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Self-organized criticality
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We show that certain extended dissipative dynamical systems naturally evolve into a critical state,
with no characteristic time or length scales. The temporal "fingerprint" of the self-organized criti-
cal state is the presence of flicker noise or 1/f noise; its spatial signature is the emergence of scale-
invariant (fractal) structure.

I. INTRODUCTION

This paper concerns the behavior of spatially extended
dynamical systems —that is, systems with both temporal
and spatial degrees of freedom. Such systems are com-
mon in physics, biology, and even social sciences such as
economics. Despite their abundance, there is little under-
standing of the spatiotemporal evolution of these com-
plex systems. ' Seemingly disconnected from this problem
are two widely occurring phenomena whose very general-
ity require some unifying underlying explanation. The
first is a temporal effect known as 1/f noise or flicker
noise; the second concerns the evolution of a spatial
structure with scale-invariant, self-similar (fractal) prop-
erties. Here we report the discovery of a general organ-
izing principle governing a class of dissipative coupled
systems. Remarkably, the systems evolve naturally to-
ward a critical state, with no intrinsic time or length
scale. The emergence of the self-organized critical state
provides a connection between nonlinear dynamics, the
appearance of spatial self-similarity, and 1/f noise in a
natural and robust way. A short account of some of
these results has been published previously.

The usual strategy in physics is to reduce a given prob-
lem to one or a few important degrees of freedom. The
effect of coupling between the individual degrees of free-
dom is usually dealt with in a perturbative manner —or
in a "mean-field manner" where the surroundings act on
a given degree of freedom as an external field —thus
again reducing the problem to a one-body one. In dy-
namics theory one sometimes finds that complicated sys-
tems reduce to a few collective degrees of freedom. This
"dimensional reduction'* has been termed "self-
organization, " or the so-called "slaving principle, " and
much insight into the behavior of dynamical systems has
been achieved by studying the behavior of low-
dimensional at tractors.

On the other hand, it is well known that some dynami-
cal systems act in a more concerted way, where the indi-
vidual degrees of freedom keep each other in a more or
less stab1e balance, which cannot be described as a "per-
turbation" of some decoupled state, nor in terms of a few
collective degrees of freedom. For instance, ecological
systems are organized such that the different species
"support" each other in a way which cannot be under-
stood by studying the individual constituents in isolation.

The same interdependence of species also makes the
ecosystem very susceptible to small changes or "noise."
However, the system cannot be too sensitive since then it
could not have evolved into its present state in the first
place. Owing to this balance we may say that such a sys-
tem is "critical. " We shall see that this qualitative con-
cept of criticality can be put on a firm quantitative basis.

Such critical systems are abundant in nature. We shaB
see that the dynamics of a critical state has a specific tern-
poral fingerprint, namely "flicker noise, " in which the
power spectrum S(f) scales as 1/f at low frequencies.
Flicker noise is characterized by correlations extended
over a wide range of time scales, a clear indication of
some sort of cooperative effect. Flicker noise has been
observed, for example, in the light from quasars, the in-

tensity of sunspots, the current through resistors, the
sand flow in an hour glass, the flow of rivers such as the
Nile, and even stock exchange price indices. ' All of
these may be considered to be extended dynamical sys-
tems. Despite the ubiquity of flicker noise, its origin is
not well understood. Indeed, one may say that because of
its ubiquity, no proposed mechanism to data can lay
claim as the single general underlying root of 1/f noise.
We shall argue that flicker noise is in fact not noise but
reflects the intrinsic dynamics of self-organized critical
systems. Another signature of criticality is spatial self-
similarity. It has been pointed out that nature is full of
self-similar "fractal" structures, though the physical
reason for this is not understood. " Most notably, the
whole universe is an extended dynamical system where a
self-similar cosmic string structure has been claimed.
Turbulence is a phenomenon where self-similarity is be-
lieved to occur in both space and time.

Cooperative critical phenomena are well known in the
context of phase transitions in equilibrium statistical
mechanics. ' At the transition point, spatial self-
sirnilarity occurs, and the dynamical response function
has a characteristic power-law "1/f" behavior. (We use
quotes because often flicker noise involves frequency
spectra with dependence f ~ with P only roughly equal
to 1.0.) Low-dimensional nonequilibrium dynamical sys-
tems also undergo phase transitions (bifurcations, mode
locking, intermittency, etc.) where the properties of the
attractors change. However, the critical point can be
reached only by fine tuning a parameter (e.g. , tempera-
ture), and so may occur only accidentally in nature: It
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cannot be invoked as an explanation for the dynamical
phenomena discussed above where no fine tuning is need-
ed.

In this paper, we argue and demonstrate numerically
that dynamical systems with extended spatial degrees of
freedom in two or three dimensions naturally evolve into
self org-anized critical states. By self-organized we mean
that the system naturally evolves to the state without de-
tailed specification of the initial conditions (i.e., the criti-
cal state is an attractor of the dynamics). Moreover, the
critical state is robust with respect to variations of pa-
rameters, and the presence of quenched randomness. We
suggest that this self-organized criticality is the common
underlying mechanism behind the phenomena described
above.

