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After a brief review in the introduction of the major breakthroughs in the study
of Rayleigh–Bénard convection (RBC) since the experiments of Henri Bénard, a
few selected topics are presented in more detail. The effect of on the bifurcation
to convection is discussed because experimental work on this is quite recent and
as yet incomplete. Examples of spatio–temporal chaos are examined because
this interesting nonlinear state is as yet incompletely understood. The effect of
rotation on RBC is presented because some of the experimental results disagree
with modern theories.

4.1 Introduction

Convection in a shallow horizontal layer of a fluid heated from below had been
observed on several occasions during the nineteenth century [1]. However, the
carefully controlled and quantitative laboratory experiments of Henri Bénard
[2] focused the interest of other scientists on this fascinating problem. Bénard
studied the patterns of the convective flow in the presence of a free upper sur-
face, using a variety of fluids with different viscosities. He made quantitative
determinations of the deformation of the upper surface, of the characteristic
length scales of the pattern, and of the direction of flow within the fluid. Al-
though we now know that the beautiful hexagonal patterns observed by Bénard
[3] were caused by the contribution of a temperature dependent surface tension,
these experiments were the direct motivation of Lord Rayleigh’s seminal stability
analysis [4] for the case of free horizontal boundaries in the absence of surface
tension. Rayleigh’s opening remark in his paper in The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science was “The present is an
attempt to examine how far the interesting results obtained by Bénard in his
careful and skillful experiments can be explained theoretically”. Lord Rayleigh
recognized that there is a finite value of the temperature difference ΔT = ΔTc

for the onset of convection, and that the important combination of parameters
that determines the onset is

R =
αgd3ΔT

κν
, (4.1)

where α is the isobaric thermal expansion coefficient, κ the thermal diffusivity,
ν the kinematic viscosity, d the spacing between the plates, g the acceleration of
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gravity, and ΔT the temperature difference. We now refer to R as the “Rayleigh
number”. Lord Rayleigh also found that the instability occurs at finite wavenum-
ber kc, and that it is a stationary instability (i.e., that the relevant eigenvalues
are real). For the free boundary conditions that he used he was able to obtain
the analytic results Rc = 27π4/4 and kc = π/

√
2.

Fig. 4.1. Left: hexagonal pattern of non-Boussinesq convection in compressed SF6

near its critical point (from [6]). Middle: roll pattern for a Boussinesq fluid (from [7]).
Right: square pattern in binary-mixture convection (from [8]).

Fig. 4.2. Nusselt number measurements using ethanol in a circular cell with d = 1.54
mm and diameter D = 88 mm. Open (closed) circles: increasing (decreasing) ΔT (from
[14]).

The problem caught the attention of other giants in the field during the
next several decades. Here I mention only a few highlights. Rayleigh’s work
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was followed by the stability analysis for more realistic rigid boundaries by Sir
Harold Jeffreys [5], that (after some numerical problems) yielded the values
Rc = 1708 and kc = 3.117 relevant to experiments using fluids confined between
well-conducting solid parallel plates. There were a number of other milestones.
Particularly noteworthy on the theoretical side were the first weakly nonlinear
analyses that led to predictions of the stable convection patterns. On the basis
of the linear stability analysis of Lord Rayleigh or Sir Harold Jeffreys one knows
the magnitude of the critical wavedirector, but one cannot decide whether the
patterns above onset will consist of rolls, hexagons, or squares. Indeed all three
patterns occur in RBC as illustrated in Figure 4.1 [6, 7, 8], albeit under different
circumstances. Malkus and Veronis [9] predicted that the stable planform for
the case of free boundaries and Boussinesq conditions [10, 11] should be straight
rolls rather than, for example, squares or hexagons. The foundation for much of
the “modern” work on Rayleigh–Bénard convection was laid during the 1960’s
by the weakly nonlinear analysis of Schlüter, Lortz, and Busse (SLB) [38] for
rigid boundaries, that predicted stable straight rolls above onset also for this
realistic case. This prediction is in agreement with experiment, as illustrated
by the middle pattern of Figure 4.1 as well as by numerous other experiments.
SLB also established that the bifurcation to RBC is supercritical, and gave the
initial slope S1 of the Nusselt number N ≡ Qd/λΔT = 1 + S1ε + O(ε2) (λ is
the conductivity of the quiescent fluid and Q is the heat-scurrent density). This
was consistent with early measurements, for instance with those of Silveston
[13]. Modern measurements such as those shown in Figure 4.2 [14], even within
their much greater resolution, are also consistent with a supercritical bifurcation.
However, the experimental value of S1 varies somewhat from one experiment to
another and is always somewhat lower than the theoretical prediction (for the
data in Figure 4.2 S1 = 1.28 whereas the prediction is S1 = 1.43). Possibly
this problem is due to boundary effects at the side wall, but this issue is not
entirely settled. Conceptually the next great step forward was the realization
by Swift and Hohenberg [15] that the bifurcation to RBC, shown by SLB to
be supercritical in the deterministic system, becomes subcritical in the presence
of thermal noise. Although at the time the first-order nature of the transition
was believed to become significant only within a part per million or so of the
transition, thus being out of reach of the experimentalist, good evidence for it
has been obtained in very recent experiments [16, 17].

Equally important were seminal experimental contributions during the first
five or six decades following Bénard’s work. Here I mention only a couple. The
heat transport measurements of Schmidt and Milverton [18] confirmed the pre-
diction Rc = 1708 with an accuracy of better than 10%. The extensive experi-
ments of Silveston [13] already mentioned above provided data for N from below
onset to R � 5 × 106. Silveston also visualized the convection patterns in his
apparatus, using the shadowgraph method that has become so very important
in more recent times [19, 20, 21]. For additional historical notes, the reader may
wish to consult Chapter 3 in this volume, and the informative book by Chan-
drasekhar [1].
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During the last three decades, Rayleigh–Bénard convection (RBC) has be-
come a paradigm for the study of pattern formation [22, 23]. It reveals numerous
interesting phenomena in various ranges of ε ≡ ΔT/ΔTc −1. Many of these phe-
nomena have been studied in detail recently, using primarily compressed gases as
the fluid, sensitive shadowgraph flow-visualization, digital image analysis, and
quantitative heat-flux measurements [20, 24]. I briefly mention some of them
here, and then discuss a few of these in greater detail in separate sections below.

