 
Second, we make use of the trace formula from [4], which gives the dimension of 
the subspace of ]Rn that is fixed by a particular isotropy subgroup I: of r with 
representation given by the matrices Rr : 

. 1 "" dlmfix(I:) = ~ L..t Tr R", 
"EL: 

(7) 

where II:I is the number of elements in I: . Specifically, we use the trace formula 
to eliminate those representations for which the spatial symmetry group of the 
pattern fixes a zero-dimensional subspace (implying that the subgroup is not an 
isotropy subgroup); only the remaining representations need be examined in more 
detail. 

We proceed by first counting the number of elements in each conjugacy class 
for each of the symmetry groups I:a , I:b and I: c . Figure 3 shows representative 
elements from each class and is helpful for this categorization. The result of this 
is: I:a contains: 

a: 1, b: 6, c : 6, f : 3, i : 6, j : 6, k: 8, I : 8, m : 1, 0: 3 

(that is, one element from class a, six from class b etc.); I:b contains: 

a : 1, b : 6, f : 3, i : 6, I : 8; 

and I:c contains: 

(8) 

(9) 

a : 1, b: 1, c: 3, e : 2, h: 2, 0: 3. (10) 

The element 7f does not appear in the symmetry groups of patterns (a) and (b) , 
which eliminates representations 1- 6 and 9--12 (since 7f is represented by the 
identity matrix in all these: see table 1) . Similarly, 7172 in class f and p:{ do not 
appear in I:c, which eliminates representations 1-9, 11 and 13 from consideration 
for that bifurcation problem. 
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(a) identity (1) 
>--<> 

(j) liyTr (18) 

(m) p3 (3) 
> < 

(b) fix (6) (c) Iiy (18) 

.-
(e) Tf (2) (f) Tr (3) 

i 

(k) p (24) (1) p2 (8) 

FIGURE 3. The 15 conjugacy classes of r. One element from and the 
number of elements in each class are indicated. The letters (a )-( 0) cor­
respond to the columns of table 1. 
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Next, by applying (7), we find that pattern (a) has a non-zero dimensional 
fixed point subspace only in representation 7, as does pattern (b). The spatial 
symmetry group of pattern (a) fixes a one-dimensional subspace, and that of pat­
tern (b) fixes a two-dimensional subspace. Pattern (c) has a one-dimensional fixed 
point subspace in representations 10 and 12, and zero in other representations. 

We are therefore faced with three different situations: the spatial symmetry 
group l;a fixes a one-dimensional subspace in representation 7, so we expect by 
the Equivariant Branching Lemma (see [4]) that such a pattern will generically be 
found in a bifurcation problem with that representation. 

Pattern (b), on the other hand, has a spatial symmetry group that fixes a two­
dimensional subspace. However, we must take into account that the pattern arises 
in a subharmonic (period-doubling) instability, and extend the groups rand I;b to 
the spatio-temporal symmetry groups that arise by including time translations. We 
may then show that the spatio-temporal symmetry group of pattern (b) fixes a one­
dimensional subspace, and so also arises generically in a subharmonic bifurcation 
with representation 7. This is the same representation as with pattern (a), obtained 
for similar experimental parameter values. Extending to include the subharmonic 
nature of the instability does not affect the branching of pattern (a) . 

The third situation arises with pattern (c), which on symmetry arguments 
alone could be associated with either representation 10 or representation 12. In­
cluding information about the spatia-temporal symmetry of the pattern does not 
distinguish between these two representations. However, information on the Fourier 
transform of the pattern does allow a choice to be made between the two possibili­
ties; in order to show this, we first need to work out which combinations of Fourier 
modes are associated with each pattern. 

It is useful to have sample Fourier modes for the basic hexagonal pattern: 

fo(x,Y)=COS27rC;)+COS27r(-~+ ~)+COS27r(-~ - ~), (11) 

with wavevector of length 4;, as well as sample Fourier modes for representa­
tions 7, 10 and 12. The method described by Tse et al. [5] yields Fourier functions 
that would be included in the eigenfunctions associated with representation 7; 
representative functions with the shortest wavevectors include: 

h(x, y) = cos27r (~ + 3~) + cos27r (~ - 3~) + cos27r (3~) (12) 

12(x,y) = sin27r (~+ 3~) + sin27r ( -~ + 3~) + sin27r (- 3~)' (13) 

which is made up of wavevectors of length equal to ~ of that of the basic hexagonal 
pattern. Eigenfunctions for representation 10 are made up of Fourier functions that 
include: 

h = sin27r (~+ 2~) 12 = sin27r (-6x + 2~) h = sin27r (-t), (14) 
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with wavevector of length ~ the fundamental; and representation 12 has: 

(
X -y) !I = sin27r 2 + 2V3 . (X y) h = sm 27r 2 + 2V3 h = sin 27r ( ~) , (15) 

with wavevector of length ~ the fundamental. In each case, we have chosen the 
Fourier modes with the shortest wavevectors, as these are easiest to identify in an 
experimental Fourier transform. 

The images of the Fourier transform of pattern (c) in [7] show that the mode 
created in the instability contains wavevectors that are a factor of 2 shorter than 
the shortest in the basic hexagonal pattern, which is consistent with representa­
tion 10 but not 12. In this way, information about the power spectrum of the 
pattern is necessary to supplement the arguments based entirely on symmetries 
and to distinguish between the two choices. 

5. Normal forms 

Using the functions specified above as a basis for representations 7 and 10, the 
matrices that generate the two relevant representations are, for representation 7: 

[ 
1 v':l] 

Rrl = _-~ ~~ , Rr2 = R;l' RrT =-h, 

(16) 
where In is the n x n identity matrix; and for representation 10: 

[ ~ 
1 J] R, ~ [ ~ 

0 -1] 0 0 o , (17) 
0 1 0 

n 0 

-~] n 0 

~] 1 Rr2 = -1 RrT = - h· (18) 
0 0 

The perturbation amplitude at time j + 1 times the forcing period, given the 
perturbation at time j, is given by aj+l = f(aj), where the equivariance condition 
amounts to R,f(a) = f(R,a) for all 'Y E r. Using this, we can determine the 
relevant normal form associated with these two representations: 

(19) 

for representation 7 (truncated at quintic order), where the two amplitudes of !I 
and h in (12- 13) are the real and imaginary parts of z, and P, Q and R are real 
constants. For representation 10 we truncate at cubic order and obtain: 

aj+l = -(1 + p,)aj + Pal + Q(a; + b; + c;)aj, 

bj+l = -(1 + p,)bj + Pb] + Q(a; + b; + c;)bj , 

Cj+l = - (1 + p,)Cj + Pc] + Q(aj + bj + cj)Cj, 

(20) 

(21) 

(22) 
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where P and Q are (different) real constants. In these two sets of equations, JL repre­
sents the bifurcation parameter. The -1 Floquet multipliers at JL = 0 arise because 
these are subharmonic bifurcations. In representation 7, equivariance with respect 
to RTT = -12 is a normal form symmetry, so even terms up to any order can be 
removed from (19) by coordinate transformations [9]. With representation 10, the 
matrix - 1:3 = R~ appears as a spatial symmetry, so the normal form symmetry is 
in fact exact, and every solution branch has the spatio-temporal symmetry TTp3 , 

a rotation by 1800 followed by time-translation by one period. 
The patterns are neutrally stable with respect to translations in the two 

horizontal directions, and so also have two Floquet multipliers equal to 1 associated 
with translation modes. We have neglected these as all the patterns we find are 
pinned by reflection symmetries that prohibit drifting. 

The final stages are to determine the solutions that are created in each of 
these bifurcations, their symmetry and stability properties, and to compare these 
with experimental observations. 

The first normal form (19) generically has two types of period-two points, 
found by solving J(z) = -z: 

-VJL 2Q+R 
Za- p-2JL~, vJL Q-R Zb = i - - 2JL2 __ -. 

P p3 (23) 

The first of these has exactly the symmetry group ~a of pattern (a), with no spatio­
temporal symmetries, while the second has exactly the spatial symmetry group ~b 
of pattern (b), as well as spatio-temporal symmetries generated by pTT. Recon­
structions of these two are shown in figure 4( a) for pattern (a) and figure 4(b,c) for 
pattern (b), using the Fourier functions from above. Linearising the normal form 
about these two period-two points readily yields stability information: if P > 0, 
then both patterns are supercritical but only one is stable, while if P < 0, both 
are subcritical and neither is stable. 

The second normal form (20-22) generically has three types of period-two 
points (a,b,c): 

The middle branch has the spatio-temporal symmetries of pattern (c), with 12 el­
ements in the spatial part of the symmetry group (~c = (Kx, KyT2, T1:)). Fig­
ure 5(a,b) illustrates this pattern (cf. figure 2c,f,h). For comparison, the pat­
tern that would have been obtained with modes from representation 12 is in fig­
ure 5( c,d): the symmetry group is the same, but the appearance of the pattern 
does not match the experimental observation. The first branch has a 24 element 
spatial symmetry group (p3 T1 , KxPTfT2' T1:) (figure 5e,f), and the third branch has 
an 18 element group (KyT2' Kxp5,Tr) (figure 5g,h). The three patterns also have 
the spatio-temporal symmetry p:3TT (since R~ = -1:3), so p3 will appear in the 
symmetry group of the time-average of each of the patterns, as discussed in [5]. 
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(b) 

FIGURE 4. Reconstructed patterns from the two solutions that arise in 
representation 7, using the Fourier functions (12~ 13) added to a function 
of the form of (ll). (a) has the spatial symmetries of pattern (a) and no 
spatio-temporal symmetries (cf. 2a,d); (b) has the symmetry properties 
of pattern (b) (c is one period T later; cf. figure 2b,e,g) 

(a) (b) (c) (d) 

(e) (f) (h) 

FIGURE 5. Reconstructed patterns from irreps 10 and 12: (a,b) irrep 10, 
with amplitudes (a, b, c) = (1 , 1, 0) (d. figure 2c,f,h); (c,d) irrep 12: same 
amplitudes and same symmetries as (a,b); (e,f) irrep 10, with amplitudes 
(a , b, c) = (1,0,0); (g,h) irrep 10, with amplitudes (a, b, c) = (1 ,1 , 1). 
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The first branch has Floquet multipliers -1 + 2JL and -1 - prQJL (twice) ; 

the second branch -1 + 2JL, -1 - P:2Q JL and -1 + P~~Q JL; and the third branch 

-1 + 2JL and -1 + P~QJL (twice). As a result, if P + Q > 0 and P + 3Q > 0, 
then all branches bifurcate supercritically, and either the first branch will be stable 
(when P < 0) or the last will be stable (when P > 0). If any branch bifurcates 
subcritically, none are stable. The middle branch, which is the one corresponding 
to the experimentally observed pattern (c) , is always unstable at onset. 
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6. Discussion 

Using the symmetry-based approach ofTse et al. [5], we have analysed three exper­
imentally observed spatial period-multiplying transitions from an initial hexagonal 
pattern. The three patterns illustrate three situations that can arise in this kind 
of analysis. Pattern (a) was straight-forward, in that a single representation of r 
had a one-dimensional space fixed by the spatial symmetry group of the pattern. 
The existence of a solution branch of the form of pattern (b) could also be inferred 
using the Equivariant Branching Lemma, though in this case it was necessary 
to include the temporal symmetry associated with period-doubling bifurcation. 
Specifically, the spatial symmetries selected a two-dimensional fixed point space 
which was further reduced to a one-dimensional fixed point space when spatio­
temporal symmetries were taken into account. Experimentally, these two patterns 
were found for the same fluid parameters and same 2w : 3w forcing function but 
for different frequencies w: w = 25Hz for (a) and w = 35Hz for (b). This suggests 
that the transition between these patterns, which arise for instabilities associated 
with the same representation, might be observed by tuning the frequency w. 

Pattern (c), on the other hand, had a spatial symmetry group that fixed 
one-dimensional subspaces in two different representations, and we appealed to 
the measured power spectrum of the pattern to choose between the two possibil­
ities. In this situation, symmetry considerations alone were not enough. Similar 
situations arise in other bifurcation problems, for example, knowing that a stable 
axisymmetric pattern is found in a spherically symmetric bifurcation problem does 
not provide enough information to determine which is the relevant representation. 

The experimentally observed transition between hexagons and pattern (c) 
occurs by means of a propagating front that separates domains of hexagons and 
the secondary pattern. The front is initiated at the lateral boundaries of the system 
and emanates radially inward. There is little if any hysteresis, and the reverse 
transition also occurs via the same scenario. The occurrence of a front in this 
transition suggests bistability of the hexagonal pattern and pattern (c). This is 
certainly consistent with the theoretical prediction that pattern (c) is unstable at 
small amplitude, that is, at onset. However, we have not explored the possible 
stabilization mechanisms for pattern (c). 

It is worth emphasizing that an understanding of group representation the­
ory is useful in classifying and analysing secondary instabilities of patterns, not 
only in the Faraday wave experiment as described here, but also in convection and 
other pattern formation problems (see [10]). It is also worth mentioning that the 
examples studied here indicate that spatio-temporal symmetries readily arise in 
secondary subharmonic instabilities, and that careful experimental characteriza­
tion of these, either by still images taken one forcing period apart or by time­
averaging over two forcing periods, can be helpful. Subsequent instabilities of 
patterns that have spatio-temporal symmetries can be analysed using methods 
described in [11, 12]. 
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The approach outlined in [5] and here is useful for taking an experimental 
observation of a secondary transition and casting it into its equivariant bifurca­
tion theory context, but it does not predict which transitions should be expected 
in an experiment. However, in these two-frequency Faraday wave experiments, 
three-wave interactions of the type described in [13] may select a third wavevector 
that could appear in the secondary transition. Each of the representations in the 
problem under consideration is associated with a set of wavevectors, providing a 
possible mechanism for selecting between possibilities. 
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Spatially Resonant Interactions in 
Annular Convection 

Arantxa Alonso, Marta Net and Juan Sanchez 

Abstract. Different types of steady columnar patterns in an annular con­
tainer with a fixed value of the radius ratio are analyzed for a low Prandtl 
number Boussinesq fluid. The stability of these convection patterns as well 
as the spatial interaction between them resulting in the formation of mixed 
modes are numerically investigated by considering the original nonlinear set 
of Navier-Stokes equations. A detailed picture of the nonlinear dynamics be­
fore temporal chaotic patterns set in is presented and understood in terms of 
symmetry-breaking bifurcations in an O(2)-symmetric system. Special atten­
tion is paid to the strong spatial 1:2 resonance of the initially unstable modes 
with wavenumbers n=2 and n=4, which leads to bistability in the system. 

1. Introduction 

In the present paper we investigate the process of pattern selection and mode 
interaction in the context of two-dimensional thermal convection. We analyze con­
vection in a rotating annulus with gravity radially inwards and outwards heating, 
restricting our attention to exactly two-dimensional solutions. These solutions, 
which form columns parallel to the axis of rotation, are allowed when stress-free 
boundary conditions on the lids of the annulus are considered, and are the preferred 
modes at the onset of convection for large enough rotation rates [1] . 

When the two-dimensional governing equations are considered the symmetry 
of the system is 0(2) even in the rotating case. Although rotation breaks the 
reflection symmetry in vertical planes containing the axis, for the columnar solution 
the Coriolis term can be written as a gradient and introduced in the pressure term. 
Rotation drops from the equations and they retrieve the reflection invariance. 
Thus, columnar convection in a rotating annulus provides a simple fluid dynamics 
system with 0(2) symmetry, which exhibits a rich variety of stationary and spatio­
temporal patterns [2], [3], [4]. 

In a previous work [2], we studied the transition route to chaos that the stable 
columnar solution with wavenumber n=3 undergoes for a low value of the Prandtl 
number, 0"=0.025, and a fixed value of the radius ratio, 17=0.3. The steady columns 
give rise to spatially periodic and non-periodic direction reversing travelling waves, 
which become chaotic through a Neimark-Sacker subcritical bifurcation. In order 
to complete the analysis, we will now focus on the unstable branches that bifurcate 
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from the conduction state. We will see that there is a strong spatial interaction 
between the two initially unstable modes with wavenumbers n=2 and n=4 and 
that some aspects of the behaviour we find, such as the presence of a mixed mode, 
wavenumber gaps and travelling waves, are predicted by the normal form equations 
for the 1:2 spatial resonance with 0(2) symmetry [5], [6]. 

2. Formulation of the problem 

We consider the problem of nonlinear convection in a cylindrical annulus with 
radius ratio rJ = rdro, where ri and ro are the inner and outer radii, rotating 
about its axis of symmetry, filled with a Boussinesq fluid of thermal diffusivity I'L, 

thermal expansion coefficient a and kinematic viscosity v. The inner and outer 
rigid sidewalls are maintained at constant temperatures Ti and To, with Ti > To, 
and the gravitational acceleration is taken radially inwards, g = -geT) and is 
assumed to be constant. 

There exists a basic conduction state in which heat is radially transferred to­
wards the outer cylinder by thermal conduction and which shares the full symme­
tries of the system. The stability of this state is determined by the Navier-Stokes, 
continuity and heat equations. When horizontal stress-free lids are considered, the 
linear stability analysis shows that there is always a moderate rotation rate above 
which steady exactly two-dimensional columns parallel to the axis of the annulus 
are the preferred solutions at the onset of convection [1]. These solutions are char­
acterized by a fixed azimuthal wavenumber, n, which is imposed by the chosen 
radius ratio. 

In order to obtain the nonlinear steady columnar solutions and to analyze 
their stability with respect to axial independent disturbances as any parameter of 
interest is varied, we have developed a continuation code [7]. To solve the equations 
we have used a technique based on velocity potentials. In this formulation the 
velocity field is written as u = fee + \7 x wez , where w=w(r, B) is a function 
which has zero azimuthal average. We are considering an explicit equation for 
f = f(r), which is the simplest way of including the possibility of generating a 
mean mass flow in the azimuthal direction (average of the azimuthal velocity in 
the radial direction). The resulting nonlinear equations in nondimensional form 
are 

(la) 

(lb) 

(lc) 
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where e denotes the departure of the temperature from its conduction profile and 
V'~ = 0,. (Or + l/r). Pe is the projection operator that extracts the zero-azimuthal 
mode in a Fourier expansion, J is the jacobian in cylindrical coordinates and Ra 
and a are the Rayleigh and Prandtl numbers. The variables have been expanded in 
terms of Chebyshev polynomials and Fourier expansions and no-slip and perfectly 
conducting boundary conditions on the lateral walls have been considered. 

3. Nonlinear steady columnar solutions: results and discussion 

In this section we describe the results for 1]=0.3, a=0.025 and increasing Rayleigh 
number. We obtain the steady columnar patterns that bifurcate from the conduc­
tion state and analyze their stability. 

The results are summarized in figure 1. In the upper part of the figure, the bi­
furcation diagram shows the branches of columnar solutions with basic wavenum­
bers n=3,2,4 (N3, N2 and N4 branches, respectively). In the diagram, we are 
plotting an amplitude of the dominant mode in each case. The conduction state 
becomes unstable to columns with wavenumber n=3 at Ra~=1799 (point 1 in the 
bifurcation diagram), in agreement with the linear stability analysis. For slightly 
larger Rayleigh numbers, the conduction state is also unstable to modes with 
wavenumber n=2 (at Ra~=1995) and n=4 (at Ra~=2254). The new nonaxisym­
metric solutions break the rotation symmetry, R e, of the basic state, but maintain 
the reflection symmetry, R 1, with respect to appropriate vertical planes e = eo 
and the invariance under 27r/n-rotations, R 27T /n- The group of symmetry of the 
new solutions is Dn. Thus, bifurcations from the conduction state are symmetry­
breaking steady-state bifurcations in which multiplicity two eigenvalues cross the 
imaginary axis. 