More specifically, we consider dissipative dynamical
systems with local, interacting degrees of freedom. It is
essential that the system has many rnetastable states. Al-
though the details of the local states are not important to
the general theory, for the sake of clarity we focus atten-
tion on specific models. We choose the simplest possible
models rather than wholly realistic and therefore com-
plex models of actual physical systems. Besides our ex-
pectation that the overall qualitative features are cap-
tured in this way, it is certainly possible that quantitative
properties (such as scaling exponents) may apply to more
realistic situations, since the system operates at a critical
point where universality may apply. The philosophy is
analogous to that of equilibrium statistical physics where
results are based on Ising models (and Heisenberg mod-
els, etc. ) which have only the symmetry in common with
real systems. Our "Ising models" are discrete cellular au-
tomata, which are much simpler to study than continu-
ous partial differential equations.

To illustrate the basic idea of self-organized criticality
in a transport system, consider a simple "pile of sand. "
Suppose we start from scratch and build the pile by ran-
domly adding sand, a grain at a time. The pile will grow,
and the slope will increase. Eventually, the slope will
reach a critical value (called the "angle of repose"' ); if
more sand is added it will slide off. Alternatively, if we
start from a situation where the pile is too steep, the pile
will collapse until it reaches the critical state, such that it
is just barely stable with respect to further perturbations.
The critical state is an attractor for the dynamics. The
quantity which exhibits I/f noise is simply the flow of
the sand falling off the pile (this is analogous to the situa-
tion in an hour glass). One of the models studied in this
paper can be thought of as a model of a sand pile, or al-
ternatively as modeling an array of coupled pendula.
These models evolve into a critical state: as the pile is
built up, the characteristic size of the largest avalanches
grows, until at the critical point there are avalanches of
all sizes up to the size of the system, analogous to the
domain distribution of a magnetic system at a phase tran-
sition. The energy is dissipated at all length scales. Once
the critical point is reached, the system stays there. The
behavior of systems at the self-organized critical point is
characterized by a number of critical exponents —which
are connected by scaling relations —and the systems obey
"finite-size scaling" just as equilibrium statistical systems

at the critical point.
The paper is organized as follows. In Sec. II we con-

sider for pedagogical reasons an example in one spatial
dimension. In this case the spatial degrees of freedom
"decouple" and the system ends up in the least stable
metastable state. This minimally stable state is a trivial
critical state with no spatial patterns and uninteresting
temporal behavior. [In a sense this is similar to the one-
dimensional (1D) Ising model at zero temperature, or the
1D percolation problem at the percolation threshold. ]
The interesting cases of two and three dimensions are
treated in Sec. III, where simulations on two different
"sand-pile automata" are presented. It is shown how one
is led naturally to a flicker-noise output spectrum. The
connection between the automata and actual physical
systems is also discussed. Scaling laws are conjectured,
and a finite-size-scaling hypothesis is successfully tested.
It is also shown that the criticality is not affected by vari-
ous types of local randomness; this is essential for the
self-organized criticality to be a generic property of natu-
rally occurring dynamical systems. We close with a dis-

cussion and summary in Sec. IV. In particular, we dis-
cuss the relations between our models and "turbulence. "
In fact our models can be thought of as "toy" turbulence
models where energy is dissipated on all length scales,
with spatial correlations described by a generalized Kol-
mogorov exponent. We also suggest an experiment the
reader can perform in his or her own home.

II. THE ONE-DIMENSIONAL CASE
AND MINIMAL STABILITY

z„)~z„)—1 .
(2.1)

In this section we study a one-dimensional model of
transport. The model has a huge number of metastable
states, growing exponentially with the length of the sys-
tern. To understand the origin of this proliferation of
states, or "attractors" of the dynamics of extended sys-
tems, consider for instance an array of N uncoupled oscil-
lators, or torsion pendula, each having m stable fixed
points. Then the array has m stable configurations.
The presence of weak coupling does not alter this basic
arithmetic. Surprisingly, our model evolves towards the
very least stable of all these state. We call this state the
global minimally stable state. ' This state is distinctly
different from the critical state observed in two and three
spatial dimensions, and which is the central focus of this
paper. Nevertheless, an understanding of the minimally
stable state is essential also in understanding the self-
organized critical state.

Figure 1(a) shows a model of a one-dimensional sand
pile of length N. The boundary conditions are such that
sand can leave the system at the right-hand side only.
We may think of this arrangement as half of a symmetric
sand pile with both ends open. The numbers z„represent
height differences z„—=h(n) —h (n +1) between successive
positions along the sand pile. The dynamics is very sim-
ple. From the figure one sees that sand is added at the
nth position by letting

z„~z„+1,
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When the height difference becomes higher than a fixed

critical value z„oneunit of sand tumbles to the lower

level, i.e.,

z.~z. —2

zn+] n+)+ n & c

(2.2)

Zi

Zn-[ ~ Zn-&+ ~

Zn Zfl 2

Zn~) = Zn+)+I

(0)

(b) ZN=O

FIG. 1. One-dimensional "sand-pile automaton. " The state
of the system is specified by an array of integers representing the
height difference between neighboring plateaus. (a) There is a
wall at the left and sand can exit only at the right; (b) there are
walls at both ends.

closed and open boundary conditions are used for the left
and right boundaries, respectively,

zo ——0;
ZN ZN —1

zN )~zN )+1 for zN &z, .