Even below onset, thermally driven fluctuations of the temperature and ve-
locity fields about their pure conduction averages provide a fascinating exam-
ple of critical phenomena in a nonequilibrium system. Twenty-eight years ago,
it was already predicted by Swift and Hohenberg [15] that these fluctuations
should alter the nature of the bifurcation to RBC, making it subcritical and
thus analogous to a first-order phase transition in equilibrium systems. Very
recent measurements [16, 17] suggest that this is indeed the case.

Above but close to onset the pattern for a Boussinesq system consists of
straight rolls (see Figure 4.1 middle), possibly with some defects induced by the
side walls [25]. When non-Boussinesq conditions prevail, a pattern of perfect,
defect-free hexagons evolves (see Figure 4.1 left).

Further above onset, for ε > 0.5 or so, an interesting qualitatively different
state of spatio–temporal chaos, known as spiral–defect chaos (SDC), occurs in
systems with Prandtl numbers σ ≡ ν/κ of order one or less [26]. This state
is a bulk property and not sidewall-induced; it has been studied intensely by
theorists as well as experimentalists.

Similarly, RBC was used to study the onset of time dependence over a wide
range of σ. [27, 28] Temporally periodic or chaotic patterns were found for ε >
O(1), with the onset occurring at smaller ε for smaller σ. However, quantitative
studies such as those carried out for SDC are still lacking at larger σ.

The system becomes more complex and interesting even near onset when it
is rotated about a vertical axis with an angular velocity Ω. For that case it was
predicted [29, 30, 31] and found experimentally [32, 33, 34] that, for Ω > Ωc, the
primary bifurcation from the conduction state remains supercritical and leads
to parallel rolls that are unstable. The instability is to plane-wave perturbations
with a wavedirector angle that is advanced relative to that of the rolls by an
angular increment ΘKL in the direction of Ω. This phenomenon is known as
the Küppers–Lortz (KL) instability. The pattern consists of domains of rolls
that incessantly replace each other, both by irregular domain-wall motion and
by the KL mechanism. The spatial and temporal behavior suggests the term
“domain chaos” for this state. Because this example of spatio–temporal chaos
occurs directly at onset, it should be more accessible to theoretical elucidation
than, for example, the spiral–defect chaos mentioned above.

Theoretically, the KL instability is expected to persist near onset up to large
values of Ω. Thus it was a surprise that the patterns found in experiments near
onset changed dramatically when Ω was increased [35]. For Ω ≥ 70, there was
no evidence of the characteristic domain chaos until ε was increased well above
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0.1. At smaller ε, fourfold coordinated cellular patterns, and in some parameter
ranges, slowly rotating, aesthetically appealing, square lattices were encountered.

Relatively unexplored are experimental opportunities that RBC has to offer
in the range of σ well below unity. Pure fluids (with rare exceptions [36]) have
σ ≥ 0.7. Recently it was shown [37, 38] that smaller values of σ can be reached by
mixing two gases, one with a large and the other with a small atomic or molecular
weight. The most extreme example readily available is a mixture of H2 and Xe.
Prandtl numbers as small as 0.16 can be reached. In the range σ ≤ 0.6, several
interesting new phenomena are predicted to occur [31, 39, 40]. In the σ − Ω
plane they include subcritical bifurcations below a line of tricritical bifurcations,
Hopf bifurcations to standing waves, a line of codimension-two points where the
Hopf bifurcation meets the stationary bifurcation, and a codimension-three point
where the codimension-two line and the tricritical line meet.

Another rich and interesting modification of the Rayleigh–Bénard system is
achieved by inclining the layer relative to gravity [41, 42, 24]. This adds the
tilt angle γ as an additional parameter. In this case the basic state consists of
heat conduction and a parallel shear flow that breaks the rotational invariance
of the usual RBC. Depending on γ and σ, longitudinal, oblique, transverse, and
traveling transverse rolls are the possible flow structures at onset.

No doubt I neglected to mention additional important topics associated with
RBC. Nonetheless, at this point we proceed to a somewhat more detailed review
of a few of the phenomana listed above that I have found particularly interesting.

4.2 Fluctuations near the Onset of Convection

In the usual deterministic description of RBC, based on the Boussinesq or
Navier–Stokes equations, all velocities vanish below the onset of convection and
the temperature is given by the pure conduction profile. However, the Brown-
ian motion of the atoms or molecules that occurs because the system is at a
finite temperature leads to fluctuations of the temperature and velocity fields
that have zero mean but finite mean square. When the fluctuation amplitudes
are small enough, their interactions with each other can be neglected and the
amplitudes can be described well by stochastic linearized hydrodynamic equa-
tions [43]. To my knowledge, the first spatially extended nonequilibrium system
for which quantitative measurements of these fluctuations were made was elec-
troconvection in a nematic liquid crystal [44]. Soon thereafter, thermally driven
fluctuations were observed also for RBC [45] and quantitative measurements of
their amplitudes were made [46, 47]. In part these measurements were made
possible by the development of experimental techniques for the study of RBC in
compressed gases [25, 20]. There it is possible to use sample spacings an order
of magnitude smaller than for conventional liquids and kinematic viscosities are
relatively small, thus making the systems more susceptible to noise. In addition,
maximizing the sensitivity of the shadowgraph method and careful digital image
analysis have enhanced the experimental resolution [20].
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Fig. 4.3. Left: Shadowgraph snapshot of fluctuations below the onset of convection
(€ = -3 X 10-4

). Right: The average of the square of the modulus of the Fourier
transform of 64 images like that on the left. After [46].