Whereas solutions along the N3 and N 4 branches are pure modes, in which 
only the basic wavenumbers and their harmonics are nonzero, the N2 is a mixed­
mode branch. There is a strong spatial interaction between the n=2 and n=4 
modes which produces a change in the structure of the solution along the N2 
branch. To illustrate the physical nature of these solutions, the lower part of fig­
ure 1 shows the temperature contour plots at different Rayleigh numbers. As the 
Rayleigh number increases, the contribution of the n=4 mode becomes more and 
more important, while the n=2 contribution diminishes until vanishing. The initial 
two pairs of rolls become a n=4 solution. 

A stability analysis of the mixed-mode solutions shows that there are several 
bifurcations in the N2 branch. The new branches have been included in figure 2. 
Bifurcation points 4 (Ra~=2362), 6 (Ra~=2509) and 7 (Ra~=2712) correspond to 
subharmonic steady-state bifurcations. The solutions in these new branches, which 
are displayed in the right-hand side of figure 2, still keep the reflection symmetry 
between columns, but now there is a contribution of all the wavenumbers. Their 
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FIGURE 1. (top) Bifurcation diagram showing branches of colum­
nar modes with wavenumbers n=3, n=2 and n=4 (N3, N2 and N4 
branches, respectively). They are born at Ra~=1799 (1), Ra~=1995 
(2) and Ra~=2254 (3). (bottom) Temperature contour plots show­
ing the evolution of the columns on the N2 branch with increasing 
Rayleigh number. They correspond to points e (Ra=2000), f (Ra=2198), 
g (Ra=2500), h (Ra=2711) and i (Ra=2875) in the diagram. 

group of symmetry is Z2. The bifurcation identified in point 5 (Ra~=2478) corre­
sponds to a steady-state instability that keeps the wavenumber of the main solu­
tion, n=2, but in which the mean flow becomes nonzero. According to bifurcation 
theory [8], a steady-state bifurcation that breaks the reflection symmetry keeping 
the rotational invariance would give rise to travelling waves with zero phase speed 
at the bifurcation point. Nevertheless, we have not followed this time-dependent 
branch which, in our case, is unstable. Finally, two subsequent bifurcations very 
close to each other take place in the neighbourhood of point 8. In the first one 
(Ra~=2887.5), one of the two positive eigenvalues of the solution is stabilized 
through a subharmonic steady-state bifurcation. In the second one (Ra~' =2888.9) 
the amplitude of the n=2 mode vanishes. The N2 branch joins the N 4 branch, and 
columns with wavenumber n=2 cease to exist. This is a bifurcation from the N 4 
branch, which takes place after a bifurcation in Ra~=2851 in which an eigenvalue 
with multiplicity two gains stability. 
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FIGURE 2. (left) Detail of the steady-state bifurcations on the N2 
and N4 branches, which take place at Ra~=2362 (4), Ra~=2478 (5) , 
Ra~=2509 (6), Ra~=2712 (7) and Ra~=2888 (8) on the N2 branch and 
at Ra~=2851 (9) and Ra~=2888 (8) on the N4 branch. (right) Tem­
perature contour plots showing the structure of the solutions in the 
N21a, N21b and N21c branches corresponding to points k (Ra=3308), 
I (Ra=2649) and m (Ra=3040) in the bifurcation diagram. 

All the steady patterns above described except for the n=3 column are un­
stable. However, by extending further the N 4 branch, a bifurcation that stabilizes 
the n=4 mode by shedding a new unstable n=2 branch takes place at Ra~o=4779 . 
As a result, for Rayleigh numbers larger than Ra~o at least two stable solutions 
coexist: steady columns with wavenumber n=4 and direction reversing travelling 
waves with wavenumber n=3. 

The spatial interaction between the modes with wavenumbers n=2 and n=4 
that we have found is an example of an 1:2 resonance, in which modes with 
wavenumbers nand 2n in the periodic direction interact nonlinearly. The 1:2 
resonance with 0(2) symmetry was first studied by Dangelmayr [5] and some as­
pects of the dynamics predicted by the normal form equations are reproduced 
here. First , the presence of wavenumber gaps in which no steady solutions with a 
given wavenumber exist is a typical feature of this resonance. This is what hap­
pens in the range of Rayleigh numbers 2888 < Ra < 4779, where the n=2 solution 
disappears. The existence of travelling waves bifurcating from the n-mode, which 
correspond to the bifurcation point at Ra~=2478 in our case, is also an identity 
sign of this resonance. 

Dynamics dominated by the strong spatiall:2 resonance are expected in sys­
tems without midplane layer symmetry. In the case of annular convection this 
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symmetry is broken by curvature, while in two-dimensional Rayleigh-Benard con­
vection, the same effect can be achieved by considering different boundary condi­
tions at top and bottom or by including non-Boussinesq terms [9]. For instance, the 
analysis of a long-wave model for two-dimensional convection in a plane layer shows 
that the strong 1:2 resonance is dominant when asymmetric boundary conditions 
are considered and a behaviour similar to the one we find in annular convection is 
described [10]. In contrast, in Rayleigh-Benard convection with symmetric bound­
ary conditions the leading order resonant term in the 1:2 interaction is of higher 
order than that in the 1:3 interaction [10], [11], [12]. 
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Hopf Bifurcations on Cubic Lattices 

T.K. Callahan 

Abstract. We analyze three-dimensional pattern forming Ropf bifurcations 
with the spatial periodicity of the face-centered (FCC) and body-centered 
(BCC) cubic lattices. This is an equivariant bifurcation with spatial symmetry 
r = T 3 -i-OEBZ2. By extending the group to a larger, wreath product group we 
can use the method of [5] to find all solution branches guaranteed by group 
theory to be primary. This work is an extension of that done for the steady 
state FCC and BCC bifurcations in [3, 4]. 

1. Introduction 

Consider a pattern forming system that is homogeneous and isotropic in all three 
spatial directions, such as a reaction-diffusion system. It has a trivial, homoge­
neous solution with the symmetry of the Euclidean group E(3). Suppose that as 
a bifurcation parameter A increases through a critical value Ac this state loses 
stability via a Hopf bifurcation to modes with nonzero wavenumber kc and fre­
quency w. As done in [8], we restrict our attention to solutions that have the 
periodicity of some lattice so that a center manifold reduction can be performed. 
There are three fundamental lattices based on the cubic lattice: the simple (SC), 
face centered (FCC) and body centered (BCC) cubic. The steady state bifurca­
tions on these three lattices were analyzed in [3, 4] and the Hopf bifurcation on 
the SC lattice was analyzed in [6]. We here study the Hopf bifurcation on the FCC 
and BCC lattices. Although motivated by reaction-diffusion problems, our results 
are model-independent, and are applicable to other pattern forming problems near 
onset. 

2. Hopf bifurcations on the BCC lattice 

We start with the twelve wavevectors ±ki , i = 1, ... ,6, at the midponts of the 
edges of a cube, given by 
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Let Zj (Wj) be the amplitude of a wave travelling in the +kj (-kj ) direction. A 
real scalar field with the periodicity of the BCC lattice can, to lowest order, be 
put into the form 

4 

X(i, t) = L [Zj(t)eik)"X-iwt + Wj(t)e-ik)"X- iwt] + c.c. + h.o.t., 
j=l 

where by the Center Manifold Theorem the higher order spatial harmonics are 
quadratically small. We write the amplitudes as a vector 

After center manifold reduction we have twelve complex amplitude equations, 
which can be written in the form z = f(z). 

The system has the spatial symmetry group f = T3 + ((]) EB Z2, where T3 is the 
three-torus of translations TQ and c E Z2 represents inversion through the origin. 
These act on the amplitudes by 

ikoQ -ikoQ ' 
TQ . Zj = e J Zj, TQ . Wj = e J Wj , C· Zj = Wj , C· Wj = Zj. 

((]) is a representation of the octahedral group of orientation preserving symmetries 
of the cube and acts as a permutation of the kj's . We have three independent 
translations and can thus choose at most three of the phases of the Zj 's. 

As a Hopf bifurcation, the system must be equivariant under f 1 = f X Sl, 
i.e., 

'Y. f(z) = fb· z), "e/"( E f1 ' 
where Sl is a normal form symmetry corresponding to the periodicity in time [8J. 
That is, -J; E Sl acts by the phase shift -J; . z = e i1jJ z. Every solution z has an 
isotropy subgroup 

~(z) = {'Y E f1 I 'Y. z = z}, 
and each isotropy subgroup ~ has a fixed point subspace 

Fix(~) = {z E <c12 I a· z = z, Va E ~ }, 

which is an invariant subspace under the flow of any f 1-equivariant system. For 
any solution z with isotropy subgroup ~ and any group element 'Y E f , there 
is another solution 'Y . z with conjugate isotropy subgroup 'Y~'Y-1. We consider 
conjugate solutions and isotropy subgroups to be equivalent. 

By the Equivariant Hop! Theorem [8], for every isotropy subgroup ~ E f1 
with two-dimensional fixed point subspace (called a <C-axial subgroup) there is at 
onset a branch of periodic solutions with isotropy ~ and frequency close to w. We 
want to find all the <C-axial subgroups of f 1 = f X Sl. 

We do this by extending the group f1 to a larger group f2 that is easier to 
solve. To that end we first group the twelve amplitudes in this fashion: 

We consider these to be three subsystems, each with two orthogonal sets of wave­
vectors ki' ki+3 , i = 1,2,3. Note that any 'Y E f1 that acts nontrivially on one 
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Name 

Travelling Rolls 
Travelling Squares 
Standing Rolls 
Standing Squares 
Alternating Rolls 

x(l, 0; 0, 0) 
x(l, 0; 1,0) 
x(l,l;O,O) 
x(l, 1; 1, 1) 
x(l,l ; i , i) 

TABLE 1. The (>axial solutions on the square lattice. Here x E C. 
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subsystem necessarily acts nontrivially on another . We add generators to r corre­
sponding to certain translations and reflections of individual subsystems, so that 
each subsystem can be acted upon independently of the others. Each subsystem 
then has the local symmetry group IT... = T2 +][])4 of functions with the periodicity 
of the square lattice. In addition we also have the global symmetry group G = S3, 
which permutes the subsystems. The spatial symmetry is thus the wreath prod­
uct group IT... I G = (T2 + ][])4) I S3 and the group under which this new system is 
equivariant is r 2 = [(T2 + ][])4) I S3] x S1 (see [5, 7] for a definition of the wreath 
product). 

For the wreath product IT... I G we can determine the C-axial subgroups of 
(IT... I G) x S1 [5]. This involves first finding the C-axial subgroups of IT... x SI = 
(T2 + ][])4 ) X S1, which is the Hopf bifurcation problem on the square lattice. 
This has been solved [10], and the solutions for the local subsystems are shown 
in Table 1. With these solutions we can use the method of [5] to construct the 
21 C-axial solutions for r 2 x SI, which are listed in Table 2. Notice that in any 
one solution all the subsystems either vanish or take one of the forms from the 
square lattice. The nonvanishing subsystems only differ by overall phase shifts. 

It is easy to show that, for r 1 C r 2, 

The fixed point subspace of any isotropy subgroup of r 1 is 
the fixed point subspace of some isotropy subgroup of r 2. 

Thus every r I-solution has a corresponding r 2-solution and we find all the C-axial 
solutions on the BCC lattice. 

A r 2-solution may correspond to no r I-solution if a r l-equivariant term 
breaks the invariance of the fixed point subspace. A r 2-solution may correspond 
to multiple r I-solutions if the latter are conjugate by an element "I E r 2 \r 1. To find 
the r I-solutions we take each r 2-solution z, choose an arbitrary element "I E r 2 \ r 1, 

and see which "I satisfy 

dim[Fix(I:h·z))] =2. 

The 21 solutions on the extended system yield 26 solutions on the BCC lattice, 
also shown in Table 2. Thus for example solution 5 of the extended system, namely 
x(l, 0; 1,011,0; 1, 0 I 0, 0; 0, 0), corresponds to no solution on the BCC lattice, while 
solution 2 corresponds to two. 
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1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 

15 

16 

17 
18 

19 
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r 2-solution z 

x(l, 0; 0, ° I 0,0; 0, ° I 0,0; 0, 0) 
x(l,O;O,O 11 , 0;0, 0 I 0, 0;0, 0) 

x(l,O;O,O 11,0;0,0 11,0;0, 0) 
x(l, 0; 1, ° I 0,0; 0, ° I 0,0; 0, 0) 
x( l, 0; 1, ° 11,0; 1, ° I 0,0; 0, 0) 
x(l,O; 1, 0 11,0; 1, 0 11,0; 1,0) 
x(l, 1; 0, ° I 0,0; 0, ° I 0,0; 0, 0) 
x(l, 1; 0, ° 11 , 1; 0, ° I 0,0; 0, 0) 
x(l, 1; 0, ° 11, 1; 0, ° 11,1; 0, 0) 
x(l, 1; 0, ° I i, i; 0, ° I 0,0; 0, 0) 
x(l, 1; 0, 0 I ( , (;0, 0 I (2,(2;0,0) 
x(l, 1; 1, 11 0,0;0,0 I 0,0;0,0) 
x(l, 1; 1, 111 , 1; 1, 110, 0; 0, 0) 

x( 1, 1; 1, 1 11, 1; 1, 1 11, 1; 1, 1) 

x (l, 1; 1, 1 I i, i; i, i I 0,0; 0, 0) 

x(l, 1; 1, 11 (,(;(,( I (2,(2;(2,(2) 

x(l, 1; i, i I 0, 0; 0, ° I 0, 0; 0, 0) 
x( l, 1; i, ill, 1; i, i I 0,0; 0, 0) 

x (l, l;i,i 11, l;i,i 11 , l;i,i) 

r I-solution z 

x(l, 0; 0, ° I 0, 0; 0, ° I 0,0; 0, 0) 
x(l,O;O,O 11 , 0;0, 0 I 0, 0; 0, 0) 
x(l,O;O,O I 0,1;0,0 I 0,0;0, 0) 
x(l, 0; 0, ° 11,0; 0, ° 11 , 0; 0, 0) 
x(l, 0; 1, ° I 0,0; 0, ° I 0, 0; 0, 0) 

x(l, 1; 0, ° I 0,0; 0, ° I 0,0; 0, 0) 
x(l, 1;0,0 11, 1;0,0 I 0,0;0, 0) 
x(l,l;O,Oll,l;O,OII,l;O,O) 
x(l, 1; 0, ° I i, i; 0, ° I 0,0; 0, 0) 
x(l, 1;0, 0 I ( , (;0, 0 I (2,(2;0,0) 
x(l, 1; 1,1 I 0,0; 0, ° I 0,0; 0, 0) 
x(l, 1; 1, 111, 1; 1, 11 0,0;0 ,0) 
x(l, 1; 1, 111 , 1; -1 , - 110,0;0,0) 
x(1,1;1,111,1;1,111,1;1,1) 
x(l, 1; i , -i 11 , 1; i, -i 11 , 1; i , -i) 
x(l , l;l , lli,i;i,iIO,O;O,O) 
x(l, 1; 1, 11 i,i; -i, -i I 0,0;0,0) 
x(l, 1; 1, 11 (,(;(,( I (2,(2;(2,(2) 

x(l, 1; i, -i I (, (; i(, -i( I (2, (2; i(2, _i(2) 
x(l, 1; i, i I 0, 0; 0, ° I 0,0; 0, 0) 
x(l, l;i ,i 11, l;i,i I 0,0;0,0) 
x(l, l;i , i 11 , 1; - i, -i I 0, 0;0, 0) 
x(l,l;i,i 11,1;i,i 11,1 ; i,i) 
x(l , 1; - 1, 111, 1; -1,111 , 1; - 1, 1) 

20 x(l, l;i,i I X,X;x3,x31 0,0;0 , 0) 
21 x (1,1;i,ilp,p;ip,iplp2 , p2,ip2,ip2) x(1,1;i,ilp,p;p,-plp2,p2;ip2,ip2) 

x(l, l;i,i I p, p; -ip, -ip I p2 , p2 ;ip2,ip2) 

TABLE 2. The ((>axial solutions for the extended group r 2 (left) and 
the original group r 1 (right) with z written as in equation (*). Here 
(= eirr / 3 , X = eirr / 4 , p = eirr / 6 and x E C. 

3. The Hopf bifurcation on the FCC lattice 

The appropriate group extension for the FCC lattice is obtained by adding to r 
generators corresponding to translation and reflection of the single pair (ZI, wI). 
Each subsystem (Zj, Wj) can then be translated and/or reflected independently. 
The resulting group is 0(2) I 8 4 , the symmetry group of functions with the period­
icity of the simple hypercubic (SH) lattice in four spatial dimensions. The C-axial 
solutions on the SH and FCC lattices are then easily found [2J. 
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We can also glean information about primary branches of subaxial solutions. 
The same group extension gives us the isotropy subgroups with four-dimensional 
fixed point subspaces [1]. Many of these have ][)l4 symmetry, as for instance the 
subspaces 

(x, x; y, y; 0, 0; 0, 0), (x, x; y, y; ix, ix; iy, iy), (x , y; x, y; x, y; x, y). 

When restricted to these invariant subspaces the problem reduces to the Hopf 
bifurcation with square symmetry, for which primary quasiperiodic solutions are 
known to exist [11]. Additionally, the last of these three subs paces only has ][)l4 

symmetry by virtue of the normal form symmetry 51. We thus expect this ][)l4 to 
be weakly broken, which can lead to quite exotic dynamics [9]. 
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Normal Forms of Dynamical Systems 
and Bifurcations 

Giampaolo Cicogna 

Abstract. We show the existence of a general class of bifurcating solutions to 
dynamical systems, by introducing their (Poincare-Dulac) normal form, and 
imposing that the normalizing transformation is convergent. These bifurcating 
solutions include standard stationary and Hopf bifurcations, and multiple­
periodic solutions as well. 

1. The normalizing transformation. 

Normal Form (NF) theory [1, 2, 4, 5] (see also [10], where many other references 
can be found) is an old subject in the study of Dynamical Systems (DS), having 
been introduced by Poincare in his Thesis, and is still one of the most useful and 
used tools both in the qualitative and quantitative local analysis of DS. In this 
short paper, we will sketch an application of this method to bifurcation problems. 

As well known, given a DS 

x == ~~ = f(x) ; x = x(t) x E R n , t E R (1.1 ) 

where f is analytic in a neighourhood of a stationary point Xo (i.e., a point such 
that f(xo) = 0; we can choose Xo = 0), the idea is to introduce a near-identity 
change of coordinates in order to eliminate the nonlinear terms in the given f (x); 
the terms which cannot be eliminated, which are the "resonant terms" , constitute 
the Poincare-Dulac normal form, as we shall see more precisely in a moment. 

Writing the DS (1.1) in the form 

x = f (x) = Ax + F (x) (1.2) 

we shall always assume that the matrix A = (D 1)(0) is i= 0 and semisimple, 
with eigenvalues Aj; denoting by v the "new" coordinates, the NF of (1.1) will be 
written 

iJ = i(v) = Av + F(v) (1.3) 

(the notation -:-- will be always reserved to NF). 
The coordinate transformation x --+ v is usually performed by means of re­

cursive techniques, but in general this normalizing transformation (NT) is actually 
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purely formal, and only very special conditions can ensure its convergence and the 
(local) analyticity of the NF [1, 2, 4, 5]. 

