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The coexistence of coherent and incoherent dynamics in a pop-
ulation of identically coupled oscillators is known as a chimera 
state1,2. Discovered in 20023, this counterintuitive dynami-
cal behaviour has inspired extensive theoretical and experi-
mental activity4–15. The spiral wave chimera is a particularly 
remarkable chimera state, in which an ordered spiral wave 
rotates around a core consisting of asynchronous oscillators. 
Spiral wave chimeras were theoretically predicted in 200416 
and numerically studied in a variety of systems17–23. Here, we 
report their experimental verification using large populations 
of nonlocally coupled Belousov–Zhabotinsky chemical oscil-
lators10,18 in a two-dimensional array. We characterize previ-
ously unreported spatiotemporal dynamics, including erratic 
motion of the asynchronous spiral core, growth and splitting 
of the cores, as well as the transition from the chimera state to 
disordered behaviour. Spiral wave chimeras are likely to occur 
in other systems with long-range interactions, such as cortical 
tissues24, cilia carpets25, SQUID metamaterials26 and arrays of 
optomechanical oscillators9.

Experiments were carried out with a network of up to 1,600 pho-
tosensitive chemical oscillators, arranged in a 40 ×​ 40 grid, photo-
chemically coupled by specific illumination of each oscillator. The 
discrete micro-oscillators are catalyst-loaded ion-exchange beads, 
placed in catalyst-free Belousov–Zhabotinsky (BZ) solution10,18. 
The experimental set-up (Fig. 1a) allowed the current state of each 
micro-oscillator to be monitored by using a camera to record its flu-
orescence intensity, which is linearly dependent on the concentra-
tion of the reduced form of the catalyst, +Ru(dmbpy)3

2  (see Methods 
and Supplementary Section 'Experimental Setup'). The light inten-
sity projected onto each oscillator was independently controlled 
using a spatial light modulator (SLM). The initial conditions for the 
experiment were set by individually forcing each oscillator with a 
periodic illumination intensity to align all of the oscillator phases to 
a desired phase distribution containing a phase singularity17. Once 
the desired phase alignment was attained, light-mediated nonlocal 
coupling was initiated between the oscillators in the network based 
on their state according to equation (1):
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The light intensity projected on oscillator (j, k), at the centre of a 
square region of side length 2l +​ 1, is Ij,k. It is linearly dependent 
on the difference between the grey values gj,k and gm,n of oscillator  
(j, k) and the other oscillators (m, n) in the square region at times t 
and (t −​ τ), respectively (see Methods). This difference is weighted 
with a nonlocal coupling kernel that decays exponentially with  

distance = − + −r m j n k( ) ( )2 2  between oscillators (j, k) and (m, 
n). Parameters κ and K determine the coupling range and coupling 
strength3, respectively, and I0 is the background illumination inten-
sity. The time delay τ plays a role similar to the phase frustration 
parameter in the Kuramoto model2,7.

A spiral wave chimera exhibiting the characteristic coexistence 
of coherent and incoherent oscillators is shown in Fig. 1, with an 
ordered spiral wave rotating around a core made up of asynchro-
nous oscillators. Figure 1b shows a snapshot of the grey values and 
Fig. 1c shows the phase of each oscillator determined from the grey 
values. The periods of the incoherent oscillators in the core and the 
coherent oscillators in the spiral wave are plotted in Fig. 1d. For a 
time delay of τ =​ 2.0 s, the rotation period Tspiral of the spiral arm is 
larger than the spatially averaged period Tcore of the core oscillators. 
In contrast, at lower values of τ =​ 1.0 s (Fig. 2b), the rotation period 
Tspiral is smaller than Tcore. The space–time plot in Fig. 1e shows the 
spiral wave propagating out from the asynchronous core along the 
cross-section j =​ 20 in Fig. 1b during approximately five rotational 
periods of the spiral. The disordered core region exhibits a low 
degree of synchronization, as measured by the two-dimensional 
local Kuramoto order parameter Rj,k, defined as
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where φm,n represents the phases of oscillators (m, n) in a square 
region of side length 2δ +​ 1 with oscillator (j, k) in the centre. We 
define a region of oscillators as asynchronous or incoherent in terms 
of the local order parameter, with Rj,k <​ 0.4; the value of Rj,k in these 
regions, however, is typically lower. Over the course of the experi-
ment, the core expands at ~300 s after its formation, doubling its 
size from ~20 to ~40 oscillators, and drifts until it collides with the 
upper boundary of the oscillator array and disappears at 1,040 s, or 
approximately 30 rotational periods (Supplementary Video 2).

Figure 2a–c shows the behaviour of a spiral wave chimera with a 
smaller value of time delay, τ =​ 1.0 s. The erratic motion of the core 
can be characterized from the grey value data by calculating the tra-
jectory of the core centre, defined as the location where the local 
order parameter Rj,k reaches its weighted minimum value within the 
core (see Methods). A typical trajectory is shown in Fig. 2c. This 
erratic motion is in contrast to rigid or compound rotation known 
for spiral waves in reaction–diffusion systems27.