A
~ .
~10-5

to
V

1O-f0'--4"---~~~~~1~0-'--"3 -~~~~......J10-2

- f,

Fig. 4.4. Mean square amplitudes of the temperature fluctuations below the onset of
convection of a layer of C02 of thickness 0.47 mm and a mean temperature of 32°C.
The solid (open) circles are for a sample pressure of 42.3 (29.0) bars. The two lines are
the theoretical predictions. Note that there are no adjustable parameters. After [46].
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In the left part of Figure 4.3, we show a processed image of a layer of CO2

of thickness 0.47 mm at a pressure of 29 bars and at a mean temperature of
32.0◦C. The sample was at ε = −3 × 10−4, very close to but just below the
bifurcation point. The fluctuating pattern is barely detectable by eye. The right
half of the figure shows the average of the structure factors (squares of the moduli
of the Fourier transforms) of 64 such images. It demonstrates clearly that the
fluctuations have a characteristic wavenumber q. The value of q is in quantitative
agreement with the critical wavenumber qc = 3.117 for RBC. The ring in Fourier
space is azimuthally uniform, reflecting the continuous rotational symmetry of
the RBC system.

The power contained within the ring in Fourier space can be converted quan-
titatively to the mean-square amplitude of the temperature field [46, 20, 24]. Re-
sults for the temporal and spatial averages 〈δT 2〉 of the square of the deviations
of the temperature from the local time average (pure conduction) as a function
of ε at two different sample pressures are shown in Figure 4.4 using logarithmic
scales. The data can be described quite accurately by straight lines with slopes
close to −1/2, consistent with the powerlaw 〈δT 2〉 ∝ ε−1/2 as predicted by linear
theory.

The amplitudes of the fluctuating modes below but close to the onset of
RBC were calculated quantitatively from the linearized stochastic hydrodynamic
equations [43] by van Beijeren and Cohen [48], using realistic (no-slip) boundary
conditions at the top and bottom of the cell. For the mean square temperature
fluctuations their results give [49, 46]

〈δT 2(ε)〉 = c̃2
(
ΔTc

Rc

)2
F

4
√−ε , (4.2)

with c̃ = 3qc
√
Rc = 385.28. Here Rc = 1708 is the critical Rayleigh number, and

the noise intensity F is given by

F =
kBT

ρdν2
× 2σqc
ξoτoRc

, (4.3)

with ξo = 0.385 and τo � 0.0796. One sees that F depends on the density ρ
and kinematic viscosity ν, as well as on the Prandtl number σ = ν/DT (DT is
the thermal diffusivity). Using the fluid properties of the experimental samples
[20], one obtains the straight lines in Figure 4.4. Because there are no adjustable
parameters, the agreement between theory and experiment can be regarded as
excellent. This agreement lends strong support to the validity of Landau’s sto-
chastic hydrodynamic equations [43].

Sufficiently close to the bifurcation, where fluctuation amplitudes become
large, nonlinear interactions between them play a role and linear theory breaks
down. In this regime genuine critical phenomena that differ from the linear pre-
dictions are expected, and the precise critical behavior should depend on the
symmetry properties and the dimensionality of the system. Deviations from the
prediction of linear theory have been observed recently for electroconvection in
nematic liquid crystals [50, 51] that is exceptionally susceptible to the influence
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of thermal noise. Unfortunately, to this day there are no predictions of the crit-
ical phenomena to be expected for this interesting group of systems. For RBC,
Swift and Hohenberg were able to show that the system belongs to the same uni-
versality class as one considered by Brazovskii [15, 49, 52]. Equilibrium systems
belonging to this class include the crystallization of diblock copolymers [53]. For
this universality class the transition is of second order at the mean-field level,
but the fluctuations induce a first-order tarnsition. A common feature of all the
systems belonging to this class is that the order parameter near the bifurcation
has a relatively large volume of phase space accessible to it. In the RBC case
this is reflected in the rotational invariance of the system as demonstrated by the
ring in Fourier space shown in Figure 4.3. On the basis of this qualitative con-
sideration one would not expect the electroconvection system mentioned above
[50, 51] to belong to the Brazovskii universality class because the anisotropy due
to the director leads to only one or two pairs of spots in Fourier space.

Fig. 4.5. The temperature-density plane near the critical point of SF6. The dashed
line is the coexistence curve separating liquid and vapor. The vertical dotted line is the
critical isochore. The solid circle is the critical point Tc = 45.567◦C, Pc = 37.545 bars,
and ρc = 0.742 g/cm3. The solid lines represent the isobars P = 38.10 bars (lower line)
and 39.58 bars (upper line) used extensively in experiments. The heavy solid lines, each
ending in two circles, illustrate the density range spanned during measurements with
ΔT � ΔTc for a cell of spacing d = 34.3 μm (lower line) and d = 59.1 μm (upper line).

For RBC in ordinary liquids one can estimate [15] that nonlinear fluctuation
effects should be observable typically only for |ε| ≤ 10−6, that has not been ac-
cessible to experiments so far. For RBC in compressed gases the critical region is
a bit wider, reaching as far out as |ε| � 10−5; but as can be seen from Figure 4.4,
this too has been beyond experimental resolution. However, the situation is much
more favorable near a liquid–gas critical point (CP) [16, 17]. Part of the reason
for this can be seen by inspecting Equation 4.3. and the phase diagram of SF6
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shown in Figure 4.5. In that figure we see the temperature-density plane near
the CP. The vertical dotted line corresponds to the critical isochore, and the
two solid lines are isobars. As the CP is approached on the critical isochore from
higher temperatures, the viscosity ν has only a mild singularity and remains
finite, whereas the Prandtl number σ = ν/DT diverges because the thermal dif-
fusivity DT vanishes. Thus the divergence of σ at finite ν leads to a divergence
of F [54]. An equally important aspect is, however, that the fluid properties are
such that typical sample spacings d that can be used are in the range of 10
to 100 μm, thus increasing F by one or two orders of magnitude compared to
liquids and compressed gases away from the critical point. Another factor that
greatly increases the experimental shadowgraph resolution near the CP is the
value of the temperature derivative of the refractive index dn/dT . Typically we
have |dn/dT | � 0.1, whereas for ordinary fluids it tends to be two or three orders
of magnitude smaller.