For our present applications, we will resort in particular to two very general 
conditions, given by Bruno, which ensure the convergence of the NT, and are called 
Condition A and Condition w (see [4, 5] for details). These conditions read: 

Condition A: A normal form 1 is said to satisfy Condition A if 1 has the form 

j(v) = Av + O'(v)Av (1.4) 

where O'(v) is some scalar-valued power series (with 0'(0) = 0). 

Condition w: Let Wk = min I(Q, A) - Ajl, Vj = 1, ... , nand n-tuples of integers 
qi ~ 0 such that 1 < 2::~1 qi < 2k and (Q, A) = 2:: i qiAi i- Aj: then Condition w 
is satisfied if 

00 

LTk In (W;l) < ()() (1.5) 
k=l 

Let us point out that we have stated here Condition A in its simplest (and quite 
restrictive) form, which holds, in particular, when the eigenvalues are either all 
real or all pure imaginary (which is just the case we will deal with). Whereas 
Condition A is clearly a quite strong condition on normal forms, Condition w is 
a very weak arithmetic condition on the eigenvalues of the matrix A, generalizing 
Siegel-type conditions on the appearance of small divisors, and which is satisfied 
by almost all (in the Lebesgue sense) n-tuples of eigenvalues. We will assume for 
the sake of simplicity that it is always satisfied; let us also notice that, in some 
cases, Condition w can actually be relaxed [17]. 

We can then state [4, 5]: 

Theorem 1.1. (Bruno) If A = (D 1)(0) satisfies Condition w, and if f can be trans­
formed, via a series of coordinate transformations, to a 1 which satisfies Condition 
A, then there is a NT for f which is convergent in some open neighbourhood of 
xo = o. 

The presence of "resonant terms", i.e., of the terms which constitute the 
nonlinear part F(v) and which cannot be eliminated by the NT, is related to the 
existence of some "resonance" between the eigenvalues Ai of the matrix A, i.e., to 
the existence of some non-negative integers mi such that, for some index j: 

n n 

L miAi = Aj, 1::; j ::; n (1.6) 
i=l 

The form of the resonant terms is then given by the following result [1, 10, 11, 16]: 

Lemma 1.2. Given the matrix A, the most general NF has the form 

F(v) = L J.1j(v)Mj v with J.1j(v) E IA and [Mj, A] = 0 (1.7) 
j 
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where the sum is extended to a set of linearly independent matrices M j commuting 
with A (the set of these matrices clearly includes A), and IA denotes the set of the 
merom orphic constants of motion (or first integrals) of the linear problem v = Av. 

2. A "reduction lemma" for NF. 

In this and the next sections, we will apply the previously sketched ideas to show 
the existence of bifurcating solutions to dynamical systems, depending on one or 
more real "control" parameters TJ E RP . Precisely, we are now considering DS of 
the form 

:i; = f(x, TJ) == A(TJ)x + F(x , TJ) (2.1) 

where f(x, TJ) is analytic in a neighbourhood of Xo = 0, TJo = 0, with f(O, TJ) = 0, 
and assume that, for some "critical" value TJ = TJo = ° of the parameters, the 
matrix 

Ao = A(O) (2.2) 

is semisimple and its eigenvalues Ai satisfy a resonance relation (1.6). Before giving 
our main result (next section), let us point out an useful application of the above 
methods. Indeed, the notions of normal form and of resonance, thanks in particular 
to Lemma 1.2, may directly lead to a "reduction lemma" for NF, allowing to a 
reduction of the original problem to a lower dimensional case. We have precisely 
(see also [3]): 

Lemma 2.1. Consider a n - dimensional DB (n > 2), and assume that for TJo = ° 
there are r < n resonant eigenvalues, say AI, ... , Ar , such that no resonance rela­
tion of the following form 

r 

L mhAh = Ak 
h= 1 

k = r + 1, ... ,n (2.3) 

exists. Then, the NF of this DB "splits " the variables VI , . .. , Vr from the remaining 
n - r variables in such a way that this NF admits a solution where 

k=r+l, . . . ,n (2.4) 

Then, the DB - once in NF - can be reduced to a r-dimensional problem, and there 
is an invariant manifold under the dynamical flow of (2.1), which corresponds to 
the hyperplane (2.4) of the normal form. 

Although this result is based on completely different arguments, this situation 
looks quite similar to the case of the "equivariant bifurcation lemma". E.g. , if 
Al = 0, r = 1, or resp. Al = -A2 = i , r = 2, and condition (2.3) is satisfied, the 
NF turns out to be resp. I-dimensional and 2-dimensional, in some similarity 
to the situation met in the equivariant lemma (resp. in the stationary bifurcation 
[6, 15], and in the Hopf bifurcation [7, 12]; see [13] for a comprehensive discussion). 
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Once a solution Vh(t) , h = 1, . . . , r of this reduced r-dimensional problem 
has been found, then the original DS admits a solution in which the n - r com­
ponents Xk(t), k = r + 1, ... , n, are "higher-order terms" with respect to the 
first r components Xh(t), showing here some analogy with the Lyapunov-Schmidt 
procedure. 

3. An application of convergent NF: the "resonant bifurcation". 

With the above positions, we can now give a theorem [8] ensuring the existence -
under suitable hypotheses - of a general class of bifurcating solutions in correspon­
dence to resonant point "10 = O. The main idea is to transform the given DS into 
NF and to impose that the NT is convergent, using the convergence conditions 
of Theorem 1.1; or, more precisely, to take advantage from the presence of the 
parameters "I in order to impose that the general NF as given by (1.6) takes the 
special form (1.4), as required by Condition A. Thanks to the remarks in the above 
section, it is not restrictive to assume the resonance involves all the eigenvalues 
AI, ... , An of the matrix Ao. 

Theorem 3.1. Consider the DB (2.1) and assume that for the value "10 = 0 the 
eigenvalues Ai of Ao are distinct, real or purely imaginary, and satisfy a resonance 
relation (1.5). Assume also that p = n - 1, and finally that putting 

(i) 8Aii (TJ) I ak = 
8TJk '7=0 

(i=l, ... ,n; k=1, ... ,n-1) 

the following n x n matrix D is not singular, i. e., that: 

(

AI 

det D == det .~2. 
An 

(1 ) (1) (1) a 1 a2 • .• an _ 1 
(2 ) a1 

(n) an _ 1 

) #0 

(3.1) 

(3.2) 

Then, there is, in a neighbourhood of Xo = 0, "10 = 0, t = 0, a bifurcating solution 
of the form 

Xi(t) = [exp ((l+,8(TJ))Aot))]xoi(TJ)+h.o.t. i=l, ... ,n 

where ,8("1) is some function of the TJ'S such that ,8("1) -> ° for "I -> 0, and h.o.t. 
stands for higher order terms vanishing for "I -> O. 

Notice that standard stationary bifurcation, Hopf bifurcation, and multiple­
periodic bifurcating solutions as well, are particular cases of the bifurcations ob­
tained in this way. For instance, if n = 2 and with imaginary eigenvalues, it is 
easy to see that condition (3.2) coincides with the well known "transversality con­
dition" d ReA(TJ)/dTJI'7=o # 0 ensuring standard Hopf bifurcation. A nontrivial 
example in dimension n > 2, and corresponding to the case of coupled oscillators 
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with multiple frequencies, is covered by this Corollary, which immediately follows 
from the previous Theorem. 

Corollary 3.2. With the same notations as before, let n = 4 and >'1 = -).2 = 
iwo, ).3 = -).4 = miwo (with m = 2, 3, .. '): with TJ == (TJl,TJ2,TJ3) E R :1 , let, after 
complexification of the space, AC (TJ) be the matrix A(TJ) written in the basis in 

h · h AC(O) 'd' l P t ' (i) <9At(TJ) I (' 14k 1 2 3) w lC lS wgona. u tlng ak = <9 l = , ... , ; =" , 
TJk 1)= 0 

assume that 

( 

(1 ) a1 
(2) 

det D = det ~~ . 
(4) 

a1 

(3.2') 

then there is a multiple-periodic bifurcating solution preserving the frequency res­
onance 1: m . 

Just to give briefly an example of the case covered by this Corollary, assume 
that 

( 
TJl + TJ3 

A(TJ) = 1+TJ2 
TJ2 
o 

-(1 + TJ2) TJ l 
TJl - TJ3 0 

o TJ3 
-TJ2 2 

o ) TJl 
-2 
TJ:1 

which satisfies (3.2') , with m = 2 and Wo = 1; the constants of the motion entering 
in the NF at the resonance TJ = 0 (cf. Lemma 1.2) are 

where 'P is the time phase-shift between the two first two components VI, V2 and 
the remaining V3, V4. It is easily seen (see [8] for details) that the leading terms of 
the bifurcating solution can be written 

Xl + iX2 = ra exp(iwt) 

where w = 1 + {3, and {3, ra , rb, 'P are connected to the parameters TJi by some 
relationships which depend on the explicit form of the nonlinear part of F(x, TJ) of 
the DS (2.1). 

The above results can be suitably extended [8, 9] to the case of multiple 
eigenvalues of the matrix Ao , in the presence of some general symmetry property 
of the problem (including the case of local or non linear Lie-point symmetries 
[10, 14]) . 

An example of this situation, given by coupled oscillators with degenerate 
frequencies and in the presence of a rotation symmetry, is described in [8]. 
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One-dimensional Pattern Formation 
in Systems with a Conserved Quantity 

S.M. Cox and P.C. Matthews 

Abstract. Regular one-dimensional patterns in systems with a reflection sym­
metry and a conserved quantity may be unstable to an instability leading to 
strong spatial modulation of the pattern. For certain parameter values, all 
regular patterns may be unstable at onset; simulations then indicate the ex­
istence of stable strongly modulated patterns. Analysis of the instability has 
hitherto assumed that the linear growth rate of disturbances is O( k2 ) as the 
wavenumber k --> O. However, the instability is shown here to be present even 
when there is slight damping of the modes with k --> 0, corresponding to a 
slight breaking of the conservation law. 

1. Introduction and derivation of amplitude equations 

We consider one-dimensional pattern formation in systems with a conserved quan­
tity. The presence of a conservation law leads to the existence of a slowly-evolving 
large-scale mode, whose behaviour may significantly affect pattern formation in 
the system. The effects of the large-scale mode persist, even when this mode is 
slightly damped, as we demonstrate in this paper. 

We suppose that the system under consideration has a uniform state which 
becomes unstable, as a bifurcation parameter T passes through the bifurcation 
value Te, to a pattern with wavenumber ke > O. To further simplify matters, we 
assume the existence of a reflection symmetry in the spatial variable, x, and that 
the onset of pattern formation takes place through a stationary bifurcation. There 
are then two ways in which the conserved quantity may behave under the reflection 
symmetry: it may either change sign (see the paper in this volume by Matthews 
and Cox, and the companion paper [8]) or not (the case considered here, and in 
the companion paper [7]). 

We consider a partial differential equation (PDE) for a conserved quantity 
w(x, t), with a uniform solution, which may without loss of generality be taken 
to be the trivial solution w = O. Suppose that the system has the reflection and 
translation symmetries x f-+ -x, W f-+ wand x f-+ x + xo, w f-+ w. Then all 
terms in the linearised expression for ow / ot contain a (nonzero) even number of 
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0.2 ~---~-----~--~-~ 

0.1 

·0.1 

-0.2 

o 0.2 0.4 0.6 1.2 1.4 

FIGURE 1. Linear growth rate A in (1), plotted as a function of 
wavenumber k, for r = -0.1 (bottom curve), 0 and 0.1 (top curve). 
This is typically the qualitative behaviour of the linear growth rate for 
systems such as are envisaged here. 

x-derivatives. An appropriate partial differential equation is 

ow 02 
[ ( 02 

) 2 2 :~l at = - ox2 rw - 1 + ox2 W - sw - w , (1) 

where rand s are parameters. For this equation, the growth rate of small distur­
bances with wavenumber k is A = k2(r - (1- k2)2). Thus for small positive values 
of the bifurcation parameter r, a narrow band of wavenumbers near k = kc = 1 
exhibits slow linear growth (see figure 1), while modes with small wavenumber also 
evolve slowly. Although one might imagine that the large-scale modes have little 
influence on the pattern because they decay according to linear theory, this turns 
out to be far from the case. (In the next section we shall show that the influence 
of the large-scale modes persists even when A is strictly negative for the modes 
with k = 0.) 

Whether we choose to focus on (1) or on a different PDE, we assume with 
no loss of generality that lengths are scaled so that kc = 1. Then near the onset 
of pattern formation w takes the form 

w(x, t) rv A(X, T)eix + A*(X, T)e- ix + 13 (X, T), 

where X and T are rescaled forms of x and t, and A and 13 are small amplitudes 
(the asterisk denotes complex conjugation). By considering the symmetries of the 
PDE, and assuming direct quadratic coupling between the pattern and the large­
scale mode in the PDE, we find that the amplitude equations for A and B take 
the form 

A + Axx - AIAI2 - AB, 

oBxx + J.l(IAI 2 )xx, 

(2) 

(3) 

where r = E2, A = EA, 13 = E2 B, X = EX and T = E2 t. Although no details are given 
here, we note that the reduction of a PDE (or system of PDEs) to the amplitude 
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equations (2) and (3) can be carried out in an asymptotically consistent fashion. 
Furthermore, in deriving (2) and (3), we have assumed that the coefficient of AIAI2 
can be scaled to -1, i.e., that in the absence of B the bifurcation of the pattern 
mode is supercritical. All coefficients in (2) have been scaled to unity, leaving two 
coefficients in (3) that cannot be removed by rescaling. In a particular application, 
0' and J.L may be computed in terms of the system parameters, through a weakly 
nonlinear expansion of the solution. For the purposes of the present discussion, 
however, it suffices to note that slow damping of the large-scale modes implies 
that 0' > 0, but J.L may take either sign. The equations (2) and (3) have previously 
been derived to describe the coupled dynamics of sand waves and sand banks [6], 
and to describe the secondary stability of cellular patterns [1]. 

The amplitude equations (2) and (3) hold near the stationary onset of pattern 
formation in any system in one space dimension with translational and reflectional 
symmetries, and with a conservation law, provided that there is an appropriate 
quadratic coupling. 

2. Solutions to the amplitude equations 

Roll solutions to the governing PDE with wavenumber kc + Eq correspond to so­
lutions to the amplitude equations (2) and (3) of the form A = (1 - q2)1/2eiqX , 

B = o. It is straightforward to investigate the stability of these rolls to distur­
bances with wavenumber kc + E(q ± l) [7]. Both Hopf and stationary bifurcations 
may take place, but we focus on the latter as we have observed them in numerical 
simulations. The most dangerous modes are those with l ---+ 0, in which case rolls 
are unstable if J.L(1 - q2) > 0'(1 - 3q2). Hence all rolls are unstable if J.L > 0'. 

In the limit 10'/ J.LI » 1, where the large-scale mode is strongly damped, the 
Eckhaus criterion q2 > ~ for instability [4] is recovered; the band of stable rolls 
is narrowed or broadened when J.L is positive or negative, respectively. For general 
values of the wavenumber of the rolls, the instability has characteristics of both 
amplitude and phase instabilities, and for q =I- 0 is generically subcritical, at least in 
a sufficiently long domain [9]. However, for rolls with exactly critical wavenumber, 
the bifurcation is predicted to be supercritical. Indeed, in numerical simulations 
we have found a smooth transition from uniform to modulated rolls as J.L/O' is 
increased through unity, indicative of a supercritical bifurcation. 

Our analysis so far has assumed that the linear decay rate vanishes for the 
modes of largest wavelength. In practice, however, this property may hold only 
approximately (if w(x, t) is only approximately conserved, for instance). In this 
case, the amplitude equations (2) and (3) become 

A + Axx - AIAI2 - AB 

-,B + O'Bxx + J.L(IAI 2)xx, 

(4) 

(5) 

where, > O. Such equations are appropriate, for example, for thermal convection 
between boundaries at which the heat flux is given by Newton's law of cooling 
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(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
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f-L' < 0 
0< f-L' < 3 

3 < f-L' 
0< f-L' < 1 
1 < f-L' < 3 

3 < f-L' 

1f-L' < " 
2(f-L'-1)<,' 

" < '1.f-L' 
2(f-L' - 1) < " < If-L' 
1f-L' < " < 2(f-L' - 1) 

TABLE 1. Sufficient conditions for roll solutions of (4) and (5) to be 
stable to monotonic disturbances (where condition (8) is broken). In 
each of cases (d), (e) and (f), q~ = ~(2(1 - f-L') + ,')/(3 - f-L'). 

(heat flux proportional to the difference between the boundary temperature and 
some reference temperature). The criterion for monotonic instability is then 

a-[4 + (r - 2f-La6 + 2aa6 - 4al)12 - 2,(2q2 - a6) < 0, (6) 

where ao = (1- q2)1/2. Rolls are thus stable to disturbances with large I, while the 
Eckhaus criterion for instability [4] is recovered in the limit 1 ---> O. This criterion is 
also recovered in the limit, ---> 00; this is not surprising since it reflects enslavement 
of the mean mode to the pattern mode, according to B rv f-L(IAI2)XX /r, which is 
the usual situation in the absence of a conservation law. 

Since rolls with ~ < q2 < 1 are Eckhaus unstable, it is of interest to investi­
gate the stability of rolls with q2 < ~, which are Eckhaus stable. Although such 
rolls are stable in the limit 1 ---> 0, they may be unstable to finite-l disturbances. 
For general values of I, there is monotonic instability if the two conditions 

o > 8,'(1 - 3q2) - h' - 2f-L'(1 - q2) + 2(1 - 3q2W, (7) 

o > " - 2f-L'(1 -l) + 2(1 - 3q2) (8) 

are simultaneously satisfied, where " = ,/ IJ and f-L' = f-L/ IJ. Condition (8) is broken 
in the cases listed in table 1, which thus provide sufficient conditions for the rolls 
to be stable to monotonic disturbances with any value of I. The inequalities (7) 
and (8) are most easily analysed when q = 0: this mode is unstable whenever 
f-L' > 1 + ,'/2 + (2,') 1/2 (consistent with the condition f-L' > 1 in the absence of 
damping, derived above). 

3. Application to rotating convection 

The instability described above can be found [2] in two-dimensional thermal con­
vection in a horizontal fluid layer rotating about a vertical axis, if the top and 
bottom boundaries of the layer are stress-free. Then the component of fluid mo­
mentum along the roll axes is the conserved quantity. A weakly nonlinear analysis 
leading to equations of the form (2) and (3) allows us to map the location of the 
instability in Taylor number-Prandtl number space. The instability sets in as the 
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FICURE 2. Contours of perturbation temperature in rotating convection 
at Taylor number 41[4 and (supercritical) Rayleigh number 1286. The 
Prandtl number is, from the top, 1.0, 0.95, 0.9, 0.8, 0.7. The horizontal 
boundaries are stress-free and isothermal. 
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Prandtl number decreases through some critical value, dependent on the Taylor 
number; at Taylor number 41[4 the instability is most dangerous, and arises as 
the Prandtl number decreases through unity. The corresponding localisation of 
the convection rolls can be seen in the numerical results shown in figure 2, for a 
computational domain chosen to fit ten pairs of rolls with critical wavenumber. 
For Pr = 1, the regular rolls are marginally stable to the instability described 
above, and the computed rolls are unmodulated (top row); for smaller values of 
Pr, the rolls are unstable, and the corresponding long-time steady state is shown 
in the bottom four rows of figure 2, for a variety of Prandtl numbers. 

