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We have modelled the wall region of a turbulent boundary layer by expanding the 
instantaneous field in so-called empirical eigenfunctions, as permitted by the proper 
orthogonal decomposition theorem (Lumley 1967, 1981). We truncate the repre- 
sentation to obtain low-dimensional sets of ordinary differential equations, from 
the Navier-Stokes equations, via Galerkin projection. The experimentally deter- 
mined eigenfunctions of Herzog (1986) are used ; these are in the form of streamwise 
rolls. Our model equations represent the dynamical behaviour of these rolls. We show 
that these equations exhibit intermittency, which we analyse using the methods of 
dynamical systems theory, as well as a chaotic regime. We argue that this behaviour 
captures major aspects of the ejection and bursting events associated with streamwise 
vortex pairs which have been observed in experimental work (Kline et al. 1967). We 
show that although this bursting behaviour is produced autonomously in the wall 
region, and the structure and duration of the bursts is determined there, the pressure 
signal from the outer part of the boundary layer triggers the bursts, and determines 
their average frequency. The analysis and conclusions drawn in this paper appear to 
be among the first to provide a reasonably coherent link between low-dimensional 
chaotic dynamics and a realistic turbulent open flow system. 

1. Introduction 
There has been much interest in recent years regarding the application of 

methods, ideas and models from dynamical systems and bifurcation theory to the 
study of turbulent fluid flow. The first paper in which an explicit link was made 
between strange attractors and turbulence is that of Ruelle & Takens (1971), 
although, unknown to those authors, Lorenz (1963) had proposed a three-dimensional 
set of ordinary differential equations (ODES) as a minimal model for two-dimensional 
Bdnard convection considerably earlier. 

Recent work in this area, accounts of which can be found in collections such as 
Rand & Young (1981), Swinney & Gollub (1981) and Campbell & Rose (1983), has 
concentrated on ‘closed’ flow systems such as the Rayleigh-Be’nard or Taylor- 
Couette problems. In  such problems, simultaneous variation of two or more 
parameters (Reynolds or Rayleigh numbers, Prandtl number, aspect ratios, etc.) 
gives rise to multiple bifurcations in which two or more modes become simultaneously 
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unstable. Centre manifold and normal form methods then permit the analysis of such 
modal interactions in terms of low-dimensional dynamical systems : relatively small 
sets of ODES. For background see Guckenheimer & Holmes (1983) or Golubitsky & 
Guckenheimer (1986). These methods are closely related to the classical amplitude 
expansions of weakly nonlinear hydrodynamic stability theory (Drazin & Reid 
1981). (In fact, Galerkin and other discretization techniques are not always easy to 
apply to such problems, since, even if the steady (bifurcating) solution is known 
analytically, the normal modes are not usually elementary functions and linear 
stability analyses are not straightforward.) Even in this situation, however, rigorous 
results have not gone beyond the first preturbulent bifurcations from steady, laminar 
flows. There is nothing close to a proof of Ruelle & Takens’ conjecture that the 
Navier-Stokes equation has a strange attractor €or a realistic flow geometry. On the 
other hand, sophisticated analyses of experimental data have lent much support to 
the thesis that low-dimensional dynamics do control certain aspects of preturbulent 
flow in closed fluid systems (see Swinney 1983 and references therein). 

In  view of this, the present study of an open flow - the fully developed boundary 
layer on a flat plate - might seem hopeless. As Monin (1978) has pointed out, low- 
dimensional models cannot hope to account for the detailed, high wavenumber, 
spatially chaotic aspects of fully developed turbulence. Moreover, in open flow 
systems natural modal decompositions such as the Fourier modes of linear theory are 
lacking or of limited use in the inhomogeneous directions. Thus another expansion is 
necessary and a coherent structure approach seems to  be worth investigating for a 
judicious determination of relevant modes when large eddies are experimentally seen 
to play an important role. Since the early work of Theodorsen (19521, which 
suggested the importance of large-scale horseshoe-shaped vortices in turbulent 
transport in a turbulent boundary layer, flow visualization and conditional sampling 
techniques have revealed the existence of organized structures in many shear 
flows. 

Nevertheless the extraction of deterministic features from a random, fine-grained 
turbulent flow has been a challenging problem. Zilberman, Wygnanski & Kaplan 
(1977) write: ‘there are no consistent methods for identification which are 
independent of the techniques and the observer ’ and ‘we cannot unambiguously 
define the signature of an eddy without a priori knowledge of its shape and its 
location relative to the observation station and cannot map such an eddy because we 
do not have a proper criterion for pattern recognition’. More recently, Kim (1983) 
has used a conditional sampling technique based on numerical data but he also 
admits the subjectivity of the method due to the arbitrary choice of detection 
functions and threshold values. 

In contrast, Lumley (1967) proposed an unbiased technique for identifying such 
structures. The method consists of extracting the candidate that is the best 
correlated, in a statistical sense, with the background velocity field. Such a quantity 
is called, by definition, a structure. The different structures are identified with the 
orthogonal eigenfunctions of the proper orthogonal or Karhunen-Lohe decom- 
position theorem of probability theory (Lobve 1955). This is thus a systematic 
way to find organized motions in a given set of realizations of a random field. The 
question remains of how energetic and characteristic of the full turbulence of the flow 
such structures are. The method applied here is optimal in the sense that the series 
of eigenmodes converges more rapidly (in quadratic mean) than any other 
representation. Nevertheless the use of these modes for a low-dimension dynamical 
system study requires a very fast convergence of the series. The method we propose 
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FIGURE 1 .  Bubble-wire visualization of the turbulent boundary layer a t  xz = 6.6. A single frame 
from the movie taken by S. Kline a t  Stanford University (see Kline et al. 1967) and kindly provided 
by S. Kline. 

here is therefore limited in application to certain types of flows in which large 
coherent structures contain a major fraction of the energy. It has been demonstrated 
that axisymmetric turbulent jet mixing layers (Glauser, Leib & George 1985a) and 
wall regions of turbulent boundary layers (Moin 1984; Herzog 1986) belong to this 
group. In the wall region of a turbulent boundary layer, large eddies, which manifest 
themselves as streamwise streaks in visualizations, and are thought to be 
characteristic organized structures, are experimentally observed to be intermittent 
in time and space (in the streamwise direction). They are associated with a succession 
of events in which their sudden breakup corresponds to peaks in the turbulent energy 
production. These violent motions of the streaks, called bursting events, are also 
thought to be the basic phenomenon for turbulent energy transfer between the inner 
and outer regions of the layer, and hence they contribute significantly to the entire 
turbulence process. 

Despite the contribution of many researchers, the description of these eddies is still 
vague. Theodorsen (1952) was probably the first to suggest the formation of these 
vortices inclined a t  an angle of 45" to the wall. Head & Bandyopadhyay's (1981) 
experiments convincingly established the existence of horseshoe or hairpin vortices 
 depending on the value of Reynolds number   in the wall region of a boundary 
layer (cf. Willmarth & Tu 1967). More recently, from a large-eddy simulation, Kim 
& Moin (1986) have used conditional sampling criteria to produce spatial structures 
and detect the presence of three-dimensional hairpin vortical structures inclined at  
45" to the wall. A second group argues for the existence of streamwise elongated 
patterns, streaks and vortices. The experiment of Hama (Corrsin 1957) first revealed 
streamwise streaks which were also observed by Kline et al. (1967), figure 1, who were 
able to determine the average streak spacing. Bakewell & Lumley (1967) find 
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streamwise counter-rotating eddy pairs as the main structure of the wall region (see 
also Herzog 1986). Willmarth (1975, 1978) and Blackwelder & Eckelmann (1979) 
give a similar picture of the wall region. Hogenes & Hanratty (1982) find essentially 
the bottom halves of streamwise counter-rotating eddy pairs. It is not rare to find 
people belonging to both schools. For example, Head & Bandyopadhyay’s 
investigations extending to  the immediate vicinity of the wall provided visual 
evidence of streamwise filaments. They conclude that ‘the hairpins have their origin 
in longitudinal vortex motions very close to the wall ’. Nevertheless they do not feel 
able to provide ‘firmly established connection(s) ’. Kim’s (1983, 1985) results, 
obtained from a sampling technique (producing a time structure applied to numerical 
data), indicate that the bursting event is associated with a pair of counter-rotating 
streamwise vortices, since they survive in an ensemble-averaging technique. Whether 
or not these streamwise vortices are related to hairpins is unclear and although many 
connections have been proposed, nothing has been proved yet. For example, Smith 
(1984) states that these streamwise vortices are the legs of a horseshoe vortex 
structure. 

The time-dependent behaviour of these structures has also remained unclear. 
Experimental results obtained from flow visualization provide a qualitative 
description in terms of a quasi-cyclic succession of events which consists of a gradual 
lift-up of the longitudinal, streamwise streaks, a sudden oscillation, a breakup or 
bursting event, a downward motion of high-speed fluid towards the wall, called a 
sweep event, and a violent upward motion of low-velocity fluid called an ejection event. 
This intense updraught is postulated to  be closely related to the high local production 
of turbulent energy associated with the breakup of the streaks. For more details see 
Kline et al. (1967). Quantitative estimates have been given for the bursting period, 
i.e. the average time between two consecutive bursting events a t  a given spatial 
location (Kline et al. 1967; Rao et al. 1971). Many assumptions have been made to 
explain the bursting phenomenon. The most common is a secondary instability of an 
inflexional velocity profile in the updraught between the counter-rotating eddies, but . 
nothing has really been proved. 

A major purpose of this study is to understand better the patterns of the wall- 
region structures, their dynamics, the role they play in the bursting phenomenon and 
their importance in the turbulent production mechanism. Specifically, we shall 
develop a model for the wall region of the boundary layer (from x: = 0 to xi = 40 in 
wall units (Tennekes & Lumley 1972)), using the proper orthogonal decomposition of 
Lumley (1967, 1970, 1981) in the direction normal to  the wall, in which the flow is 
strongly non-homogeneous. I n  the streamwise and spanwise directions the flow is 
essentially homogeneous, and Fourier modes will suffice. Used in conjunction with 
Galerkin projection, the proper orthogonal decomposition yields an optimal set of 
basis functions in the sense that the resulting truncated system of ODES captures the 
maximum amount of kinetic energy among all possible truncations of the same 
order. The method has obvious advantages over a priori decompositions, based on 
linear normal modes, but it does not appear to have been used before owing to the 
difficulty of computing the proper orthogonal modes. For this one requires three- 
dimensional autocorrelation tensors averaged over many realizations of the flow in 
question, data only obtainable from lengthy experiments and analyses or from 
detailed numerical simulations. In  our case complete data are only available from 
experimental work in a glycerine tunnel (Herzog 1986), although Moin (1984), has 
derived two-dimensional orthogonal modes from large-eddy simulations. However. 
as we shall see, knowledge of the autocorrelation tensor, and use of the Navier-Stokes 
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equations, does allow one to uniquely determine the unsteady flow, in contrast to 
Cantwell’s (1981) expectation. 

Using this modal decomposition, we derive and study minimal truncations of 
various orders of the Navier-Stokes equations in the wall layer. The modes neglected 
in the truncation are accounted for by a Heisenberg model and we include a feedback 
effect to account for the stabilizing role of the interaction between the mean (driving) 
velocity profile and the fluctuating velocity field in the wall region as disturbances 
grow. The final models are sets of 3-6 ODES for the complex modal amplitudes. We 
study these equations analytically and numerically, and interpret their behaviour in 
the light of dynamical systems theory. This study should be seen as preliminary, and 
substantial modelling and mathematical issues remain to be resolved, but the initial 
indications are very encouraging. 

We should make clear here that there are two generic questions that can be asked 
regarding the wall layer : ( 1 )  Where do the coherent structures in the wall region come 
from, i.e. what dynamical mechanism is responsible for their life cycle ? (2) Supposing 
that there are streamwise rolls in the wall region, what is their dynamical behaviour ? 
We concern ourselves here only with the second question. 

For high values of the Heisenberg parameter (representing large losses to the 
unresolved modes) our model displays a unique, globally attracting fixed point which 
corresponds to (steady) streamwise vortices or rolls similar to those that have been 
observed in many experiments (e.g. Kline et al. 1967; Head & Bandopadhyay 1981). 
This is not entirely surprising, since the orthogonal and Fourier modes used in the 
Galerkin projection encode this velocity field structure, although the lateral 
dimension is autonomously selected by the system of equations. Even this is to a 
certain extent pre-ordained, since the vertical dimension is fixed by the choice of 
eigenfunctions ; the system will of course choose roughly circular rolls, corresponding 
to minimum dissipation. However, as the Heisenberg parameter is reduced to about 
1.6, the fixed point destabilizes and intermittent bursting behaviour occurs in which 
the modal content, amplitudes and geometry of the rolls, change quasi-periodically . 
Starting with almost steady rolls, a period of slow oscillatory growth occurs, 
culminating in a ‘burst ’ after which the velocity field relaxes quickly to the steady 
state. This is strongly reminiscent of the bursts observed in experiments (Kline et al. 
1967) and it is even possible to match typical burst periods by judicious choice of the 
Heisenberg parameter. Thus our model appears to capture not only the static 
behaviour of the coherent structures in the wall layer, but also major features of their 
dynamics. Moreover, it suggests that the bursts originate very close to the wall, as 
suggested by Kline et al. (1967). We also show that, while the character of the bursts 
is determined entirely by the wall layer, the pressure perturbation from the outer 
part of the boundary layer can trigger the occurrence of a burst ; bursting frequency 
is thus determined by the pressure signal. 

We must mention several other authors who have considered the dynamics of the 
wall region; in particular Chapman & Kuhn (1986), Hatziavramidis & Hanratty 
(1979), Ersoy & Walker (1985) and Nikolaides (1984). These authors have all carried 
out computations of solutions of the Navier-Stokes equations in the wall region with 
various truncations, and various boundary conditions. Chapman & Kuhn (1986) 
were interested primarily in the asymptotic behaviour of the various velocity 
components and Reynolds stress in the immediate vicinity of the wall. Ersoy & 
Walker (1985) examined the behaviour of streamwise counter-rotating eddy pairs in 
the vicinity of the wall. They found a zone of separation on the wall, and strong 
eruptions. (We may note here that we certainly do not claim to have discovered 
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eruptions - we are trying to explain them.) Hatziavramidis & Hanratty (1979) 
neglect streamwise variation of the field (as we do in this initial study), and assume 
that the cross-stream fluctuation of the velocity field a t  the top boundary contains 
one spatial (spanwise) wavenumber (that of the experimentally observed streak 
spacing) and one temporal frequency (that of the bursting period). They find 
streamwise counter-rotating eddies and separation bubbles on the wall. Nikolaides 
(1984) calculated with more realistic conditions on the outer boundary and obtained 
solutions in many respects similar to ours. 