Fig. 4.6. Shadowgraph images (top row) of a 1.28 × 1.28 mm2 part of a sample with
d = 34.3 μm, and the moduli of their Fourier transforms (bottom row). From left to
right, the images are for ε = 0.008,−0.001, and − 0.047. The mean temperature and
the pressure corresponded to the critical isochore at T = 46.22◦C. Adapted from [16].

In Figure 4.6 we show shadowgraph snapshots of fluctuations and roll pat-
terns for a cell of spacing d = 34.3 μm at a pressure P = 38.10 bars corre-
sponding to the lower isobar shown in Figure 4.5 [16]. The mean temperature
T̄ = 46.22◦C was kept constant during the experiment and had a value that
corresponded to the critical isochore. When the applied temperature difference
was equal to ΔTc = 0.131◦C, the sample occupied the heavy section of the line
representing the isobar. The theoretical value of F was 5 × 10−4 for this case.
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(a) (b)

Fig. 4.7. Shadowgraph power P as a function of ε ≡ ΔT/ΔTc − 1 for the experiment
of Figure 4.6 on (a) linear and (b) logarithmic scales. Solid lines: fit of the Swift–
Hohenberg prediction [49] to the data. From [16].

Fig. 4.8. Patterns from a sample with d = 59 μm at ε = 0.009. (a) Image of size 1.92 ×
1.92 mm2 and (b) the modulus of its Fourier transform. (c) The 0.96 ×0.96 mm2 area
inside the square in (a). (d) Same area as (c), but after a bandpass filter was applied
around the Fourier-transform peaks of (b). (e) Amplitude of the rolls of (a) obtained
by Fourier-transform demodulation. (f) Director angle of (a). Adapted from [16].
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The images are for several ε values. The bottom row shows the moduli of their
Fourier transforms. Just above onset the pattern consisted of convection rolls, as
predicted for the deterministic system [38]. Consistent with the Swift–Hohenberg
prediction of a first-order transition, there was a sharp transition from a rolls
pattern to one of disordered fluctuating cellular structures as ΔT was decreased
below ΔTc.

Figure 4.7 gives results for the shadowgraph power (the square of the modulus
of the Fourier transform) as a function of ε. One sees a dramatic change in the
power at ε = 0. The solid lines are a fit of the prediction of Swift and Hohenberg
to the data. This fit yielded F = 7×10−4, in good agreement with the prediction
based on the fluid properties.

Aside from the order of the transition, an issue of considerable interest is
the nature of the ordered state (i.e., the rolls) above onset. In Figure 4.8 we
show an example [16]. One sees that the rolls reveal several types of disorder.
Particularly in the enlarged image Figure 4.8c it can be seen that the rolls were
modulated along their axis. This was the result of the superposition of fluc-
tuations of random orientation. As seen in Figure 4.8d, it could be removed
by bandpass Fourier filtering with the filters centered on the two peaks of the
transform shown in Figure 4.8b. A second type of disorder took the form of an
amplitude modulation that varied irregularly in time and space. A snapshot of
the roll amplitude, obtained by Fourier demodulation, is shown in Figure 4.8e. A
third type of disorder took the form of roll undulations; that is, a variation of the
angle of the roll director along the roll axis. A gray-scale rendering of the director
angle, obtained from a local wavedirector analysis [57], is shown in Figure 4.8f.
We see that both the roll amplitude and the director-angle modulation are cor-
related over relatively long distances in the direction of the wavedirector, and
vary much more rapidly along the roll axis. Some of this noise-induced disorder
had been anticipated by Toner and Nelson [58], and should have a commonality
with disorder near phase transitions in other two-dimensional systems.

Interestingly, rolls are encountered above the bifurcation only when the mean
sample temperature is such that the density corresponds to the critical density.
Figure 4.9 shows the fluctuations just below (left image) and the ordered pattern
just above (right image) the bifurcation for an experiment in which the mean
temperature was 48.3◦C [6]. At the pressure of the experiment (39.58 bars) the
critical density would have been achieved at 48.0◦C. One sees that a dislocation-
free lattice of hexagons forms. Although the hexagons are reminiscent of Henri
Bénard’s beautiful patterns, they have their origin in non-Boussinesq effects
[59, 60] whereas Bénard’s hexagons were caused by a temperature-dependent
surface tension. Measurements of the hysteresis associated with the formation
and disappearance of the hexagons in Figure 4.9, as well as a transition to
rolls at larger ε, were in quite good agreement with predictions based on the
deterministic equations of motion [59] even though fluctuations were present
[61].
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Fig. 4.9. Shadowgraph images of a 1.92 × 1.92 mm2 part of a sample with d = 59
μm and a pressure of 39.58 bars. Left: ε = −0.0015. Right: ε = 0.0025. The mean
temperature was 48.3◦C.