4. Discussion 

Two questions asked after the presentation of this material at the Conference 
concerned the extension of these ideas to oscillatory onset, and to patterns in two 
space dimensions. 

The extension to the case of oscillatory onset presents some analytical sub­
tleties, since there will be leftward and rightward travelling waves, each having 
an envelope that moves with its own group velocity [5], necessitating considera­
tion of two distinct frames of reference; in fact a third frame (the stationary one 
associated with the large-scale mode) is also needed. 
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The amplitude-equation approach as adopted here may also be applied to 
problems in higher dimensions [3J. Some localised solutions in higher dimension 
have been found experimentally by VanHook et al. [10, 11J; these support the 
theoretical exploration of the higher-dimensional case. 
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Invariance and Symmetry in a Year-class Model 

o. Diekmann and S.A. van Gils 

Abstract. In this note we reveal some of the special structure of a year-class 
model. We formulate a certain parameter symmetry and compute the char­
acteristic equation at the unique nontrivial equilibrium. In the case of equal 
sensitivity we derive phase-amplitude equations and show the existence of an 
invariant manifold. 

1. Introduction 

Population models yield non-generic dynamical systems, since necessarily any sub­
space defined by the absence of a species is invariant. The aim of this paper is to 
uncover the enhanced non-genericity in discrete time models for populations con­
sisting of individuals that reproduce only once in their life (such species are called 
semelparous or, in the case of insects, univoltine. Examples range from annual and 
biennial plants to salmon to cicadas). 

If reproduction is restricted to a small time window in the year and life span 
has a fixed length of, say, k years, a population splits into year-classes according 
to the year of birth (mod k) or, equivalently, the year of reproduction (mod k). 
As a year-class is reproductively isolated from the other year-classes, it forms a 
population by itself. 

Yet year-classes are likely to interact, for instance by competition for food. It 
then may happen that a year-class is driven to extinction. Bulmer [Bul77] calls an 
insect periodical if it consists of a single year-class, i.e., if all but one year-classes 
are missing. Famous examples are the cicada species with 13 and 17 year life cycles 
(see, e.g., [BehOO] and the references given there). 

Mathematically the phenomenon of possibly missing year-classes shows up 
as invariance of coordinate axes and (hyper ) planes for the" full life cycle" map of 
looking k years ahead. For each invariant subspace we can investigate the dynamics 
within it, as well as the external stability, by which we mean the attraction or 
repulsion in the transverse direction (or, in more biological terms, the decline or 
growth of a missing year-class which is introduced in small numbers). 

We shall describe interaction (i.e., density dependence) as feedback via a 
one dimensional environmental quantity. Moreover, we take the various feedback 
relations to be of the same functional form, i.e., they differ only by a scaling 
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parameter. See the next section for the details. Some of the features we find are 
due to this form of density dependence, rather than semelparity per se. 

In this paper we shall reveal some of the special structure of the model. We 
formulate a certain parameter symmetry, i.e., an equivariance under transforma­
tions of both the state variables and the parameters. We will also compute the 
characteristic equation at the unique equilibrium. The characteristic equation is 
the starting point when trying to determine the stability of the equilibrium. In this 
preliminary presentation we do not yet touch upon important questions like: Can 
one year-class tune the environmental conditions such that the other year-classes 
are driven to extinction when rare? Or can missing year-classes invade success­
fully? Do we get coexistence or competitive exclusion? A rather complete answer 
to these questions in the case of biennials, i.e., k = 2, is given in [DDvG]. 

2. The model 

In this paper we consider the nonlinear Leslie matrix iteration 

N(t + 1) = L(I(t)) N(t) , (2.1) 

where t is an integer(!) and 

( 
No(t) ) 

N(t) = : , 
Nk-l(t) 

(2.2) 

so the components of N(t) measure the size of the k different age-classes at time 
t, and 

1 

L(I)=Rok (2.3) 

o 

1= c · N = Co No + ... + Ck-l Nk - 1 , (2.4) 

with normalization of the parameters 

k-l k-l 
Lgi = LCi = 1. (2.5) 
i=O i = O 
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The formulation above is obtained by rescaling of the equations 

No(t + 1) = fSk_ le- 1lk - 1I(t) Nk-l (t) 

N 1(t+1)= So e- 90I(t) No(t) 

143 

(2 .6) 

where So . . . Sk-l are survival probabilities under " ideal" conditions, f is the ex­
pected number of offspring of a reproducing individual (again under "ideal" condi­
tions) and exp( -g;l(t)) is the reduction of the survival probability in the i + 1-th 
year due to crowding. 

We do not specify what exactly are the adverse effects of crowding, but we 
simply postulate that their effect is described well by the factors exp( - gil (t)), 
where 

I(t) = coNo(t) + (2.7) 

i.e., the coefficients Ci measure the contribution of an i-year old individual to the 
reduction of survival. 

The rescaling is given by 

aiNi 
Ni = ~----------~~----------------~ 

(go + .. . + .9k-d (co ao + .. . + Ck-l ak-d ' 
(2.8) 

where 
k -l k -l 

ao = f-;';- Sk-l -;.;-

i=1 ... k-1 

gi gi = _ _, i = 0 .. . k - 1 
gO+ .. ·+gk-l (2.9) 

Ciai 
Ci= ,i=O ... k-1 

coao + ... + ck-lak-l 

k - l 

Ro = f II S i · 
i = O 
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3. Parameter symmetry 

We will use the following notations. The shift on IRk is denoted by S: 

(3.10) 

For a E IRk, /-L E IR we let 

D(a,/-L) = diag (e- aOIl , ... ,e-ak - 11l ). (3.11) 

Using this notation we can rewrite (2.1) in the form 
I 

N(t + 1) = Ro k D(Sg, c· N(t)) SN(t). (3.12) 

In this form it is easy to demonstrate the next 

Proposition 3.1. The system (2.1) is equivariant under the transformation N 1--7 

SN, 9 1--7 Sg, C 1--7 Sc. 

Proof. If diag(ao, ... , ak-d is a diagonal matrix with the components of a E IRk 
on the diagonal, then under similarity transformation with S the elements on the 
diagonal are shifted, i.e., Sdiag(a) S-1 = diag(Sa). Hence, from (3.12) we infer 

S N(t + 1) = Ro t S D(Sg , c· N(t)) S-1 S2 N(t) 
1 

= Ro k D(S2 g, Sc· SN(t))S(SN(t)), 
(3.13) 

and the above stated parameter symmetry follows immediately. o 
An obvious consequence of this proposition is that bifurcation surfaces in 

(Ro, g, c)-parameter space occur k-fold, according to cyclic (g, c)-symmetry for 
fixed Ro. 

4. The steady state 

L(I) is a Leslie matrix with eigenvectors 

Vi = 

1 

k-l 
e-(go+ ... +gk-2) J Aik+l RO- k-

and eigenvalues Ai satisfying the characteristic equation 

Ak = Ro e- I . 

(4.1) 

(4.2) 
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So a steady state requires, first of all, 

1= lnRo , (4.3) 

and then the steady state N is a multiple of the eigenvector 

1 
- 1 

e-gO I Ro k 

Vo = (4.4) 
- 2 

e-(go+g,j I Ro k 

_ k-l 

e-(go+ .. +gk - 2) I RO- k-

such that c . N = 1. Hence the steady state is unique, lies in the interior of the 
positive cone, and is given explicitly by 

5. The linearized equation 

N = lnRovo. 
c· Vo 

(4.5) 

To determine the linearized problem we put N(t) = N + x(t) , which implies that 
J(t) = 1+ c . x(t). We obtain the linearized equation 

x(t+1) = L(l)x(t)+c·x(t) Ro ~ diag (S( -goe- go 1, ... , -gk_le-gk-ll)) S N. (5.1) 

To this equation we apply the transformation x(t) = Ty(t) with 

T = diag (1, Ro ~ e-gO I, Ro t e-(go+g,j 1 ... ,Ro k;:' e-(go+ ... +gk-2) 1) . (5.2) 

This yields an equation for y where the shift mechanism is clearly visible: 

where 

y(t + 1) = Sy(t) + c· Ty(t) w, 

(
9k_ l ) 

w = _lnRo ~o 
c· Vo : 

gk-2 

= _lnRo Sg. 
c· Vo 

The eigenvalue problem is given by 

S Y + c . Ty w = /-l y. 

(5.3) 

(5.4) 

(5.5) 

Proposition 5.1. The eigenvalues /-l are the roots of the characteristic equation 

k 

0= /-lk -1- L/-lk- l c· TSI-lw. (5.6) 
1=1 
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Proof. We start from the eigenvalue equation 

Sy+ c ·Tyw=J.1Y· 

Applying S k-times and substituting J.1 y - c· Ty w for J.1j Sy we obtain 

k- l 
Sk y = J.1k y - L J.1 k- 1 c· Ty SI - l w. 

1= 0 

Sk = Id, so taking the inner product with Tc we find 

k-J 
c· Ty = J.1k c· Ty - L J.1 k- 1 c· Ty c· TSI- J w, 

1=0 

which we rewrite in the form 

c· Ty (1 -J.1k + I: J.1 k- 1 c· TSI- J w) = o. 
1= 0 

If for none of the eigenvectors y , c · Ty vanishes, then the result follows , because in 
that case the second factor needs to vanish, which is precisely the content of the 
proposition. To finish the proof we show that if c· Ty vanishes for an eigenvector y, 
then the corresponding eigenvalue is a root of the equation (5.6) as well. Observe 
that c ·Ty = 0 implies that y is an eigenvector of S (recall (5.5)) . So the eigenvalue 
is simple and given by J.1 = Al = e 2rri t , and the eigenvector y equals ~I where 

(5.7) 

So c . Ty = 0 can be rewritten as 

Co + cJRo t e-go1 e-2rri t + ... ck- JRo k;: l e-(go+ .. gk _2 )1 e-2rrit(k-J ) = o. (5 .8) 

We claim that consequently 

k 

L A7- m c· TSm-Jw = O. (5.9) 
m =J 

To see this we fix j and compute the coefficient of gj in the left-hand side of (5 .9) . 
Recall the form of w given in (5.4). When the summation variable in (5.9) equals 
m, then gj is on the position j + 1 + m (mod k) and is hence multiplied by 

When we sum these terms over m they yield the left-hand side of (5.8) multiplied 
t· 

with e2rri Y; , which proves the claim and completes the proof. 0 
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6. Equal sensitivity 

In the special case of equal sensitivity, i.e., 

HI 
1 

go = gl = ... = gk-l = k' (6.1) 

equation (2.1) reduces to 
l c ·N(t) 

N(t + 1) = Ro k e--k-' S N(t). (6.2) 

In this case we have a scalar nonlinearity. In order to exploit this we shall represent 
the vectors N(t) in terms of their direction a(t) (a unit vector, in the l\-sense, in 
the positive cone) and their magnitude A(t). So define for positive k-vectors y the 
quantity 

Iyl:= Yo + . .. +Yk-l (6.3) 

and put 
N(t) = A(t) a(t) (6.4) 

with the requirement that 

la(t)1 = 1. (6.5) 

Then, upon substitution into (6.2), we obtain the phase-amplitude equations 

{ 
a(t + 1) = Sa(t) 

A(t + 1) = Ro t e- A~t) c·a(t) A(t). 
(6.6) 

It follows that 
a(t + k) = a(t). (6.7) 

In other words, every straight half-line through the origin is after k steps mapped 
onto itself. That is, we can decompose the collection of straight half-lines in the 
positive cone into a collection of invariant k-tuples of such half-lines, and the mem­
bers of any k-tuple are mapped cyclically into each other. The half line spanned 
by the vector 

a~ m (6 .8) 

is invariant. On this invariant half line we have amplitude dynamics 

A(t + 1) = Ro t e--&A(t) A(t) (6.9) 

with nontrivial fixed point 
A = klnRo, (6 .10) 

corresponding to the fixed point (4.5) which, in this special case, takes the form 

(6.11) 
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At the "outer extreme" of the positive cone we have the k-tuple of positive half­
axes (i.e. , for some j we have (Jl = 0 for alll =f j and (Jj = 1) which are mapped 
cyclically into each other for all choices of g, not just in the present case of a 
uniform vector g. 

We now prove the existence of an invariant manifold that contains the fixed 
point. To do so we introduce the vector I(t) E IRk, whose first component is the 
scalar I(t), see (2.4), while the other components are its iterates: 

I(t) = ( ~~~~~) (C .C~ft~ 1) ) 

h-:1(t) C.N(t~k-1)· 
(6.12) 

A condition is required for the transformation to be nonsingular . We omit the 
proof, which is straightforward. 

Proposition 6.1. The transformation from N -space to I-space is nonsingular pro­
vided that 

H2 =f O. (6.13) 

Ck-1 Co Ck-2 

Remark 6.2. This matrix is called a circulant. Its determinant is a homogeneous 
polynomial of degree k in the variables Co, ... , Ck-1. There are no "simple" formulas 
[Dav79]. 

Proposition 6.3. Let H1-2 hold. The manifold 

M = {I I 10 + ... + h-1 = kIn Ro} 

is invariant under the mapping (2.1), and the restriction of the mapping (2.1) to 
M is, in I-coordinates, represented by S - l . 

Proof. By definition we have I j (t + 1) = Ij+ 1 (t) , for j = 0 ... k - 2. We will show 
that the equality h-1(t + 1) = Io(t) holds on M, which proves the result. 

1 !.DJ!l. 
Io(t + 1) = c· N(t + 1) = Ro k e- k c· S N(t). (6.14) 

Repeating this, i.e., increasing t in unit steps or, equivalently, increasing the lower 
index, we end up with 

1 1,. _ 1 (,)+ ... +/0 (') 

h_1(t+1)=(Rok)ke- k c·SkN(t) 
1,. _ 1( , )+ · ··+ /0(' ) 

= Roe- k c·N(t) (6.15) 

= Io(t). 

o 
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So we have found an invariant manifold, and on this manifold all points have 
period k. A point on M has I-coordinates (Io, ... , h - d and the mapping acts on 
this point as the shift S. In the next proposition we compute the multipliers of the 
k-th iterate of the full map, not just the restriction to M, at this point. 

Proposition 6.4. Let Hl-2 hold. The k-th iterate of the mapping (2.1) fixes every 
point of M. The corresponding multipliers are 1, with multiplicity k - 1, and 

k-l ( ) Ii 
J1=II I-I' 

,=0 
with multiplicity 1. 

Proof. The mapping takes in I-space the form 

Io(t + 1) = h(t) 

h - 2(t + 1) = h - l (t) 
IO(t)+· ·+'k _ l(t) 

h-l (t + 1) = Ro e- k Io(t). 

On M, the derivative of the k-th iterate is the product of k matrices 

M = Ah_l . Ah_2 ..... A Io ' 

where 

Aa = (0 1 
1- I -I 

(6.16) 

(6.17) 

(6.18) 

Observe that Aa has ~/, (5.7), as eigenvector, (independent of a) with eigenvalue 
Al for l = l. .. k - 1. The determinant of Aa is (-I)k(l- I). As A[k = 1, 1 is 
an eigenvalue of M with multiplicity k - 1, and the remaining eigenvalue is the 
product given in (6.16) . 0 

With this result at hand we can formulate a condition that guarantees the 
normal hyperbolicity of M. We give a crude result that is an immediate conse­
quence of the proposition above. 

Proposition 6.5. Let Hl-2 hold. M is normally hyperbolic if 1 < Ro < e2 . 

Proof. We compute the extrema of J1 subject to the conditions that I E M and 
Ii :::: 0, i = 0 ... k - 1 (we suppress the argument t as it is here not relevant). We 
define 

k-l ( ) (k-l ) F = II 1 - ~ - A L I j - kIn Ro 
J=O J=O 
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and we look for critical points of :F. This yields the set of equations 

k-1 ( I j ) (Ii ) }] 1- k = -k>" 1 - k ' i = 0 . . . k - 1 

k - 1 

L I j = klnRo. 
j = O 

(6.19) 

Suppose>.. i= O. The first equation of (6.19) tells us that Ii is independent of i. 
Then the second equation implies that Ii = In Ro, which yields J.l = (1 _ In;:o)k. 

If >.. = 0, then at least two of the Ii should be equal to k and, accordingly, 
J.l = O. So far we have not taken care of the constraint Ii 2: O. We do that now by 
paying special attention to the situation where k -l of the Ii are equal to 0, while 
the other ones are strictly positive. This amounts to redefining 

F = II 1 - ~ - >.. L Ij - kIn Ro 1-1 ( ) (1-1 ) 
J=O J=O 

and repeating the analysis. We find Ii = fIn Ro and J.l = (1 - In ~Q)l which is 
inside the unit circle for 1 < Ro < e21 . So the most severe constraint arises for 
l = 1. D 

References 

[BehOO] H. Behncke. Periodical cicadas. Journal of Mathematical Biology, 40: 413- 431, 
2000. 

[Bul77] M.G. Bulmer. Periodical insects. The American Naturalist, 111: 1099- 1117, 1977. 

[Dav79] P.J. Davis. Circulant Matrices. Pure and Applied Mathematics. John Wiley & 
Sons, 1979. 

[DDvG] N.V. Davydova, O. Diekmann, and S.A. van Gils. Year class coexistence or 
competitive exclusion for strict biennials? Submitted. 

Odo Diekmann 
Vakgroep Wiskunde 
Utrecht University 
Post-box 80010 
3508 TA Utrecht 
The Netherlands 
O.Diekmann@math.uu.nl 

Stephan van Gils 
Faculty of Applied Mathematics 
University of Twente 
Post-box 217 
7500 AE Enschede 
The Netherlands 
s.a.vangils@math.utwente.nl 



Trends in Mathematics: 
Bifurcations, Symmetry and Patterns, 151- 155 
© 2003 Birkhiiuser Verlag Basel/Switzerland 

The Accumulation of Boundary Doubling 
for Modified Tent Maps 

Paul Glendinning 

Abstract. We describe the transition to chaos via boundary doubling for a 
particularly simple class of map. In this two parameter family of maps the 
accumulation of boundary doubling occurs on a curve in parameter space. We 
characterize this curve and use relate the form of this curve to a novel set of 
difference equations with proportional delay. 

1. Introduction 

The transition to chaos in the sense of positive topological entropy is one of the 
fundamental problems of applied dynamical systems. In [5] (see also [7]) we showed 
that if t/1 : I ---+ R is a family of unimodal, or one hump, maps of the interval such 
that the image of the critical point of the map lies outside the interval for all rele­
vant values of the parameter f..l, then the transition to chaos can be via an infinite 
sequence of boundary bifurcations. At the boundary bifurcation, the boundary of 
the interval is periodic, creating periodic orbit of period 2n. If these bifurcations 
occur at parameter values f..ln, then under some fairly weak assumptions about the 
maps being considered 

(1) 

as n ---+ 00 where the constant C depends on the family of maps being considered. 
It was also pointed out that such maps might find application in models with 
some catastrophic breakdown threshold above which the model ceases to be a 
good description of the phenomenon. The simplest examples of these bifurcations 
arises in modified tent maps, and it is these which we consider in more detail 
below. 

A tent map with threshold is a standard tent map [3, 8] with the added 
restriction that the map is undefined if x> f..l for some f..l E (0, I), i.e., 

{ 
sx ifO:S;x:S;s-lf..l 

T/1 ,s(x) = undefined if S-lf..l < x < s-l(s - f..l) 
s(l-x) ifs- 1(s-f..l):S;x:s;f..l 

(2) 

with s > 1 and 0 < f..l :s; 1. It is these maps which will be the focus of our attention 
in the remainder of this paper. Note that the boundary bifurcations will occur 
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through the right-hand end point of the interval [0, /-l], i.e., the point x = /-l will 
become periodic. 