Equation (2.2) is a nonlinear discretized diffusion equa-
tion (nonlinear because of the threshold condition). The
process continues until all the z„arebelow threshold, at
which point another grain of sand is added (at a random
site) via Eq. (2.1). The model is a cellular automaton
where the state of the discrete variable z„attime t + 1 de-

pends on the state of the variable and its neighbors at
time t.

Alternatively, the system can be thought of as an array
of damped pendula in a gravitational field, coupled by
torsion springs: The heights h (n) are the winding num-
bers of the springs, and the z„arethe spring forces on the
pendula. When z„exceeds the critical value z„sothat
the spring force exceeds the gravitational force, the pen-
dulum rotates one revolution, leading precisely to the dy-
namics Eq. (2.2). By a change of language, this nonlinear
diffusion dynamics can also be used to model other of the
systems mentioned in the Introduction, describing the
fiow of electrons, or water, or light, etc. But for conveni-
ence we shall continue to use the "sand" language in or-
der to keep in mind a concrete physical picture.

The condition for stability is

z„&z, (n =1,2, . . . , N),
so the total number of stable states is z, .

If sand is added randomly from an empty system, the
pile will build up, eventually reaching the point where all
the height differences z„assume the critical value z„=z,.
This is the least stable of all the stationary states. Any
additional sand simply falls from site to site (left to right)
and falls off at the end n =N, leaving the system in the
minimally stable state. Alternatively, if one pushes one
unit downwards it will also continue its fall until it
reaches the edge. In the pendulum picture, this corre-
sponds to kicking one pendulum in the forward direction.
This will cause the force on the two nearest-neighbor
pendula to exceed the critical value and the perturbation
will propagate by a domino effect until it hits the ends of
the array. At the end of this process the forces are back
to their original values and all pendula have rotated one
period. In other words, the effect of a small local pertur-
bation is communicated throughout the system, but the
system is robust with respect to noise insofar as it returns
to the globally minimally stable state. If units are added
randomly, the resulting sandAow is also random white
noise, i.e., with power spectrum I/f . As we shall see in
the next section, the robustness of the minimally stable
state is lost in two and higher dimensions.

The dynamical selection principle leading to the least
stable stationary state is quite independent of how the
sand pile is built up. Instead of building the pile by add-
ing sand, we might start with a flat sand surface and
slowly raise the left end of the bar. Or, we could random-
ly add "slope, "z„~z„+1,and let the system obey the
dynamics [Eq. (2.2)]. This would represent the dynamics
of a system with a random distribution of critical height
differences and a uniformly increasing slope. We could
also start with a very unstable state, z„&z,for all n, and
let the system relax. In all these cases the minimally
stable state will be reached even if the boundary condi-
tions are such that the sand cannot leave the bar, i.e.,
closed boundary conditions at both ends [zo ——zN ——0; Fig.
1(b)].

In the more general case of transport (both in one and
higher dimensions), the slope z„canbe thought of as the
pressure (or energy, etc.), which builds up precisely to the
point where the transport is stationary. A lower slope
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III. SELF-ORGANIZED CRITICALITY
IN TWO AND THREE DIMENSIONS

A. Why do we expect self-organized criticality?

The rules (2. 1) and (2.2) for the one-dimensional model
can easily be generalized to higher dimensions. In two
dimensions

and

z(x —l,y )~z(x —l,y) —1,
z (x,y —1)~z(x,y —1)—1,
z(x,y}~z(x,y}+2,

(3.1)

z(x,y) ~z (x,y) —4,
z (x,y+1 }~z(x,y+1)+ 1,
z(x+1,y)~z(x+1,y)+ I for z(x,y) &z, ,

(3.2)

where we have the square array (x,y), for 1(x,y (N. If
one insists on interpreting this discrete diffusion equation
in terms of sand piles, the correspondence between the
quantity z and the slope is not as straightforward as in
the 1D case. The sand columns are represented by the
bonds between nearest neighbors in the x and y direc-
tions, and z (x,y) represents the average slope in the diag-
onal direction, i.e., the sum of the height differences in
the x and y direction. Equations (3.1) represent the addi-
tion of two units at the upper and left bonds. Equations
(3.2) represent two units of sand, located at the left and
upper bonds at (x,y) sliding in the diagonal direction to
the right and lower bonds. [If one wants a more "realis-
tic" sand pile, one can (for instance) define
z (x,y) =2h (x,y) —h (x + l,y) —h (x,y + 1), in analogy
with 1D. When z ~z„one unit of sand slides in the x
direction and one in the y direction. The resulting dy-
namics will involve next-nearest-neighbor interactions
with the basic physic unchanged; here we stick to the
simplest Ising model (3.2).] In principle the slope in two-
dimensional (2D) is a vector field, but the scalar field z is
easier to work with, and these rules incorporate the
essential physics involved. Again, we emphasize that we
are interested in the general behavior of nonlinear
diffusion dynamics such as Eq. (3.2), and not in sand
piles, per se.

will prevent transport, and with a higher slope the output
will exceed the input for a while until stationarity is re-
stored.

