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a b s t r a c t 

Since its inception, the digital currency market is considerably growing, especially in the most recent 

years. The main purpose of this paper is to investigate, assess and detect chaos, randomness, and multi- 

scale temporal correlation structure in prices and returns of this specific virtual and speculative market 

throughout two distinct time periods; namely under a low-level regime period during which prices slowly 

increased, and during a high and turbulent regime time period whereby they exponentially increased. 

We found that chaos is only present in prices during both periods, whilst the level of uncertainty in 

returns has significantly increased during the high-price time period. Furthermore, both prices and re- 

turns exhibit long-range correlations and multi-fractality. The fat-tailed probability distributions are the 

main source of multi-fractality in the time series of prices and returns. Finally, short (long) fluctuations 

in returns are dominant during low (high) price-regime time period, respectively. Overall, the high-price 

regime phase has profoundly revealed consistent nonlinear dynamical patterns in the Bitcoin market. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In econophysics, chaos, randomness and fractality are widely

used alongside nonlinear statistics, to assess efficiency the stylized

facts of time series. For instance, chaos theory has been applied

to monetary [1] , power [2] , labor [3] , international exchange rate

[4–6] , crude oil [7] , stock exchange [8–10] and world major equity,

currency and commodity markets [11,12] . Additionally, randomness

was investigated in world major equity, currency and commodity

markets [11] and their volatilities [12] , in stock exchange [13] , and

currency markets [14] , crude oil [15] and sovereign markets [16] .

Lastly, fractality was investigated in stock [17–20] , gold [21] , elec-

tricity [22,23] , crude oil [24] and shipping markets [25] , yet at a

smaller extent. 

Although the aforementioned econophysics literature has ex-

plored the nonlinear statistical properties in numerous diverse eq-

uity and commodity markets [1–25] , such rigorous investigations

in Bitcoin market are missing to the best of our knowledge. In-

deed, only a limited number of works have been conducted on Bit-

coin market. For instance, long range dependence in Bitcoin market

was examined by means of detrended fluctuation analysis (DFA) in

[26] and by means of rescaled Hurst exponent (R/S) in [27] . It was

found that DFA-based Hurst exponent changes significantly dur-

ing the first years of existence of Bitcoin and tends to stabilize in
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ecent times [26] . Besides, the R/S Hurst statistic indicates strong

nti-persistence in returns of Bitcoin market [27] . 

As the market of digital (virtual) currencies was introduced in

008, Bitcoin market is characterized by highly speculative features

nd by two distinct time periods as shown in Fig. 1 presented in

ection 2 . Indeed, during the first time period (18 July 2010 to 26

ebruary 2013), Bitcoin prices followed a flat movement compared

o the second time period (27 February 2013 to 23 October 2017),

uring which they followed a sharp upward trend. Therefore, the

urpose of the current study is to examine the inherent nonlinear

tatistical properties of this crypto-currency market. 

Indeed, our study makes three contributions to the econo-

hysics literature: the first one stems from our methodological ap-

roach that examines chaos, randomness, and multi-fractality in

rices and in returns of Bitcoin. Without a doubt, by examining

hese three issues, we can shed light on the complexity structure

nderlying Bitcoin market. Our second contribution relates to pro-

iding some stylized facts about the price and returns dynamics of

itcoin disjointedly during time periods of low and high regime

ovements to achieve better understanding of its nonlinear dy-

amics. Finally, the third contribution is about examining not only

ulti-fractality but also its sources. Certainly, both long-range cor-

elations and fat-tail distributions make important contributions to

ulti-fractality in a given time series. Those will be thoroughly in-

estigated in our work. 