The maps TIL,s with the slight modification that TIL,s(x) = /-l on the central 
interval, which makes the map a continuous map of the interval into itself, were 
considered briefly by Derrida, Gervois and Pomeau [4] in the context of period­
doubling, and the renormalization argument of the next section can be found there. 
I suspect that little of what is contained here, except perhaps the last section, 
would be new to them. The special case of 8 = 2 is considered in [9] and related 
results can be found in [1] . 

2. Renormalization 

If /-l < 8 -1 (8 - /-l) then the only recurrent dynamics in [0, 1] is the fixed point at 
x = O. As /-l increases through /-lo = 8(8 + 1)-1 a new fixed point, Xo is created, 
and this fixed point has a unique preimage Yo in x < 8- 1/-l. An easy calculation 
yields 

XO=8(8+1)-I, Yo = (8 + 1)-1 (3) 

If /-l > /-lo then we can consider the second iterate, T1 , of the map on the two 
intervals in [Yo, xo] on which it is well defined, and these branches of the second 
iterate map the intervals they are defined on into [Yo , xo] provided /-l < ih where 

_ 8 2 + 8 - 1 
/-ll = 8(8+1) . (4) 

After an affine, orientation reversing change of variable so that the induced map 
is now defined on the interval [0, 1] it is easy to show that if /-l E (/-lo, M1] then the 
induced map T1 is again a map of the form (2), TAI.s , where 

M = 8 - 8(8 + 1)(1 - /-l) 
8-1 

and (5) 

Note that if limIL1 ILo then M = 0 and if /-l = M1 then M = 1 so the entire range 
of dynamics available to TM,s is realised by the induced map T1. In particular, 
there is /-ll at which an orbit of period one for the induced map (period two for 
the original map) is created by boundary bifurcation, and a new induced map T2 
(the second iterate of the second iterate of T IL .s) can be defined on (/-ll , M2], where 
M2 is the analogous parameter value to MI . 

We now use the standard bootstrap argument as is used in the case of period­
doubling cascades. Set MO = 1. Then proceeding inductively we see that if /-l E 

[/-In, Mn] then the induced map Tn (made up of parts of the 2nth iterate of T) 
is well defined on an interval which has a point Xn-l of period 2n - 1 at one end 
point. If /-l = /-In , an orbit of period 2n is created by boundary bifurcation, and if 
/-l = Mn the two branches of the induced map stretch over the interval on which 
the map is defined and so, by standard arguments [8], the topological entropy of 
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the original map is 2-n log 2. The intervals In = [JIn , P,nl form a nested sequence 
of closed intervals, and so 

00 

(6) 
n=O 

is non-empty, and is the accumulation point of the two sequences, (JIn) and (P,n) 
(strictly speaking we have not shown that JIoo is a singleton). If JI = JI oo then the 
renormalization process (the process of defining induced maps) can be repeated 
infinitely often. If JI < JIoo then the only periodic orbits of TI" .s have periods 2n, 
n = 0,1, ... ,N, for some finite N and so the topological entropy of the map is 
zero, whilst if JI > JIoo , then JI > P,m for some m and so the entropy of the map is 
greater than or equal to 2-m log 2. 

3. Scaling 

Equation (5) makes it relatively straightforward to verify the scaling, (1). We 
have already shown that JIo = s(s + 1) - 1. If T has parameter JI = JIn, with 
JIn defined in section 2, then the induced map Tn has parameters (Mn' Sn) with 
Mn = Sn(Sn + 1)-1. Similarly, if T has JI = JIn+l then Tn+l has parameters 
(Mn+1 ,Sn+l) with Sn+l = S~ by (5) and Mn+l = Sn+l(Sn+l + 1)-1. Setting 
JI = Mn , s = Sn and M = Mn+l in the first equation of (5) we find 

Mn = S~ + (Sn - I)Mn+l 
Sn(Sn + 1) 

where we think of Mn+l as a function of S~. 

(7) 

Now, at the parameter values JIn, JIn+l and JIn+2, Tn is well defined and the 
corresponding parameters for this induced map are Mn.o, Mn,1 and Mn.2 where 

2 (3 S ) 
M = ~ M = ~ and M = Sn Sn - n + 1 (8) 

n,O Sn + 1 ' n, 1 S~ + 1 ' n,2 S~ + 1 

as is verified using the expression already given for JIo and two applications of (7), 
Now let 

.0.n.m = M n,m+l - Mn,m (9) 

and think of .0.n,m as a function of Sn = S~_I' d. (11). Defining To to be the 
original map (2) we see that equation (1) is equivalent to 

.0.o,n ---> C.0.6 n-l as n ---> 00 

and it is this which we wish to demonstrate now. 

(10) 

If Tn has a boundary bifurcation which creates an orbit of period 2m at 
Mn,m then Tn- 1 has a boundary bifurcation creating an orbit of period 2m + 1 at 
Mn- 1 ,m+l which can be obtained from Mn ,m using (7). Hence 

Sn-l - 1 2 ) 
.0.n- 1 ,m+l = S (S + 1) .0.n,m(Sn_l 

n-l n-l 
(11) 
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In other words, if n is large, so Sn is large, and ~n.m rv S;:r" ,m then ~n-1,m+ 1 rv 

S-rn - 1,m+l h - 2 1 . n-1 were Tn-1,m+1 - Tn.m + ,I.e" 

Tn-k.n+k = 2k A - I, with A = Tn.m + 1. (12) 

for k = 0, ... ,n. A simple calculation using (8) shows that 

(13) 

so Tn.1 = 1 and Tn,2 = 3, and hence TO.n+1 = 2.2n - 1 and TO,n+2 = 4.2n - 1. 
Equation (10) now follows since 

~2 rv s-4.2" +1 and ~2 rv S-4.2"+2 = S s-4.2"+1 (14) 0,n+1 0.n+1 . 
Note that a similar argument gives the same scaling result for the parameters Mn 
and this, together with the remarks on entropy at the end of section two show that 
the entropy increases like the reciprocal of the logarithm of IMn - J.loo I, a result 
known to Derrida et al [4], see also [5, 9]. 

4. The accumulation curve 

The accumulation of boundary doublings occurs at a parameter J.loo which is a 
function of s. The locus of this accumulation in the full two parameter space (J.l, s) 
will be discussed here. On this locus, the map To can be renormalized infinitely 
many times, and hence so can the induced map T1 . Hence, if the locus takes the 
form J.l = F(s) then from (5) we find that 

(s - 1)F(s2) = S - s(s + 1)(1 - F(s)) (15) 

with s > O. Note that lims->1 F(s) = ~ and lims->oo F(s) = 1 as we would expect. 
It is easier to approach (15) using the inverse of s, so if G(S-1) = F(s) and t = S-1 
then (15) may be rewritten as 

G(t) = _1_ + t(l - t) G(t2) 
l+t l+t 

(16) 

Replacing t by t 2 throught to obtain an expression for G(e) in terms of G(t4) and 
so 

G 1 t(l-t) t3(I-t)(1 - t2)G 4) 
(t) = 1 + t + (1 + t)(1 + t 2 ) + (1 + t)(1 + t 2 ) (t. (17) 

It is now relatively straightforward to repeat this process, giving 
00 

G(t) = L an (t)t2" -1 (18) 
n=O 

where 

1 1 - t 
aO = 1 + t' a1 = (1 + t)(1 + t2) , 

(1 - t) Il~':::~(1- t 2r ) 
an = n 1 n , 

(1 + t 2 )(1 + t 2 ) 
n? 2. (19) 
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An alternative approach to the solution of (16) is to pose a formal power series 
solution G(t) = L~ YnC'. After rewriting (16) as (1 + t)G(t) = 1 + t(1 - t)G(t2 ), 

substitution of this formal power series solution gives a linear differnece equation 
with proportional delay for the coefficients: 

Y2n+l = -Y2n + Yn, Y2n+2 = -Y2n+l - Yn (20) 

with the initial condition Yo = 1. These equations differ to those studied by Buh­
mann and Iserles [2, 6] for a discretized model of the pantograph equation on the 
boundary of stability of the trivial solution only in the sign of Yn in the second 
equation. Equations (20) have a curious self-similarity property. If Zk = Yk+l + Yk 

then Z2n+l = -Z2n, so we need only consider the odd or the even Zk. Consider 
the even case and let Z2k = bk . Then, noting that Z2n+2 + Z2n = Zn we find that 
the difference equation for bk is precisely (20) - even the initial condition is the 
same! I have been unable to find a simple interpretation of this result, but the 
coefficients of the solutions to the discretized pantograph equations also have a 
fractal structure [6]. 
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Piecewise Rotations: 
Bifurcations, Attractors and Symmetries 

Arek Goetz and Miguel Mendes 

Abstract. In this paper we investigate the most basic two-dimensional gen­
eralizations of interval exchange maps. The system studied is obtained by 
composing two rotations. We illustrate a new example of an attractor. The 
structure of this attractor appears to be present in the invertible piecewise 
rotation systems with two atoms. In the non-invertible case, we also illustrate 
a bifurcation mechanism leading to births of satellite systems. 

1. Introduction 

In this paper, we study planar systems of partially defined Euclidean rotations 
which are non-invertible. After defining our systems (section 2), we illustrate a the­
oretical model for perturbations of piecewise rotations which are called 8-attractoTs 
leading to examples whose at tractors contain an infinite number of discs (section 4 
and 5). In section 6, we construct a new example of an attractor with an induced 
almost invertible dynamics. Finally, in section 7, we generalize basic concepts of 
symmetries and reversing-symmetries to the dynamics of piecewise rotations. 

Our model involves the most basic examples of piecewise rotations with two 
domains separated by the discontinuity line. The rotation angles are fixed and 
perturbations are accomplished by varying one of the centers of rotations. 

Piecewise rotations are examples of Euclidean piecewise isometries. These sys­
tems generalize well known and studied interval exchanges to a class of Euclidean 
two-dimensional piecewise isometries. Piecewise isometries appear in a variety of 
contexts and have been recently extensively studied as interval exchanges, inter­
val translations, rectangular exchanges, polygonal and polyhedron exchanges and 
pseudogroup systems of rotations. Piecewise isometric maps appear naturally in 
billiards, dual billiards, theory of foliations and tilings. Piecewise rotations appear 
in the dynamics of so called digital filters. Detailed references can be found in 
Goetz [1998a]. 

2. Definitions 

The phase space of piecewise rotations is the complex plane. We fix the point 
So E ]R- and the angles of rotation 0'0,0'1 E (0, 27r). Let To be the rotation by 0'0 

about So and let T1 be the rotation by 0'1 about some point S1. 
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We define a family T of piecewise rotations T : C ---) C such that 

Tx = { Tox if x E Po = {x: Re x < O} (1) 
TI x if x E PI = {x : Re x 2: O}. 

The family T is parameterized by the position of the right center of rotation SI 
leaving the left center of rotation So and the angles of rotations ao and aI, fixed. 
The half planes Po and PI will be further called atoms of the map T. 

3. 8-attractor system 

The central theorem in Goetz [1998a] describes the dynamics of T when SI E IR+. 
In this case, there are two externally tangent discs: Do in the left atom (centered 
at So) and D] in the right atom (centered at Sd which are fixed by the map 
(Fig. l(left)). Discs are the trapping regions as once an orbit enters one of the 
discs, it never escapes from it . A surprising result is that all orbits are attracted 
to the fixed discs. However, there exist orbits that are never trapped in Do U Dl 
- such orbits visit both atoms infinitely often and they accumulate on the union 
of two circles which are the boundaries of Do and D]. The system also has strong 
attracting properties as entire neighborhoods of Do U D] are contracted to Do U D l , 
that is Do U D l is a piecewise isometric attractor (Fig. 1 (left)). The main result 
in Goetz [1998a] can be summarized as follows: 

Theorem 3.1. Suppose that SI E IR+. Then all orbits of T accumulate in the two 
maximal invariant discs Do U D] (Do C Po and D] C PI) fixed by T (Fig. 1 (left)). 
There exist orbits visiting both atoms infinitely often. The accumulation set of these 
orbits is the boundary of Do U D]. Moreover, for all bounded sets Y ~ Do U D l , 
the sets Tny decrease to Do U Dl as n ---) 00. 

Piecewise rotations T E T described in Theorem 3.1 (or their restrictions 
to an invariant neighborhood of the fixed discs Do U D l ) will be further called 8-
attmctor maps since the orbits of points not trapped in the 8-attractor, accumulate 
on a figure eight (see Fig. 1(1eft) once again). 

The fixed discs Do and Dl are maximal domains whose iterates are contained 
in exactly one atom. In general, it is convenient to describe maximal domains which 
are not broken up in to smaller pieces under the iteration of the map via symbolic 
description. The coding map aT : C ---) {O, l}N encodes the forward orbit of a point 
x E C by recording the indices of atoms visited by the orbit, a7'(x) = WOW] ... , 
where Tkx E PWk and Wk E {O, I} . A cell is the set of all points with the same 
coding. 

4. 8-attractor emerges as a local map in a small perturbation 

If the point SI lies off the real axis, then Theorem 3.1 no longer holds (compare 
Fig. l(left) and l(right)). If the perturbation of S] is small (the line joining So 
and SI remains almost perpendicular to the imaginary axis), then some orbits 



Piecewise Rotations: Bifurcations, Attractors and Symmetries 159 

+ + ...• 
,. .+." .. ,. .. . . .. .. ..... ..~ ..... 

.. .. " :+ vo 
.' . 

,. *. *. ~.. So ... 
.. "" ........ . . ., 

1m 

.. : : •• + . .. . + .... 

.. .. .. .. .. 

Po 

+ 

Re 

PI Po 

1m 

" o 

Re 

PI 

FIGURE 1. A single orbit (left figure) of an 8-attractor. All orbits are 
either trapped in one of the two shaded fixed discs, or they accumulate 
on the boundaries of the two fixed discs. If the right center of rotation 
is moved slightly off the real axis (right figure), for suitable choice of 
parameters, some orbits accumulate inside satellite periodic discs. 

accumulate in a family of periodic discs and a new remarkable phenomenon of 
the birth of satellite systems is observed. The key starting idea in our model of 
this phenomenon is the next result (Theorem 4.1) which states that perturbations 
of SI can be always chosen so that a new periodic disc is externally tangent to 
Do. Hence, a new 8-attractor system emerges locally in a small perturbation of 
an 8-attractor system. This gives rise to a new class of attractors , and also most 
importantly, the result can be recursively applied to the local map resulting in 
births of new satellite systems and systems with an infinite number of periodic 
discs. 

In the following result, we perturb an 8-attractor map with centers of rotation 
So E IR- and SI E IR+ by varying SI. 

Theorem 4.1 (8-attractor emerges locally). Every neighborhood of SI contains 
some S; E PI such that: 

1. The piecewise rotation T E T with centers of rotation So and S; has a periodic 
point S2 E IR+ of some period l. The orbit of S2 alternates between the atoms 
orbiting first around D; and then Do. The cell containing S2 is a periodic 
disc centered at S2 and externally tangent to Do. 

2. A local map Te:,. defined as Te:,.x = Tx if x E Po, and Te:,.x = Tlx if x E PI 
restricted to some neighborhood M :J Do U D2 is an 8-attractor map with 
centers of rotations So and S2. 

5. Recursive application of Theorem 4.1 

Perturbations of 8-attractor maps frequently give rise to more than just one family 
of "satellite periodic discs" (see Fig. 6(b) in Goetz [1998b]). In this section we 
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state that suitable, arbitrarily small perturbations of an 8-attractor map result in 
examples with infinitely many periodic cells which are discs. 

Theorem 5.1 (Perturbations with infinitely many satellite discs). The right center 
of every 8-attractor system can be perturbed in such a way that the new system 
has infinitely many periodic points. Every such periodic point p is contained in a 
cell which is a disc centered at p. Such a perturbation can be always chosen to be 
arbitrarily small. 

In order to illustrate the main idea of the proof of the above result note that 
Theorem 4.1 describes a perturbation G 1 of an 8-attractor map Go resulting in 
the birth of a small periodic disc D 2 , orbiting around the fixed discs D~ and then 
Do. This theorem can be applied to a small perturbation of the local 8-attractor 
map T 6.. Since the position of the periodic point S2 depends homeomorphic ally 
on the right center of rotation Sl, all small perturbations of T 6. can be realized by 
suitable perturbations of S1. In particular, there is a perturbation G2 of G1 with a 
small periodic disc D3 and local map T6.6. restricted to a neighborhood of Do and 
D3 is again an 8-attractor map. A new molecular attractor consisting of Do and 
the iterates of D3 emerges. These perturbations can be repeated recursively. They 
converge (in the space of piecewise rotations) to a perturbation of an 8-attractor 
map with an infinite number of periodic discs. 

6. Attractors 

In the previous section we illustrated that for a suitable choice of irrational angles 
of rotations, the attracting set consists of an infinite number of periodic discs. 
Although in general the structure of an invariant set is unknown, in this section we 
illustrate that for a specific choice of rational angles of rotations, we can explicitly 
describe the attracting set and show that all orbits are trapped in the attractor. 
These new examples of attractors have complicated dynamics in their interior. 

Details of the constructions and proofs can be found in Mendes [2001]. 

6.1. The notion of Attractor and Quasi-invariant sets 

The next definition is a generalization of that presented in Goetz [1998a]. 

Definition 6.1. A compact set A is called a Piecewise Isometric Attractor if there 
exists a neighbourhood N => A such that T(N) eN and 

A = nn>oTn(N) U Z, for some set Z such that J-l(Z) = 0, 

and also, such that there is no other compact set A' C A satisfying the above 
equation for other zero measure set ZI. 

Although these at tractors may not be invariant sets, as all the existing ex­
amples prove, they might differ little from an invariant set as in the following 
sense, 
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Definition 6.2. A positive measure set A is called quasi-invariant if T(A) c A and 
tL(A\T(A)) = O. 

For a reasonable large class of transformations we can derive a stronger property. 

Proposition 6.3. Let T be a mapping such that tL(T- 1 (S)) = 0 implies tL( S) = 0 
for all sets SeQ where Q is a forward - invariant set. Then Q is quasi-invariant 
set if and only if there exists an invariant set I C Q such that tL( Q\I) = O. 

Moreover , we can show that the map T restricted to the attractor is almost­
invertible in the sense that, tL( {y E T(A) : #[T- 1( {y})] i- I}) = O. More generally, 

Proposition 6.4. If T is a piecewise isometry and A is a quasi-invariant set then 
T IA is almost-invertible. 

This result generalizes the remark on Goetz [1998c] concerning a self-similar 
example which possesses rich dynamics for there exist infinitely many cells along 
with a fractal structure. 

Furthermore, from above it follows that T IA is measure-preserving, and that 
every piecewise isometric attractor is a quasi-invariant set, since nn?oTn(N) is an 
invariant set. 

The fact that some examples of at tractors contain complex dynamical be­
haviour is closely related to the fact that they intersect the discontinuity line. 

Finally, we pose some questions whose answer would give a deep insight to 
the classification of the possible attractors in piecewise rotations as well as which 
maps possess them. 

Question: For which values of angles and centres of rotation do piecewise rotations 
generate attractors? For all those attractors containing fractal w-limit 
sets, can we compute their Hausdorff dimension? 