Fig. 4.10. Shadowgraph images for CO2 at a pressure of 33.25 bars and mean tem-
perature of 21.16◦C in a cell with d = 1.5 mm and aspect ratio Γ = 28.7. The Prandtl
number was 1.0 and ΔTc was found to be 0.317◦C. The number near each image gives
the value of ε = ΔT/ΔTc − 1. After [62].
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4.3 Deterministic Patterns

When the effective noise intensity is relatively small, the system above onset can
be understood in terms of the deterministic equations of motion. The formation
of deterministic patterns takes many forms and depends on such parameters
as the Prandtl number, the aspect ratio, and the shape of the side walls. Any
attempt at a thorough review is well beyond the scope of this chapter. As an
example of the richness of pattern-formation phenomena that are encountered,
I show in Figure 4.10 some shadowgraph images for σ = 1.0 and Γ = 28.7 in
a cylindrical cell [62]. For this case F = 1 × 10−7, and stochastic effects do not
play an important role. The patterns were obtained with compressed CO2 as the
fluid, but the values of σ and Γ are fairly close to those studied by Croquette
and coworkers [25] using argon under pressure and to those of Hu et al. [63] using
CO2. Some of Croquette’s results are shown in the chapter by Manneville in this
volume (Chapter 3). Croquette found that a time-independent pattern existed
only close to onset, roughly for ε < 0.12. As ε increased, the rolls developed an
increasing tendency to terminate with their axes orthogonal to the side wall. The
consequent roll curvature and the associated mean flow caused a compression of
the rolls near the cell center. For ε close to 0.12 the wavenumber in the interior
crossed the skewed-varicose instability boundary [64] and a temporal succession
of dislocation pairs was formed, thus rendering the pattern time dependent. Most
likely this process provides the explanation of the time dependence observed
close to onset by heat-transport measurements in early cryogenic convection
experiments [65, 66].

As ε increased, the patterns became more complex as illustrated in Fig-
ure 4.10 for ε = 0.45. Typically three wall foci existed at this point. Because
of the associated roll curvature there were mean-flow fields emanating from the
foci. These flows were strong enough to cause a continuous emission of traveling
convection rolls from the foci, leading to a complicated dynamics in the cell in-
terior [63]. These patterns were, however, sidewall-induced and not intrinsic to
the interior of a very large system. This was shown in an experiment where the
walls were replaced by a very gentle radial ramp in the cell spacing that led to
a region of pure conduction surrounding the convecting interior [7]. An example
of a pattern in this system, for ε = 0.21, is shown in the middle of Figure 4.1.
In that case one found time-independent near-perfect rolls without defects and
with relatively little roll curvature.

Somewhere near ε = 0.8 a new phenomenon occurred. Small spirals formed
in the interior, as illustrated in Figure 4.10 for ε = 0.74 and 1.21. The formation
of these spirals was an intrinsic property of the bulk convection system and was
not induced by the side walls. This state, known as spiral–defect chaos, has been
known to exist only for the last decade or so [26] and is discussed in more detail
in Section 4.4.2.

As ε increased further, the structures became more disordered and the spi-
rals were a less dominant feature as seen at ε = 2.47. The next interesting
phenomenon was first noticeable for ε = 4.68, and became more pronounced as
ε increased to the larger values. This was a transverse perturbation of the con-
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vection rolls by a moduation that had a relatively short wavelength. This new
feature was due to the oscillatory instability predicted by Clever and Busse [67].
These transverse modulations of the rolls were traveling waves that moved along
the roll axes.

The evolution with increasing ε seen for the last three patterns is remarkable.
Although the patterns became more complex in the sense that the oscillatory
modulation became more pronounced, on a coarse-grained scale that averages
over the traveling waves they became simpler again. Thus, the pattern at ε = 11.6
was not unlike the one for ε = 0.45; both had three wall foci and similar defect
structures in the interior. It would be nice to be able to understand this reduction
of complexity with increasing stress.

4.4 Spatio-Temporal Chaos

4.4.1 Early Measurements

The early 1970s brought a broad survey over a wide range of Prandtl numbers of
the occurrence of time-dependent patterns in RBC [27, 28]. At about that time
quantitative studies of the statistical properties of spatio–temporal chaos (STC)
for σ near one were carried out on RBC at cryogenic temperatures [68, 69, 70,
71]. This early work was followed soon by quantitative measurements [72, 73]
on temporal chaos in systems without significant spatial extent that, for some
time, attracted far more attention because they made contact with concurrent
theoretical developments [74]; this interaction between theory and experiment
revived the field of dynamical systems as a branch of physics [75]. By now this
field has reached a certain level of maturity. Here I want to examine some of the
experimental results on chaos in systems with significant spatial variation. For
these the level of theoretical understanding is still much more limited than it is
for dynamical systems [76].

Results for the time-averaged Nusselt number 〈N〉 during the early cryogenic
experiments (for which there was no flow visualization) are shown in Figure 4.11a
as a function of ε ≡ ΔT/ΔTc − 1. A surprise at the time of those measurements
was that the convection depended nonperiodically on the time t already at the
relatively small values ε � 1. This is illustrated in Figure 4.11b for a circular cell
with an aspect ratio Γ (radius/height) = 5.3 and ε = 1.23. The power spectrum
of N (t) was broad, with a maximum at the frequency f = 0, and for large f it
fell off as f−4 as shown in Figure 4.11c. The experimentally observed algebraic
falloff was surprising because simple models of chaos in deterministic systems
with relatively few degrees of freedom, such as the Lorenz model, have a spec-
trum with an exponential falloff [77, 78]. It seems likely [69] that the onset of
time-dependence was associated with an adjustment of the wavenumber k as
a function of ε that caused the system to cross an instability boundary, from
our present vantage point most likely the skewed-varicose (SV) instability [64].
The apparently algebraic falloff of the spectrum presumably is then attributable
to the presence of a large number of chaotic interacting modes in the spatially
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Fig. 4.11. Results from RBC at cryogenic temperatures. (a) The time-averaged Nusselt
number as a function of ε. (b) Typical deviations of the Nusselt number from its mean
for ε = 1.23 as a function of time. (c) The power spectrum of a longer sequence of data
like those in (b) for ε = 1.23. After [70].

extended system that turns out to lead to effectively algebraic decay [77, 78]
over the experimentally accessible range of f ; but as far as I know a quantita-
tive explanation of this phenomenon is still lacking. In a qualitative sense this
suggestion that many modes come into play as the spatial extent increases is
an early indicator that spatio–temporal chaos is high-dimensional, and perhaps
extensive in the sense that the number of modes (or basis functions) needed to
describe it is proportional to (or at least increases with) the system size [79].