Hence our study provides the first attempt to assess the exis-

ence of chaos, randomness, and multi-fractal statistics during low

nd high regime time periods in prices and returns in the Bitcoin

https://doi.org/10.1016/j.chaos.2017.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.11.005&domain=pdf
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Fig. 1. Bitcoin price time series from 18 July 2010 to 23 October 2017. The low regime time period extends from 18 July 2010 to 26 February 2013. The high regime price 

period spans 27 February 2013 to 23 October 2017. Low and high regime periods are respectively characterized by low and high levels in prices. 
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arket. To achieve this, the largest Lyapunov exponent (LLE) [28] ,

hannon entropy ( SE ) [29] , and the multi-fractal detrended fluc-

uation analysis (MF-DFA) [30] are respectively employed to re-

eal chaos, randomness, and multi-fractality. Indeed, LLE is appro-

riate to quantify chaos in nonlinear dynamic systems, SE is suit-

ble to capture randomness in a given time series, and MF-DFA is

 valuable technique for the multi-fractal characterization of non-

tationary signals. 

The remainder of the paper is organized as follows:

ection 2 describes the approaches utilized namely, largest

yapunov exponent, Shannon entropy, and the multi-fractal de-

rended fluctuation analysis. Section 3 describes our dataset and

resents the empirical results. Finally, Section 4 concludes. 

. Methodology 

.1. Largest Lyapunov exponent 

The Lyapunov exponent determines whether a given dynami-

al system has divergent or convergent trajectories. For example,

onsider a noisy chaotic system represented by time series { x t } T t=1 
here: 

 t = f ( x t−L , x t−2 L , . . . , x t−mL ) + ε t (1) 

Herein, L is the time delay, m is the embedding dimension,

noise term, f is an unknown function used to approximate a 

haotic map, and t is time script. Then, the Lyapunov exponent λ
f noisy chaotic system is written as [5] : 

= lim 

M→∞ 

1 

2 M 

log ( v 1 ) (2) 

here v 1 is the largest eigenvalue of the matrix T ′ M 

T M 

and T M 

is

iven by [5] : 

 M 

= 

∏ M−1 

t=1 
J M−1 (3) 

here M ≤ T is the block-length of equally spaced evaluation

oints, and J is the Jacobian matrix of the chaotic map f . The Ja-

obian matrix J at a starting point x 0 is expressed as follows: 

 

t ( x 0 ) = 

d f t ( x ) 

dx 
| x 0 (4) 

A multilayer feed-forward neural network trained with gradient

escent algorithm [5] is able to approximate the chaotic map f as
ollows: 

 t ≈ α0 + 

∑ q 

j=1 
α j A 

(
β0 , j + 

∑ m 

i =1 
βi, j x t−iL 

)
+ ε t (5) 

here q is the number of hidden layers, αj are the layers connec-

ion weights, α0 is the network bias, and A is a sigmoid function

hat processes data. The triplet ( L,m,q ) is set at high values; then

aried so as the largest Lyapunov exponent is obtained [5] . In this

egard, λ≥ 0 indicates that time series possess chaotic dynamics.

n contrary, λ< 0 designates convergence between close trajecto-

ies which means existence of classic attractors. 

.2. Shannon entropy 

In our study, Shannon entropy [29] denoted as SE, is used to

auge the degree of randomness in price and returns time series

f the Bitcoin market. For instance, consider a time series { x t } n t=1 
.

hen, the Shannon entropy is given by: 

E ( x ) = −
∑ n 

y =1 
p i log ( p i ) (6) 

here p i is a discrete probability such that 
∑ 

i 

p i = 1 . For example,

hannon entropy ( SE ) reaches its maximum if all values of the un-

erlying time series { x t } n t=1 
are equally probable. Hence, when SE

pproaches log( n ), the time series is nearly random. Oppositely, SE

eaches a minimum if a single x i is assured to happen, i.e., with

rob ( x i ) = 1. 

.3. Multi-Fractal detrended fluctuation analysis (MF-DFA) 

As an extension to the original detrended fluctuation analysis

DFA) [31] , the multi-fractal detrended fluctuation analysis (MF-

FA) [30] estimates the Hurst exponent of a time series at differ-

nt scales. Let { x k : k = 1,2,…, N } be a time series of length N . A brief

escription of MF-DFA follows. Firstly, the profile Y i ( i = 1,2,…, N ) is

etermined as Y i = 

i ∑ 

k =1 

( x k − x̄ ) , where x̄ is the average of the time

eries x k . Secondly, the obtained profile is divided into N s = int ( N s )

on-overlapping segments (windows) of equal length s. Thirdly, a

east square fit is used to estimate the polynomial local trend for

ach of the 2 N S segments. As a result, the variance F 2 ( s,v ) is cal-

ulated by subtracting the local trend of each sub-interval v (for
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Table 1 

Estimated LLE and SE statistics. 