6.2. New examples 

Our model is defined as follows: let So = (- 1, -b) and Sl = (1, b) , where b is some 
positive number; let 0'0 = 0'1 such that To(V) and T1 (V) are tangent to D1 and 
Do, respectively, where V is the discontinuity line. The quasi-invariant set is then 
contained in the area bounded by Do , D1 and the lines To(V) and T1(V), In the 
following figure some phase portraits are depicted. 

Theorem 6.5. Take e = 7r In, n 2: 3. Only for these choices of e, the set described 
above satisfies the following: 

(a) T(A) C A and tL(A\ T(A)) = 0; 
(b) There exists an attracting neighbourhood N such that, 

A::) n~~lTn(N) for some Po EN; 

(c) Moreover, A = n':'=lTn(N) and also tL(A\ n':'= l T n(N)) = O. 
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FIGURE 2. Fractals. 

Finally, we state a result concerning a conjugacy between the maps described 
previously and models used in the theory of digital filters. These models are defined 
as follows, 

Proposition 6.6. In the conditions of the previous theorem, the restriction of the 
map on the attractor is conjugated to the models presented above for r = 1. 

For the case when a = 7r / 4, a thorough study was carried out in Adler et 
al. [1999] and as well as in Ashwin et al. [1999], Guillaume [2000] and Kahng 
[2000]. Using self-similarities, the Hausdorff dimension of the fractal structure of 
the exceptional set (the black region) for a = 7r/4 can be shown to be 1.246477 .... 

7. Symmetries and Reversing-symmetries 

In this section we introduce new concepts of symmetry that generalize the classic 
ones, as well as describe piecewise rotations that have a non-trivial group of sym­
metries for some subgroup of][))n < ((J) (n) . Elements of][))n are assumed to act as 
reflections or rotations about the line of reflection or the centre of rotation. All 
proofs and more details of this section can be found in Mendes [2000]. 

The notions of equivariance and reversibility require that fa(x) = af(x) and 
fp(x) = pf-l(x), respectively, for all x E M, where M is some manifold and 
f : M ----? M is a given mapping defined in M that generates a discrete dynamical 
system. 
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As far as piecewise rotations are concerned, we have found some classes that 
possess symmetries that resemble those from continuous maps. However, the for­
mer definitions would have neglected these new examples. Therefore, we will in­
troduce weaker notions of equivariance and reversibility that suit discontinuous 
dynamical systems in general. 

Definition 7.1. Suppose a is a linear isometry. Define no- = {x EM: fa(x) = 
af(x)}. Then, a is called an a.e.-symmetry if p,(M\no-) = 0, where a.e. stands 
for almost everywhere. 

As usual, let O+(x) = {r(x) : n E N} and define n~ = {x EM: ra(x) = 

afn(x)} and no- = nnENn~. We are interested on the effects that a.e.-symmetries 
might have on orbits. As stated below, a.e.-symmetries preserve a basic property 
in the classical setting. 

Proposition 7.2. Assume that f preserves sets of zero measure. Then 
p,(M\no-) = 0 and in particular a(O+(x)) = O+(a(x)) for almost every x . 

In an analogous way, one defines a.e.-reversing-symmetries. From these def­
initions it is natural to say that f is essentially-equivariant if it possesses an 
a.e.-symmetryand essentially-reversible if it possesses an a.e.-reversing-symmetry 
as well as whether or not one can build a group of a.e.-(reversing)-symmetries, or 
shortly, group of symmetries. 

Proposition 7.3. The set of a.e.-(reversing)-symmetries form a group. 

In the next two theorems we describe all possible a.e-symmetries and a.e.­
reversing-symmetries for piecewise rotations and, as a corollary, we present the 
resulting admissible symmetry groups. 

Theorem 7.4. If T is a piecewise rotation such that 00 = -0) and So = -S) E IR 
then T is essentially-equivariant for the a.e.-symmetry a.z = -2. 

If T is a piecewise rotation such that 00 = 0) and So = -S) then T is 
essentially-equivariant for the a.e.-symmetry a.z = -z . 

Furthermore, there are no other cases of essential-equivariance with respect 
to ]]))n, for piecewise rotations. 

Let Pa be the reflection on the line passing through both centres of rotation 
and Pb the reflection on the line passing through the origin and perpendicular to 
the previous one. 

Theorem 7.S. Every invertible piecewise rotation is essentially-reversible for Pa. 
Furthermore, Pa and Pb are the only admissible a.e.-reversing-symmetries. 

Corollary 7.6. The admissible groups of symmetry of piecewise rotations are: 

(a) &::2 and, 
(b) &::2 X&::2 . 
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Case (a) includes maps with only one a.e.-reversing-symmetry and other maps 
where there is just one a.e.-symmetry. Whereas case (b), concerns those maps 
with a group of symmetry generated by an a.e.-symmetry and an a.e.-reversing­
symmetry. Both of them generate normal subgroups isomorphic to ::£2. 

Question: Could this be generalized to piecewise rotations with more than two 
atoms? 

In figure 3 we present some pattern-like phase portraits. 

FIGURE 3. A purely essentially-reversible PR (left) and a ::£2 x ::£2-
essentially-reversible PR (right). 

We shall now make two remarks concerning the examples of attractors in 
section 6.2. Firstly, those attractors have more symmetry, though we have not 
proved this, than the original piecewise rotations, a scenario which is not consid­
ered in the standard admissibility theory developed for homeomorphisms (see for 
instance, one of the introductory papers Ian Melbourne et al [1993]). 

Secondly, the conjugacy with digital filters leads to the appearance of unusual 
symmetries as we shall now illustrate. 

Assume that f : A --t A and 9 : B --t B are conjugated by h : A --t B, i.e., 
hf = gh. We define the push-forward of a (reversing)-symmetry u of f as being 
the map h*(u) = huh-I. It is easy to check that h*(u) is a (reversing)-symmetry 
of g. 

From the conjugacy mentioned previously in proposition 6.6, we can push­
forward all existing (reversing)-symmetries from the original map that were proved 
in Adler et al. [1999]. Consequently, two new reversing-symmetries appear. How­
ever, they are piecewise isometric due to the fact that h is itself a piecewise isome­
try (h refers to the conjugacy established in proposition 6.6). We now give a more 
precise definition. 
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Definition 7.7. Suppose (J is a piecewise linear isometry, L e., there exist linear 
isometries (Ji and Mi for i = 1, ... ,p such that 

Mi n M j 0, i i= j , and M =. U Mi 
1=1.. .. p 

(J(X) (Ji(X), if x E Mi . 

Then, if f (J( x) = (J f (x), for all x EM, (J is called a piecewise-symmetry. If in 
addition, na i= 0 and /-L(M\na) = 0, (J is called an a.e.-piecewise-symmetry. The 
same is defined for the reversible case. 

We hope that the symmetries that are present in our systems will help us 
prove the abundance of periodic points in general cases, which is a current focus 
of many researchers in the area. 
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Bound States of Asymmetric Hot Spots 
in Solid Flame Propagation 

A. Bayliss, B.J. Matkowsky, A.P. Aldushin 

1. Introduction 

We consider modes of gasless solid fuel combustion, which are employed in the 
SHS (Self Propagating High Temperature Synthesis) process for the synthesis of 
advanced materials. In this process a finely ground powder mixture of desired re­
actants is ignited at one end. A high temperature thermal wave then propagates 
through the sample converting reactants to products. The SHS process was pio­
neered in the former Soviet Union and offers the promise of significant advantages 
in materials synthesis over conventional processes [9, lOJ. 

Consider the burning of a cylindrical sample of solid fuel. The sample is ig­
nited at one end and synthesis proceeds as a high temperature combustion wave 
propagates along the cylinder. In the simplest case the combustion wave has a 
uniformly propagating planar front separating the burned from the unburned sam­
ple, the temperature distribution along the front is uniform and the speed of the 
wave is constant. However, it is known both theoretically and experimentally that 
nonuniform modes of propagation are possible. Generally, these modes arise via bi­
furcations as parameters of the problem are varied. The study of different modes of 
propagation is significant since the nature of the combustion wave determines the 
conditions for synthesis, which affect the microstructure of the material produced. 
Indeed, some materials can only be synthesized in a nonuniform mode. 

It has been observed that burning can occur throughout the sample, or can 
be confined to a narrow layer at the surface, though this is generally due to the 
effect of gas filtration. Nevertheless, we employ a gas less surface combustion model 
in which all radial dependence is neglected. The model also describes solid flame 
propagation in a thin cylindrical annulus between two concentric cylinders, as 
in the synthesis of hollow tubes. Thus, the independent variables are the axial 
coordinate z and the cylindrical angle 'ljJ. Planar modes are described by solutions 
which are independent of'ljJ. 

A variety of nonuniformly propagating modes are known. These include pla­
nar pulsating combustion, sometimes referred to as auto oscillatory combustion, in 
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which planar fronts with a uniform temperature dependence on the front prop­
agate with oscillatory velocities [11]. Such modes were described analytically by 
bifurcation theory, as solutions of a mathematical model with o-function kinet­
ics [8], and via numerical computations with Arrhenius kinetics, e.g., [3, 13]. The 
transition from Arrhenius kinetics to o-function kinetics occurs as the reaction 
zone shrinks to a surface separating the burned and unburned regions. Nonplanar 
modes of propagation typically occur when the radius of the cylinder is sufficiently 
large. These modes are generally characterized by dynamics involving one or more 
hot spots (localized high temperature maxima) along the combustion front. These 
modes include (i) spin combustion, in which one or more hot spots move in a 
helical fashion along the surface of the cylinder, all in the same direction, as the 
combustion wave propagates, (ii) counterpropagating combustion in which spots 
travel in opposite directions and undergo complex interactions when they collide, 
e.g., apparent annihilation and creation, and (iii) multiple point combustion, in 
which hot spot(s) repeatedly appear, disappear and reappear 

Spinning waves were discovered experimentally in [11]. Such modes have also 
been described analytically [7, 14] and numerically [1, 2, 5, 6]. Generally, infor­
mation on the dynamics of the hot spots has been qualitative. Computations to 
date have focused on spinning modes as symmetric traveling waves. Here, the term 
symmetric means only that in the case of multiple hot spots, all spots are iden­
tical and are symmetrically placed, i.e., are equally spaced around the circle as 
they propagate. The waves are not symmetric in shape, i.e., the spatial profiles of 
the traveling pulses corresponding to the spots are asymmetric, as clearly seen in 
Figure 4. We note that modulated single spot traveling waves have been observed 
computationally, [1, 4]. 

In this paper we describe new types of spin combustion. Specifically, we 
describe asymmetric traveling waves, in which two nonidentical spots, not equally 
spaced around the circle, spin together as a traveling wave, or as a modulated 
traveling wave. The leading spot has a higher temperature than the trailing spot, 
thus generating more heat in the reaction to drive the wave. Nevertheless, the two 
spots are bound together as they travel, due to heat transfer from the leading spot 
to the trailing spot. Thus, the term bound states. 

2. Mathematical model 

The unknowns are the temperature T, and the mass fraction of a deficient com­
ponent of the reactant 17. We consider a model which accounts for diffusion of 
heat and one step, irreversible Arrhenius kinetics. Since the reactants are solid we 
neglect diffusion of mass. Furthermore, we assume that burning is confined to the 
surface of the cylindrical sample. 
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The nondimensional model in a coordinate system that moves with the front 
<P at velocity <Pt, is given by the system 

1 (N(l - 0")(8 - 1)) 
8 t <Pt 8 z + 8 zz + R2 8 ,;,,p + ZY exp 0" + (1 _ 0")8 ' 

Y.t '" Y _ ZY (N(l- 0")(8 -1)) 
'Pi z exp 0" + (1 - 0") 8 ' 

on the domain, -00 < Z < 00, 0 :::; 'l/J :::; 2Jr, t > 0, subject to the boundary 
conditions 

8(z, t) ----> 0 as z ----> -00, 
a8(z, t) 

az 
Y(z,t) ----> 1 as z ----> -00, 

----> 0 as z ----> 00, 

as well as periodicity in 'l/J and appropriate initial conditions. The boundary con­
ditions in z are imposed at finite points as described in [1, 4]. Here, R is the 
radius of the cylinder (suitably nondimensionalized), N is nondimensionalized ac­
tivation energy (typically large), Z = N(1-0")/2 is the Zeldovich number (Z » 1), 
0" = Tu/n, where Tu and n are the temperature of the unburned mixture and adi­
abatic burning temperature respectively, and Y = Y /Yu, 8 = (T - Tu) / (Tb - Tu), 
where Yu is the mass fraction of the deficient component far ahead of the combus­
tion wave. The nondimensional independent variables are the time t, the cylindrical 
angle 'l/J, and the axial coordinate z in a reference frame moving with the front. 
Details on how the moving coordinate is obtained and further details on the model 
are given in [4], and details on the adaptive pseudo-spectral numerical method that 
we developed are given in [2]. The results presented here are obtained by varying 
N, keeping Rand 0" fixed. In all cases, we define the front location as the point at 
which the reaction rate is maximum. 

3. Results 

We first consider the evolution of asymmetric traveling waves, consisting of two 
nonidentical hot spots, not symmetrically located in angle, which spin together as 
a traveling wave. We call these modes Bound States or Asymmetric Traveling 
Waves and refer to them as ATW2 solutions, indicating that there are two hot spots 
associated with these modes. These modes arise by bifurcation from two headed 
symmetric traveling waves (TW2), when the activation energy N increases above a 
critical value. The results indicate that they arise via a period doubling, symmetry 
breaking of the TW2 mode, as the symmetry of invariance with respect to rotation 
by angle Jr is broken. In Figures 1 and 2 we plot the temperature on the front for a 
fixed angular location as a function of t for a TW2 (N = 22.75) and for an ATW2 
(N = 23) exhibiting the period doubling behavior as the ATW2 forms. In Figure 3 
we exhibit a space-time plot of the temperature on the front as a function of 'l/J and 
t for an ATW2 solution. The straight ridges correspond to the hot spots, which 
spin at a uniform rate in a helical path around the cylinder. In Figure 4 we plot the 
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FIGURE 1. e at a fixed angular location on the front for a TW2 solution. 
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FIGURE 2. e at a fixed angular location on the front for an ATW2 solution. 



Bound States of Asymmetric Hot Spots in Solid Flame Propagation 171 

FIGURE 3. 8 on the front as a function of'lj; and t for an ATW2 solution. 
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FIGURE 4. 8(z, 'lj;) at a fixed instant of time for an ATW2 solution. 
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FIGURE 5. 8 on the front as a function of'lj; and t for an AMTW2 solution. 

temperature 8(z, 'lj;) at a fixed instant oft, which shows a snapshot of the localized 
structure, which behaves as a kink in z and as a pulse in 'lj;. The characteristic 
feature of the ATW2 is that the spots are not identical and are not symmetrically 
spaced. A similar figure for the symmetric TW2 mode would show two identical 
spots separated by angle 1r. Thus, the ATW2 arises when the symmetry between 
the two spots is broken. This type of solution has been observed in one dimension 
[12], whereas the localized structure described here is two dimensional. A mode 
which is qualitatively similar to that described here has been described in a layer 
model of two dimensional solid flames [1]. 

We have followed the ATW2 branch by increasing N. In order to represent the 
branch we define a measure of the asymmetry between the two spots. Specifically, 
we define the quantity K, as follows. For each solution we compute the period T, 
i.e., the time required for one of the spots, say the strong spot, to return to a fixed 
angle. We also compute the smaller of the time differences between the arrival of 
two successive spots, o. Then, for each solution K, = oiT. As K, -+ 0.5, the solution 
approaches a TW2. As K, -+ 0 the two spots coalesce and the solution approaches a 
TWl. We note that K, monotonically decreases as N increases, indicating that the 
two spots are coalescing. The ATW2 solution branch loses stability at a nonzero 
value of K,. When N increases beyond a critical value we find that the solution 
goes to a TW1, which is bistable with the ATW2 branch. Thus, we are unable 
to determine how the ATW2 branch emerges (perhaps as a branch of unstable 
solutions) from the TW1 branch. However, the ATW2 branch takes on some of 
the character of the TW1 branch as N increases, as illustrated by the monotonic 
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decrease in K,. We note that for intermediate values of N we find tristability of 
the TW1, TW2 and ATW2 solutions. We have not determined whether the TW2 
branch loses stability at the point of onset of the ATW2 branch. 

Finally, we note that for larger values of R, the qualitative behavior between 
the TW2, ATW2 and TW1 branches is similar, except that upon losing stability 
we find a transition to asymmetric modulated traveling waves (AMTW2) in which 
the two asymmetric spots oscillate as they travel, first coming closer together and 
then spreading apart, as they propagate, with an accompanying oscillatory growth 
and shrinkage of the spots. In Figure 5 we illustrate such a solution in a space time 
plot over essentially one cycle of the apparently quasiperiodic motion. 
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Pattern Formation with Galilean Symmetry 

P.C. Matthews and S.M. Cox 

Abstract. The behaviour of pattern-forming systems in one dimension with 
Galilean symmetry in large domains is not described by the usual Ginzburg­
Landau equation. This is because the Galilean symmetry leads to a large-scale 
neutral mode that interacts with the pattern. The resulting coupled amplitude 
equations, derived by considering the symmetry, show chaotic behaviour and 
exhibit a novel scaling in which the amplitude of the pattern is proportional 
to the 3/4 power of the bifurcation parameter. 

1. Introduction 

This paper is concerned with pattern formation in one dimension at a stationary bi­
furcation with non-zero wavenumber. Although this is the simplest type of pattern 
formation problem, some unanswered questions remain concerning the behaviour 
when the system is complicated by the presence of additional symmetries. 

In finite domains, the spectrum of eigenvalues is discrete, and standard tech­
niques of bifurcation theory with symmetry [5] can be used to show that the 
bifurcation is a pitchfork. In an infinite domain, the spectrum becomes continu­
ous, so that a centre manifold reduction is not possible. In this case, the approach 
of applied mathematicians is to use a method of multiple scales, introducing a 
long lengthscale and a slow timescale based on the small parameter measuring the 
degree of supercriticality. This leads to the Ginzburg-Landau equation 

(1) 

where a is a constant which can be scaled to ±l. The crucial point about (1) is that 
it is generic for systems with Euclidean symmetry, provided that (i) the system 
has a uniform stationary state that becomes unstable at a stationary bifurcation 
at a finite wavenumber, and (ii) all other wavenumbers are damped and have 
growth rates bounded away from zero. Recently, this argument has been placed 
on a rigorous mathematical footing by Melbourne [9], who showed that a scalar 
equation is obtained, which when truncated at cubic order yields (1). 

A key point in the derivation of (1) is that patterns with a wavenumber k 
generate modes with wavenumbers 0 and 2k. These modes must be damped, and 
so slaved to the wavenumber-k modes, for (1) to be valid. However, there are a 
number of cases where the Ginzburg-Landau equation does not apply, due to the 
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FIGURE 1. Spectrum of eigenvalues for systems with Galilean symmetry 
near the onset of pattern formation, for finite wavenumber (solid line) 
and small wavenumber (dashed line) . 

presence of some additional non-generic feature in the system. The wavenumber 0 
is not damped (and therefore the result of [9] does not apply) if the system has a 
conservation law [8], or if there is Galilean symmetry. This paper will consider the 
latter case; a brief summary of some of the results has recently been published [7]. 

2. Galilean symmetry 

Suppose that a PDE for u(x, t) has Galilean and Euclidean symmetry, 

x ~x+ Vt+W, u~u+v, (2) 

with the Euclidean reflection symmetry acting as -1, so that 

x ~ -x, u ~ -u. (3) 

These are very important symmetries in physics, possessed by many PDEs, 
for example the Navier- Stokes equations. Since the reflection symmetry acts as 
-1, u corresponds physically to a velocity. 