In one dimension, the minimally stable state is critical
in the restricted sense that any small perturbation can
just propagate infinitely through the system, while any
lowering of the slope will prevent this. This is analogous
to some other one-dimensional (1D) critical phenomena,
such as percolation where at the percolation threshold
particles can just percolate to infinity. Also, like other
1D systems, the critical state has no spatial structure, and
correlation functions are trivial. In the next section we
shall see that in higher dimensions the critical states and
their dynamics are dramatically different.

Naively, one might expect that the situation is the
same as in one dimension, namely that the pile wi11 build-

up (or collapse) to the minimally stable state where the
slopes z„all assume the critical value. A moments
reflection will convince us that it cannot be so. Suppose
we punch two units of sand downwards in the diagonal
direction by applying rule (3.2). This will render the sur-
rounding sites unstable (z &z, ), and the noise will spread
to the neighbors, then their neighbors, in a chain reac-
tion, ever amplifying since the sites are generally connect-
ed with more than two minimally stable sites, and the
perturbation eventually propagates throughout the entire
lattice. The minimally stable state is thus unstable with
respect to small fluctuations and cannot represent an at-
tracting fixed point for the dynamics. As the system fur-
ther evolves, more and more more-than-minimally stable
states will be generated, and these states will impede the
motion of the noise. The system will become stable pre-
cisely at the point when the network of minimally stable
clusters has been broken down to the leUel where the noise
signal cannot be communicated through infinite distances
At this point there will be no length scale, and, consequent-
ly, no time scale. Hence one might expect that the system
approaches, through a self-organizing process, a critical
state with a power-law correlation function for physically
observable quantities, including the power spectrum. In
analogy with the discussion for the one dimensional case,
the slope (or "pressure") will build up to the point where
stationarity is obtained: this is assured by the self
organized critical state, but not the minimally stable state.
The slope of the critical state is reduced compared to the
slope of the minimally stable state.

Suppose that we perturb the critical state locally, by
adding one unit, or by locally changing the slope. We ex-
pect the perturbation to grow over all length scales. That
is, a given perturbation can lead to anything from a shift
of a single unit to an avalanche. The lack of a charac-
teristic length scale leads directly to a lack of a charac-
teristic time scale for the fluctuations. As is well known,
a random superposition of pulses of a physical quantity
with a distribution of lifetimes D(T) = T (weighed by
the average value of the quantity during the pulse) leads
to a power frequency spectrum, S(f)=f +, so a
power-law 1/f frequency spectrum is equivalent to a
power-law distribution of lifetimes.

The nature of the boundary conditions is essential to
the nature (though not the existence) of the critical state,
since the dynamics and the physical situation is largely
defined by the properties at the boundaries, for instance
whether material is being transport in or out. In this
sense the criticality introduced here is different from the
criticality at phase transitions where boundary effects al-
ways disappear in the thermodynamic limit. We per-
formed simulations with two types of boundary condi-
tions on the 2D cellular automaton: (i) with "closed
boundaries" where "sand" cannot leave the box at
x,y =1,N and (ii) with open boundary conditions where
sand can leave the box on two of the sides, namely at
x =N and y =N. In the case of closed boundary condi-
tions we also performed simulations in three dimensions
and simulations with quenched randomness.
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B. Simulations with closed boundary conditions

In the case of closed boundary conditions, z(O, y)
=z(x, O)=z(N+1, y}=z(x,N+1)=0, the system was
simulated with two types of initial condition: far from
equilibrium and from a flat surface. In the first case we
chose random initial conditions such that z exceeded the
threshold z, at each and every site. This initial state can
be visualized as a pile of sand with a huge slope in the di-
agonal direction. The system then relaxes under the dy-
namics (3.2} until it reaches a static state. Note that Eq.
(3.2) conserves g„z„exceptat the boundary, so that any
"excess z" must be transported to the boundary for global
relaxation to occur. The relaxation is quite a lengthy
process. The physical quantity which is transported in
this simulation is the "slope."