We feel that all these investigations have substantially different goals and results 
from ours. To begin with, since the Navier-Stokes equations describe the flow, 
correct solution of thesc equations in a domain with the proper boundary conditions 
should reproduce experimental findings. This is not to denigrate the difficulty of 
carrying out such a solution; however, nothing will have been learned about 
causality, mechanisms, etiology and so forth. Information of this sort can only come 
from hypotheses that reduce the system solved to something considerably less than 
the Navier-Stokes equations, and from detailed examination of the structure of the 
equations solved, and of the character of the solution trajectories in phase space. It 
is as though these authors said, ‘Look! We can make a simple system that behaves 
like reality’. We are saying, ‘We can dismantle the system and show you how it 
works’. We feel that these other investigations have shed no light on questions such 
as : what part of the dynamical behaviour of the wall region is autonomous, and what 
part is directly attributable to the influence of the outer region? What is the 
minimum complexity capable of reproducing this dynamical behaviour (i.e. what are 
the indispensable characteristics of a model) ? How does the dynamical mechanism 
work, in detail ? These and similar issues will be explored in the body of this paper. 
It is to answer such questions that we have embarked on this investigation. 

The paper is organized as follows. In  $52-4 we outline the proper orthogonal 
decomposition, its application to the boundary-layer problem and the experimental 
work that provides our orthogonal modes. In  gg5-6 we discuss the (Navier-Stokes) 
equations of motion and the Heisenberg parameter and mean profile feedback 
models. In  357-8 we address the question of truncations and the derivation, via 
Galerkin projection of the ODES. Section 9 contains mathematical analyses of these 
model equations, including a discussion of various invariant subspaces and their 
physical interpretation in terms of symmetries of the flow. Thus prepared, in 9 10 we 
embark on the stormy waters of numerical simulation, concentrating on a model 
involving a single orthogonal mode normal to the wall, a single ( E  = 0) streamwise 
Fourier mode and six spanwise Fourier modes. In  5 11 we discuss the important 
influence of the pressure term, neglected up to this point. Finally, in $512-13 we 
illustrate and discuss the physical implications of the behaviour of our model 
equations. 

The use of the proper orthogonal decomposition in turbulence analysis has been 
discussed in general in three recent papers of Sirovich (1987a, b ,  c)  who has applied 
the method in studies of the Ginzburg-Landau equation (Sirovich & Rodriguez 1987) 
and Rayleigh-Be’nard convection (Sirovic.h, Maxey & Tarman 1987). 

Technical details, tables of coefficients, etc. are relegated to the Appendices and we 
attempt to keep our use of dynamical-systems jargon to a minimum. However, some 
technicalities are unavoidable, and the reader unfamiliar with the field is referred to 
Guckenheimer & Holmes (1983), Devaney (1985) or Guckenheimer (1986) for 
background. We hope that we have included enough information for such references 
to bc unnecessary ; our attempt to do so accounts for the length of this paper. 
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2. The proper orthogonal decomposition 
Lumley (1967) proposed a method of identification of coherent structures in a 

random turbulent flow, which we now outline. An advantage of the method is its 
objectivity and lack of bias. Given a realization of an inhomogeneous, energy- 
integrable velocity field ~ E E ,  it consists of projecting the random field u(x), on a 
candidate structure #(x), and selecting the structure that maximizes the projection 

7 = (d>4/ (4>4)+ ( 1 )  

in quadratic mean, where the inner product in the Hilbert space of L, (all measur- 
able vectorial functions on the set E such that !,If1 < CQ) is defined by (Lg) = 
!f:(x) g,(x) dx and the norm by (Lf) = If12 (*indicates the complex conjugate). 

In  other words, we are interested in the structure that is the best correlated to the 
random, energy-integrable field. More precisely, given an ensemble of realizations of 
the field, the purpose is to find the structure that is the best correlated with all the 
elements of the ensemble. Thus we want to maximize a statistical measure of the 
magnitude of y which can be given by the mean square of its absolute value ( IyJ ". 
Here ( ) indicates the ensemble average. The calculus of variations reduces this 
problem of maximization to a Fredholm integral equation of the first kind : 

r 

J Ri j (x ,  x') $j(x') dx' = h$i(x),  

whose symmetric kernel, Rij is the autocorrelation matrix. The properties of this 
integral equation are given by Hilbert-Schmidt theory. There is a denumerable set 
of eigenfunctions $in) (structures). The eigenfunctions form a complete orthogonal 
set, which means that the random field can be reconstructed in the following 
way : m 

ui(x) = C aJ(n)$in)(x), (3) 
n=1 

with (qW, #ern)) = S,, if the eigenfunctions are normalized. Here Snm is the Kronecker 
delta symbol, The coefficients are uncorrelated and their mean square values are the 
eigenvalues themselves. 

(4) ( a ( n ) a ( m ) )  = 8 h (n ) .  
nm 

The kernel can be expanded in a uniformly and absolutely convergent series 
m 

R i j ( X ,  x') = c h'"'$;"'(x) #)*(x'), 
n=l 

and the turbulent kinetic energy is the sum (over n)  of the eigenvalues 
a, 

E = (uiui)dx= C s n=1 

Thus every structure makes an independent contribution to the kinetic energy and 
Reynolds stress. 

The most significant point of the decomposition is perhaps the fact that the con- 
vergence of the representation is optimally fast since the coefficients a(n)  = (qW, u )  of 
the expansion have been maximized in a mean-square sense. The mean square of 
the first coefficient is as large as possible, the second is the largest in the remainder 
of the series once the first term has been subtracted, etc. 

We have presented this theorem for the simplest case, that of a completely 
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inhomogeneous, square integrable, field. If the random field is homogeneous in one 
or more directions, the spectrum of the eigenvalues becomes continuous. and the 
eigenfunctions become Fourier modes, so that the proper orthogonal decomposition 
reduces to the harmonic orthogonal decomposition in those directions. See Lumlcy 
(1967, 1970, 1981) for more details. 

We shall apply this decomposition theorem to the fluctuating velocity field. after 
subtraction of the mean. Another possibility would be to look for eigenfunctions of 
the entire instantaneous field, mean plus fluctuating part. The question is, to what 
extent would these differ from the eigenfunctions for the fluctuating field ? It is clear 
in general that the first eigenfunction for the instantaneous field will be the mean 
velocity. The next eigenfunction for the instantaneous field can be constructed from 
the first eigenfunction for the fluctuating field ; if this is not orthogonal to the mean 
velocity, a small component proportional to the mean velocity must be subtracted. 
We may continue in this way, so that each eigenfunction for the instantaneous field 
will be a linear combination of the mean velocity and all eigenfunctions of the 
fluctuating field of that  order and lower. In fact, for the one-dimensional case in the 
wall region of a turbulent boundary layer (see Bakewell & Lumley 1967). the first 
eigenfunction is proportional to the mean velocity profile, SO that only the value of 
the first eigenvalue is changed, by the addition of an integral of the square of the 
mean velocity. In  the general case, the representation of the instantaneous velocity 
field by the first few eigenfunctions is unchanged, since the series of eigenfunctions 
can be recombined to give the mean profile plus the series of eigenfunctions for the 
fluctuation. This approach would thus make no difference to our results. From now 
on, we shall discard this possibility, and adhere strictly to the decomposition of the 
fluctuating field. 

3. Application of the proper orthogonal decomposition to the shear flow 
of the wall region 

The flow of interest here is three-dimensional, approximately homogeneous in the 
streamwise direction (x,) and spanwise direction (x,), approximately stationary in 
time ( t ) ,  inhomogeneous and of integrable energy in the normal direction (x2). 

Lumley’s first proposition (1967, 1981) consisted of a four-dimensional decompo- 
sition ; a proper orthogonal decomposition in the x,-direction and a harmonic 
orthogonal decomposition in the three other directions : 

r 
ui(xl, x,, x,, t )  = U ~ L , , ~  e2ni(k1s1+k3s3+wt) $in) (x,) dk, dk, dw, kl k p  

where the dn) are random coefficients and, the 
equation : 

deterministic. The solution of the 

( 7 )  

(Gii denotes the Fourier transform of the autocorrelation tensor in the x1.x3. 
r-directions; in effect, the kernel in (2) becomes a function of the difference of primed 
and unprimcd arguments in each homogeneous direction, and one simply takes the 
Fourier transform in each of these directions to obtain (7 ) .  The values k , ,  k, and w 
are parameters on which all terms in equation (7)  depend) for each triplet ( k , ,  k,, w ) .  
leads to  the determination of the eigenfunctions 

sPij(xz, xi) $jn)(xh) dxh = h(n)#$n)(xz) s 
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Nevertheless the are known only in their mean-square absolute value and the 
eigenfunctions can be multiplied by any arbitrary phase factor eirr(k) depending on 
the wavenumbers, since (7) is homogeneous. Thus, the eigenvalue problem alone does 
not allow the reconstruction of the velocity field in physical space, although Lumley 
(1981) gives a method to recover this phase information from third-order statistics. 

An alternative to the decomposition (6) is a three-dimensional decomposition 
which can be substituted in the Navier-Stokes equations in order to recover the 
phase information carried by the coefficients. We have to decide which variable we 
want to keep. Time is a good candidate since we are particularly interested in the 
temporal dynamics of the structures. Such a decomposition is possible, and we do not 
need a separation of variables in the eigenfunctions of the type 4(x, w )  = A ( @ )  ~ ( x )  
in (6) (as suggested by Glauser, George & Taulbee 1985b) if we do not use any 
decomposition in time and choose the appropriate autocorrelation tensor. The idea 
is to measure the two velocities a t  the same time and determine (ui(x1,x2,x3,t) 
u,(xi, xi, xj, t)). Since the flow is quasi-stationary, Rij does not depend on time and 
nor do the eigenvalues and eigenfunctions. The information in time is carried by the 
coefficients a(") which are still 'stochastic', but now evolve under the constraint of 
the equations of motion. Thus the decomposition becomes 

e2ni(k1z1+k3s3) #in) (x2) d,7cl d,7c3 (8) 
'1 '3 

ui(xl> '2, x3, t ,  = c 
n i  

and we have to solve ( 7 )  for each pair of wavenumbers ( k l ,  k 3 ) .  Gi, now denotes the 
Fourier transform of the autocorrelation tensor in the x,-, 2,-directions. 

Our second change to the decomposition is a transformation of the Fourier integral 
into a Fourier series, assuming that the flow is periodic in the xl- and x,-directions. 
The periods L,, L, are determined by the first non-zero wavenumbers chosen. 
Finally, each component of the velocity field can be expanded as the triple sum 

In this case, a 'structure' is defined by 

and the entire velocity field is recovered by the sum of all the structures (over n).  

4. Experimental results 
The candidate flow that we are investigating is the wall region (which reaches 

x l  = 40) of a pipe flow with almost pure glycerine (98 YO) as the working fluid (Herzog 
1986). The Reynolds number based on the centreline mean velocity and the diameter 
of the pipe is 8750. The corresponding Reynolds number based on the shear velocity 
u, is 531. The measurements obtained from hot-film anemometry were taken at 882 
point pairs, 7 points in the streamwise direction up to x: = 40, 6 points in the normal 
direction up to x i  = 40 and 6 points in the spanwise direction up to x i  = 136. Two 
components of velocity, u1 and u,, were measured for each pair for three minutes. The 
other velocity component, u2, was deduced by integration of the continuity equation. 
From this data the autocorrelation tensor at zero time lag (t - t' = 0 between the two 
velocities), R,,(x, -xi, x2, x;, X , - - X ; ) ~ - ~ , ~ ~ ,  was obtained and the spatial eigen- 

5 FLM 192 
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FIGURE 2. Convergence of the proper orthogonal decomposition in the nea.r-wall region (xi = 40) 
of a pipe flow according t o  experiment,al data .  Turbulent kinet,ic energy in the first three 
eigenmodes. A(") (n = 1 , 2 , 3 )  as a function of (a )  the spanwise wavenumber, ( h )  the  streamwise 
wavenumber (from Herzog 1986). 
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FIGURE 3 Convergence of the proper orthogonal decomposition in the near-wall region (zb = 65) 
of a channel flow according to  numerical data. Contrihution to  the turbulent kinetic energy of one, 
three. five eigenmodes (from Moin 1984). 

functions were extracted by numerical solution of the eigenvalue problem. Figure 
2 illustrates the convergence of the resulting eigenfunction expansion in the wall 
region ; for comparison similar data derived from numerical simulations of Moin 
(1984) are shown in figure 3. The three components of the first empirical eigenfunction 
for different spanwise wavenumbers and zero streamwise wavenumber are shown in 
figure 4 as functions of x2. In  the present study, only the two components of the 
eigenfunctions that are directly obtained from the experimental data are used ; they 
are curve fitted (since the first and second derivatives are needed) and the third 
component is derived analytically from the continuity equation which is thus exactly 
satisfied. This equation can be written in terms of the eigenfunctions 

The results show that approximately 60% of the total kinetic energy and 
Reynolds stress is contained in the first eigenmode and that the first three 
eigenmodes capture essentially the entire flow field as far as these statistics are 
concerned. This very fast convergence of the decomposition in the near-wall region 
is in good agreement with Moin's (1984) results. From a large-eddy-simulation data 
base, Moin uses the proper orthogonal decomposition successively in one and two 
dimensions in the wall region (up to = 65). His first structure contains 60% of the 
total kinetir energy and 120% of the Reynolds stress (this apparent paradox occurs 
because the contribution of higher-order structures to the Reynolds stress is 
negative). 90 % of the kinetic energy is captured by the first three terms. Nevertheless 
in a much larger integration domain, which extends to the centreline of the channel, 

5-2 



126 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

(ii) (iii) (iv) (v) 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(4 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

(vi) (vii) 



Coherent structures in the wall region of a turbulent boundary layer 127 

the convergence is much slower ( -  20 terms are needed). Both studies show that each 
term in the decomposition corresponding to the first eigenmode 

represents streamwise rolls. In  order to reconstruct the entire velocity field, these 
authors made assumptions concerning the phases between the different wave- 
numbers, namely the phase angles were set to zero. Under such considerations the 
first coherent structure reveals the pattern of a pair of counter-rotating and 
symmetric rolls similar to the ones experimentally observed (Blackwelder & Kaplan 
1976). 