Low regime time period High regime time period 

Prices 

LLE ( λ) 0.7159 0.4037 

SE 3.7039 3.4517 

Returns 

LLE ( λ) -0.3571 −0.3343 

SE 2.8504 3.1687 

LLE : largest Lyapunov exponent. SE : Shannon entropy 
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v = 1,2,…, N s ). Finally, the q th order fluctuation function F q ( S ) is cal-

culated by averaging over all segments. It is expressed as follows:

F q ( s ) = 

{ 

1 

2 N s 

2 N s ∑ 

v =1 

[
F 2 ( s, v ) 

] q 
2 
} 

1 
q 

, q 	 = 0 (7)

F q ( s ) = exp 

{ 

1 

4 N s 

2 N s ∑ 

v =1 

ln 

[
F 2 ( s, v ) 

]} 

, q = 0 (8)

Accordingly, a negative parameter q yields to an enhancement

of small fluctuations, whilst a positive one yields to an enhance-

ment of large fluctuations. In particular, the scaling behaviour F q ( s )

increases for large values of s when the series x k are long range

power law correlated. In this regard, the power law is expressed

as follows: 

F q ( s ) ∼ s h ( q ) (9)

where h ( q ) represents the generalized Hurst exponent of MF-DFA

for a given scale q . Usually, the generalized Hurst exponent h ( q )

can be estimated by running the following linear regression: 

log ( F q ( s ) ) = log ( A ) + h ( q ) log ( s ) (10)

As a result, if h ( q ) is independent of q the original series, x k is

mono-fractal and characterized by a single exponent over all time

scales. On the contrary, if h ( q ) is dependent on q , the original series

x k is multi-fractal as h ( q ) varies with scale q . 

Aside from h ( q ), the multi-fractal spectrum distribution of the

underlying time series can as well be described by the standard

multi-fractal mass function τ ( q ) or by the singularity spectrum

f ( α). Indeed, the multi-fractal mass function τ ( q ) is given by: 

τ ( q ) = qh ( q ) − 1 (11)

Afterwards, the singularity spectrum f ( α) is obtained by apply-

ing the Legendre transform: 

f ( α) = qα − τ ( q ) (12)

with, 

α = 

dτ

dq 
(13)

where α is the is the singularity exponent (Hölder exponent) and

f ( α) represents the dimension of the subset of the series distin-

guished by α [32] . The range of exponents present in the underly-

ing time series, is represented by the width of the spectrum such

as the bigger is the width of α ( �α = αmax −αmin ) the more are vi-

olent data fluctuations. Clearly speaking, broad spectrum indicates

high degree of multi-fractality. 

Finally, to further examine any underlying nonlinear dynam-

ics in prices and returns of the Bitcoin market, two other sources

of multi-fractality are investigated. These two common sources of

multi-fractality explicitly include a) the long-range temporal corre-

lations in short and long fluctuations, and b) the fat-tailed prob-

ability distributions. In this regard, the fractal spectrum widths

( �α) of shuffled and surrogate data are calculated. It is worth not-

ing that, randomly shuffling original data allows destroying tem-

poral correlations while preserving the distribution of events. Be-

sides, constructing surrogate data by phase randomization of the

original series, allows eliminating nonlinearities while preserving

the original power spectrum as well as changing the distribution.