Once relaxed, the properties of the state are probed by
locally perturbing the system. Specifically, we randomly
select a minimally stable site [i.e., with z(x,y)=z, ] and
enforce Eq. (3.2). This corresponds to pushing two units
of sand downward in the diagonal direction; we thus in-
duce a "sand slide. " This, in general, will cause further
slidings as the perturbation spreads. We then measure
the total number of slidings s induced by the single per-
turbation. Note that this operationally defines a domain
over which a given perturbation is communicated. After
each perturbation, the original static state is restored,
and another site is perturbed, and so on. Figure 2 shows
a typical domain structure obtained from a number of
single-site-induced perturbations. The dark sites are
domains affected by perturbing a single interior site. One
sees that domains of a variety of sizes exist, from a single
site up to one that is comparable to the system size itself.
(Note that tickling the interior of a single domain at
different individual sites need not result in precisely the
same domain boundary. ) In a sense, we are measuring
the linear response of the system under infinitesimal per-
turbations. The quantity being measured is the distribu-
tion function D(s) of slide sizes. In the simulation, we

did not "randomly select" the minimally stable seed site,
but systematically went through all of them. We then
performed an ensemble average by starting at each of a
large number of initial far-from-equilibrium configu-
rations.

Figure 3(a} shows the results for the distribution func-
tion D(s), for a 50X 50 array, averaged over 200 samples.
The log-log plot follows a pretty respectable straight line,
with slope —1.0, i.e.,

D(s)=s ', r=1.0 for D=2 . (3.3)

(A C3

CI

That this slope is close to minus one is certainly sugges-
tive, but our current understanding only tells us to expect
a power law without nailing down the exponent. Indeed,
in three-dimensional (3D) simulations on a 20X20X20
array [Fig. 3(b)] one again finds a power law, but now
D(s) =s ' . At small sizes the curve deviates from the
straight line because discreteness effects of the lattice
come into play.

The fact that the distributions in Fig. 3 begin to deviate
from a power law at large cluster sizes is a finite-size
effect. For example, in the 50/ 50 array the deviation be-
gins around s =200, whereas simulations on a 20)(20 ar-
ray (not shown) deviate at s =70. To verify that this is
really a finite-size effect, we borrowed a page from the
analysis of equilibrium statistical physics and performed
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FIG. 2. Typical domain structures resulted from several local
perturbations for a 100X 100 array. Each cluster is triggered by
a single perturbation.

FIG. 3. Distribution of cluster sizes at criticality in two and
three dimensions computed as described in the text. The data
have been coarse grained. (a) 50X50 array, averaged over 200
samples. The dashed line is a straight line with slope —1.0; (b)
20X20&20 array, averaged over 200 samples. The dashed
straight line has a slope —1.37.
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D(T)=T
a=0.43 for D =2, a=0.92 for D=3 .

(3.4}

Note that the curves for the lifetime distribution fit a
power law only over a decade or so, while the cluster size
distributions fit for at least two decades. This is due to
the fact that the lifetime of a cluster is much smaller than
its size, thus limiting the range over which we have reli-
able data in Fig. 4.

We now give the "sliding" a new meaning, namely a
point of energy dissipation: When a sliding event occurs,
a unit of energy is dissipated. Let us introduce the quan-
tity f(x, t ) representing dissipation of energy at site x at
time t. The process (3.2) represents dissipation of one

a finite-size-scaling analysis, a point we will discuss later.
In order to understand the dynamics of the critical

state, we now investigate the temporal evolution of the
clusters above. Imagine first the effect of a perturbation
at a single site on a static critical state. A local perturba-
tion will spread to (some} nearest-neighbor sites, then to
next-nearest neighbors, and so on in a "domino" effect,
eventually dying out after a total time T, having induced
a total of s slidings. In general, T is less than s since the
growth rate is usually greater than unity. (We will return
to the relation between growth rate and cluster distribu-
tion at a later stage. ) Figure 4 shows the distribution of
lifetimes D(T) weighted by the average response s/T.
This quantity also has power-law behavior,

S(f}=J TD(T)dT, (3.6a)

to be compared with van der Ziel's formula for exponen-
tial relaxation

unit of energy at the position x at time t, f(x, t ) =5(x, t ).
Thus, the size s of a cluster represents the total energy
dissipated as a consequence of a local disturbance. The
total number of slidings (3.2) at time t (the growth rate
of the cluster) represents the (instantaneous) dissipa-
tion rate, F(t)=If(x, t )dx. The total cluster size

s= F t dt, integrated over the duration of a single

avalanche.
We now consider the response to a situation where the

system is locally perturbed randomly in space and time,
so that the dissipation F(t) is a superposition of the
events above, acting concurrently and independently. We
want to calculate the power spectrum S (f ) of the quanti-
ty F(t) defined by

S(f)= J (F(t o+t)F(to) )exp(2nift)dt, (3.5)

where ( ) represents an average over all times to. In
fact, the power-law distribution of lifetimes, Eq. (3.4),
leads to a power law for S (f), as we now describe.