There is an apparent contradiction between the numbers of eigenfunctions we 
need for a more-or-less complete description of this flow field, and recent estimates 
of the Lyapunov dimension of the attractor corresponding to  channel flow (Keefe et 
al. 1987). The latter, estimated in a very low-Reynolds-number flow, was in the range 
360-400, and because of the relatively poor spatial resolution of the calculation, this 
was felt to be a lower bound. However, we should bear in mind (L. Sirovich, private 
communication) that when we say 20 eigenfunctions, we mean 20 eigenfunctions at 
each of, say, six cross-stream and, say, three streamwise wavenumbers, and of two 
components each (continuity makes the third redundant). Taking account of the 
various symmetries, this gives us a dimension of 1080 (see Aubry 19871, which is the 
right order of magnitude. In  the wall region, carrying three eigenfunctions on 
the same wavenumber grid gives a dimension of 162. The case we are considering, 
with one eigenfunction and five active cross-stream wavenumbers, and only one 
in the streamwise direction, has a dimension of ten. 

5. The dynamical equations 
We decompose the velocity v - or the pressure 7~ - into the mean (defined using a 

spatial average 1 /L, L, J ( ) dx, dx,) flow U - or the corresponding mean pressure 
P - and the fluctuation u - or p :  

u = u + U with U = U(x,) el ,  

71 = p+P.  

(11)  

We substitute this decomposition into the Navier-Stokes equations : 

du, 1 
Z + U i ,  1 u + u, , u, s,, +u,, j uj = -- (p, ,  +Pi) + V(U, , j j  + u, jj d,,). 

P 

Taking the spatial average (( ) = 1/L, L, s ( ) dx, dx,) of these equations we obtain 
a relation between the divergence of the Reynolds stress and the mean pressure and 
velocity : 

1 

P 
113) (ui,juj) = --P,+vU ' 3 3  ..s. a 1  

Equation (12) becomes, upon substitution of (13), 

dui 1 
-+UiJ u+ u,2u2sil+ui,juj-(ui,juj) = --p,,+vui,jj. 
dt P 

The mean velocity U can be expressed in terms of the Reynolds stress (u,u,) in 
a channel flow in a manner that gives some feedback to the system of equations as 
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the fluctuation varies. We shall see that this feedback is necessarily stabilizing for the 
first structure (according to the experimental results) and increases as the Reynolds 
stress gets stronger. In other words, this term controls the intensity of the rolls, by 
reducing the mean velocity gradient as the rolls intensify, thus weakening the source 
of energy. The expression for the mean velocity profile is the following : 

V V 

where X ,  is the upper edge of the integration domain and H the half-height of the 
channel. It contains two parts : one from the Reynolds stress, the other one from the 
mean pressure gradient. We can get a good idea of the mean velocity profile we are 
using by taking the time average of (15). 

The expansion of the Fourier transform 4, of the fluctuating velocity ui, defined 

(16) 1 e2ni(k,z3+k z 
by 

%(XI, %x3, t )  = - 3 3) Gi(k, ,  k3, ~ 2 ,  t ) ,  
'1 L3 k,k, 

is achieved by use of the complete set of eigenfunctions #n)  in an infinite sum: 

Since we want to truncate this sum, we use a Galerkin projection which minimizes 
the error due to the truncation and yields a set of ordinary differential equations for 
the coefficients. The idea is to make the residual 

N 

Ri = (L ,  L3)i acrn'(t) Qlm)(x,) 
m = l  

orthogonal to each eigenfunction in the Hilbert space. After taking the Fourier 
transform of the Navier-Stokes equations N i  = 0 and introducing the truncated 
expansion, we apply Galerkin projection by taking the inner product 

Finally we obtain a set of ordinary differential equations of the form 

dap)  
A- = Sap) + NL, 

dt 

where A and B are matrices. Here A is the identity matrix (since the complete set 
of eigenfunctions is orthogonal) and NL are nonlinear terms. The nonlinear terms 
are of two sorts : quadratic and cubic. The quadratic terms come from the nonlinear 
fluctuation-fluctuation interactions and represent energy transfer between the 
different eigenmodes and Fourier modes. Their signs vary. The role of the Reynolds 
stresses (ui ui) in these terms should be mentioned. They vanish for all wavenumber 
pairs except for ( k l , k 3 )  = (0,O) for which they exactly cancel the quadratic term. 
Therefore they prevent this mode from having any kind of quadratic interactions 
with other Fourier modes. Since the cubic terms are zero too, the (0,O) mode just 
decays by action of viscosity and does not participate in the dynamics of the 
system. 
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The cubic terms come from the mean velocity-fluctuation interaction cor- 
responding to the Reynolds stress (u,u,) in (15) (the other part of (15) leads to a 
linear term). Sine the streamwise and normal components of the first eigenfunction 
have opposite signs, they make a positive contribution to the turbulence production 
and hence provide negative cubic terms which are thus stabilizing. We remark that 
this is not necessarily the case for higher-order eigenfunctions. 

By use of the continuity equation (10) and the boundary conditions 

#;;) = 0 at  x2 = 0 (at the wall), 

and x, 3 co, #{I (decay at infinity), 

it can be seen by integration by parts that the pressure term would disappear if the 
domain of integration covered the entire flow volume. Since this is not the case 
(rather the domain is limited to X i  = 40), there remains the value of the pressure 
term at the upper edge X ,  of the integration domain which represents an external 
perturbation coming from the outer flow. The exact form of the general equations is 
given in Appendix A. 

6. Energy transfer model 
The exact form of the equations obtained from the decomposition, truncated a t  

some cutoff point (klc, k3c,  nJ .  does not account for the energy transfer between the 
resolved (included) modes and the unresolved smaller scales. The influence of the 
missing scales will be paramctcrized by a simple generalization of the Heisenberg 
spectral model in homogeneous turbulence. Such a model is fairly crude, but we feel 
that its details will have little influence on the behaviour of the energy-containing 
scales, just as the details of a subgrid-scale model have relatively little influence on 
the behaviour of the resolved scales in a large-eddy simulation. This is a sort of St. 
Vcnant’s principle, admittedly unproved here, but amply demonstrated experi- 
mentally by the universal nature of the energy-containing scales in turbulence in 
diverse media having different fine structures and dissipation mechanisms (see 
Tennekes & Lumley 1972 for a fuller discussion). The only important parameter is 
the amount of energy absorbed. 

Wc begin by defining a moving spatial filter which removes from the total field the 
unresolved modes. The details of the definition are not important - it  is sufficient to 
conceive of the possibility of such a filter. This filter is also an averaging operator. 
The velocity field may now be divided into the resolved and unresolved field by using 
this filter. The Reynolds stress of the unresolved field may now be defined as the 
average using our filter operator, of the product of the unresolved velocities; this acts 
on the resolved field. We suppose that the deviator of this Reynolds stress is 
proportional to the strain rate of the resolved field. We neglect the Leonard stresses, 
which essentially supposes that there is more of a spectral gap than really exists. This 
is what is donc in the Heisenbcrg model, without ill effect. The way in which we are 
treating the effect of the unresolved modcs on the resolved ones is very much like 
what is done in large-eddy simulation, and is called subgrid-scale modelling; our 
model would probably be called a Smagorinsky model (there are minor differences in 
the definition of the equivalent transport coefficient). Let us agree to designate the 
resolved field as u,, and the unresolved field as ui>, while an average of #, say, over 
the Unresolved modes (the filtcring process) can be designated as (#), . Thus : 

rij> = -2ul vTXij< (21) 
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I n (normal) k ,  (spanwise) 

FIGURE 5.  Inhomogeneous Heisenberg model applied to the specific truncation 
modes; x , first neglected modes which are considered for the computation of 
scales of the Heisenberg model. 

of § 7 : 0 ,  resolved 
the characteristic 

Here < denotes the sum over all the modes ( k , ,  k,, n)  such that k ,  < klr,  k,  < k,,, 
n < n, and > denotes the sum over all the modes ( k l ,  k, ,  n)  such that k1 > k, ,  or 
k,  > k,, or n > n,, where (klc,  k3C,  n,) is the cutoff mode. The characteristic scales of 
the parameter vT are those of the higher modes. We have introduced an explicit 
dimensionless parameter al, and will exclude adjustable constants from vT. By 
observation that the energy decreases rapidly with increasing n and k (figure 2 ) ,  we 
assume that these relevant scales are given by characteristic scales of the $first 
neglected modes. This is probably a good approximation as far as the eigenmodes are 
concerned since they are separated by large gaps in the spectrum and it is a 
reasonable assumption for the Fourier modes since the steps of our Fourier series are 
also large. 

Finally, the parameter vT is taken equal to 

(where u, and 1 ,  are characteristic scales of the neglected modes). This can be 
expressed in terms of the eigenvalues and eigenfunctions of the first neglected modes 
in the three directions (see Appendix B and figure 5.) 
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We shall refer to a, as a Heisenberg parameter. We shall adjust a1 upward and 
downward to simulate greater and smaller energy loss to the unresolved modes, 
corresponding to the presence of a greater or smaller intensity of smaller-scale 
turbulence in the neighbourhood of the wall. This might correspond, for example, to 
the environment just before or just after a bursting event, which produces a large 
burst of small-scale turbulence, which is then diffused to  the outer part of the 
layer. 

A term -@,((u,, uk>)> -((ukz uk,),)) appears in the equation for the resolved 
field. This term could be combined with the pressure term and would not have any 
dynamical effect if the integration domain covered the entire flow volume. In  our 
case, it needs to be computed since, like the pressure term, it leads to a term 
evaluated a t  X, .  We assume that the deviation (on the resolved scale) in the kinetic 
energy of the unresolved scales is proportional to the rate of loss of energy by the 
resolved scales to the unresolved scales. This pseudopressure term gives some 
quadratic feedback expressed in Appendix B. The rate of loss of energy from the 
resolved scales to the unresolved scales is 2a, vT Sii< Sii<, so that a free parameter 
appears also in this term. Because this approximation involves a further assumption, 
and to give ourselves greater flexibility, we call this parameter a2, although in all 
work presented in this paper, we have set a1 = a2 (see 8 9, below). 

Thus the Heisenberg model introduces two parameters in the system of equations, 
one, al,  in the linear term, the other one, a2, in the quadratic term. The equations 
therefore have the following form : 

d (n) 

dt 
L+ ( v  + a,  vT) L'+ Q + a2 Q'+C, % k ,  - -- (23) 

where L and L' represent the linear terms, Q the direct quadratic terms, Q' the 
quadratic pseudopressure term and C the cubic terms arising from the Reynolds 
stress. 

7. Specific truncations 
This study has two conflicting requirements. On one hand we wish to keep as few 

modes as possible in order to obtain a low-dimensional system, permitting us to 
apply the techniques of dynamical system analysis. On the other hand, we would like 
to retain a t  least a qualitatively correct dynamical representation of the turbulence 
production phenomenon. A necessary condition for the second requirement consists 
of including as much of the energy and Reynolds stress as possible in our system. This 
is already satisfied in the inhomogeneous direction by the proper orthogonal 
decomposition itself, since the first structure is the most energetic. Given the 
energetic gap between the two first eigenfunctions (figure 2), keeping only one 
structure seems quite reasonable. The choice of wavenumbers is now of great 
importance, especially as far as the Reynolds stress is concerned (an important part 
of the Reynolds stress is contained in the higher modes ; see § 13). The best selection 
is probably the one for which the cutoff modes correspond to the experimental 
measurement cutoff. Since we retain only a few modes, the steps of our Fourier series 
are large. However, provided that the periodic length is larger than a few integral 
scales, the Fourier transform (as defined by (16)) of the autocorrelation tensor is 
unchanged and the eigenfunctions are still the same. The Heisenberg parameter is 
computed for a series of shorter steps and extrapolated. 
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We now seek a minimum truncation. The experimental results show that the ratio 
between the streamwise and spanwise characteristic lengthscales is of order ten 
(figure 2) .  Our first approximation therefore neglects streamwise variations, that  is 
to say we truncate the series to the k ,  = 0 mode. We need a t  least three terms in the 
spanwise direction for nonlinear interactions. Thus the minimum truncation consists 
of one eigenmode, one streamwise wavenumber ( k ,  = 0) and three (i.e. two active) 
spanwise wavenumbers (0, k ,  2 k ) .  I n  this paper, up to six spanwise wavenumbers 
(0, ..., 5 k )  will be considered. In  this case k has the value 3 x lo-, and the lengths of 
the periodic box are L, = L, = 333. Even the model having six spanwise Fourier 
modes is still very crude, although the truncation seems to be the one that contains 
optimally large amount of the total energy among those of the same dimension. The 
zero cutoff mode in the streamwise direction in particular is a very rough 
approximation. Such a truncation causes a drop of the spanwise and normal root- 
mean-square values of the velocity which is particularly significant in the upper half 
of the layer. For this reason, we do not expect our velocity field reconstructed 
without rescaling to have more than qualitative significance. 

We began with the smaller truncation, k ,  = 0 and (0, k ,  2 k )  in the spanwise 
direction, and one eigenmode. It must be noted that a certain level of complexity is 
necessary : such processes as vortex self-induction, vortex stretching and the like are 
nonlinear processes, and we expect to need three active Fourier modes in order to 
reproduce even qualitatively these effects. Hence, we were not very surprised when 
our smaller truncation was somewhat lacking in dynamically interesting behaviour 
(see below). We then moved to five active cross-stream modes, which produced a rich 
dynamical behaviour, which we will describe below. We are continuing to add modes, 
notably in the streamwise direction ; to begin with, we removed two modes from the 
cross-stream direction, to see if the streamwise modes could produce the destabilizing 
influence on the ( 0 , 2 k ,  4 k )  set (equivalent to the (0, k ,  21%) set) that  the addition of k ,  
3k and 5k to the cross-stream modes did (see below). We are proceeding cautiously, 
examining the symmetries and structure of the equations as we go, seeing what 
properties remain despite the greatly increased complexity. This extension is non- 
trivial, and will be described in detail elsewhere. It is mentioned here simply to make 
the point that  we understand the properties (notably the symmetries) of the 
equations responsible for the behaviour observed; that  the equations do not have 
these properties for lower-order truncations, and that the properties are preserved in 
higher-order truncations. Thus, we may expect the behaviour observed at  the level 
of truncation studied here to continue to have its counterpart in higher-order 
truncations. 

8. The model differential equations 
As a preliminary approach, we study the set of equations given in Appendix B for 

a truncation limited to the first eigenfunction (n = p = q = r = l ) ,  the zero 
streamwise wavenumber k ,  = 0 and up to six spanwise wavenumbers k ,  = 0, k ,  ..., 
5k,  for a suitably chosen k .  