In order to provide a quantitative characterization of the chaotic state, the
square root of the variance σN of N (t) as well as the first moment f1 of its power
spectrum were determined as a funtion of R. As R increased, it turned out that
the chaotic state was entered with a discontinuous jump of σN from zero, and
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that f1 was finite at onset. With increasing R, f1 followed a powerlaw over the
two decades 1 < ε < 200, with an exponent close to 2/3. To this day I am not
aware of a theoretical explanation of these interesting quantitative experimental
results. It is also noteworthy that these experiments [68, 69] represent one of
the very early examples of computer control of experiments with automated
data acquisition [80]. Without this automation it would not have been possible
to obtain the results. Similarly, the use for the analysis of experimental results
of fast Fourier-transform techniques, that were still relatively new, was a novel
feature of this work.

Also still unexplained is the fact that the system remains in the chaotic SV-
unstable regime, instead of reducing its wavenumber so as to enter once more
a regime of stable rolls that is known to exist for smaller k [64]. This latter
phenomenon occurs in the one-dimensional case of a narrow rectangular cell
where the SV instability leads to the expulsion of a roll pair and a consequent
reduction of the wavenumber. Presumably the is the result of an as yet unknown
wavenumber selection process in the two-dimensional system with circular side
walls that forces the pattern to remain in the unstable regime. Another feature
of the data that was surprising at the time is that the chaos in this system
was not preceded by periodic and/or quasi-periodic states that were considered
typical of low-dimensional chaotic systems [72]. The absence of these states is
consistent, however, with the crossing of an instability boundary that suddenly
moves the system into a regime of high-dimensional chaos.

4.4.2 Spiral-Defect Chaos

In spite of its provocative early results and numerous experimental advantages
[70, 71], the cryogenic work on STC had its limitations because it did not per-
mit flow visualization. Modern experiments on RBC near ambient temperatures
have used the shadowgraph method [19, 20] to visualize the temperature field
associated with the convection. Recent experiments on RBC in compressed gases
with Prandtl numbers σ close to one led to the discovery [26] that a chaotic state
called “spiral–defect chaos” (SDC) is entered at modest ε when Γ is large. An
example of a shadowgraph image of SDC is shown in Figure 4.12a. SDC consists
of many small spirals, targets, and other defects in the roll structure. The defects
have a modest lifetime and drift about irregularly, and new ones are constantly
created as old ones disappear. The spirals coexist with regions of more or less
straight rolls. For the ε value of Figure 4.12 a these regions have a width of only
a few wavelengths; but near the onset of SDC, and particularly for very large
aspect ratiocells [81], the straight-roll regions can become quite large. By now
the SDC state has been studied in other experiments that are too numerous to
list at this point. A recent review of much of this work and numerous references
may be found in [24]. SDC also has been found in numerical solutions of model
equations [82, 83] and of the Boussinesq equations [84]. Here I mention only one
interesting aspect of this state. Figure 4.12b shows the azimuthal average of the
structure factor S(k) (square of the modulus of the Fourier transform) of SDC
images. S(k) can be used to compute the mean wavenumber k̄. Results for k̄ are
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shown as a function of ε in Figure 4.12c. One can see that all the results for k̄ lie
well within the range where straight rolls are also known to be stable [67, 64].
Thus we arrive at the interesting conclusion that SDC is not caused by a bulk
instability of the straight-roll patterns as apparently was the case in the smaller
aspect ratio cryogenic experiments. Instead there is bistability of SDC and the
usual roll state, that is, over a wide parameter range straight rolls (a fixed point)
as well as SDC (a chaotic attractor) are stable solutions of the equations of mo-
tion of the system. For Prandtl numbers close to or less than one it turns out
that the initial and boundary conditions of typical experiments fall within the
attractor basin of SDC, and that rolls without spirals are rarely observed for ε
greater than some onset value εs [85].

A quantitative understanding of SDC has not been achieved so far. The
problem is very difficult because the chaotic state evolves from a ground state
that is already extremely complex (see, e.g., the upper left image of Figure 4.10).
However, some insight into the dynamics of this state has been gained. Is seems
likely that mean-flow fields play a significant role [86, 24, 87]. A central feature
of the dynamics seems to be the competition between two wavenumber selection
processes [83]. The spiral tip selects one wavenumber, and the far field that is
dominated by a number of different defect types selects another. The resulting
wavenumber gradient orthogonal to the spiral arms leads to outward traveling
waves surrounding the spiral tips that are equivalent to spiral rotation.

Fig. 4.12. Spiral–defect chaos. (a) Shadowgraph image for Γ = 78, σ = 0.96, and
ε = 0.72. (b) Structure factor S(k) of images like that in (a), but for ε = 0.46 (vertical
dotted lines are stability boundaries of straight rolls). (c) k̄ as a function of ε (solid
lines are the Eckhaus and skewed-varicose instability of straight rolls; horizontal bars
are the widths of S(k)). After [26].