The idea that a distribution of relaxation times T,
operating simultaneously and independently, can lead to
1/f noise is an old one, originally due to van der Ziel. '

The present context requires a small generalization of the
argument, leading to the following simple formula for the
spectrum expressed in terms of the weighted distribution
function:

S(f)=f TD'(T)/[1+(fT) ]dT=f + (3.6b)

C3

X

10
I I I I I IIIl I

10
t

I I I I III
1G

where O'=T is the distribution of linear relaxation
times, each having the same intensity. To see how these
last two equations are related, consider first the relaxa-
tion due to a single event in a given domain. In general,
the resulting correlation function c (t) is characterized by
two parameters: the duration of the response T and the
total integrated response J c(t)dt:—A. (In fact, in our
simulations, A is just the total slidings s.) For example,
for a linear process, c ( t) = ( A /T)exp( t /T), giving —a
contribution Sz T(f) to the power spectrum of (up to a
numerical constant)

C3

C)

X

10
I I I I I I III I

10
t

I I I I III
10

FIG. 4. Distribution of lifetimes corresponding to Fig. 3. (a}
For the 50X 50 array, the exponent a=0.43 yields a 1/f noise
spectrum f "; (b) 20X20X20 array, a=0.92, yielding an

f '08 spectrum.

Sq T(f)= A/(1+4~f T ) .

The total power spectrum is the (incoherent) sum of these
over all events. Now, the usual van der Ziel argument as-
sumes that A is strictly proportional to T for all events
(i.e., that each event has the same initial effect), which
leads directly to Eq. (3.6b). More generally, A and T
need not be strictly proportional [see Eq. (3.9)]. In our
simulations, since A is simply the total energy dissipated
s, we get

S(f)=QSg T(f)

=fdT T[sD'(T)/T]/(1+4nf T ),
where the quantity in square brackets is just what we
called D(T)=distribution of lifetimes "weighted by the
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average response s/T. " Finally, treating the denomina-
tor as a high-frequency cutoff, we recover the simple ex-

pression Eq. (3.6a).
Thus, the power-law distribution for lifetimes leads irn-

mediately to the 1/f spectrum

C3

S(f)=f P=f

P=1.57 for D =2, P=1.08 for D=3 .
(3.7)

Hence, our prediction that the system must go to a criti-
cal state with power-law spatial correlations and 1/f
noise is fully consistent with the numerical simulations.
The 1/f noise is the temporal signature of the self-similar

properties of the critical state.
The critical state can be approached in a different way,

which shows directly how the 1/f noise represents the
intrinsic dynamics in a stationary dynamic system in the
self-organized critical state. Starting from a flat surface,
z„=0,the slope or pressure is increased by one unit at a
random position (x,y),

z(x,y)~z(x, y)+1 . (3.8)

Then z is increased by one at another position n, and so
on. When z eventually exceeds the critical value z, some-

where, the system evolves according to (3.2) until it be-
comes stable again, and a cluster involving s slidings is
created. After a while the system arrives at a (statistical-
ly) stationary state with clusters of all sizes up to the size
of the system. The system "self-averages" over many
configurations as time progresses, and no resetting is
necessary. The process described here simulates a situa-
tion where the slope increases gradually and takes the
system to the critical point. This has a lot of similarity
with turbulence where energy is fed into the system in a
long-wavelength mode. We find, as before, that energy is
dissipated on all length scales and all time scales. We
shall return to the subject of turbulence in the discussion
section.

Figure 5 shows the distribution of cluster sizes mea-
sured in a 2D system of size 50)&50 after the system ar-
rived at the critical state. The distribution is indistin-
guishable from the one in Fig. 3 obtained from the re-
laxed state, indicating that we are indeed dealing with the
same critical state. The distribution of lifetimes was also
measured and was indistinguishable from that of Fig. 4.
Similar measurements were also performed in a 3D sys-
tem of size 20X20X20 and again the results were indis-
tinguishable from their counterparts in Figs. 3 and 4.
Thus, in a situation where the processes occur indepen-
dently, the system exhibits 1/f noise.

In principle, in an actual physical situation, the build-
up z(x,y)~z(x, y)+1 might take place at a speed which
is so large that the individual processes will overlap, and
the system will go into a state with higher-than-critical
slope. This will cause a cutoff in the time scales over
which 1/f noise occurs. This represents the situation for
a wildly turbulent system. Thus, for 1/f noise to occur
over many orders of magnitude, it is important that the
time scale of the build-up of the critical state is much
larger than the time scales of the measured noise. To
summarize, the 1/f noise may be cut off either by finite-
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FIG. 5. Cluster size distribution for system built up from

scratch according to rules (3.2) and (3.8) for a 50X50 array.
The curve is indistinguishable from that in Fig. 3(a). For this

system the system is in a stationary critical state and it is self-

averaging. Rule (3.8) has been applied 100000 times to the sta-

tionary critical state to obtain this curve.

size effects, or by too rapid flow through the stationary
state.

For a picturesque example, consider a mountain
landscape built from some long-wavelength tectonic plate
motion. When the landscape reaches the critical state,
the landscape will be self-similar, and there will be
avalanches on "all time scales. " Clearly, the geological
time scales involved in building the landscape separate
from all realistic avalanche lifetimes.