For simplicity, we will suppose that the system is governed by a PDE that is 
first-order in time, so that 

Ut = F(u,ux,uxx , . .. ). (4) 

Imposing that the equation is invariant under the symmetry (2) we find that 
Fu + U x = 0 and hence 

(5) 

Equivalently, one can calculate the invariants of (2), which are Ut + uUx and all 
x-derivatives of u, leading to (5). Thus the only linear terms permitted are terms 
involving derivatives of u . 

The reflection symmetry (3) provides a further restriction on (5). In the 
linear terms, only even x-derivatives are permitted, so the eigenvalue A of a mode 
proportional to exp(At + ikx) is of order k 2 as k ~ o. 
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There are now two possible scenarios for the onset of pattern formation. If the 
coefficient of the U xx term is negative, then there is a long-wave instability and the 
small-amplitude behaviour is controlled by the Kuramoto-- Sivashinsky equation, 
Ut + UUx = -Uxx - U xxxx ' This paper is concerned with the alternative case, 
where the U xx term is positive and the instability occurs at finite wavenumber. 
The spectrum of eigenvalues for these two cases is shown in Figure 1. 

A simple model PDE satisfying the requirements of Galilean symmetry and 
bifurcation at a finite wavenumber is 

au = _~ [ru _ (1 + ~)2 u]- u au at ax2 ax2 ax ' (6) 

which was proposed as a model for seismic waves [2]. The eigenvalues are given by 

(7) 

so that instability occurs for r > 0, with critical wavenumber k = 1. Although (6) 
appears similar to the Swift-Hohenberg equation, its behaviour is quite different, 
and a number of studies of (6) have led to some controversy. It has been stated 
[10] that the amplitude of the solution is proportional to r 1/ 2 as r ---* 0 (the 
usual scaling for a pitchfork bifurcation); but it has also been claimed [6] that the 
amplitude is proportional to r . In fact , as shown below, both of these scalings are 
incorrect. 

3. Amplitude equations 

We now derive appropriate amplitude equations for a PDE of the form (5), such 
as (6), with a stationary bifurcation at a non-zero wavenumber which we may take 
to be k = 1. The bifurcation is taken to occur when a control parameter r passes 
through zero, so that the growth rate .\ is negative for r < 0 and positive for r > 0; 
r may be scaled so that .\ '" r as r -> O. 

The Ginzburg-Landau equation is not valid, because the neutral large-scale 
mode corresponding to the limit k ---* 0 must be taken into account as well as the 
mode with k = 1. The correct ansatz is 

u = Re {A(X, T) exp(ix)} + j(X, T), (8) 

where X and T are rescaled forms of x and t. The amplitude equations can be 
written down by requiring invariance under the symmetries of translation, 

A ---* Aexp(i¢), (9) 

reflection, 

X ---* -X, j ---* - j, A ---* -A* (10) 

and Galilean symmetry 

j -> j + V, A -> Aexp(-iVT). (11) 
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Applying these symmetries and scaling to remove constants leads to the equations 

2 A+Axx-aIAI A-if A, 
2 

vfxx - f-lIAI x' 

(12) 

(13) 

where a = ±1, f-l and v are free parameters, and higher order terms, such as Afx 
in (12), have been omitted. Alternatively, (12, 13) can be obtained by substituting 
(8) into (6), calculating the slaved exp(2ix) term and then equating the terms in 
exp(ix) and the terms independent of x. 

Coullet and Fauve [3] were the first to write down equations similar to (12, 
13); however they did not consider the scalings for A, f, X and T as r -t O. If 
one adopts the standard scaling (used for the Swift-Hohenberg equation, or for 
nonlinear convection), r = 1'2, A = 0(1'), X = EX, T = E2t, then the amplitude 
equations are inconsistent, for any choice of the scaling for f. If, for example, 
f = 0(1'2) then (12) is consistent but c 1 appears in the coupling term in (13), 
while if f = 0(1') then (13) is consistent but c 1 multiplies the coupling term in 
(12). However, these inconsistent amplitude equations can be used to show that 
stationary patterns are always unstable, and that the growth rate of this instability 
is faster than the growth rate of the pattern. 

The only way in which consistent amplitude equations can be obtained is by 
altering the scaling for A. The coupling terms balance if r = 1'2, A = Oklj2 ), 

f = O( 1'2), X = EX, T = E2t, giving the asymptotically consistent equations 

AT 
lr 

A+Axx -if A, 

vfxx -IAI2", 

(14) 

(15) 

where A has been rescaled so that f-l = 1. Note that the stabilising cubic term 
has been lost from (14). This allows exponentially growing solutions in which 
A = An exp T, but it can be shown that these are unstable, in the sense that 
spatially non-uniform perturbations to this state grow like exp 2T [7]. 

4. Numerical simulations 

It is of interest to simulate numerically the model equation (6) in order to check 
the above novel scaling for the amplitude. This is a difficult computation, since to 
determine the correct scaling, r must be very small and the domain size L must 
be very large. Simulations were carried out using periodic boundary conditions 
with L = 300, using a spectral method with 512 grid points. Because of the six 
derivatives appearing, the system (6) is very stiff, so that special time-integration 
methods are required for efficient simulation. The exponential time differencing 
method [4] was used here; this allows much larger time steps than an explicit 
method but without the computational expense of an implicit method. The r.m.s. 
amplitude was averaged over a long time interval, for several values of r. Good 
agreement with the scaling law Ur.m.s. ex: r:lj4 was obtained over the range 0.001 < 
r < 0.1, as shown in Figure 2. 
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A comparison between the behaviour of (6) and the amplitude equations (14, 
15) with the appropriate parameters is shown in Figure 3. Note that the simulations 
of (6) show rapid destruction of the pattern and a subsequent evolution at lower 
amplitude, as suggested by the above scaling. The simulations of (14, 15) show a 
behaviour that is qualitatively very similar, and the amplitude remains bounded 
despite the lack of a stabilising cubic term in (14). 
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FIGURE 3. Numerical simulations of (6) (left, with r = 0.0l, L = 300) 
and (14, 15) (right, with II = 1/4, L = 15), showing the evolution of 
four Fourier modes. 
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5. Discussion 

In this paper we have derived the equations analogous to the Ginzburg-Landau 
equation for a stationary bifurcation at a finite wavenumber with Galilean sym­
metry. The Galilean symmetry leads to the existence of a neutral large-scale mode 
that is strongly coupled to the finite-wavenumber mode. Because of this inter­
action, there are no stable patterns, the behaviour is chaotic at onset and the 
amplitude scales as the 3/4 power of the bifurcation parameter. 

There are a number of complications with regard to applying these results to 
experimental systems. Firstly, it is not possible to obtain true Galilean symmetry in 
an experiment. For example, although the Navier-Stokes equations have Galilean 
symmetry, the symmetry is weakly broken (by an amount proportional to the 
viscosity) by the presence of rigid boundaries. Secondly, in most applications [1, 
2] there is no reflection symmetry, allowing additional terms in the amplitude 
equations. Further work is in progress on these problems. 
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Semigroups of Functions and 
the Structure of Stationary Measures 
in Systems which Contract-on-average 

Matthew Nicol, Nikita Sidorov, and David Broomhead 

1. Introduction 

This note is a summary of a talk given at the Conference on Symmetry and 
Bifurcation in honor of Marty Golubitsky and Ian Stewart. The results stated in 
this note are found, together with proofs, in the paper [8]. 

Suppose {h, ... , 1m} is a set of Lipschitz maps of JRd. We form an iterated 
function system (IFS) by independently choosing the maps so that the map Ii 
is chosen with probability Pi (2::':1 Pi = 1). We assume that the IFS contracts­
on-average (defined below). Such systems possess stationary invariant measures. 
We will describe recent work of Broomhead, Nicol and Sidorov [8] on the relation 
between the Hausdorff dimension of the measure, the entropy and the Lyapunov 
exponent of the system and the semigroup generated by the functions {h,···, 1m}. 
We include several examples with a view to illustrate the role of the semigroup 
generated by the mappings. 

To simplify the notation we will denote the probability vector by p := 

(p1, ... ,Pm), and the IFS itself by 1>. Another way of viewing the IFS is to let 
n = TI~ {I, ... ,m} and equip n with the product probability measure 1I induced 
in the standard way on cylinder sets by the probability vector p. Let Xo E JRd. For 
any wEn and any n E N we may define the point 

xn(w) := Iwo ... IWn-l (xo). 

If limn-->oo Xn (w) exists, then we define 

¢(w) = lim xn(w). (1.1 ) 
n-->oo 

We will now describe conditions (the contraction-on-average condition) that en­
sures that ¢(w) is defined fJ, a.e. independently of Xo. 

Let 
m 

h(p) := LPi 10gPi. 
i=l 

where log is the natural logarithm. -h(P) is the measure-theoretic entropy of the 
Bernoulli shift a : n ---7 n with the probabilities (P1, ... ,Pm)' 
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For any Lipschitz map g of ]Rd we let Ilgll denote the Lipschitz constant 
of g. We assume a contraction-on-average (sometimes called logarithmic average 
contractivity) condition to hold: namely for v-a.e. w E fl, 

lim .!.log+ Ilfwo ... fWn- lll = X(<I» < O. (1.2) 
n-+CX) n 

We call X( <I» the Lyapunov exponent of the system. 
Note that the condition (1.2) is implied by the easy to check condition 

m 

LPi log lifill < O. 
i=1 

Under these assumptions it is well known (see P. Diaconis and D. Freedman 
[3]) that the IFS possesses a unique stationary probability measure J-l on ]Rd inde­
pendent of the choice of initial point. In fact the measurable mapping ¢ induces 
J-l on Borel sets of]Rd by J-l(B) = v 0 ¢-I(B). Sometimes we will also call J-l the 
invariant measure. 

By results of L. Dubins and D. Freedman [4] (see also M. Barnsley and 
J. Elton [2 , Proposition 1]) on Markov operators, J-l must be of pure type, i.e., 
either absolutely continuous or purely singular with respect to Lebesgue measure 
on ]Rd. M. Barnsley and J. Elton [2, Theorem 3] show that if d = 1 and the maps 
{fd are affine , i.e., f i(X) = AiX + lYi and IAil ~ 1 for at least one i then the 
support of J-l is either ]R or of form [a, (0) or (-00, b] for a, b E R We exploit this 
observation in Section 3. 

Example 1.1. An important classical example of an IFS which contracts strictly 
is the one-parameter family 

fo(x) = A-IX, 

h(x) = A-IX + 1 _ A-I 

with PI E (0,1) and IAI > 1. It has been extensively studied since the 1930's. 
In recent work by B. Solomyak [11] it was shown that if PI = P2 = ~, then 
a .e. A E (1,2) induces an absolutely continuous measure J-l on the interval [0,1]. 
A similar result was later obtained by the same authors for PI E [1/3, 2/3] (see 
Section 3). The general problem of finding for which values A and P this system 
is absolutely continuous or singular is very hard and only few concrete results are 
known (see [9] for a nice review and collection of references). 

Recall that the (upper) Hausdorff dimension of a probability measure J-l is 
the infimum of the Hausdorff dimensions of Borel sets B such that J-l(B) = 1. We 
denote the upper Hausdorff dimension of J-l by dimH(J-l). 

In [8] the authors give an upper bound for the upper Hausdorff dimension 
of the invariant measure J-l and describe sufficient conditions for J-l to be singular 
in terms of X( <I», h(P) and the expansion rate of the semigroup generated by 
{fd. In Section 3 we present several examples showing the role of symmetry and 
how to apply the main theorem. In particular, for any d > 2 we give examples 
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of singular measures whose support is the whole of IRd (these observations are 
additional to the cases d = 1,2 of [8]). The key theme is that the problem of 
estimating dimH(p,) may be reduced to certain combinatorial and algebraic issues 
concerning the semigroup generated by the maps of the IFS. 

2. Sufficient conditions for singularity of the invariant measure 

Let G+ denote the semigroup generated by the maps {h, ... ,fm}. Its elements 
are all compositions fwo 0 ... 0 fWn-l for any n E Nand Wk E {I , ... , m}. G+ can 
be either the free semigroup Ft, (if all such compositions are different) or a proper 
subsemigroup of Ft,. 

Let Dn denote the set of all words of length n in G+. In other words, Dn is 
the set of equivalence classes in I1~- 1 {I, ... , m}, namely: 

(wo,'" ,w~_l) '" (wb , ··· ,W~_l) if fw~ 0··· 0 fW~ _ 1 = fw~ 0'" 0 fW;'_I' 

By a standard argument there exists 0 E [1, m] such that 

0= lim V#Dn . 
n--++oo 

(2.3) 

If G+ is abelian, then 0 = 1 while if there are no relations between the mappings 
then 0 = m. 

A main result of [8] is: 

Theorem 2.1. If 
h(p) logO dl 

X(<I» < ogm, 

then p, is singular, and 

d· () h(p) logO d 
lmH p, :::; X(<I»logm < . 

If Pl = ... = Pm = ~, then 

This has the following immediate corollaries: 

(2.4) 

Corollary 2.2. If 0 = 1 (i.e ., the semigroup G+ grows subexponentially), then p, is 
singular and dimH(p,) = O. 

Corollary 2.3. The measure p, is singular for any <I> such that 

dlx(<I»1 > Ih(p)l· 

If (2.5) holds, then p, is singular and 

. h(p) 
dlmH(p,) :::; X(<I» < d. 

(2.5) 
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3. Examples 

We are going to consider several examples to illustrate these results . All the ex­
amples we give will involve affine maps. 

Example 3.1. We start with a simple example. Suppose h (x) = 2x + 1, 12 (x) = 

l~ X + 1 chosen with probabilities PI = P2 = ~. Then x( <I» = - ~ log 2 < h(P) = 
- log 2 and hence by Corollary 2.3, the invariant measure /1 is singular with respect 
to Lebesgue measure, and dimH(/1) :s l However it is easy to show that the 
topological support of the invariant measure is the interval [1, (0). Note that a 
more detailed analysis shows that since hhfi'hh = hiP 12, we have () < 1.9836, 
whence by the formula (2.4) , dimH(/1) :s ~ log2 () < 0.6588. 

Example 3.2. (Bernoulli convolutions). Put n := rr~ {O, I} and let A > 1, fo(x) = 
A -1 x, h (x) = A-I X + 1 - A-I , PI = P2 = ~ (see Introduction). In this case x( <I» = 
- logA, and 

n-l 

f wo 0···0 fWn - 1 (0) = (1 - A-I) LWkA-k , 
k=O 

thus, 
00 

¢(W) = (1 - A-I) LWkA-k. 
k=O 

The easiest subcase is A = 1+2,/5. It was studied in several papers (see references 
in [10]); in particular, for this A we have G+ = (a, b I ab2 = ba2 ) and dimH(/1) = 
0.995713 .. . (this numerical result is due to J. C. Alexander and D. Zagier [1]). 

Example 3.3. Let A > 1 and 

1 
h(x) = A-Ix, h(x) = x + 1 and PI = P2 = 2". (3.6) 

The support of /1 = /1(A) is [0, +(0) , and X(<I» = -~ log A. Hence by Corollary 2.3 , 

for A > 4 the measure /1 is singular, and dimH(/1) :s ~~~g} < 1. 

We claim that for any transcendental A the semigroup G+ is free. An induc­
tion argument shows that 

S 

f~1 f;1 ... g s f; s (x) = A - 2: ~ nj x + L kjA - 2:;=1 ni , 

j = 1 

so if A is not algebraic, 

f n1 fk1 fns fk s - fn~ fk~ fn : fk~ 12···12-12···12 

. I· . - , k· - k' . - 1 H #D - 2n () - 2 d G + - '1:"+ ImpleSn]=n j , ]= j,J- , ... ,s. ence n- , - an -J2· 

Nevertheless there exist values of A E (1 , 4) for which /1 is singular. For example, 

in [8, Example 3.2J it is shown that if A = (1+2,/5) then /1 is singular. 
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As far as we know, there are no general results on the structure of supp(J.1) 
in the case of higher dimensions. We generalise an example in [8] to present an 
example of a family ofIFS for d > 2 such that supp(J.1) = JRd, whereas J.1 is singular. 

Example 3.4. We now generalise an example in [8] from d = 2 to d > 2. In [8] a 
measure is constructed whose support is the whole of the plane, yet the measure 
is singular. This construction proceeds as follows: let>. > 1 and the one-parameter 
family of IFS <l> >- be defined by 

h(x) = AX-Ix, 

h(x) = x + e, 

where A>- = >'RQ , aIrr is irrational, e E SI and 

In [8] it is shown that: 

Proposition 3.5. [8] 

( co. s 00 Ra = sm 00 

- sin (0) . 
cos 00 

1. For any A > 1 the IFS <l> >- contracts on average and the support of the 
invariant measure J.1>- is full, i.e., 

2. For A > 2 the measure J.1>- is singular, and 

. 2log2 
dlmH(J.1>-) < --\- < 2. 

log /\ 

(3.7) 

(3.8) 

This construction has a natural generalization to JRd. The main difference is 
that although SO(2) needs just one generator, if d > 2 then SO(d) requires two 
generators. In fact SO(d) has a right and left invariant Haar measure hand h x h 
a.e. pair of elements bl,/2) generate SO(d)[7, 6]. Choose two such generators 
bl,/2) with matrix representations MI , M2 . As above let A > 1 and define the 
one-parameter family of IFS <l>>- as follows: 

h(x) = M~lx, 

h(x) = M;lx, 

h(x)=x+e, 

where M i ,>- = >.Mi,(i = 1,2) and e E JRd is fixed and of unit length (ie Ilell = 1). 
We assume PI = P2 = i and P3 = ~. The analogous statement is: 

Proposition 3.6. 1. For any A > 1 the IFS <l>>- contracts on average and the 
support of the invariant measure J.1>- is full, i.e., 

(3.9) 
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2. For A > 2~ the measure /-l>. is singular, and 
3log2 

dimH(/-l>.) < logA < d. (3.10) 

Proof. Corollary 2.3 implies that A > 2~ ensures the singularity of /-l>. together 
with (3.10). 

We now prove 3.9. Assume M := supp(/-l>.) i- lRd ; then there exists a disc 
B(x,5) whose intersection with M is empty. Hence by definition, 

fi~l ... fi~l B(x, 5) n M = 0 
for any sequence of maps (iI, ... ,in), ij E {I, 2}. We have 

j;-l ... f,~l B(x, 5) = B(Yn, An5), ~ 1 11 

where Yn = fi~l ... fi~l(x) = An Mi~l ... Mi~l(X). Since 11,12 generate Sd, given 
any E > 0 for arbitarily large n there exists a sequence iI, ... ,in such that 

IIMi~l ... Mi~l(X) - Ilxlle II < E. (3.11) 

Fix r > 1, E = 5/2 and n sufficiently large to satisfy An > 2r/5 together with 
(3.11). Let z = Anllxlle; we claim that 

B(z, r) c B(Yn, ,\n5). 