In this study, we adopt the surrogate approach based on the pop-

ular amplitude adjusted Fourier transform as in [33] , wherein the

parameter q ranges between −20 and 20. Also, asymmetry in sin-

gularity spectrum f ( α) is investigated. For instance, the widths of

the left part ( �α( q > 0)) and the right part ( �α( q 〈 0)) of f ( α)

spectrum are computed. Recall that �α( q 〉 0) = α0 −αmin and

�α( q < 0) = αmax −α0 , where α0 corresponds to the maximum of

f ( α) for the original series. 
. Data and results 

Bitcoin daily price time series are obtained from [34] in US dol-

ars, as Bitcoin in such currency is the most traded one. The data

ample ranges from 18 July 2010 to 23 October 2017, yielding to

655 observations. Fig. 1 exhibits Bitcoin price time series from 18

uly 2010 to 23 October 2017. Accordingly, two distinct regime time

eriods are identified. The first one is the low regime time period

uring which, price levels are significantly low. It spans from 18

uly 2010 to 26 February 2013. The second one is the high regime

eriod during which price levels are remarkably high, and spans

rom 27 February 2013 to 23 October 2017. Although, during the

ow regime time period, the Bitcoin price levels are low, one can

bserve that the price relatively evolves through time following an

pward trend as shown in Fig. 2 wherein the low regime time pe-

iod is solely exhibited. 

Extensive nonlinear analysis is applied to both price and return

ime series. In this regard, return series are computed as the first

ifference of the logarithmic prices. For instance, if p t is the price

t time t , then the daily price return is r t = log( p t ) − log( p t-1 ). The

stimated nonlinear statistics, namely the largest Lyapunov expo-

ent (LLE) and Shannon entropy (SE) are all presented in Table 1 ,

oth for the low and high-price regime periods. As shown, the LLE

s positive for prices during both low and high regime, whilst it

s negative for return series during both time periods. Thus, the

rices of Bitcoin exhibit chaotic dynamics during both time pe-

iods. Instead, the returns of Bitcoin are not chaotic during both

eriods. Moreover, according to Table 1 , the level of uncertainty

aptured by SE is high for both prices and returns as the corre-

ponding SE values are far away from zero during both low and

igh regime time periods. In particular, it is interesting to observe

hat uncertainty in returns increased during the high-price regime

ample, in other words, less information was carried over during

his sub-period. This issue can be further rationalized by the highly

peculative behaviour of the Bitcoin market. 

Figs. 3 and 4 display the log-log plot of fluctuation F q ( s ) ver-

us s for negative and positive values of q, respectively for prices

nd returns throughout both regimes. For all series, the scaling be-

aviour of the F q ( s ) converges with an increasing pattern to s in

he low as well as during the high regime time period. Therefore,

he auto-correlated behaviour vis-à-vis both price and return time

eries, are scale dependent. 

Next, Fig. 5 exhibits the generalized Hurst exponent h ( q ) as a

unction of order q for prices and returns throughout low- and

igh-price time periods. As shown, for both prices and returns, h ( q )

s high for negative values of q and is small for positive values of q .

n other words, h ( q ) decreases with order q . Therefore, short fluctu-

tions (where q < 0) exhibit high scaling exponents, and large fluc-

uations (where q > 0) exhibit low scaling exponents in both se-

ies all through low and high regime periods. Hence, prices and

eturns of Bitcoin demonstrate a strong degree of multi-fractality

uring both phases. Particularly, the level of h ( q ) is largely more

ell-pronounced in prices than in return series throughout both

eriods. In particular, the behaviour of the multi-fractal mass
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Fig. 2. Evolution of the price level during the low regime time period, i.e., 18 July 2010–26 February 2013. 

Fig. 3. Log-log plot of F q ( s ) versus s ( −20 ≤ q ≤ 20) during low and high regime time periods: Price time series. 
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unction τ ( q ) as a function of q is plotted in Fig. 6 . As shown,

here is strong evidence of the presence of multi-fractal patterns

n prices and returns of the Bitcoin market during both time peri-

ds, as the curves of τ ( q ) seem to be straight lines when scale q

s negative and also when it is positive. Importantly, for negative

cales multi-fractality is stronger in the returns than in price se-

ies. On the contrary, for positive scales multi-fractality is stronger

n prices than in returns. In other words, complexity in short fluc-

uations of returns is higher than that of prices, and complexity in

ong fluctuations of prices is higher than that of returns! 