When only the zero streamwise wavenumber is considered, the equations become 
much simpler. Indeed, because of the symmetries of the eigenfunctions (Herzog 1986) 
in the ( k l ,  k , )  wavenumber plane, the first and second components are purely real and 
the third component is imaginary on the k,-axis (i.e. for k ,  = 0). Using these 
symmetries, the equations for the complex modal coefficients a&:) = 0, k ,  can be 
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readily derived. Letting I % ,  take the valuesjk,j = 0,1 ,  ..., 5 and writing ai!,)=,, k , = j k  - - 

xj + yj, a typical equation takes the form : 

= alxl+c-l,2(xlx2+Y, Yz)+c-2,3(xSX,+Y*Y3)+c-Q,4(xsxq+Y3Y4) 
dx, 
dt 

+‘-4, 5(x4 %5 +y4 Y 5 )  fxl[dll(x:  +y:) + d 1 2 ( x i  + Y i )  +d13(xi +y:) 

+d,,(4+Y3 +d1,(4 + Y 3 l .  (24) 

The list of the coefficients c ~ , , ~ - ~ ,  and dkk# is given in Appendix C. The values 
tabulated there are obtained by numerical evaluation of the integrals in the general 
equations of Appendix A. 

In these equations the zero Fouricr mode ag) = x, + iy, has been removed since its 
imaginary part is identically zero and its real part decays to zero under the influence 
of the viscosity (dx,/dt = a,%,; a. < 0). The coefficients of the quadratic and cubic 
terms are each the sums of two quantities: ck, ,k-k , ,ckpkr ,k  and The 
influence of the Heisenberg model appears in the linear and quadratic terms as 

where a1 and a2 are the proportionality (Heisenberg) coefficients already mentioned 
in 3 6. The computation of the non-dimensionalized transport coefficient vT for this 
particular truncation gives the value l/ReT = 6.28. 

6. Mathematical properties of the model ODES 
In this and the next section we present a preliminary analysis of the ODES derived 

above. We concentrate on the case of six spanwise Fourier modes, for which the 
system has five ‘active’ modes, since the (linear) dynamics of the zero-wavenumber 
mode implies that  it decouples from the non-zero modes and decays as t + + 00 (cf. 
$8) .  The equations are given in 98, and the numerical values of the coefficients aj:  
ci,i and di j  are given in Appendix C. Note that the first two (linear and quadratic) 
coupling terms depend upon the Heiscnberg parameters a1 and a2. For simplicity, in 
this preliminary study we set a, = a2 = M: and vary the single parameter. Since a2 is 
multiplied by small coefficients (c i ,  = c:, + a2 c:,~ and typically ct, j/ci, - 0.05), it has 
little effect on the equations and therefore we feel that  little is lost in the 
simplification. We deal first with general properties of the equations, irrespective of 
precise values of coefficients. 

9.1. Global stability 

We first observe that the evolution equations are globally stable in the sense that 
solutions starting with sufficiently large initial conditions in the Euclidean norm 
(Xjx5+y5)i dccay and enter a compact trapping region. To see this, consider the 
Iiapunov function 

(25 ) 
l 5  

V ( X , Y )  = - c (xi”+yi”) 
2 j = ]  

arid difierentiatc along solution curvcs of (24) to  obtain 
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where C is a cubic form in x and y .  Since all the coefficients dik are negative, for a 
sufficiently large value of the Euclidean norm and any Heisenberg parameter a 2 0, 
the quadratic terms dominate and dV/dt < 0. Thus all level sets V = constant, 
sufficiently large, are crossed inwards by solutions. This stability result reflects the 
physical ‘feedback’ effect of the model in which the growth of the perturbations 
reduces the slope of the mean velocity profile (cf. 95). The global stability result holds 
for any number of spanwise modes. 

9.2. Invariant subspaces 

The ODEs have several important invariant subspaces and symmetries, which reflect 
physical symmetries of the flow and lead to simplifications in analysis. The flow is 
invariant under infinitesimal streamwise and spanwise translations xi --f xt +pi,  
i = 1,3 ,  and spanwise reflections xg + - xg. Since only the zero-wavenumber stream- 
wise mode is retained in our model, the former does not appear, but the latter leads 
to an O(2)-symmetry which is most easily seen by passing to polar coordinates 
ri = (x?+y?)i, 0, = tan-l (yi/xj). The equations then take the form 

k k 1 

where (for six modes) $i = O,+Oi-Oi+l ( j  = 1 , 2 , 3 , 4 ) ,  $5 = 20,-0, = $2+$3-$1  

and q56 = 0,+0,-0, = q53+$4-q51.  Here the G ~ , ~  are the same as the quadratic 
coefficients c j , k  of the original equations, up to  some sign changes (cf. (29), below, for 
an example). 

We observe that only certain phase differences appear and that all the $ j  are 
invariant under the symmetry 8, --f 0, +jp, corresponding to translation in xg. For six 
modes, only four phase differences dl, ..., q5, appear in the ODEs for the five active 
modes r l ,  . .., r5. Thus we find S1-families of solutions: for example, if the r i ,  $j 
equations have a fixed point with ri > 0 for somej, and $i = 0 or x for a l l j ,  the full 
r,, Oi or xi, yi equations have a circle of fixed points. 

A second important invariance is that  of the 2 4  subspace. If xj = yi = 0 for 
j = 1 , 3 , 5  then the evolution equations show that dxi/dt = dy,/dt = 0 for j = 1 , 3 , 5  
and the dynamics reduces to 

or, in polar coordinates : 

(29) 

d, = (a, + d,, r i  + d,, r,“ + c4, -, r, cos $,) r,, 

i4 = (a4 + d,, r i  +d4,  r i )  r4 + c,, , r i  cos q55, 

$5 = - (2c4, -2 r 4  +‘2,2 ‘ Z I r 4 )  sin $5, 

where $, = 28,-0,. This subsystem has a fixed point r2 , r4 ,  $5 = TC, which for the 
parameter values of primary interest is the only stable one (when it exists: see 99.3 
below). I n  this range (1.32 < 01 < 1.61) the origin ( r , , r , )  = 0 is completely unstable 
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and r2 = 0, r4 = (-a4/d4,)a is a saddle point. We observe that this subsystem 
(together with the ‘trivial ’ mode i, = a, r,) is identical in form to the minimal 3-mode 
truncation mentioned in $7.  We will return to this subsystem in 9.4. 

The third invariance is that of the purely real system yi = 0, Vj ,  for which the 
equations reduce to 

I n  view of the first invariance noted above, any rotation Si + 0, +jp of this subspace 
is also invariant; in particular for /3 = $r one obtains the yl,  x,, y 3 ,  x4, y5 subsystem 
from (30) by replacing variables according to x1 + y l ,  x2 + - x2, x3 --f - y3, x4 + x4, 
x5 --f y 5 .  This last symmetry corresponds to the physical situation of structures 
invariant under reflection about a plane x3 = const. It will be especially useful in our 
discussion of homoclinic orbits and ‘intermittency ’ in $ 10. 

9.3. Behaviour for large a 
Since each linear coefficient has the form ai = a; + (1 +“/Re,) aj” and aj” < 0 for all j ,  
there exists a critical value of a above which all coefficients are negative. For the six- 
mode model this is a = a, - 2.409 and the last coefficient to become negative as a 
increases is a2. Therefore for a > a, the trivial solution xi = yj = 0 is a stable fixed 
point, since the eigenvalues of the system linearized a t  this point are hi = a*, each 
with multiplicity 2. 

The indefiniteness of quadratic terms such as c-i,i+l(x3xi+l + y3 y i+ l )  makes it 
difficult to immediately rule out the existence of additional stable or unstable fixed 
points for a > a,, although, since all cubic coefficients dik are negative, it is easy to 
see that no ‘pure ’ modes of the form r j  =+= 0, ri = 0, i =+= j exist for a > a,. However, for 
example, on the 2 4  subspace i t  is fairly easy to  show that no non-trivial steady 
modes can exist, by a simple reductio ad absurdum argument (Aubry et al. 1987). 
Therefore, for a > a, - 2.409, the 2 4  system has a unique globally stable fixed point 
r2 = r4 = 0. Similar arguments show that for sufficiently large a the trivial solution 
r =  0 is the unique global attractor for the full system. Of course, this merely 
confirms our physical intuition that increased loss to unresolved modes promotes 
steady ‘stable’ behaviour. 

9.4. Bifurcation as a decreases 

The arguments outlined above suggest that, as a decreases and the coefficients aj  in 
turn become positive, bifurcations may occur in which non-trivial fixed points 
branch off the trivial solution. To illustrate this, we consider the bifurcations 
occurring in the 2 4  subspace, bifurcations in which solutions having rl = r3 = r5 = 0 
are created. Clearly r2 = r4 = 0 is a solution of (29) for all a :  it is merely the trivial 
solution of the full problem and is a stable sink (in r2-r4 space) for a > 2.409 
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1 2 3 

FIGURE 6. Schematic bifurcation diagram for the 2 4  subsystem, equations (28) and (29) : -, 
sinks; - - -, saddles with one positive eigenvalue; -.-. , saddles with two positive eigenvalues; 
. . . ., sources. I&te that  non-trivial branches correspond to circles of solutions, and one of their 
eigenvalues is always 0. 

(a,,a4 < 0 ) ,  a saddle for 1.94 < a < 2.409 (a4 < 0 < a,) and a source for 0 < a < 1.94 
(a4, a2 > 0) .  Since r2 = r4 = 0, the phase aqngles O,, 8, and hence the phase difference q55 
are irrelevant for this solution. A second family of solutions with r4 = (-a4/d4,);, 
r2 = 0 bifurcates from the trivial solution a t  a - 1.94 (a, = 0) and exists for all 
0 < 01 < 1.94. This solution corresponds to a ‘pure’ mode of spatial wavenumber 4, 
and since the polar coordinate representation is singular for r,  = 0,  its stability 
must be investigated by linearizing the Cartesian equation (28). An elementary 
calculation yields a matrix with eigenvalues a2 -a4 d24/d44 c4, +( - a4/d44)i, - 2a4 < 
0 and 0, the eigenvector of the latter being tangent to the circle of fixed points x: + 
yt = -a4 /d4,, z, = yz = 0 (see $9.5 below). Thesc solutions are saddle points with two 
positive eigenvalues for 0.74 < a < 1.94 and one positive eigenvalue for 0 < a < 0.74. 
A t  a = 1.94 this branch of solutions coalesces with the trivial branch. 

A third branch of equilibrium solutions bifurcates from the origin at  a = 2.409. 
Here both amplitude components r2 and r4 are non-zero, and so the phase difference 
cquation must be satisfied either by setting sin q55 = 0 * q55 = 28, -04 = 0,  .n or 2c4,-, 
r,2+c2,2ri  = 0. The branch in question has q55 = x and is stable for 1.32 < a < 2.409. 
At a - 1.32 it becomes a saddle point with unstable eigenvector in the $,-direction : 
thus a t  this point we expect a bifurcation t o  a fourth family of solutions having 
q55 =k rc (and += 0). The third branch continues to exist until a reaches 0.74 when it 
coalesces with the second branch described above. 

At a = 1.32 a fourth branch of solutions emerges from the third branch; this 
branch exists for all a < 1.32 and has r 2 ,  r4 =t= 0, but the phasc equation is satisfied by 
2c4, -, ri + c2, r,” = 0, thus q55 + 0, n, as expected. This brarich is stable. No solutions 
with $5 = 0, r,, r4 =I 0 exist for a > 0. The overall behaviour can be represented by 
the bifurcation diagram of figure 6. These computations were verified by use of the 
bifurcation computation package AUTO (Docdel & Kernevez 1985). As we shall see 
in the next section, more exotic bifurcations involving periodic and homoclinic orbits 
occur for the full ten-dimensional system as a varies. 
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9.5. Linearized stability of the 2 4  fixed point 

Since it will play an important role in interpreting the numerical simulations of the 
next section, we discuss the stability of the (circle of) fixed points r 2 , r 4  .t; 0, 
$5 = 28, - 8, = X, rl = r, = r5 = 0, found above, in the context of the full 10-dimen- 
sional phase space. Without loss of generality we choose the representation on the 
purely real subspace. Since r2 = 4 2 ,  r4 = 4, and $5 = x there are two such : x2 = a 2 ,  
x,  = - 8 ,  and x1 = x3 = x5 = yi = 0, j = 1, ..., 5.  Linearizing the full system in 
Cartesian coordinates a t  the first of these 'real' fixed points, we find that the 10 x 10 
matrix block diagonalizes as follows, when the components are written in the 
sequence ( x2 ,  x,; y2, y4 ; x l ,  x3, x 5 ;  yl, y3, y,) : 

a2 + 3dZ2 4; + d2, 4;  - c,, -2 4, c4, -2 4 2  - 2d 4 4 
24 2 4 1  (31a)  

2 C 2 3  2 '2- 2d42 '2 '4 a, + d,, 4; + 3d,, 4; ' ( X D X 4 )  = 

At the second fixed point the matrix is obtained from (31) by letting The 
reader can check that, under this transformation, the eigenvalues of both 2 4  
subsystems remain invariant while those of the real and imaginary 1 ,  3 , 5  subsystems 
are interchanged. 

Substituting from the expressions (31) for r2 and r, ,  we find that the determinants 
and traces of the first two matrices are 

For all 0 < a < 2.41 we find that det (x,,x,) > 0 and trace ( x2 , x4 )  < 0 while trace 
(y2, y,) is  < 0 for CL > 1.32 and > 0 for a < 1.32, so that we always have two eigen- 
values with negative real part and one with zero real part (recall that 4, > 0, so that 
x,  = -4, < 0). The latter corresponds to variations along the circle of (degenerate) 
fixed points xi + y; = r;, x i  + y; = r;, 28, - 8, = .rr; its eigenvector is tangent to this 
circle. This behaviour agrees, as it must, with the bifurcation study of the 2 4  system 
in 99.4, above. The remaining eigenvalues vary in the range 1.2 < a < 1.65 as 
indicated in table 1.  Thus, for a > ab - 1.61, the fixcd points in question are stable, 
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tL 

1.2 
1.3 
1.35 
1.4 
1.45 
1.5 
1.55 
1.6 
1.61 
1.63 
1.65 

X2’ x4 

-32.88, -2.538 
-28.53, -3.108 
-26.53, -3.398 
-24.74, -3.737 
-23.00, -4.072 
-21.40, -4.425 
- 19.87, -4.797 
- 18.43, -5.203 
- 18.15, -5.284 
- 17.57, -5.440 
-17.04, -5.613 

Yzy Y4 

0, + 1.618 
0, +0.3838 
0, -0.2426 
0, -0.9142 
0, - 1.530 
0, -2.158 
0, -2.769 
0, -3.382 
0, -3.501 
0, -3.727 
0, -3.972 

X I ,  x3, x 5  

- 7.318, 0.9764 f 2.0361 
-8.548, 0.7011 f 1.991i 
-9.227, 0.5839f 1.9431 
-9.989, 0.4529f 1.8751 
- 10.76, 0.3434Ifr 1.780i 
- 11.57, 0.2375+ 1.713i 
- 12.40, 0.1362k 1.616i 
- 13.26, 0.0291 f 1.506i 
- 13.44, 0.0093+ 1.4831 
- 13.77, -0.0248f 1.43% 
-14.12, -0.0684f 1.386i 

Y1. Y3’Y5 

-5.294&2.096i, + 1.06.5 
-6.916, -4.520, -0.0903 
-8.234, -3.525, -0.7460 
-9.326, -2.381, -1.867 
- 10.31, -2.137f 1.118i 
-11.26, -2.168f1.479i 
-12.18, -2.2065 1.6921 
- 13.1 1 ,  - 2.255f 1.8261 
- 13.29, -2.263+ 1.8461 
- 13.64, -2.273+ 1.87% 
- 14.01, -2.294f 1.904i 

TABLE 1 .  Eigenvalues of the fixed point xz = &2, x4 = - h a ,  x1 = x3 = x5 = y j  = 0 

while for 1.32 < a < a < ab they are saddle points with two-dimensional unstable 
manifolds. The numerical computations described in the next section suggest that 
this circle of fixed points is the unique global attractor for 1.61 6 a < 2, but for 
2.0 < a < 2.3 these fixed points are again unstable, with a single positive eigenvalue. 
However, slight variation of the coefficients removes this unstable range, while not 
significantly altering the lower range, and so we do not discuss it further. From 
a = 2.3 to 2.41, where they coalesce with the trivial solution, these points are again 
globally stable. 