4.5 Effect of Rotation

4.5.1 Domain Chaos

As mentioned in the introduction, RBC becomes even more complex and in-
teresting when the sample is rotated about a vertical axis. In that case, the
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Coriolis force must be added to the equation of motion (the centrifugal force
usually is neglected because to lowest order it is balanced by a pressure gradient
sustained by the side wall). The result is that, for Ω > Ωc, the rolls that form
above onset are unstable to plane-wave perturbations with a wavedirector that
has a characteristic angle ΘKL relative to the roll wave director. For σ ≥ 0.33,
the bifurcation is expected to be supercritical both below and above Ωc. Thus
the KL instability offers a rare opportunity to study STC in a system where the
average flow amplitude evolves continuously from zero and where weakly nonlin-
ear theories are expected to be applicable. After receiving only limited attention
for several decades [29, 30, 31, 32, 88, 89, 90], the opportunity to study STC
has led to a recent increase in activity both theoretically and experimentally
[20, 33, 34, 91, 92, 93, 94, 95, 96, 97]. Indeed, as predicted theoretically [29], the
straight rolls at the onset of convection for Ω > Ωc are found to be unstable. In
the spatially extended system this leads to the coexistance of domains of rolls
of more or less uniform orientation with other domains of a different orientation
[32, 88]. A typical example is shown in Figure 4.13b. The replacement of a given
domain of rolls proceeded primarily via domain-wall propagation. More recently
the KL instability was investigated with shadowgraph flow-visualization very
close to onset. It was demonstrated that the bifurcation is indeed supercriti-
cal, and that the instability leads to a continuous domain switching through a
mechanism of domain-wall propagation also at small ε [98, 33, 99, 34]. This qual-
itative feature has been reproduced by Tu and Cross [93] in numerical solutions
of appropriate coupled Ginzburg–Landau (GL) equations, as well as by Neufeld
et al. [95] and Cross et al. [96] through numerical integration of a generalized
Swift–Hohenberg (SH) equation. There is, however, also a contribution to the
dynamics from nucleation of dislocation pairs via the KL mechanism [100].

(a) (c) (b) 

Fig. 4.13. Convection patterns for small ε. (a) is for Ω = 0 and Ar gas with σ = 0.69
and ε = 0.07 (from [37]). It shows the predicted [38] straight-roll pattern. (b) is for
Ω = 15.4 and CO2 at a pressure of 32 bar with σ = 1.0 and ε = 0.05 (from [33]). It is
a typical pattern in the Küppers–Lortz unstable range. (c) is for argon at 40 bar with
σ = 0.7, Ω = 145, and ε = 0.04 (from [35]); it shows no evidence of the Küppers–Lortz
instability, and instead consists of a slowly rotating square lattice.

Central features of the KL STC are the time and length scales of the
chaotic state near onset. The GL model assumes implicitly a characteristic time-
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Fig. 4.14. The characteristic frequencies ωa (left) and lengths ξ (right) of the KL
state. The data were divided by Ω-dependent constants ωr and ξr so as to collapse
them onto single curves. The dashed lines are shown for reference and have the slopes
1 for ωa and −1/2 for ξ that correspond to the theoretically expected exponents of
the time and length scales near onset. The data sets cover approximately the range
14 ≤ Ω ≤ 20. See [33, 99, 34] for details. .

dependence that varies as ε−1 and a correlation length that varies as ε−1/2.
Measurements of a correlation length given by the inverse width of the square of
the modulus of the Fourier transform as well as a domain-switching frequency
as revealed in Fourier space yielded the data in Figure 4.14 [33, 99]. These re-
sults seem to be inconsistent with GL equations because they show that the
time in the experiment scales approximately as ε−1/2 and that the two-point
correlation length scales approximately as ε−1/4. These results also differ from
numerical results based on a generalized SH equation [96] although the range of
ε in the numerical work is rather limited. We regard the disagreement between
experiment and theory as a major problem in our understanding of STC.

4.5.2 Square Patterns at Modest σ

Motivated by the unexpected scaling of length and time with ε for the KL state
at Ω ≤ 20, new investigations were undertaken recently in which the range of Ω
was significantly extended to larger values. Contrary to theoretical predictions
[31, 39, 101] based on Galerkin procedures and on the stability of appropriate
coupled GL equations, it was found [35] that for Ω ≥ 70 the nature of the pattern
near onset changed qualitatively although the bifurcation remained supercritical.
Square patterns like the one shown in Figure 4.13c were stable, instead of typ-
ical KL patterns like the one in Figure 4.13b. The squares occurred both when
argon with σ = 0.69 was used and when the fluid was water with σ � 5. They
were observed as well in He-Xe gas mixtures with σ � 0.5 [102]. For some para-
meter ranges the lattice was quite disordered; but the fourfold nearest-neighbor
coordination remained. The occurrence of squares in this system is completely
unexpected and not predicted by theory; the KL instability should continue to
be found near onset also at these higher values of Ω. Thus the experiments have
uncovered a qualitative disagreement with theoretical predictions in a parame-
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ter range where one might have expected the theory to be reliable. Interestingly,
very recent direct numerical simulations based on the Boussinesq equations have
reproduced the square patterns near onset [24].

A further interesting aspect of the square patterns is that the lattice rotates
slowly relative to the rotating frame of the apparatus. This was found in the
experiments with argon and water [35] as well as in the simulation [24]. Mea-
surements of the angular rotation rate ω of the lattice for the water experiment
are consistent with ω(ε) vanishing as ε goes to zero. Thus the experimental results
do not necessarily imply that the bifurcation to squares is a Hopf bifurcation.
Quite possibly, as the aspect ratio of the cell diverges, the slope of ω(ε) vanishes
because an infinitely extended lattice cannot rotate. Alternatively, of course, the
lattice might become unstable as Γ becomes large. It would be interesting to
study the Γ dependence of ω experimentally. To my knowledge there is as yet
no theoretical explanation of this rotation.

4.5.3 The Range 0.16 < σ < 0.7

When a RBC system is rotated about a vertical axis, the critical Rayleigh number
Rc(Ω) increases. Rc(Ω) is predicted to be independent of σ, and experiment [99]
and theory [1] for it are in excellent agreement as shown in Figure 4.15a. For
σ > 0.33, the bifurcation is expected to be supercritical and to lead to KL chaos
unless Ω is quite large. As discussed above in Section 4.5.2, recent experiments
have shown that this is not the case; for Ω ≥ 70 square patterns were found
that are unrelated to the typical KL domains. For large Ω and σ < 0.68, the
stationary bifurcation is predicted [39] to be preceded by a supercritical Hopf
bifurcation; but for σ > 0.33 experiments have not yet reached values of Ω
sufficiently high to encounter time-periodic patterns.