Finally, Table 2 presents the singularity spectra parameters ob-

ained by MF-DFA for both low and high regime periods. The

pread ( �α) of singularity spectrum of prices is larger during the

ow regime. Similarly, the spread of singularity spectrum of returns
s larger during the low regime time period than in the high one.

herefore, prices and returns exhibit stronger multi-fractality dur-

ng low than high regime periods. Besides, it is evident that for

oth periods, the shuffled price time series demonstrate a lower

α than the original price series. This surely indicates that serial

orrelation significantly influences the strength of the multi-fractal

pectrum in prices. Similarly, serial correlation significantly influ-

nces the strength of the multi-fractal spectrum in returns as shuf-

ed return time series present a lower �α than the original ones.

bove and beyond, surrogate time series of returns have higher

α than the original return series during both time periods. This

nding indicates that the presence of fat-tails in the original re-

urn series yields to narrow spectrum width. Also, it is found that

he �α of the surrogate prices is lower (higher) than that of the
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Fig. 4. Log-log plot of F q ( s ) versus s ( −20 ≤ q ≤ 20) during low and high regime time periods: Returns time series. 

Fig. 5. Plot of generalized Hurst exponent h ( q ) as a function of q during low and high regime time periods for price and return tie series. 
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original prices during the low (high) regime respectively. Hence,

the presence of fat-tails in the original price data yields to narrow

spectrum width of prices during the high-level regime. 

Additionally, the asymmetry in spectrum f ( α) is examined. For

the original price time series, it was found that �α( q > 0) is

lower than �α( q < 0) during both low and high regime time pe-
iods. In other words, the spectrum f ( α) of the original prices is

eft-skewed. Therefore, short fluctuations in prices are dominant

hroughout both periods. Also for the original return series, it was

ound that during the low regime period �α( q > 0) is lower than

α( q < 0). This points towards the evidence of dominance of short

uctuations in returns during the low regime time sample. On
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Fig. 6. Mass spectrum τ ( q ) as a function of q during low and high regime time periods for price and return series. 

Table 2 

Estimated parameters of singularity spectra. 

Low regime time period High regime time period 

�α �α ( q < 0) �α ( q > 0) �α �α ( q < 0) �α ( q > 0) 

Prices 

Original data 2.8435 2.1824 0.6611 1.4704 0.7797 0.6907 

Shuffled data 0.2816 0.1506 0.1309 0.4208 0.2365 0.1843 

Surrogate data 1.4 4 47 1.0517 0.3930 1.7075 1.088 0.6195 

Returns 

Original data 0.9810 0.6399 0.3411 0.6481 0.3028 0.3452 

Shuffled data 0.4464 0.2340 0.2124 0.3786 0.2080 0.1706 

Surrogate data 1.4587 1.0894 0.3692 1.5902 1.2115 0.3786 
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he contrary, during the high regime period �α( q > 0) is larger

han �α( q < 0) which indicates that the associated spectrum f ( α)

s rightly-skewed. Consequently, long fluctuations in returns are

ominant during the high regime period. Overall, for both prices

nd returns and throughout both time periods, �α( q > 0) is lower

han �α( q < 0) for shuffled and surrogate data. 

To sum-up, we examined chaos, randomness, and multi-fractal

roperties for the Bitcoin market throughout two different time

eriods: low and high regime time periods. The first one is mostly

haracterized by moderate increase in prices, whilst the second by

n exponential increase in prices. Our findings include the follow-

ng important information: firstly, Bitcoin prices reveal chaotic dy-

amics through both low and high regime time periods. Instead,

heir returns are not chaotic during those particular periods. Sec-

ndly, the level of uncertainty in prices and returns is high during

oth periods. In addition, uncertainty in returns increased during

he high regime. The aforementioned results could be explained

y the significant increase in speculative trading in Bitcoin mar-

et. Thirdly, the behaviour of F q ( s ) indicates that auto-correlated

ynamics in both prices and returns are scale-dependent. In other

ords, prices and returns exhibit multi-fractality. Indeed, the gen-

ralized Hurst exponent and the characteristics of the mass func-

ion both confirm the presence of multi-fractality in returns and

rices. In particular, we showed a strong evidence that for negative

cales multi-fractality is stronger in return series than in price se-

a  
ies, whilst for positive scales, multi-fractality is stronger in prices

han in returns. Fourthly, fat-tails is the main source of multi-

ractality in prices and returns during both low and high regime

eriods. Fifthly, there is strong evidence towards the dominance of

hort fluctuations in returns during the low-price (regime), as op-

osed to long fluctuations in returns which appear dominant dur-

ng the high regime sample. We indicated that the high regime

eriod has revealed profound shaped and consistent nonlinear pat-

erns for the Bitcoin market. 