The linear analysis above shows that the fixed point x2 = + h2, x4 = - t4( denoted 
r f )  undergoes a Hopf bifurcation (Marsden & McCracken 1976; Guckenheimer & 
Holmes 1983,§3.4) as 01 passes through a,,. I n  doing so, for a < ab i t  becomes a saddle 
point with a two-dimensional unstable manifold Wu(r+)  which, in view of the 
global invariance noted in $9.2, must lie in the subspace spanned by xl, x3 and x5 (i.e. 
x2 =x4 = yj = O ) .  We have not computed the Hopf stability coefficient (a,  of 
Guckenheimer & Holmes 1983, $3.4) : V”’ of Marsden & McCracken 1976, §4), and so 
cannot say whether the limit cycles thus created exist for a < ab or a > ab, but since 
no small stable periodic orbits are observed near r+, we conjecture that an unstable 
(saddle-type) periodic orbit exists for a > ab, and that the bifurcation is therefore 
subcritical. The S1 symmetry implies that the Hopf bifurcation occurs for every 
point on the circle of fixed points r2 = h2, r4 = &4, r ,  = r3 = r5 = 0 and that we have an 
S’ family of limit cycles. 

We will return to the behaviour of the eigenvalues for lower a in the next 
section. 

10. Numerical simulations and further analysis of the model ODES 
Numerical integrations of 3-, 4-, 5- and 6-mode models have been carried out, but 

we shall only report in detail on the 6-mode (5  active mode) simulations here. A 
fourth-order RungeKut ta  method was used with double precision arithmetic and 
integrations were carried out on a SUN 150 workstation and a GOULD (for large 
runs) using ‘C’  routines under a Berkeley 4.2 UNIX operating system. The 
algorithms were checked by integrating from initial conditions chosen to select the 
various invariant subspaces discussed in $9.2. A fixed stepsize of 0.02 was used for 
the computations reported here: it was found that stepsizes below 0.03-4 gave 
indistinguishable results. 
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Heisenberg 

0.41-0.7 
0.7-1.0 

1.6-1.3 

1.3-1.61 Intermittency, described below. 

parameter, a Behaviour 

Periodic orbit ri = constant =+ 0, $Ji = constant, d6Jdt = constant =+ 0. 
Quasi-periodic behaviour, drJdt bounded + 0, $Ji = constant, dO,/dt = 
constant =+ 0. 
Complex transition from quasi-periodic to intermittent behaviour. Phases 
$Ji still drift. 

Unique stable fixed point r2 ,  r4 =!= 0, rl = ra = r5 = 0, r2,  r4 + 0 as a increases 
with window of instability from 2.0-2.3. 
Trivial solution rj = 0, V j ,  is the global attractor. 

1.61-2.41 

a > 2.41 

TABLE 2. Qualitative dynamical behaviour of the 6-mode model 

10. 1. General behaviour 

We start by outlining the behaviour of typical solutions of the equations as a, the 
Heisenberg parameter, is reduced. For 1.61 < a < 2.0 we find an apparently unique 
circle of globally stable fixed points a t  which xi = yr = 0 for 1,3,5 and r2 = (xi + y$, 
r4 = (xz+ y:)” 0 with q55 = 20,-0, = 7c. For 2.0 < a < 2.3 the fixed points are 
unstable and weak intermittency, like that described later for a < 1.61, occurs. For 
2.3 < a < 2.41 one again has global stability. In  view of the analytical results of $9, 
this is not surprising. As we shall see in $12, this solution corresponds to a steady 
structure of streamwise vortex pairs. As a increases, the amplitudes of the 
components become smaller, and the trivial solution xj = y j  = 0, V j  is the unique, 
attracting fixed point for a 2 2.41, see figure 8. As a is reduced below 1.61, the fixed 
points become unstable, as predicted by the linear theory of 99.5, and ‘intermittent ’ 
behaviour is observed. We discuss this in detail below, since it appears to  be most 
relevant to the dynamics of coherent structures in the boundary layer. The 
intermittent behaviour persists until a - 1.35. 

For a between - 0.7 and - 1.0 we observe quasi-periodic and, for a - 1.0-1.3, 
more complex and possibly chaotic motions. For a - 0.74.9 there is reasonably clear 
evidence of an invariant two-dimensional torus in the phase space. As a decreases, 
one of the radii of this torus shrinks and the behaviour is dominated by a single 
oscillating mode for a - 0.44.7.  Thus, a Hopf bifurcation from a periodic orbit to a 
two-torus appears to occur a t  a - 0.7. An interesting characteristic of the periodic 
and quasi-periodic and complex motions in the range a - 0.4-1.0 is that the phase 
differences q5r remain constant, but a t  values =I= 0 or 7c so that the components 
sin q5, of the phase evolution equations (27) are non-zero . Thus the phases 0, drift, a t  
constant speeds, while the moduli ri remain constant (for periodic motions) or 
oscillate periodically (for quasi-periodic motions). This is a natural consequence of 
the O(2)-symmetry, cf. Armbruster, Guckenheimer & Holmes (1988). Such motions 
correspond to lateral (spanwise) drift of the streamwise vortices : travelling waves in 
the boundary layer. Note that the fourth branch of solutions in the r 2 r 4  subspace 
found for a < 1.32 in $9.4 has q55 =# 0 and that 0, and 0, drift constant speed for that 
mode. Although the eigenvalue computations of 3 9.5 and the simulations indicate 
that this ‘pure ’ 2 4  solution is unstable to perturbations in r l ,  r3 ,  r5 ,  it probably plays 
an important role in the evolution of these ‘travelling wave’ solutions. 

For a - 0.41, quasi-periodic motions are observed again, but below a - 0.4 the 
behaviour is more complex and we have not carried out enough integrations in this 
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FIGURE 7 (a ,  b ) .  For caption see page 142. 
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FIGURE 7 ( c ,  d) .  For caption see page 142. 
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FIGURE 7 .  Time histories of the modal components xl, . . . , ys and selected projections of phase 
planes: (a ,  b, c) Heisenberg parameter a = 0.7 : note steady periodic motion wit,h uniformly rotating 
phase: (d ,  e , f ) ,  a = 0.9: Note quasi-periodic motion with rotating phase. 
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FIGURE 8. Time histories for Heisenberg parameter a: = 1.7,  showing stable fixed point. 

region to determine it. We summarize in table 2. The existence of some of these 
solutions - notably the travelling waves and quasi-periodic motions - follow from 
rather general group theoretic considerations, cf. papers on O(2)-symmetry in 
Golubitsky & Guckenheimer (1986), and Armbruster et al. (1988). Also see $13. We 
intend to pursue the group theoretic issues in detail in subsequent work. 

Figure 7 shows examples of time histories of solutions for a = 0.7 and a = 0.9; 
projections of the solutions into the xl, y1 and x2, x4 ‘phase-planes ’ are also shown, 
to illustrate the phase drift behaviour. Figure 8 shows time histories for a = 1.7, 
illustrating the presence of a stable fixed point. 

For the present study, however, the intermittent behaviour exhibited by the six- 
mode model for a between 1.35 and 1.61 appears to be of greatest interest, since it 
corresponds in a fairly clear way to the physical instability, sweep and ejection event 
observed in boundary-layer experiments (cf. fj 1 and see fj 12, below). We now describe 
this intermittent behaviour, starting with some general remarks. 

10.2. Intermittency 

In the theory of dynamical systems three types of intermittency have been 
distinguished (Pomeau & Manneville 1980). They are associated with solutions 
repeatedly passing close to a weakly unstable fixed point or periodic orbit. The 
solution spends a long ‘laminar’ phase near the point or orbit until it  reaches a 
critical amplitude and a brief turbulent ‘ burst ’ ensues, in which it travels far and fast 
in phase space before returning. (These terms were appropriated by the dynamical- 
systems community and have been used in a predominantly metaphorical fashion 
thus far.) The laminar phase is governed by the linearized dynamics near the fixed 
point or periodic orbit, but the burst and return are associated with a ‘global 
reinjection mechanism ’, usually a homoclinic orbit or heteroclinic cycle (Tresser, 
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FIGURE 9(a ,b) .  For caption see page 146. 
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FIGURE 9. Time histories and selected projections of phase planes: ( a )  Heisenberg parameter 
a = 1.4; ( b )  a = 1.5; (c, d, e , f )  a = 1.6. Figure ( d )  shows a projection on the (xz ,  r,)-plane of a pair of 
burst events, showing how the solution passes from the neighbourhood of r+ to r- and returns to 
r+ (see text). Figures ( e , f )  show projections onto the (z1,z3)- and (z,,z,)-planes and illustrate the 
growing linear instability near r+ in the {zl, z3, z5} suhspace. 



Coherent structures in the wall region of a turbulent boundary layer 147 

Coullet & Arneodo 1980; Silnikov 1965, 1968, 1970; Tresser 1984; Sparrow 1982; 
Guckenheimer & Holmes 1983, $6.5). 

While evidence of intermittency has been detected before in fluid systems and 
models (Pomeau & Manneville 1980; Berg6 et al. 1980; Maurer & Libchaber 1980; 
Dubois, Rubio & Berg6 1983) there has been little evidence of type 11, associated 
with a subcritical Hopf bifurcation, which is what we observe in the present model 
a t  a = 1.61. We shall therefore explore the connection between this dynamical 
phenomenon and its analogue in the turbulent boundary layer in some detail. For 
reasons we shall describe, our model displays a ‘regular’ intermittency, in contrast 
to the chaotic intermittency of Pomeau & Manneville (1980), in which event 
durations are distributed randomly. 

We first describe the characteristic sequence of events observed in numerical 
simulations, starting immediately after a ‘burst ’. The solution remains near the fixed 
point r2,  r4 + 0, rl = r3 = r5 = 0 for a relatively long period, during which the rl,  r3 ,  
r5 components grow exponentially in an oscillatory fashion. They eventually reach 
a critical amplitude a t  which r2 and r4 begin to oscillate perceptibly about their 
equilibrium values; these oscillations grow rapidly and then, with the phase 
difference 4, = 28,-8, remaining constant at IC, 8, changes by IC and O4 by ~ I C ,  r2 and 
r4 return to their equilibrium positions and r l ,  r 3 ,  r5 simultaneously collapse to 
zero. The process is then repeated. Figure 9 shows typical time histories of the 
10 components xi, y, for a = 1.35, 1.5 and 1.6, as well as some (projected) phase- 
plane pictures. For these computations, initial conditions were chosen so that 
the fixed points that are successively visited lie in the purely real subspace, 
(8, = 0, 7c; 8, = n), to correspond with our linearization work of $9.5. Hereafter we 
refer to the points as rf(xz = +a, ,  x4 = -a4 ,  x1 = x3 = x5 = yi = 0) and r-(x2 = - 4 , ,  

As a decreases from ah - 1.61, the typical duration of the laminar and burst phases 
is reduced until, a t  01 - 1.3, the growth is so rapid that no perceptible laminar phase 
remains. In  fact, as we point out below, i t  is difficult to define ‘typical’ durations, 
since, as t +. co, the durations grow without bound, a t  least for a near ah. 

In  the light of the invariant subspaces and the linear analysis of $9, the laminar 
growth phase is easy to understand. The fixed point r+ is a saddle point with a two- 
dimensional unstable manifold WU(r+)  lying in the three-dimensional sub,p Q ace 
spanned by xl, x3 and x5. Thus, almost all solutions starting near r+ will exhibit an 
oscillation which initially grows exponentially a t  the rate of the (positive) real part 
A+ of the eigenvalues of r+. Since A+ + O+ as a + ah - 1.61 (and h < 0 for a > ab), this 
rate decreases as a approaches the bifurcation value ab (cf. table 1 ) .  The behaviour 
near r- is similar, except that WU(r- )  lies in the subspace spanned by yl, y3  and y 5  and 
thus exponentially growing oscillations are observed in that subspace. See the phase 
planes of figure 9 for clear geometrical evidence of the unstable manifolds WU(r’) .  

It is more difficult to see why the slow growth should culminate in the relatively 
sudden burst, in which x2 changes sign (from + k2 to - t,), x4 changes sign and returns 
to  -a4 ,  and rlr r 3  and r5 collapse. However, if we postulate the existence of a 
heteroclinic orbit 4 = WU(r+)  n Ws(r- )  connecting r+ to r- in xispace (yi = 0, V j )  and 
a (symmetric) orbit = WU(r-) n Ws(r+)  connecting r- to r+ in (yl, x2, y 3 ,  x4, y5)-spacc 
(xl = yz = x3 = y4 = x5 = 0), then this behaviour also becomes clear. We are observing 
orbits that are attracted to and remain in tubular neighbourhood of the (double) 
homoclinic cycle r = rl u c. Moreover, the computations summarized in table 1 
shows that, for a > 1.37, the smallest magnitude of the negative real parts of the 
eigenvalues of r+ and r- is larger than that of the eigenvalues having positive real 

x* = -24, x1 = x3 = xg = yi = 0). 
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FIQVKE 10. Graphs of durations of double burst events. (n) T, I X .  Z’fi for a = 1.30b1.60. ( b )  yn 
at t = lo4 us. a. On (6) we also indicate the curve obtained from (37).  

a 

parts Under these conditions elementary linear analyses (cf. Guckenheimcr & 
Holmcs 1983, 386.1, 6.5, and see below) show that r i s  an uttructing homocxlinic cycle, 
and thus we expect to see orbits that  enter a sufficicntly small neighbourhood of r 
approach it as t ++  00. Indced, suppose that wc’ have a (singlc or multiple) 
homoclinic orbit to a saddle p i n t  p having a pair of complex conjugate or a single 
eigenvalue with negative real part -Ap.  Suppose that A- > A+( > 0) and all other 
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eigenvalues have negative real parts greater in magnitude than A-. (‘onsider an orbit 
entering a (fixed) E-neighbourhood U e  o f p  at distance do from the stable manifold 
W s @ )  and leaving a t  a distance d, from the unstable manifold W‘’@). In  I ’ ,  the 
linearized flow dominates the behaviour, and thus typical solutions decay in norm at 
the exponential rate eApt in the stable directions and growth at rate eh+t in the 
unstable directions. Ignoring thc rapidly decaying eigenvalues, simplc integration of 
the linearized amplitude equations associated with thc unstable and weakly stable 
directions shows that the time of flight of the solution passing through li’, is given. 
tjo leading order, by 

7, = ( l / h+)  In (t./d,). (33) 

and that the relationship between d, and do is 

(34) d - & A - / A + )  dA-/A+ 
1 -  0 .  