The fact that 1/f noise arises from the random super-
position of events can be demonstrated directly. Figure 6
shows the total dissipation as a function of time F(t)
formed by superimposing the time dissipation functions
F„(t)for the evolution of the individual clusters in the
20&(20)&20 system, starting each cluster at a random
time. The curve has the features of a 1/f noise, i.e.,
there are events on all time scales. It is more regular
than white noise, and less regular than a random walk.
Figure 7 shows the power spectrum S(f) of the curve.
Indeed, the log-log plot shows a power-law behavior with
the exponent p=0. 98 as expected from the distribution
of weighted lifetimes. The crossover to white noise at
f= —,', is the same finite-size effect as found for the distri-

bution of lifetimes. The absence of very large clusters
reduces correlations at very low frequencies.

How robust are these results? It is important that our
results be insensitive to randomness to have any chance
to explain 1/f noise in general, since few of the systems
where 1/f noise occurs are simple translational invariant
systems. To test this, we modified our model by intro-
ducing some "quenched randomness. " Specifically, we
removed certain nearest-neighbor connections in the ar-
ray, the disrupted connections being fixed through the
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FIG. 8. Cluster size distribution for 20)(20 array with 10%
of the bonds removed, averaged over 1000 samples. The slope is
—1.0, same as for the pure system.

FIG. 6. F(t) generated by superimposing randomly the
response represented by the individual clusters for a 20X 20)&20
array. Note the fluctuations on a wide range of time scales.

simulation. We found that removing at random as many
at 25% of the bonds still led to power-law distributions.
Figure 8 shows the cluster size distribution for a situation
with 10% of the bonds removed. No change in the ex-
ponent was detected. Whether this is due to true univer-
sality of the exponent, or due to our inability to detect a
small change numerically is not known. Quantitatively,
the presence of this kind of randomness increases the
mean value of the pressure z since fewer nearest neigh-
bors are available to communicate the noise. In the sand
picture, the introduction of impedements causes a build-

The distribution of lifetimes weighted by the average
response D ( T} can then be related to the distribution of
cluster sizes

D(T)=(slT)D[s(T)](ds jdT)

T—
~ p+ & ~&+2& —T— (3.10)

up to a higher slope, by the self-organization process, un-
til criticality is achieved again.

The exponents ~ and a representing the spatial and
temporal evolution of the clusters, respectively, can be re-
lated through "scaling relations. " If the perturbation
grows with an exponent y within the clusters, the lifetime
T of a cluster is related to its size by

(3.9)

The scaling laws

a =2—P= (y+ 1 }r 2y— (3.11)

can be directly read off Eqs. (3.7) and (3.10). Since we
have measured a and ~ independently, we can find the
anomalous growth exponent y from Eq. (3.11),

y=0. 57 for D =2, y'=0. 71 for D =3 . (3.9')

C. Simulations with open boundaries
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FIG. 7. Power spectrum of the function F(t) depicted in Fig.
6. The spectrum is 1/f, varying as f ". The crossover to
white noise at very low frequencies is a finite-size e6ect.

In this set of simulations we consider an "open-ended"
system where particles are transported through the sys-
tem and are allowed to leave the box at the two edges
x =X and y =N. The idea is to simulate a situation
resembling some of the systems known to have 1/f noise.
In the hour glass, sand is transported through the system;
in quasars (and in the case of sunspots) light is transport-
ed through an open-ended system, and in the case of
rivers, water is transported. ' The open-end
configuration is simulated by modifying the first equation
of (3.2) at the boundaries
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z(N, y)~z(N, y) —3,
z(x, N)~z(x, N) 3—,

z (N, N) ~z(N, N) —2,
(3.12)

In D(T)

S(f)=f ~ p=0 95 (3.13)

(To convince himself that this description has some con-
nection with reality, we suggest that the reader study
visually the fluctuating flow of an hour glass and notes
the pulses of widely different time scales. ) We cannot
rule out that the exponent is identical to unity with the
present numerical accuracy.

To test the assertion that the lifetime distribution is
scaling, with cutoff due only to the finite size, we applied
a technique familiar from the study of critical phenomena

when the appropriate value of z exceeds the critical value.
Starting from scratch, the sand pile is built up by adding
particles randomly according to the rule (3.1). After each
particle is added, the system is allowed to relax (if need
be) according to (3.2). The relaxation represents the slid-

ing in the diagonal direction of one particle. In addition
to the boundary conditions (3.12) we also studied a diago-
nally cut system where particles are allowed to leave the
pile along the edge x +y =N, perpendicular to the flow
direction. The results for the two systems were the same.
Again, the process is continuous and no resetting is
necessary. After an initial transient period, we found
that the system reached a statistically stationary state
with clusters of all sizes.