To see this suppose that Y E B(z, r), i.e., Ily - zll :::; r. Then 

Ily - Ynll :::; Ily - zll + liz - Ynll 
1 < r + An E = r + - An 0 < An 5. - 2 

Hence B(z, r) n M = 0, and J:{"k B(z, r) n M = 0 for any k 2: O. Since Ilell = 1 and 
z belongs to the half-line {te, t 2: O}, there exists k 2: 0 such that f3 k B(z, r) ~ 
B(O, r -1). Hence for any r > 1, B(O, r - 1) n M = 0, which means M = 0. This 
establishes the proposition. 0 
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Rayleigh-Benard Convection with 
Experimental Boundary Conditions 

Joana Prat, Isabel Mercader, and Edgar Knobloch 

Abstract. The onset of convection in systems that are heated via current dis­
sipation in the lower boundary or that lose heat from the top boundary via 
Newton 's law of cooling is formulated as a bifurcation problem. The Rayleigh 
number as usually defined is shown to be inappropriate as a bifurcation pa­
rameter since the temperature across the layer depends on the amplitude 
of convection and hence changes as convection evolves at fixed external pa­
rameter values. Moreover, the final state of the system is also different since 
it depends on the details of the applied boundary conditions. A modified 
Rayleigh number is introduced that does remain constant even when the sys­
tem is evolving, and solutions obtained with the standard formulation are 
compared with those obtained via the new one. 

1. Introduction 

Rayleigh-Benard convection has been the subject of a large number of theoreti­
cal and experimental studies since the pioneering work of Lord Rayleigh and H. 
Benard. Yet despite this there are still various issues whose significance has not 
been fully recognized. One such issue that is important for the interpretation of 
experiments relates to the proper boundary conditions to be used in any theoreti­
cal treatment of the problem. In papers in which comparison between experiment 
and theory is attempted this important question is usually dismissed with the glib 
statement that boundaries consisting of a 'good' thermal conductor correspond 
to fixed temperature boundary conditions while those made of a thermal insula­
tor correspond to fixed heat flux. However, rarely does the author consider the 
question of how good a conductor does the boundary have to be before the fixed 
temperature boundary conditions apply. In fact it appears that a commonly held 
view is that copper is a good thermal conductor and hence that copper bound­
aries are always correctly modeled by constant temperature boundary conditions. 
However, this is not so. Whether or not a boundary behaves like a constant tem­
perature boundary does not depend only on its composition but also on its heat 
capacity relative to the heat capacity of the fluid with which it is in contact. The 
basic issue is fundamentally whether a change in the temperature of the fluid in 
contact with the boundary produces a small change in the temperature of the 
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boundary or a large one. If it is the former then the boundary is effectively a con­
stant temperature one; otherwise it is not. Both the conductivity of the material of 
the boundary (and of the confined fluid) and its mass enter into the determination 
of the (dimensionless) Biot number that characterizes the thermal properties of the 
boundary when in contact with a given mass of fluid. Regrettably, experimentalists 
almost never provide sufficient information to allow a theorist to estimate the Biot 
numbers for the lower and upper boundaries used in their experiment. It is this 
fact that is responsible for one of the main difficulties in comparing experiment 
with theory. 

These issues are particularly acute when one studies problems in which the 
bifurcation to convection is subcritical. In this case once the conduction state loses 
stability the system evolves far from the initial state and the temperature differ­
ence D..T across the layer drops, since convection decreases the temperature of the 
lower boundary and increases that of the upper boundary. In a bifurcation dia­
gram showing the Nusselt number (a dimensionless measure of the heat transport) 
against the conventionally defined Rayleigh number (proportional to D..T) the sys­
tem therefore follows a path that slopes to the left, instead of evolving vertically as 
one would expect of a system under constant conditions. This behavior is shown 
quite dramatically in a number of the early experiments on binary fluid convection 
in which the lower boundary was heated electrically (via constant electrical power) 
[1,2,3J . 

In this note we indicate how the convection problem can be reformulated in 
order to define a bifurcation parameter that remains constant under fixed external 
conditions. A proper treatment of the problem requires the solution of a time­
dependent conduction problem in boundaries of finite width, whose outer boundary 
may be at fixed temperature (if the boundary is held in thermal contact with a heat 
bath at fixed temperature) [4, 5J. Note that the whole notion of a heat bath requires 
that the thermal capacity of the bath be large compared to that of the sample. The 
issue here is that under typical experimental conditions the boundaries themselves 
do not act like a fixed temperature bath and instead conduct heat away from or 
into the fluid. A full discussion of this problem will be provided elsewhere [6]; here 
we follow [7J and focus on the derivation of the appropriate bifurcation parameter, 
assuming that the Biot numbers of the lower and upper boundaries are known. 

2. The equations 

We consider two-dimensional Boussinesq thermal convection between boundaries 
responsible for the boundary conditions 

at z = -d/2, 

at z = d/2, 
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where d is the layer depth, TL, Tu are the temperatures of the lower (L) and 
upper (U) heat baths, and T_, T+ are the temperatures in the fluid right next 
to the lower and upper boundaries (see fig. 1). Here B~ are the Biot numbers of 
the boundaries: conducting boundaries correspond to B = 00 while an insulating 
boundary corresponds to B = O. Note that, by hypothesis, T L, Tu are constants 
independent of time, while T _, T + fluctuate in response to the motion of the fluid. 

I 
FIGURE 1. Sketch of the fluid layer 

In the standard description of the Rayleigh-Benard problem one describes 
the system in terms of the dimensionless temperature difference across the fluid in 
the conduction state, regardless of whether this state is stable or not. In this state 
dT/dz = -t1Tc/d everywhere, and so 

t1Tc = B_(TL - T':..) = B+(T~ - Tu). 

Here T~ are the temperatures at the bottom and top of the fluid in the conduction 
state. Since T':.. - T't- = t1Tc it follows that 

t1 c ( ) B+B_ 
T = TL - Tu B+B_ + B+ + B_ ' 

and is therefore independent of the dynamics of the system, provided TL - Tu 
remains fixed. Moreover, in view of the equivalent relation 

t1Tc = B+B_t1T - d(B+T~ + B_T~), 
B+B_ +B+ + B_ 

the temperature difference t1T == T _ - T + across the fluid may indeed change 
during evolution but must be compensated by a corresponding variation in the 
temperature gradients (indicated by a prime) at the top and bottom. We propose 
therefore to define a modified Rayleigh number based on the quantity t1Tc (as 
opposed to t1T) as a proper bifurcation parameter for the system. 

To do this we nondimensionalize the equations in the usual way, expressing 
the temperature T in units of t1Tc, distances in units of the layer depth d and 
time in units of d2 / K, where K is the thermal diffusivity of the fluid. We define the 
dimensionless control parameter by the relation 

Rail = ag(TL - Tu )d3 = Ra' TL - Tu 
KV t1Tc ) 
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where Ra' is defined by analogy to the usual Rayleigh number, i.e., Ra' is propor­
tional to the temperature difference across the fluid in the conduction state: 

, agd3 B+B_6.T - d(B+T~ + B_T~) 
Ra = -- . 

IW B+B_ + B+ + B_ 
Note that both Ra' and Rail defined in this manner remain constant for fixed 
external conditions. Thus both provide good definitions of a control parameter, in 
contrast to the conventionally defined Rayleigh number 

ag6.Td:l 
Ra = -'---

Of the two Rayleigh numbers R' and Rail the latter may prove to be more useful 
since it is defined in terms of TL - Tu and not the temperature difference across 
the fluid. 

In the following we list the final dimensionless equations describing convec­
tion in two dimensions, expressing the temperature fluctuation e away from the 
conduction profile T':. - 6.TC(z/d + 1/2) in units of 6.Tc. These are written in 
terms of a mean flow U = (U,O) and its fluctuating part v' = (-ozX', oxX'), 
where v' = X' = 0, with the overline indicating an average over the horizontal 
period [8]. The result is 

(Ot - ao;JU + Oz v~v~ = 0, (la) 

( ~ ~ 2)" 2 , o(X',w') o(X',w') 
Ut + UUx - aV w + Ra aoxe + ozzUoxX + o(x, z) - o(x, z) = 0, (lb) 

( 2' o(x', e) 
Ot+Uox-V )()-oxX + o(x,z) =0, (lc) 

where w' = - V 2 X', and a is the Prandtl number. Note that Ra = Ra'(1+8_ -8+). 
The boundary conditions on the temperature fluctuation e are 

(1 - BjJoze = ~B,±e at z = ±1/2, (ld) 

where B'± = B±/(l + B±). The modified Biot numbers B,± are convenient for 
numerical exploration, and are such that B = 0(00) corresponds to B* = 0(1). 
Thus B* = 1 corresponds to a fixed temperature boundary condition, while B* = 0 
corresponds to a fixed flux boundary condition. For no-slip boundaries the velocity 
boundary conditions are 

U = X' = ozX' = 0 at z = ±1/2. (Ie) 

When 0 < B'± < 1 the solution of the above problem depends on the choice 
of B'± and hence differs from the corresponding solution with fixed temperature 
boundary conditions. 

Fig. 2 shows the results obtained by solving equations (la-e) for the case 
(B~, B+) = (1,0.8) and a = 0.1 using a spectral Galerkin-Fourier technique in x 
and collocation-Chebyshev in z [9] in a periodic box of period L = 1r. The figure 
shows N - 1, where N is the Nusselt number, for the n = 2 state (solid curves) 
as a function of (a) Rail and (b) Ra, and compares the results with those for 
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FIGURE 2. Bifurcation diagram for L = 7r, (J" = 0.1 for the system 
(la-e) with B~ = 1, B'i- = 0.8 as a function of (a) Rail and (b) Ra. 
The primary instability is to an n = 2 mode (at Rail = 2187), followed 
by an instability to an n = 1 mode at Rail = 2268 (not shown). The 
dotted line shows the corresponding result for B'i- = 1, and is identical in 
both plots. The arrows connect initial states with final states for several 
different initial conditions, and show that the conventionally defined 
Rayleigh number Ra decreases during evolution (fig.b). This is not the 
case in (a). 
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B~ = B'i- = 1 (dotted curves). The evolution from the unstable conduction state 
that results is indicated by arrows. These are vertical in fig. 2(a) but slope to the 
left as in fig. 2(b) whenever B'i- < 1. This slope can be used as a diagnostic for 
the value of the Biot number. In both cases the Nusselt number in the final state 
is independent of z and hence equals the Nusselt number N+ at the top. For a 
perfect conductor at the bottom 

B* Ra' - Ra 
N+ -1 = + 

1- B'i- Ra' 

Thus provided B'i- > 0 we may use either N + -lor (Ra' - Ra) / Ra' as indicators of 
the amplitude of convection. We emphasize that the solid and dotted curves are not 
the same, i.e., the assertion that Biot numbers only affect the evolutionary path in 
the Nusselt number-Rayleigh number diagram but not the final equilibrated state 
is manifestly false. 

When 0 ~ B~ = B 'i- < 1 the system retains midplane reflection symmetry 
but in the N - 1 vs Ra diagram it still evolves towards smaller Ra. All primary 
bifurcations necessarily produce branches of equilibria that are symmetric with 
respect to the two operations TK and R, where T denotes translation through 
half a wavelength, K reflection in the midplane, and R a left-right reflection about 
a node. In contrast, the secondary (pitchfork) bifurcation on the n = 1 branch 
produces an unstable state with the (smaller) point symmetry RTK, hereafter a 
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FIGURE 3. Bifurcation diagrams for (a) B~ = B~ = 1, and (b) B~ = 1, 
B~ = 0.9999, when L = 27r /2.12 and a = 0.1. Solid (dashed) lines indi­
cate steady (traveling) states. The loss of midplane reflection symmetry 
destroys the point symmetry of the P state and turns it into a slowly 
drifting state whose phase velocity is shown in (b). At the same time 
the tertiary parity-breaking bifurcation to TW seen in (a) turns into an 
imperfect bifurcation (see fig. b). 

P state [10]. This state in turn undergoes a tertiary (pitchfork) bifurcation to a 
travelling wave state TW. Fig. 3(a) shows a diagram of this type for B~ = B~ = 1. 
When the Biot number at the top is changed slightly to break the symmetry K 

the n = 1 and n = 2 states are essentially unchanged, but the P state turns into 
a slowly drifting traveling wave [10]; at the same time the pitchfork from the P 
state to the TW becomes imperfect, as illustrated in fig. 3(b). 

With increasing asymmetry with respect to the midplane a range of Ra' 
develops in which none of the simple simple steady states or traveling waves just 
described is stable [11]. In this regime stable solutions with complex dynamics may 
be found [6]. 

3. Discussion 

In this note we have pointed out a simple way of dealing with convection systems 
in which the effects of departures from perfectly thermally conducting bound­
aries affect the behavior of the system, and illustrated quantitatively these effects 
on both the linear stability analysis and the moderately nonlinear states of the 
system. The resulting formulation should be of substantial help for quantitative 
comparisons between experiments and theory. 
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Global Bifurcations in 
FitzHugh-Nagumo Model 

Adelina Georgescu, Carmen Roc§oreanu, and Nicolaie Giurgiteanu 

Abstract. The FitzHugh-Nagumo (F-N) system [1] modelling the electrical 
potential in the nodal system of the heart is shown to have a rich dynam­
ics. The results are synthesized in the global bifurcation diagram providing 
an overall view of all possible qualitatively distinct responses of the model 
for all values of the parameters. Since the curves of global bifurcation values 
emerge at points of curves consisting of local bifurcation values, the global 
bifurcations are presented in the context of the global bifurcation diagram. 
Thus, codimension one bifurcations of Hopf, homoclinic, saddle-node, break­
ing saddle connections, nonhyperbolic limit cycle and breaking the connection 
between a saddle and a saddle-node types are obtained. A large number of 
codimension two bifurcations are discussed here, such as Bogdanov-Takens, 
Bautin, double homoclinic, double breaking saddle connections bifurcations. 
Some of the bifurcation boundaries are obtained analytically, other are ob­
tained numerically, using the software MATHEMATICA and our own code 
DIECBI [2]. 

1. The F -N model 
Among several models labeled F-N in the following the Cauchy problem x (0) = Xo , 
Y (0) = Yo, for the second order ODE [1] 

±=c(x+y-x3 /3) , 

iJ = - (x - a + by) / c. 
(1) 

will be refered to as the F-N model. The state functions x, y : R ~ R , x = x (t), 
y = y (t) represent the electrical potential of the cell membrane and the excitability 
respectively, t is the time, a, b E R are parameters depending on the number of 
channells of the cell membrane which are open for the ions of K+ and Ca++ and 
c > 0 is the relaxation parameter. 

The two- dimensional continuous time dynamics generated by this problem 
strongly depends on parameters. On the other hand, the complexity of the phase 
portraits is due to the presence of the equilibria, their invariant manifolds and 
orbits connecting them and the limit cycles. The main features of the correspond­
ing dynamics is revealed by the global bifurcation diagram corresponding to the 
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parametric portrait (Section 2). Our study concerns the case c = canst, c> 1. In 
fact, in [3] we considered the restriction c 2 1 + y'3, in order to separate in the 
(b, a)-plane not only the regions with nontopological equivalent dynamics, but also 
the regions where the attractors (or repulsors) are foci or nodes, cases that are 
interesting for the biologists, but which are topological equivalent from a mathe­
matical point of view. The case c :::; 1 complicates in addition due to the fact that 
the curve of Hopf bifurcation values changes drastically with c. Such a detailed 
discussion was carried out later and can be found in [5]. 

2. Bifurcations in F-N system 

In the following we quote the local as well as global bifurcations for the F-N system 
obtained by the authors [3]. 

The saddle-node bifurcation takes place when parameters (b, a) are situated 
on the curves 51,2 of equations 

2 Pl):l 
a = ±3 Ibl V \1 - b) , bE (-00,0) U [1,(0) , (2) 

except at the points 

Ql = (-c, 2 (c + 1) VI + ~ ) , Q;{ = (c, 2 (c - 1) VI - ~) , Q2 and Q4 

their symmetrics with respect to the Ob-axis respectively, and Q = (1,0) . 
For parameters situated on these curves, the system possesses a double equi­

librium point and the system linearized around it has an eigenvalue equal to zero. 
At the point Q, the single equilibrium point is the origin, which is a non-hyperbolic 
repulsor. At the points Qi, i = 1,2,3,4, the system possesses a double equilibrium 
with a double zero eigenvalue and a Bogdanov-Takens bifurcation takes place. 

The Hopf bifurcation takes place for parameters (b, a) situated on the curves 
Hl.2 of equations 

a=±~(-2+~-~)J1- b, bE(-c,c). 
3 b c2 c2 

(3) 

At two exceptional points 

the Hopf bifurcation degenerates into a Bautin bifurcation. 
Let Qo = HI n H 2 . At Qo two Hopf bifurcations take place simultaneously 

around two equilibria. 
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Using the normal form method [4], we found that the equation of the curves 
Ba1,2, emerging at Q17,18, has the following asymptotic expression in the neigh­
borhood of these points 

(5) 

x (~Re C1 - ~ 1m C1) 2 + 4/-1 = 0, 

where C1, C2 are related to the Liapunov coefficients, /-1 and ware the real and 
imaginary parts of the eigenvalues of the system linearized around the Bautin 
equilibrium point and v = g. For parameters situated on these curves a non­
hyperbolic limit cycle bifurcation, (i.e., emerged as two hyperbolic limit cycles 
coalesce) takes place. 

Also using the normal form method [4], we showed [3] that at the points Qi, 
emerge the curves BTni, i = 1, ... ,4 corresponding to homo clinic bifurcations. 

Their equations are approximated by 

7b2 - lObc2 + 3c2 J7b2 + 5c2 b - 12c2 
a=±--------;:---

15c3 5b' 

7b2 + lOb c2 - 17c2 J-7b2 + 5b c2 + 2c2 
a = ±----:-:---;-;----

15dl 5b' 

bE (-c,O). (6) 

bE (0, c) . (7) 

Near the Bautin and Bogdanov-Takens bifurcation values respectively the 
curves Bai and BTni were drawn by asymptotic formulae up to points at which 
they were coincident to the results of the direct numerical computations. From 
these points on, these curves were drawn by the computations. In this way we 
derived the domain of validity of asymptotic formulae. 

The curves BTn3 and BTn4 intersect at Q6, where a double homoclinic bi­
furcation takes place. The curves BTn1 and BTn2 interesect at Q5 where a double 
breaking saddle connection bifurcation (i.e., two saddle connections are broken) 
takes place. In addition at Q6 emerge the curves D1.2, obtained only numerically 
[2], and consisting of homoclinic bifurcation values. At Q5 emerge the curves K l - 4 

obtained also only numerically and consisting of breaking saddle connection bifur­
cation values. The curves D 1,2 and BTn3,4 cut the curves 51.2 at Q7-10, where 
a saddle-node separatrix loop bifurcation takes place, whilst the curves K l - 4 cut 
the curves 5 1,2 at Qll,12 and Q15.16, where saddle-node-saddle with separatrix 
connection bifurcations take place [6]. Among all these bifurcations, the global 
ones correspond to the parameters situated on the curves BTnl-4, D1.2, K l - 4, 
Ba1,2. 

Putting together the local bifurcation diagrams obtained for the quoted bi­
furcations, the global parametric portrait is obtained [3] (Fig. 1, 2). The points 
Q13, Q14 and Qi, i = 19, ... ,30 in Figures 1,2 are other codimension two bifur­
cation points. Regions with the same label have identical or symmetrical phase 
portraits. 
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In the activity of the heart the periodic beatings are of crucial importance. 
They correspond to limit cycles occurring for parameters situated in the (b, a)­
plane in the shaded regions from the parametric portrait. Thus, regions 2A, 2B, 
5, 8, 10, 16 correspond to a single limit cycle, regions 7, 9, 12, 14, 17 correspond 
to two limit cycles, whilst regions 11 and 13 correspond to three coexisting limit 
cycles. The completion of the parametric portrait with schematic phase portraits 
and various types of oscillations corresponding to different shapes of the limit 
cycles are given in [3] 
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