Thus, as do + 0, we have 

T~ - ( l / h+)  In (l/do), In ( l /dl)  - (h-/h+) In ( I / d o ) .  ( 3 5 )  

These asymptotic results can be made rigorous regardless of the number of 
additional, strongly stable modes Moreover, since the time taken by solutions to 
return to p (or to pass to the next saddle on the homoclinic cycle) is uniformly 
bounded independent of the distances d,, d,, we can estimate the global asymptotic 
behaviour of orbits in the tubular neighbourhood of r; in particular, this uniform 
bound implies that, if d, is the distance from thc unstable manifold W”@) on leaving 
U,@) then the distance from the stable manifold Ws@) on next arrival a t  U,@) is 
Kd,, where K is a constant. Thus, for do, d, sufficiently small, the linear estimates (35)  
hold for the global behaviour a t  each passage around the cycle r. We conclude that, 
for h-/h+ > 1, we have an attracting homoclinic cycle, as claimed. (In our case r 
contains two identical saddles, and the compounded contraction factor is thus 
(h- /h+)2  a t  each passage.) 

This type of analysis permits one to predict the asymptotic rate at which event 
durations should grow for specific parameter values, once A- and A+ arc’ known. 
Unfortunately the computations involved in numerical simulations are vcry delicate 
and even in double precision arithmetic, rounding error effectively prevents orbits 
from approaching the homoclinic cycle closer than some fixed distance ( - for 
the double precision arithmetic used in this case). Thus, while the expressions (35). 
compounded for the double cycle, predict that  the duration of laminar growth phases 
increases according to T,,, = (A-/h+)2T,, only modest increases of the form T,,, = 
1; + const are observed. I n  figure 10 we plot event duration T, versus time elapsed 
C7; for various U-values. We also show the durations at elapsed time t - lo4 as a 
function of a, compared with the time taken for a disturbance of O(1O-l6) to grow 
to O( 1) (at which an event occurs) a t  the exponentially ratc eAt.  

7,, - ( l / h+)  In ( l / 1O- l6 )  - 38.84/h+. (36) 

Note that the order of magnitude appears to be correct. Note also that a t  a = 1.35, 
for which the homoclinic cycle is no longer an attractor, the duration equilibrates 
a t  the (relatively) low value of 147. 

Although our analysis does not adequately describe the rate at which event 
durations increase in the numerical simulation. the existence of an attracting 
homoclinic cycle does explain why the intermittent behaviour of the problem 
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FIGURE 11. Projections on t o  the ( x 2 ,  xq)- and (zl, s,)-plane of solution in the real subspace {y7 = 0) 
illustrating heteroclinic orbit = Wa(r+)  n W(r-)  which lies in {yr = 0). Heisenberg parameter 
a = 1.6. Compare with figure 9 (d ,  e ) .  
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exhibits a steady increase in duration, rather than t,hc randomly distributed 
behaviour of chaotic systems. For 1.37 < a < 1.61, r is a simple attracting set : our 
system does not possess a strange attractor. Nonetheless, the intermittent behaviour 
does capture the major features of the lift, sweep and ejection events observed in the 
boundary layer, as we shall see in the next sections. The addition of very small- 
amplitude random perturbations (due to thc pressure terms which we ignored in 337 
and 8> cf. 35) would cause fluctuations in went  durations which might be more 
appropriate to the true dynamioal behaviour, Russe & Heikes (1980) ; Busse (1 981). 
We return to this point in 5 1 1 .  

It remains, of course, to demonstrate the existence of the homoclinic cycle. 
Without loss of generality consider the component & = W U ( r + )  n W“(r-) which lies in 
the ‘real’ subspace yj = 0. Restricting the flow to this subspace, connects the 
saddle r+, with three-dimensional stable manifold and two-dimensional unstable 
manifold Wu(r+) ,  to the sink r - ,  with its five-dimensional invariant stable manifold 
WS(r- )  fi {yi = O}. (Recall that, for a > 1.45 the unstable and zero eigenvectors of r- 
lie in the imaginary (xj = 0) subspace, 39.5.) Especially since Wu(r+)  is confined to 
a compact subset, in view of the global stability result of 39.1, it is not surprising that 
this two-dimensional manifold should intersect the five-dimensional manifold 
Ws(r-)  n (yj = 0). Estimates of the ‘real’ vector field of (30) suggest that such a 
connection does exist (certainly, for x4 > 0 sufficiently large and x1 x3 < 0, x3 x5 < 0, 
solutions pass from x2 > 0 to x2 < O) ,  but we have not yet proved the existence of the 
connection. Specifically, we must rule out t,ho existence of any invariant set 
‘between’ rt and r- to which W U ( r + )  might be asymptotic. This has been done in 
lower dimensions (Armbruster et al. 1988), but the details remain to be worked out 
in the present case. However, the numerical evidence is unequivocal. Solutions 
started in the real subspace with (x: +xi +x$ very small and (x,, x4) = ( + e2: -tq) 
leave the neighbourhood of r+ and, after a period of slow oscillatory growth, cross 
xp = 0 and rapidly approach r - :  (x2,x4) = ( - a 2 ,  - 4 4 ) .  See figure 11,  and compare 
with figure 9(d,e), above. 

The behaviour of the eigenvalucs of the (circle of) fixed points r+ also helps us  see 
why ‘clean’ intermittent bchaviour is not observed for a < 1.35. At a - 1.37 the 
weakest stable eigenvalue and the pair of unstable cigenvalues have real parts that 
are equal in magnitude, and for 1.32 < a < 1.37 the expanding real parts A+ are 
greater in magnitude than the smallest decaying real part A-. Under the latter 
conditions almost all orbits starting near the homoclinic cycle r a r e  repelled from it : 
equations (35)-(36) show that d, > d, for do sufficiently small and A-/A+ < 1 .  Thus 
almost all orbits must approach some other attracting set. Moreover, the analysis of 
Silnikov (1965, 1968, 1970) (cf. Guckenheimer & Holmes 1983; 36.5) shows that 
horseshoes (Smale 1967) and chaotic motions exist in the neighbourhood of r in this 
situation. While we cannot prove the existence of a strange at’tractor, in this light the 
numerical observation of complex, apparently chaotic motion in the Heisenbcrg 
parameter range a < 1.35 is not surprising. However, a t  a - 1.32 the non-zero (real) 
eigenvalue of r+ whose eigenvector lies in (y,, g4)-space becomes positive and so t)here 
is a further qualitative change in the phase space : ITU(+) becomes three-dimensional. 
Shortly afterwards, a t  a - 1.29, a fourth eigenvaluc, whose eigcnvcctor lies in 
(yl, y3, ys)-space for r+ and (xl, x3, x,)-space for r- becomes positive and W U ( r k )  
becomes four-dimensional. Figure 12 shows time histories for a - 1.3 which indicate 
these (strong) linear instabilities but also suggest that the fixed points r+  and the 
( r2 ,  r4)-subspace play an important role evcn in this rcgimc. One can even see 
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FIGURE 12. Time histories for Weisenberg parameter a = 1.3, showing apparently chaotic motions. 

instances of phase drift and travelling waves associated with the 2 4  fixed points 
with q5& + 0, 7c which bifurcate from rf at a - 1.32 (99.4). 

Throughout this discussion we have not explicitly mentioned the 8’ symmetry 
which implies that  the fixed points r+, r- are antipodal points on a circle of fixed points 
lying in the four-dimensional 2-4 subspace. Each such pair of antipodal fixed points 
are connected by a homoclinic cycle which is an image of r under an appropriate 
phase rotation. We anticipate that the use of group-theoretic methods will yield a 
much more complete picture of the model’s behaviour. 

10.3. Summary 

After this lengthy discussion, a summary may be useful. For LX > 1.61 a unique circle 
of globally attracting stable fixed points exists in the 2-4  subspace (with a window 
of instability between 2.0 and 2.3) : the r l ,  r3,  r5 components, along with the trivial 
ro component, are zero. As a increases. the magnitude of the r2 and r4 components 
decreases until, at a - 2.409, this non-trivial circle of fixed points coalesces with the 
origin, which for a > 2.409 is the unique and globally attracting fixed point for the 
problem. For 1.37 < a < 1.61, an S1-symmetric family of globally attracting double 
homoclinic cycles rexis ts ,  connecting pairs of saddle points which are 7c out of phase 
with respect to their second (x2, y,)-components. The points r+. r- discussed above are 
typical members of this family. The existence of the cycles r implies that ,  after a 
relatively brief and possibly chaotic transient, almost all solutions enter a tubular 
neighbourhood of r a n d  thercafter follow it more and more closely. As they approach 
r. the duration of the ‘laminar’ phase of behaviour (in which rB and r4 remain non- 
zero and almost constant and r l ,  r3,  r5 grow exponentially in an oscillatory fashion) 
increases while the bursts (in which r l ,  r3 and rs collapse) remain short. In  an ideal, 
unpcrturbed system. the laminar duration would grow without bound, but small 
numerical perturbations, such as truncation errors, presumably prevent this 
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occurring in our numerical simulations. More significantly. the pressurcl perturbation. 
c*onsidercd in $11,  will limit thc growth of the laminar periods. Thus therc is an 
effective maximum duration of evcnts. which is rcduced as  a is decrcased from thc 
critical value ab - 1.61. 

As this paper was being completed we learned of work in progress on thc 
‘ Kolmogorov-Sivashinsky ’ cquation . a scalar ficld model for tw o-tlimensional 
turbulence (Nicolaenko 1986). Remarkably similar bifurcation squenc  
observed and symmetries and homoclinic. cyclcs play roles in that  problcm vcry like 
their roles in the present model. Rclatcd obscrvations of solutions of thc 
Kuromoto-Sivashinsky cquation h a w  been published (Hyman & Ki(w1aenko 1985 ; 
Hyman, Nicolaenko & Zaleski 1986). 

In the next section w e  discuss the physical implications of this intermittent 
bthav iour. 

11. The pressure term: interaction with the outer layer 
Thus far our model has bceri essentially insulatcd from the flow in thc outer part 

of the boundary laycr (y’ > 40). \\’c have assumed a fixctl (timc-indepcndcnt) 
boundary a t  y+ = 40, albeit with unusual boundary conditions, sirice the eigcn- 
functions On do riot vanish thcrc. \Vc now attempt to  introduce a tnore realistic 
boundary by including a term r.t.~)rcseritati~e of the prtwure field in the I-toundary 
layer a t  y+ = 40. 

Since spatially distributcd experimental prcssure measurements away from the 
wall itself are cffectively impossible, M C  shall use data  obtained numerically, 
spcc4fically from thc largc-cddy simulations of Moin (1984). Moin*s data is for a 
channel flow a t  Re = 13800 based on the centrelinc velocity and thc channcl half- 
width and yiclds a pressure spectrum 8 ( k 1 .  k,. t )  in terms of spanwise and streamwise 
Fourier wavenumbers and time a t  y+ = 38 By projcctiiig onto thc appropriate 
Fourier modes ( k ,  = 0, k, = j k ,  j = 0,  . . . ,5), we calculated the real and imaginary 
parts of the pressure cxcitation term u hich act as an external forcing function for thc 
model equations of $8. Figure 13(a) shows the resulting functions over a tirnc 
interval of 768 units (the extcnt of Moin’s cdvulation) \Ir(, note that  the maximum 
amplitude of thesc functions is two orders of magnitude smallcr than t h e  maximum 
amplitudes of the variables xz, yz in solutions of the unperturbcd equations. Tht j  1 7 can 
thus be expected to have little effwt 011 the dynamical behaviour during a 
heteroclinic event, or burst, since the dynamical vector field is O(1) in that  regime. 
Howcvvr, thc noisc has an important cffvct on the behaviour near the saddle points. 
where small perturbations typicall) cause solutions to  leave the saddlc region 
quivkly, since they prevent close approaches to the stable manifold. 

As we pointed out in 9 10. when an attracting hctc~ocliriic~ cyclc exists (A- > A+).  the 
time duration betuccn bursts, YL. grows without bound ac~ording  to  thc cquation 
T,,, = (A-/h+)2Tn, although in numerical simulations the durations are limited by 
finite precision arithmetic (cf. (37) ,  figure 10). Addition of the relatively meak 
pressure signal limits thew durations in a much morc dramatic manner. as figures 
13(b-e) shows. Here we compare solutions of the model equations (24) with arid 
without the pressure term for two  values of the paramcter a. The rcsults indicate 
that ,  as expected, the solution during the burst phase is littlc affectcd b~ the prcwnce 
of the small pressure term. but that this tcrtn causes the interburst duration to  
equilibrate rapidly. 

A simple theory for local bchaL iour Iic;tr thc saddle. in \I hich thc prtwurc term is 
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FIGURE 13(a,b) .  For caption see page 156. 

modelled as an impulsive random perturbation a t  each approach to the saddle, 
permits one to predict a distribution of ‘residence times ’ for solutions near the saddle 
points; in particular, the mean interburst period is found to scale with noise 
amplitude e and unstable eigcnvalue A+ as 

(37) 
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Details of this and more sophisticated analyses will be published later (P. Holmes & 
E. Stone paper in preparation). The limited durations of pressure signals available to 
us preclude the reliable computation of mean and variance of interburst durations, 
but the results summarized on figure 14 indicate that (38) is a reasonable predictor of 
mean interburst durations. The constants Ki were determined from a least squares 
fit of the data (T us. l / A + )  for a single value of e .  