Figure 9 shows the critical sandpile in the diagonal
case. The heights represent the value of the bonds as de-
scribed above. For each cluster, we monitor only the
flow f (t) of sand that falls off the edges of the box. Most
of the time, the relaxation following a single kick results
in no sand falling off the edge, though, of course, on aver-
age one unit of sand falls off for every unit added, once
steady state has been achieved. For those perturbations
which do result in a response, we again form D ( T) as be-
fore Fig.ure 10 shows D(T) for a 2D system of size
75)&75. Again the distribution follows a power law for a
decade or so, this time with exponent equal to unity,
a = 1.05. The distribution on lifetimes translates directly
into a power-law frequency spectrum

2

In(T)

FIG. 10. Lifetime distribution of the sand flow for a system
of size 75 &(75. The straight line has a slope —1.05.

of second-order transitions. At a critical point one ex-
pects D ( T) to obey a finite-size-scaling relation

D(T)=T F(L /T), (3.14)

where F is a crossover scaling function of the single
scaled variable L /T, and o is a dynamical critical ex-
ponent. Similarly, one would expect a scaling relation for
the size s of bulk clusters to obey a relation of the form

D(s)=s 'F'(L /s), (3.15)

where the critical exponent d can be thought of as the
fractal dimension of the clusters. Figure 11 shows the
product D(T)T versus L /T for o =0.75: The points
for different L all fall on the same curve F(x) to within
numerical accuracy. (Actually it would not be surprising
if the scaling was anisotropic —because of the anisotropic
boundary conditions —such that Fwould be a function of
two variables. The exponent found here would then be
the smaller of the two exponents. ) The finite-size-scaling

p{r)T

+L= IO
oL=20
~ L=30
a L=50

FIG. 9. The critical sand pile for a 2D system with open edge
perpendicular to flow.

I 2 3
1

L/T
6 7

FIG. 11. Finite-size-scaling plot.
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conjecture (3.15) was also successfully tested for the
closed boundary case; in this case the scaling cannot be
anisotropic since the dynamics is isotropic. An exponent
of d =1.92 was found for the 2D system. We suggest
that experiments be performed to check the finite-size-
scaling conjecture. This would be a direct proof of spa-
tial organization.

and our simulations may provide an entrance into the
problem of dynamical scale invariance. For instance, we
could measure equal time correlation functions for the
dissipation, S(x)=((f(xo+x, t)f(xo, t))), where (( ))
denotes a spatial average. Because of the scaling proper-
ties of the critical state, we expect

S(x)=x
IV. SUMMARY AND DISCUSSION

To summarize, our general arguments and numerical
simulations show that dissipative dynamical systems with
extended degrees of freedom can evolve towards a self-
organized critical state, with spatial and temporal
power-law scaling behavior. The spatial scaling leads to
self-similar "fractal" structure. The frequency spectrum
is 1/f noise or flicker noise with a power-law spectrum
S(f)=f ~

Thus, in our picture 1/f noise is not noise but reflects
the generic dynamics of extended dynamical systems. We
found values of P tolerably close to one (and certainly be-
tween 0 and 2). It remains to be seen to what extend sys-
tems can be grouped into universality classes within
which the exponents are the same, depending on symme-
try, dimension, and so on. We strongly suspect that the
criticality discovered here cannot depend on the local de-
tails of the models, in analogy with equilibrium second-
order phase transitions.

Moreover, we conclude that 1/f noise is intimately re-
lated to the underlying spatial organization. This can be
tested directly, for instance by measuring the frequency
cutoff versus the system size. In retrospect, it is hard to
see how 1/f noise, with long temporal correlations, could
possibly occur without long-range spatial correlations,
except by "fine-tuning" models with few degrees of free-
dom.

We believe that the concept of self-organized criticality
can be taken much further and might be the underlying
concept for temporal and spatial scaling in dissipative
nonequilibrium systems. One of our models (with closed
boundary conditions} could be considered a toy model of
generalized turbulence, with dissipation correlated on all
length scales. Of course, there is no direct connection
with (for instance) the Navier-Stokes equation, where the
metastability is due to the storage of kinetic energy in
vortices, not potential energy as in the models discussed
here. Nevertheless, there is a one-to-one connection for
the phenomenology used to describe the two situations,

with p the "Kolmogorov exponent" for our "Ising" tur-
bulence model. This equation indicates that the dissipa-
tion at any given instant takes place on a fractal rather
than in the bulk. It would be interesting to calculate this
exponent and compare with experiments on real tur-
bulence.

Another application might be to the problem of the dy-
namics of quenched glasses and spin glasses. These are
frustrated systems far from equilibrium, and it appears
that they have much in common with our three-
dimensional (3D) model. It might be that glasses quench
into critical states where they are just barely stable with
respect to noise, but this speculation has to be developed
further. In fact if one wants to understand 1/f noise in
resistors one probably first has to understand the
"glassy" dynamics of the material forming the resistor.

Finally, we invite the reader to perform the following
home experiment. To demonstrate self-organized criti-
cality, one needs a shoebox and a cup or two of sand—
sugar or salt will do in a pinch. Wet the sand with a
small amount of water, mix, and gather the sand into the
steepest possible pile in one corner of the box. The angle
of repose (i.e., the threshold slope) is larger for wet sand,
so as the water evaporates, one observes a sequence of
slides —some very small, others quite large —occurring
at random places on the pile. (The evaporation process
can be sped up by placing the box on a warm surface, or
under direct sunlight. } This is essentially the situation
analogous to that of Fig. 5 where the slope of the pile is
increased gradually, but instead it is the parameter z,
that is gradually decreasing. This experiment is also ex-
ceptionally portable, and is best done on a sunny day at
the beach.
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