. Conclusion 

We studied chaos, randomness and multi-fractal stylized prop-

rties of price and returns in Bitcoin market, via the utilization and

stimation of the largest Lyapunov exponent, Shannon entropy, and

he generalized Hurst exponent, also by derivation of singularity

pectrums during low and high regime (price) time periods. Our

mpirical results showed that, as opposed to returns, prices incor-

orate and exhibit chaotic dynamics. Additionally, uncertainty level

n returns significantly increased during the high-price regime pe-

iod. Furthermore, there is strong evidence of multi-fractality in

rices and returns throughout both investigated periods. It was

hown that multi-fractality in prices and returns is mainly due to

at-tailed distributions. Finally, short (long) fluctuations in returns

re dominant during the low (high) regime time period respec-
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tively. Overall, we concluded that the high-price level regime pe-

riod has strongly revealed nonlinear dynamical patterns in the Bit-

coin market. 

References 

[1] Barkoulas JT . Testing for deterministic monetary chaos: metric and topological

diagnostics. Chaos Solitons Fractals 2008;38(4):1013–24 . 
[2] Bigdeli N , Afshar K . Chaotic behavior of price in the power markets with

pay-as-bid payment mechanism. Chaos Solitons Fractals 2009;42:2560–9 . 
[3] Olmedo E . Is there chaos in the Spanish labour market? Chaos Solitons Fractals

2011;44:1045–53 . 
[4] Çoban G , Büyüklü AH . Deterministic flow in phase space of exchange rates:

Evidence of chaos in filtered series of Turkish Lira–Dollar daily growth rates.

Chaos Solitons Fractals 2009;42:1062–7 . 
[5] BenSaïda A , Litimi H . High level chaos in the exchange and index markets.

Chaos Solitons Fractals 2013;54:90–5 . 
[6] Lahmiri S . Investigating existence of chaos in short and long term dynamics of

Moroccan exchange rates. Physica A 2017;465:655–61 . 
[7] Lahmiri S . A study on chaos in crude oil markets before and after 2008 inter-

national financial crisis. Physica A 2017;466:389–95 . 
[8] Serletis A , Shintani M . No evidence of chaos but some evidence of dependence

in the US stock market. Chaos Solitons Fractals 2003;17:449–54 . 

[9] Niu H , Wang J . Complex dynamic behaviors of oriented percolation-based
financial time series and Hang Seng index. Chaos Solitons Fractals

2013;52:36–44 . 
[10] Lahmiri S . On fractality and chaos in Moroccan family business stock returns

and volatility. Physica A 2017;473:29–39 . 
[11] Lahmiri S , Uddin GS , Bekiros S . Nonlinear dynamics of equity, currency and

commodity markets in the aftermath of the global financial crisis. Chaos Soli-

tons Fractals 2017;103:342–6 . 
[12] Lahmiri S , Bekiros S . Disturbances and complexity in volatility time series.

Chaos Solitons Fractals 2017;105:38–42 . 
[13] Zunino L , Zanin M , Tabak BM , Pérez DG , Rosso OA . Forbidden patterns, permu-

tation entropy and stock market inefficiency. Physica A 2009;388:2854–64 . 
[14] Wang GJ , Xie C , Han F . Multi-scale approximate entropy analysis of foreign

exchange markets efficiency. Syst. Eng. Proced. 2012;3:201–8 . 

[15] Martina E , Rodriguez E , Escarela-Perez R , Alvarez-Ramirez J . Multiscale entropy
analysis of crude oil price dynamics. Energy Econom. 2011;33:936–47 . 