The main point of interest for the present study is that the pressure term provides 
6 FLM 192 
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FIGURE 13. Pressure perturbations : (a)  pressure excitations for the ten model equations (scale, 
100 x figures 7-9) ; ( b ,  c )  solutions for a = 1.6 (b )  with and ( c )  without pressure term ; (d ,  e )  solutions 
for 01 = 1.4, (d )  with and (e) without pressure term. 

a means of coupling the inherent wall-layer dynamics (heteroclinic bursts) with the 
behaviour of the outer layer, which, via the weak quasi-random pressure excitation, 
acts as a trigger, promoting bursting behaviour at a steady rate. Thus, while the 
source and gross characteristics of individual bursts are a fea,ture of the deterministic 
model equations (and thus of the inner ‘insulated’ wall region), their quasi-regular 
repetition is due to the influence of pressure fluctuations arising in the outer 
layer. 

This resolves in a satisfactory way the controversy that has long existed relative 
to normal and drag reducing boundary layers : whether the events related to bursting 
scale with outer variables or wall variables. We feel i t  is now clear that  the bursts 
themselves should scale with wall variables, while the interburst period should scale 
with both outer and inner variables. I n  this connection note that, in (37), the 
unstable eigenvalue A+ is a property of the wall layer (inner) model, while the 
pressure amplitude e is a property of thc outer layer. 

12. Implications for the flow in the wall region 
Equipped with the information about fixed point, intermittent and chaotic 

solutions of the model ODES discussed above, we can now reconstruct the steady and 
time varying three-dimensional perturbation velocity fields in the wall region. We 
start with a geometrical description of the resulting fluid flow, and follow this with 
discussions of the Reynolds stress change exhibited during the quasi-steady and 
bursting phases of the flow corresponding to the intermittent dynamical behaviour. 
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interburst duration T as a function of eilrenvalue FIGURE 14. Mean A' and pressure signal 
amplitude F .  Solid curves indicate prediction of (38). open squares indicate results of numerical 
simulations. 

FIGURE 17. Vector representation of the (z,.z,)-components of the velocity field in a cross-srction 
(z,, r,-plane) of the periodic cell: L, = 333, xl = 40 (in inner variables) reconstructed from the 
stable point obtained for Heisenberg parameter a = 2.0. 

F I G U R E  18. Streamlines in the (zz, z,)-plane of the first eigenfunction. xi = 65 corresponds to  
the top of the figure (from Moin 1984). 

12.1. Plow geomptry, velocity jields and streaklines 

Reconstruction of flow corresponding to fixed points is relatively simple, since in this 
situation the (complex) modal coeficknts 

n) 
k,=lk = xj + i Y ~  

remain constant and one simply forms the constant velocity field with components 
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t = 140 

FIGURE 19. Intermittent solution corresponding to an Heisenberg parameter 01 = 1.4. (a )  Time 
history of the real and imaginary parts of the model coefficients xt, yi (i = 1 , 2 ,  ..., 5 )  ( b )  Vector 
representation of u2, u3 in a (xz, zJ-plane a t  times indicated on (a) .  

(cf. the general form of (8)). Addition of the x,-dependent mean velocity (U(x,), 
0, O)T yields the full velocity field v(x ,  t ) .  Note that u depends only on x2 and x3, since 
we have only included the zero Fourier mode in the streamwise (xl) direction. Thus 
the velocity field is constant in time and identical a t  each streamwise station 
x1 = const. Nonetheless, the interaction of the spanwise and wall-normal (perturba- 
tion) velocity components with the streamwise, predominantly mean, component 
U(x,) +u,(x,  t )  leads to non-trivial behaviour, even in the time-independent case. 

To illustrate this, we have integrated the Lagrangian problem 

to investigate the motion of fluid particles in the flow. This permits us to compare the 
behaviour of out model with the flow visualization experiment in which passive 
markers, such as bubbles or dye streaks, are released near the wall. In  particular, we 
have integrated sets of initial conditions a t  x i  = 13 for various x3 to represent the 
transport of a ‘pulse ’ of hydrogen bubbles releascd from a wire stretched horizontally 
in the spanwise direction above the boundary layer a t  constant xt (cf. Kline ct al. 
1967; figure 1). The evolution in time of the marker is thus followed and a three- 
dimensional picture of the pathlines is obtained a t  each timestep. Pictures of the last 
frames rotated at different angles are then taken : figures 15 and 16 (Plate 1). In order 
to visualize all directions adequately, we stretch the z-axis  and shrink the x,-axis. 
We also display the spanwise and wall-normal components of t,he velocity field in the 
(x2,x3)-plane in figure 17. Here, the magnitude and direction of the arrow indicates 
the velocity at its base point. 

Figures 15, 16 and 17 show our results for the instantaneous velocity field 
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FIGURE 19(b) .  For caption see facing page. 
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t = 140 

FIGURE 20. Chaotic solution for Heisenberg parameter a = 1 , 2 .  (a)  Time history of the real and 
imaginary parts of the modal coefficients z,, y, ( i  = 1 , 2 ,  . . . ,5) ( b )  Vector representation of u,, u3 in 
a (s,,z,)-plane a t  times indicated on (a) .  

reconstructed from the stable fixed point r2 = -0.800, r4 = -0.273, rl = r, = r5 = 0, 
$5 = 202-0, = n which exists for Heisenberg parameter 01 = 2.0 (for other values 
1.61 < 01 < 2.41 for which the system of equations also evolves to a fixed point, the 
resulting steady velocity field is similar). As predicted in $ 7 ,  because a part of the 
energy contained in our truncated system is lacking, our reconstructed velocity 
components are too small in the spanwise and normal directions. Nevertheless we can 
clearly see two pairs of counter-rotating strcamwise vortices in each periodic cell of 
length L, = 333 wall units. The rolls are symmetric with respect to an (xl, x,)-plane, 
which is a consequence of the act that the stable point lies in the real subspace. The 
rolls generate a strong updraught between them and a weak downdraught on their 
‘outsides ’. This can be observed from the display of the (xz, x3)- velocity components 
in the cross-section of figure 17 and becomes even clearer by observation of the fluid 
which is violently ejected upward once it reaches the appropriate zone (between the 
two vortices) (figure 15u).  The rolls of figurc 17 can be compared to those obtained 
by Moin (1984) from large-eddy-simulation data, figure 18. Figures 15(b )  and 15(c) 
can be compared to those obtained by Kline P t  al. (1967) by visualization with the 
hydrogen bubble technique (here, since the velocity field is time independent, 
pathlines and streaklines are identical). After a sufficiently long time, the particles 
are collected between the rolls into strcamwise streaks which become thinner 
downstream. This is due to concentration of fluid in the (x,,x2) vertical ‘ejection’ 
plane in which the spanwise velocity is very small. All the particles are thus 
convected away from the wall as they go downstream. The strcak spacing is 
approximately 150 wall units which is in reasonable agreement with the experimental 
result A+ = l00f40% given by Kline et al. (1967). Figure 16 shows the integration 
of (39) where the instantaneous velocity field u is replaced by the perturbation u. It 
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FIGURE Z O ( 6 ) .  For caption see facing page. 
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FIGURE 21. The Reynolds stress (u,,uz) at y+ = 35 wa. time for Heisenberg parameter a = 1.4, 
showing two bursts. 

reveals the presence of negative streamwise perturbation patterns which drift away 
to the top of the layer. 

After this static geometrical description of the velocity field, we now interpret its 
dynamical behaviour for lower values of the Heisenberg parameter a. Time- 
dependent flows are reconstructed in precisely the same way, except that now the 
velocity v(x ,  t )  is time-dependent. The numerical values of xj, yj obtained by 
integration of the ODES (24) are used in (38) to yield tables of time-dependent 
components ui. Like the steady rolls, our time-dependent solution suffers the same 
deficiency in the velocity field, due to the truncation. 

Probably the most interesting sets of solutions are those exhibiting intermittency, 
obtained for 1.3 < a < 1.61. The phenomenon has already been described in $10.2 
from a dynamical-systems point of view. I n  the flow field, the rapid event which 
follows the slowly growing oscillation and the repetition of the process rcminds onc 
of the bursting events experimentally observed (Kline et al. 1967 ; Corino & Brodkey 
1969, etc.). For that reason we call it a 'burst ' .  We shall analyse its effect on the 
streamwise vortices. 

In  figure 19(a) we show an enlargement of the time histories of the modal 
coefficients during a burst for a = 1.4 (cf. figure 9a). A description of the motion of 
the eddies during the burst is given in figure 19(b) for a = 1.4 by plotting u2 and us 
a t  the different times indicated on figure 19 (a). Before and after the event, two pairs 
of streamwise vortices are present in the periodic box, a structure very similar to that 
previously obtained for 1.61 < a < 2.41. Nonetheless pictures 1 and 14 are shifted in 
the spanwise direction by 333+/4, corresponding to the phase shift A02 = 7c, A04 = 2x 
(see $10.2). The bursting event leads to variations of positions and amplitudes 
of the basic streamwise rolls and formation of other vortices. The oscillation, death 
and rebirth of vortices make the streak spacing vary. This recalls the experimental 
results : ' considerable variation in the spacing between individual streaks * (Kline et 
al. 1967). However, since the intermittent solution is always very close to the real 



Coherent structures in the wall region of a turbulent boundary layer 163 

0.13 

0.12 

3 
3 v 
I 

0.11 

0.10 

1.20 1.30 1.40 1.50 1.60 1.70 1.80 
T ( x  loz) 

FICXJRE 22. The Reynolds stress (u,u,) at y+ = 10 us. time for Heisenberg parameter a = 1.4, 
showing two bursts. 

subspace or a rotation of it,  the vortices remain symmetric and paired. Moreover it 
is possible to  adjust the value of the viscosity parameter (a  - 1.5) so that the 
bursting period is 100 wall units as experimentally observed. It is found that, in this 
case, the ‘burst ’ lasts 10 wall units which is also the right order of magnitude. 

The behaviour of the eddies corresponding to a chaotic solution (1 .O < a < 1.3) is 
shown in figure 20 ( b ) ,  as before, by plotting the u2, ug velocity components a t  specific 
times. The behaviour is less regular and isolated vortices sometimes emerge. This is 
consistent with the flow visualization experiments of Smith & Schwarz 1983 who 
observed a significant number of solitary vortices among the predominant vortex 
pairs. These patterns are also very rich in dynamics. We intend to study the regime 
further in future work. 

12.2. Reynolds stress behaviour during the ‘burst ’ 
Plots of the evolution of the Reynolds stress ( u , ~ , )  in time, a t  different values of 
x2 show a strong change during the burst. Nevertheless this change is negative in 
absolute value near the wall and only changes its sign a t  about xl = 25 for a = 1.4. 
At this level and higher there is significant increase of the Reynolds stress but it is 
not as large as that observed in experiments, see figures 21 and 22. We discuss the 
reasons for the discrepancy in the final section. 

13. Physical interpretation 
Owing to the truncation of our model to a single eigenmode and one streamwise 

Fourier component, the absolute and relative energy of the various velocity 
components is affected. First, the choice of streamwise lengthscale affects absolute 
values of all the component energies, but not their relative values. We chose a 
streamwise lengthscale of 333. Keeping only the Fourier mode at  zero streamwise 
wavenumber, this is equivalent to supposing that the distribution of the first 
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eigenvalue with wavenumber is flat to 333, and drops to zero. Comparison with the 
true distribution of the first eigenvalue with streamwise wavenumber indicates that 
this should overestimate the energy in this eigenvalue. A more reasonable lengthscale 
would be between 400 and 500, a value determined by the requirement that the area 
between it and the origin is the same as the true area under the distribution of the 
first eigenvalue with streamwise wavenumber. However, examination of the 
equations indicates that changing the value of L,  leaves the equations invariant. 
Hence all phenomena reported here would be unchanged, with simply a decrease in 
energy level of all the velocity components. This would decrease the overestimated 
streamwise energy contained in our system but would not necessarily improve our 
model since it would also decrease the energy, already deficient, in the normal and 
cross- s tream components. 

The truncation also affects the relative energy in the various velocity components. 
We have examined the distribution with xi of the energy in the three velocity 
components for truncations of 3, 6 and 17 cross-stream wavenumbers, 1,  2 and 7 
streamwise wavenumbers, and 1 and 3 eigenmodes. It is clear that  the energy in the 
u2 and ug components is relatively low (compared with the u, component) when only 
one streamwise wavenumber is included. This is particularly true in the upper part 
of the layer. While inclusion of more than 6 cross-stream wavenumbers has no effect, 
addition of streamwise wavenumbers does make a difference. In particular addition 
of another streamwise wavenumber helps considerably. We must conclude that there 
is energy in cross- stream and normal motions of higher streamwise wavenumbers 
that makes little relative contribution to the streamwise velocity component. As a 
consequence, our predicted rolls are somewhat weak compared with reality, and we 
resealed them in figure 13 to give three-dimensional trajectory images more 
comparable with experiment. This rescaling will not be necessary in future work, 
when we shall add streamwise wavenumbers. 

One naturally asks if the addition of streamwise modes will drastically change the 
behaviour of our model. In  this respect, we observe that the same symmetries, 
inherited from invariance of the Navier-Stokes equations to spanwise translation 
and reflection, and streamwise translation, operate a t  any order of truncation. In  
particular, this implies that  the subspace spanned by basis functions with zero 
streamwise wavenumber is invariant and that the coefficients of the equations 
restricted to this subspace remain unchanged as streamwise components are added. 
Thus, the model studied in this paper, together with its dynamics, exists unchanged, 
as a subsystem in the larger set of differential equations, much as the 2 4  subsystem 
exists in the present model. This raises the interesting possibility that the 2 4  branch 
may be destabilized by streamwise modes as well as by the 1 ,  3, 5 ‘interstitial’ 
spanwise Fourier modes as described in $9.5. In such a cast: one might expect even 
more exotic bursting behaviour, while stability of the 2 4  spanwise, zero streamwise 
wavenumber subspace would imply that the present behaviour would be little 
changed beyond excitation of streamwise components during a burst. In  an attempt 
to address this, we integrated a model with three streamwise and three spanwise 
components, of total dimension 24 (after removal of the (0,O) mode). This model 
exhibited steady rolls down to a !z 0.5, indicating stability of the 2 4  subspace to 
non-zero streamwise perturbation. We have not yet tackled the 54-dimensional 
model with 3 streamwise and 6 spanwise modes, for the following reasons. 