The experimentally accessible range 0.16 ≤ σ ≤ 0.33 is truly remarkable
because of the richness of the bifurcation phenomena that occur there when the
system is rotated. For instance, for σ = 0.26 there is a range from Ω � 16 to 190
over which the bifurcation is predicted to be subcritical. This is shown by the
dashed section of the curve in Figure 4.15c. The subcritical range depends on
σ. In Figure 4.15b it covers the area below the dashed curve. Thus, the dashed
curve is a line of tricritical bifurcations. It has a maximum in the Ω − σ plane,
terminating in a “tricritical endpoint”. An analysis of the bifurcation phenomena
that occur near it in terms of Landau equations may turn out to be interest-
ing. One may expect path-renormalization [103] of the classical exponents in the
vicinity of the maximum. We are not aware of equivalent phenomena in equi-
librium phase transitions, although presumably they exist in as yet unexplored
parameter ranges.

At relatively large Ω, the stationary bifurcation (regardless of whether it is
super- or sub-critical) is predicted to be preceded by a supercritical Hopf bifurca-
tion that is expected to lead to standing waves of convection rolls [39]. Standing
waves are relatively rare; usually a Hopf bifurcation in a spatially extended sys-
tem leads to traveling waves. An example is shown by the dash-dotted line near
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Fig. 4.15. The bifurcation diagram for RBC with rotation about a vertical axis.
(a) Experimental and theoretical results for Rc(Ω) obtained with water (open circles)
and Ar at three different pressures (triangles) on linear scales. After [35]. (b) The
theoretically predicted bifurcation diagram for RBC with rotation about a vertical axis.
The dashed curve gives the tricritical line. The dash-dotted line is the codimension-two
line where the Hopf bifurcation meets the stationary bifurcation (e.g., the solid circle
in (c)). For σ = 0.24 the codimension-two line intersects the tricritical line, leading to
the codimension-three point shown as an open circle in (c). The upper dotted line in
(b) corresponds to the path represented in (c). The lower dotted line in (b) represents
the lowest σ-value accessible to experiment using gas mixtures. (c) Bifurcation lines
for σ = 0.26. The dashed line shows the range over which the stationary bifurcation is
subcritical. The two plusses are the tricritical points. The dash-dotted line at large Ω
shows the Hopf bifurcation. From [40].

the right edge of Figure 4.13b. As can be seen there, the Hopf bifurcation ter-
minates at small Ω at a codimension-two point on the stationary bifurcation
that, depending on σ, can be super- or subcritical. The line of codimension-two
points is shown in Figure 4.15b as a dash-dotted line. One sees that the tricritical
line and the codimension-two line meet at a codimension-three point, located at
Ω � 270 and σ � 0.24. We note that this is well within the parameter range
accessible to experiments. We are not aware of any experimentally accessible
examples of codimension-three points. This particular case should be accessible
to analysis by weakly nonlinear theories, and a theoretical description in terms
of GL equations would be extremely interesting and could be compared with
experimental measurements.

The σ-range of interest is readily accessible to us by using mixtures of a
heavy and a light gas [38]. Values of σ versus the mole fraction x of the heavy
component for a typical pressure of 22 bar and at 25◦C are shown in Figure 4.4.
An important question in this relation is whether the mixtures will behave in
the same way as pure fluids with the same σ. We believe that to a good ap-
proximation this is the case because the Lewis numbers are of order one. This
means that heat diffusion and mass diffusion occur on similar time scales. In that
case, the concentration gradient will simply contribute to the buoyancyforce in
synchrony with the thermally induced density gradient, and thus the critical
Rayleigh number will be reduced. Scaling bifurcation lines by Rc(Ψ) (Ψ is the
separation ratio of the mixture) will mostly account for the mixture effect. To
a limited extent we showed already that this is the case [37, 38]. In more recent
work we have begun to show that the bifurcation line Rc(Ω)/Rc(0) is indepen-
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Fig. 4.16. The Prandtl number σ as a function of the mole fraction x of the heavy
component for three gas mixtures at a pressure of 22 bar and at 25◦C. From [38].

dent of Ψ . Nonetheless we recognize that a theoretical investigation of this issue
will be very important.

Assuming that the mixtures behave approximately like pure fluids, we see
that the codimension-three point can be reached using either H2–Xe or He–Xe
mixtures. The tricritical point can be reached also using He–SF6.

4.6 Conclusion

In these few pages, it has been possible to touch only on a few of the interesting
aspects of RBC. Some others are discussed in Chapter 3; but even collectively
these two contributions do not constitute a thorough review of the field. Nonethe-
less it is clear that a century of research since the original work of Henri Bénard
on this conceptually simple system has strongly advanced our understanding of
spatially extended nonlinear dissipative systems. However, much remains to be
done. For example, the study of external noise on the system is in its infancy. We
believe that the bifurcation to RBC becomes subcritical in the presence of noise,
but the influence of noise on the “ordered” state (i.e., the convection rolls) has
been examined only qualitatively. It also is apparent that there are a number
of unsolved problems. Although we have learned a lot from studies of SDC and
domain chaos, the general nature of STC is not understood at a quantitative
level. Important issues are whether a description in terms of general principles,
perhaps analogous to those of equilibrium statistical mechanics, is on the hori-
zon [104]. We also saw that there are several specific issues on which theory and
experiment conflict. These include the characteristic length and time scales of
domain chaos and the occurrence at onset of square patterns in the presence of
rotation. It will be interesting for future generations of physicists to see what
the next century will bring.
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10. J. Boussinesq, Théorie analytique de la chaleur, mise en harmonie avec la ther-
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