[16] Zunino L , Fernández Bariviera A , Belén Guercio M , Martinez LB , Rosso OA . On
the efficiency of sovereign bond markets. Physica A 2012;391:4342–9 . 
[17] Cajueiro DO , Tabak BM . Multifractality and herding behavior in the Japanese
stock market. Chaos Solitons Fractals 2009;40:497–504 . 

[18] Lee M , Wook Song J , Hwan Park J , Chang W . Asymmetric multi-fractality in
the U.S. stock indices using index-based model of A-MFDFA. Chaos Solitons

Fractals 2017;97:28–38 . 
[19] Cao G , Xu W . Multifractal features of EUA and CER futures markets by using

multifractal detrended fluctuation analysis based on empirical model decom-
position. Chaos Solitons Fractals 2016;83:212–22 . 

[20] Lahmiri S . Long memory in international financial markets trends and short

movements during 2008 financial crisis based on variational mode decompo-
sition and detrended fluctuation analysis. Physica A 2015;437:130–8 . 

[21] Mali P , Mukhopadhyay A . Multifractal characterization of gold market: a mul-
tifractal detrended fluctuation analysis. Physica A 2014;413:361–72 . 

22] Wang F , Liao G-p , Li J-h , Li X-c , Zhou T-j . Multifractal detrended fluctua-
tion analysis for clustering structures of electricity price periods. Physica A

2013;392:5723–34 . 

23] Kracík J , Lavi ̌cka H . Fluctuation analysis of high frequency electric power load
in the Czech Republic. Physica A 2016;462:951–61 . 

[24] Gu R , Chen H , Wang Y . Multifractal analysis on international crude oil
markets based on the multifractal detrended fluctuation analysis. Physica A

2010;389:2805–15 . 
25] Chen F , Tian K , Ding X , Miao Y , Lu C . Finite-size effect and the components of

multifractality in transport economics volatility based on multifractal detrend-

ing moving average method. Physica A 2016;462:1058–66 . 
26] Bariviera AF , Basgall MJ , Hasperué W , Naiouf M . Some stylized facts of the

Bitcoin market. Physica A 2017;484:82–90 . 
[27] Urquhart A . The inefficiency of Bitcoin. Econom. Lett. 2016;148:80–2 . 

[28] Peinke J , Parisi J , Rossler OE , Stoop R . Encounter with chaos. Springer-Verlag;
1992 . 

29] Shannon CE . A mathematical theory of communication. Bell Syst. Tech. J.

1948;27:379–423 623-656 . 
[30] Kantelhardt JW , Zschiegner SA , Koscielny-Bunde E , Havlin S , Bunde A , Stan-

ley HE . Multifractal detrended fluctuation analysis of nonstationary time se-
ries. Physica A 2001;316:87–114 . 

[31] Peng C-K , Buldyrev SV , Havlin S , Simons M , Stanley HE , Goldberger AL . Mosaic
organization of DNA nucleotides. Phys. Rev. E 1994;4 9:16 85–9 . 

[32] Ashkenazy Y , Baker DR , Gildor H , Havlin S . Nonlinearity and multifractality of

climate change in the past 420,0 0 0 years. Geophys. Res. Lett. 2003;30:2146–9 .
[33] Theiler J , Eubank S , Longtin A , Galdrikian B , Doyne Farmer J . Testing for nonlin-

earity in time series: the method of surrogate data. Physica D 1992;58:77–94 . 
[34] http://www.coindesk.com/price/ . 

http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0001
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0001
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0010
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0010
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0012
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0012
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0012
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0013
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0013
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0013
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0013
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0013
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0013
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0017
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0017
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0017
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0019
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0019
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0019
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0020
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0020
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0023
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0023
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0023
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0024
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0024
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0024
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0024
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0029
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0029
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30460-5/sbref0033
http://www.coindesk.com/price/

	Chaos, randomness and multi-fractality in Bitcoin market
	1 Introduction
	2 Methodology
	2.1 Largest Lyapunov exponent
	2.2 Shannon entropy
	2.3 Multi-Fractal detrended fluctuation analysis (MF-DFA)

	3 Data and results
	4 Conclusion
	 References