In  the preliminary studies of models with two and three streamwise wavenumbers 
referred to above, it became clear that the way in which the eigenfunctions are fitted 
to the experimental data can affect the magnitude of the coefficients a ,  c and d of the 
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model equations by up to 20 YO. The dependence of the linear term on the second 
derivative is especially sensitive. and the sensitivity is apt to increase as streamwise 
wavenumbers are included. Before embarking on a detailed study of models with 
additional Fourier components and eigenfunctions, we therefore decided to 
investigate the effect of eigenfunction variations on the six-mode model studied in 
this paper. We obtained a set of eigenfunctions computed from direct numerical 
simulations of a channel flow at Re = 6600 through the courtesy of Parviz Moin and 
Robert Moser a t  the Stanford-Ames Center for Turbulence Research. While the flow 
conditions are somewhat different from those of Herzog’s (1986) pipe flow, the 
eigenfunctions are generally similar in form, and they are defined more precisely, 
since the discretization is considerably finer. The resulting coefficients in the model 
equations have the same signs and general relative magnitudes as those of the 
present model, the largest differences being of the order of 20%. While this affects 
the detailed structure of the bifurcation diagram, the model still exhibits bursting 
behaviour, albeit now for a lower value of a: ( z 0.74) and involving heteroclinic cycles 
connecting small periodic orbits (limit cycles) which contain all Fourier components, 
not merely 2 and 4. Thus, in this model, the quasi-steady state is of weakly oscillating 
rolls which have a somewhat richer spanwise structure The general features of the 
burst arc very similar to the present model. For higher a: one again observes steady 
rolls containing only Fourier components 2 and 4. We feel that these findings, which 
we shall report in detail later, give much credibility to our present simple model. 

The model we have presented here is rudimentary in more ways than the simple 
sparsity of modes retained. Many non-essential mechanisms have been suppressed in 
the interests of simplicity. For example, the structure of the cigenmodes normal to 
the wall is held fixed as the modes evolve. In nature, the eddies in the wall layer are 
observed to be approximately round in cross-section. To mimic this behaviour we 
could allow the scale of the modes normal to the wall to grow and shrink ; this could 
be done either by tying the scales to thc slope of the mean velocity profile at the wall 
(so that the eddies always fill approximately the same fraction of the mean profile as 
the shape of that profile changes), or the scales could be made to change proportional 
to the centroid of the energy in the cross-stream modes. That is, if the energy were 
concentrated in 2k rather than k ,  the scale normal to the wall would be reduced. 
Either of these would produce a more realistic behaviour. 

We do not have prwent in our modal population a mechanism to represent the 
production of higher-wavenumber encrgy when an intense updraught is formed, 
presumably as a result of a secondary instability. We quote, for example, the 
description of the measurements of Kim et al. (1968) from Willmarth & Lu (1972): 
‘When the rising filament of low-speed fluid reached a height in the range 8 < y+ < 12, 
an oscillatory motion of marked fluid lines (time lines) within the parcel was 
observed. The oscillatory motions, which were of various types, appeared to be 
associated with a swirling motion of the fluid. As the amplitude of the swirling 
motion of the rising fluid became larger, the pattern “broke up ” at a distance from 
the wall in the range 10 < y+ < 40. During the breakup process, a significantly more 
random chaotic motion occurred in which marked lincs of fluid were obliterated 
owing to the sudden increase in turbulent mixing ’. Willmarth & Lu (1972) also quote 
Corino & Brodkey (1969): ‘When the ejected low-speed fluid encountered the 
interface between high-and low-speed fluid, a t  the high shear layer, a violent 
interaction occurred with intense, abrupt and chaotic movements. The intense 
interaction continuvd as more fluid was ejected. The end result was the creation of 
a relatively large-scale region of turbulent motion reaching into the sublayer as the 
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violent interaction region spread out in all directions’, It is clear that the higher- 
wavenumber turbulence produced in this ‘ violent interaction region’ has strong 
transport properties, since it transports both the marked lines, obliterating them, 
and itself, spreading the region of higher-wavenumber turbulencc. To the extent that 
there are inequalities of momentum of larger scale in this region (and there are) it will 
transport them also. Thus, the higher-wavenumber component will make a 
substantial contribution to the Reynolds stress. Unfortunately, the various 
measurements (see particularly Lu & Willmarth 1973) do not appear to have 
discriminated between the high-wavenumber and low-wavenumber contributions to 
the Reynolds stress; they are not separated by conditioning (or, a t  least, not by the 
conditioning of Lu & Willmarth 1973) since they occur at more-or-less the same time. 
The only indication is given by the calculations of Corino & Brodkey (1969), who 
have calculated by hand the contributions to the Reynolds stress of the large-scale 
motions in the ejection phase, finding a value between 50% and 7 0 %  of the long- 
time average value, the percentage falling with Reynolds number. Since Lu & 
Willmarth (1973) and Willmarth & Lu (1972) measure values of the Reynolds stress 
during a burst several times the long-term average, a considerable fraction of the 
Reynolds stress must be produced by the higher-wavenumber component. The 
higher-wavenumber component will also be expected to make a contribution to the 
streamwise and cross-stream energy. 

Thus, although our eddies are capable of exhibiting the basic bursting and ejection 
process, the labour is in vain - there is no sequel, no production of intense higher- 
wavenumber turbulence. A contribution is made only to the low-wavenumber part 
of the streamwise fluctuating velocity and the Reynolds stress. We could easily 
simulate the production of this high-wavenumber turbulence, although we do not 
expect its inclusion to change the dynamics of our system qualitatively. However, we 
have held the value of our Heisenberg parameter constant, whereas its value should 
rise and fall with the level of this intense higher-wavenumber turbulence in the 
vicinity of the wall. The transport effectiveness of intense higher-wavenumber 
turbulence would be expected to damp the system, suppressing the interesting 
dynamics until the higher levels are either blown downstream or lifted and diffused 
to the outer edge of the boundary layer. The production of higher values of the 
Heisenberg parameter could easily be parameterized by a single time-constant first- 
order equation tied to a measure of the amplitude ofthe coefficients. The major effect 
would simply be to cut off each burst more rapidly than a t  present. We plan to study 
the behaviour of a such a model in the future. 

The absence of this Component of the Reynolds stress has other effects. At present 
each bursting event produces a considerable change in the Reynolds stress, but the 
magnitude is too small and the direction is positive over too much of the layer, 
although it has the right sign in the outer part of the layer. The contribution of the 
higher-wavenumber Reynolds stress would change this situation, since the latter 
Reynolds stress would be negative and large, and would occur in the outer part of the 
wall region, near the tops of the large eddies. 

I n  this connection we may mention the convergence of our representation of the 
velocity field. The set of eigenfunctions is complete, which means essentially that any 
physically possible velocity field can be represented. The eigenfunctions are 
computed from second-order statistics. It is, of course, quite possible (even likely) 
that  there are dynamically significant events the contribution of which to the second- 
order statistics is lost in the experimental noise, but which would contribute 
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importantly to the fourth-order statistics, say. These events are thus not represented 
among the eigenfunctions we are able to compute from the experimental information 
a t  hand. However, the completeness of the set of eigenfunctions (including those 
undeterminable from the experiment) assures us that these events would be 
represented by the inclusion of the higher-order eigenfunctions, if we knew them. Put  
simply, although we may be neglecting something by our truncation, inclusion of 
higher wavenumbers in the streamwise and cross-stream directions, and of higher 
eigenmodes (we may, in fact, already have high enough wavenumbers in the cross- 
stream direction) would recapture this effect. There is nothing fundamentally 
limiting about the nature of our model that makes it incapable of capturing 
reality. 

The occurrence of the bursts of values of the Heisenberg parameter between 1.4 
and 1.6 appears to be pseudorandom. This is essentially due to round-off error in the 
calculations. The transitions from one solution to the other and back are extremely 
sensitive to  the precise solution trajectory, and a minute change can make a 
considerable change in the time a t  which the next transition occurs. Initially we did 
not exercise the pressure term. Recall that  the pressure term appeared owing to the 
finite domain of integration. It represents the interaction of the part of the eddy that 
we have resolved with the part above the domain of integration, which is unresolved. 
The order of magnitude that we estimated for this term was small, and for that 
reason we a t  first neglected it. It has, however, an important effect, while not 
changing the qualitative nature of the solution. The term has the form of a random 
function of time, with a small amplitude. This slightly perturbs the solution 
trajectory constantly; away from the points r+ and r- this has little effect, but when 
the solution trajectory is very close to these points, the perturbation has the effect 
of throwing the solution away from the fixed point, so that it need not wait long to 
spiral outward. This results in a thorough randomization of the transition time from 
one solution to the other, while having little effect on the structure of the solution 
during a burst, as described in $11.  

Probably the most significant finding of this work is the identification of the 
etiology of the bursting phenomenon. That is, the bursts appear to be produced 
autonomously by the wall region, but to be triggered by pressure signals from the 
outer layer. Whether the bursting period scales with inner or outer variables has been 
a controversy in the turbulence literature for a number of years. The matter has been 
obscured by the fact that the experimental evidence has been measured in boundary 
layers with fairly low Reynolds numbers lying in a narrow range, so that it is not 
really possible to distinguish between the two types of scaling. The literature on 
turbulent polymer drag reduction is particularly instructive, however, since the sizes 
of the large eddies, and the bursting period, all change scale with the introduction of 
the polymer (see, for example, Kubo & Lumley 1980; Lumley & Kubo 1984). The 
present work indicates clearly that the wall region is capable of producing bursts 
autonomously, but the timing is determined by trigger signals from the outer layer. 
This suggests that events during a burst should scale unambiguously with wall 
variables. Time between bursts will have a more complex scaling, since it is 
dependent on the first occurrence of a large enough pressure signal long enough after 
a previous burst ; ‘long enough ’ is determined by wall variables, but the pressure 
signal should scale with outer variables, as described in 3 11. 

Finally, we can mention some of the possible applications of this approach. Many 
drag reduction schemes appear to depend on a change of boundary conditions or of 
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distribution of effective viscosity in the wall region. For example, it has been 
suggested that polymer drag reduction is due to an increase in the effective viscosity 
in the turbulent part of the flow (effectively, a suppression of the intense higher- 
wavenumber turbulence), while i t  remains the same in thc viscous sublayer. 
Microbubbles have been said to have their effect owing to reduction of the mean 
density, with an increase in eEective viscosity, in the turbulent part of the wall layer, 
with csscntially no change in the viscous sublayer. It has beon suggested that riblcts 
have their effect owing to an increase in the viscous losses a t  the boundary for the 
transverse velocities in the large eddies. It would be relatively simple to introduce 
changes in the distribution of the effective viscosity with distance from the wall, or 
in the boundary conditions, and see the effect of this on the dynamics of the wall 
region. One could imagine introduction of a compliant boundary. One could consider 
the pressure footprint of the eddy system on the wall (although much of the pressure 
signal sensed a t  the wall is transmitted from the outer part of thc boundary layer ; 
Farabee, 1986). Distributed parameter active control of turbulence requires a 
computable model to provide feedback, and our model might be adequate, and simple 
enough (S. B. Pope, private communication). It seems that our approach to the wall 
region has many interesting possibilities that could be explored. 

While this paper was being prepared, Jang, Benney & Gran (1986) appeared. This 
paper describes an entirely different approach to the same region, intended to answer 
different questions. Jang et al. (1986) investigate the etiology of the rolls: what 
physical phenomenon causes them, concluding that they arise from a non-linear 
instability mechanism. On the other hand, we adopt the position of supposing that 
the rolls exist, and ask about their dynamical bchaviour. (Recall that our 
decomposition, using empirical eigenfunctions, puts in the form of the rolls, leaving 
only the most energetic cross-stream wavenumber in question. However, since the 
vertical scale of the rolls is fixed, even this is fairly well predetermined.) Jang et al. 
(1986) and our papers thus complement each other. 
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Appendix A. General dynamical equations 

viscous term (linear) 

viscous term (linear) part of interaction with mean velocity (linear) 

part of interaction wi th  mean velocity coming from the Reynolds stress (cubic) 

Here, i is the complex number i2 = - 1 ,  D denotes the derivative operator with 
respect to x 2 :  D = d/dx,, and 

= ik, i f j =  1,3 
= D$k i f j  = 2. 

Appendix B. Energy transfer model 

The eddy viscosity is computed from the expression 

B. 1. Eddy  viscosity 

a, c A p  
kn 

VT = 

(X2 L, L, C A?) ( 1;' D$j,") 
k n  

where the triplets (k, n) are the first neglected modes. 

B.2. T h e  pseudopressures term 

As a rough approximation, the kinetic energy content of the small scales is 
proportional to the rate of loss of energy by the large scales to the small scales: 

(ui> uiz ) > - ((ui> air >> > = - a 2  7, [((ui> uj> >> - (<ui> uj>) )) ( U i c ,  j + uj<, i )  

- ( ( ( U i  > ujt ) > - <ui > uj> ) t ) (ui < , j + uj<, i))I 3 

where 7 is a characteristic timescale of the first neglected modes: 7, = l ,/u,, 

( u i z  u i i )  > - ((ui> ui> ) >) = "2 1; [(ui <, j + uj<, i )  (ui<, j + uj<, i )  

- ( (ui < , j + uj<, i )  (ui < , j + uj c , i ) ) l .  
This term gives an extra quadratic term: 

c (X ak' (P) a k - d Q j  ( 9 )  $~E,)(x,) Qj $ji',.(X2) +Qj $6F,!(Xz) Qi $j:yw(xz)) $c*(XJ. 
p q  k' 
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Appendix C. List of coefficients of the set of 10 equations (24) 

vector : 
(i) Coefficients of the linear terms, a: and a: presented in the form of a two-column 

a' = [16.66, 28.27, 39.83, 52.08 60.981' 
a'= [-1.07, -1.75, -2.69, -3.95, -5.461'. 

2 (ii) Coefficients of the quadratic terms per complex equation, ck., k - k t  and ck,, k-lc,  

Equation (1) c-1,2 c-2.3 c-3, 4 c-a, 5 

c1 2.09 1.13 0.46 0.21 

Equation (2) c1,1 c3, -1 ca, -2 c5, -3 

c2 0.017 0.020 0.015 0.078 

c1 -1.30 2.41 1.26 0.56 
- 0.024 0.018 0.012 0.023 

Equation (3) G I ,  2 ca, -1 c5, -2 

c1 -4.49 3.13 1.77 
c2 -0.04 0.009 0.014 

Equation (4) C l ,  3 c2.2 c5, -1 

c1 -5.81 - 3.39 4.40 
c2 -0.061 -0.11 0.010 

c1 -6.44 -8.15 
-0.16 -0.18 

Equation (5) '1,4 c2, 3 

(iii) Coefficients of the cubic terms presented in the form of a ( 5 , 5 )  matrix, dkk,:  

-3.08 -3.76 -2.46 -1.30 -0.68 
-4.80 -6.20 -4.23 -2.34 - 1.27 
-6.26 -8.44 -5.97 -3.43 -1.91 
-7.37 -10.36 -7.62 -4.60 -2.67 
-7.86 -11.39 -8.62 -5.43 -3.26 
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