With increasing delay time, τ =​ 5.0 s, the core of the spiral wave 
chimera increases in size and eventually becomes unstable, leading 
to splitting of the core of asynchronous oscillators. An experimental 
example of core splitting in a spiral wave chimera is displayed in 
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Fig. 2d–f, where a single core sequentially splits to form the three 
cores depicted in the image. Figure 2d shows the phases of the oscil-
lators, Fig. 2e gives the period of each oscillator and Fig. 2f shows 
the local order parameter, illustrating the low order associated with 
each spiral wave chimera core.

Further insights into the BZ spiral wave chimera can be 
gleaned from numerical simulations based on the ZBKE model28 
of the BZ reaction, modified to describe the discrete photosensi-
tive BZ oscillator system10. Using the coupling scheme given by 
equation (1), the simulations generate spiral wave chimeras that 
are in excellent agreement with those found in the experiments 
(Supplementary Fig.  1). The simulations also provide informa-
tion on the transition from relatively simple spiral wave chimera 
behaviour, such as that shown in Fig. 1, to more complex behav-
iour and ultimately to asynchronous behaviour as the value of 
time delay τ is increased.

Figure 3a shows the dependence of Tspiral and Tcore on the delay 
time τ with all other model parameters held constant. Up to a delay 
time of τ ≈​ 6.3, the value of Tspiral increases approximately linearly 
while Tcore remains relatively constant. This is in agreement with the 
experimental behaviour, as previously mentioned, shown in Figs. 1d 
and 2b. Also shown in Fig. 3a is the fraction of the oscillator array 
that is made up of asynchronous oscillators as a function of τ. As τ 
increases we observe a sharp increase in the fraction of asynchro-
nous oscillators for τ ≥​ 5.9.

Figure 3b–i shows the time evolution of spiral wave chimeras for 
two values of τ in an array of nonlocally coupled BZ oscillators. The 
local order parameter Rj,k at successive times is shown in Fig. 3b–e 
for τ =​ 6.2. The core of the spiral wave chimera first increases in 
size and then splits into two cores. This process of core splitting 
continues until the domain is filled with spiral wave chimeras. 
The long-time behaviour is persistent but dynamic, as each spiral 
wave chimera core exhibits erratic movement and shape fluctua-
tions. Spiral wave chimeras may also disappear on collision of the 
chimera core with a boundary (Supplementary Section ‘Boundary 
conditions’).

Figure 3f–i shows the very rapid growth of the core of a spiral 
wave chimera for larger delay time, τ =​ 6.6, until asynchronous 
oscillators dominate the domain. Figure 3i shows the behaviour at 
t =​ 1,740, which can be compared with the behaviour at t =​ 1,660 in 
Fig. 3c for τ =​ 6.2. At the higher value of τ, the expansion of the core 
is sufficiently rapid that core splitting events are apparently not pos-
sible. In other simulations, with the distribution of oscillator peri-
ods having the same standard deviation but being generated with 
a different random number seed, we found the same qualitative 
behaviour but with small quantitative shifts in the ranges of specific 
behaviours.

The process of a core of unsynchronized oscillators splitting into 
multiple cores involves the spontaneous formation of ordered, syn-
chronized regions inside the core. These synchronized regions give 

Projector

Computer

Neutral
filter

Reactor with
chemical oscillators

Fluorescence
filter

Camera

40

40

1.0

0.5

0.0

1.0

0.5

0.0

30

30

20k

j

j

20

10

10
1

40

30

20k

10

1

40

30

20k

10

1

40

30

20k

10

1
500 575

t (s)

650

1

40

30

25

20
3020101

j

403020101

2 л

0

л

a b

edc

Fig. 1 | Experimental set-up and spiral wave chimera. a, The camera records fluorescent light (λ >​ 500 nm) emitted by the reduced form of the BZ catalyst 
( +Ru(dmbpy)3

2 ). The grey values corresponding to the concentration of the oxidized catalyst ( +Ru(dmbpy)3
3 ) are used to determine the illumination 

intensity Ij,k of oscillator (j, k) according to equation (1) (see Methods). The projector (Casio XJ-A140V) is fitted with 24 GaN laser diodes that illuminate 
at λ =​ 440 nm. b, Grey values of spiral wave chimera in an array of N =​ 1,600 photochemically coupled BZ oscillators (Supplementary Videos 1 and 2). 
The spiral rotates with period Tspiral =​ 33 s around the incoherent core consisting of approximately 40 phase-randomized oscillators. The image was taken 
700 s after initiation of the spiral wave chimera. c, Oscillator phases obtained from the grey values in b. The instantaneous phases are calculated by linear 
interpolation between two consecutive peaks in the grey value time series. d, Period of the oscillators in b, illustrating that the spiral wave oscillators are 
approximately frequency-synchronized and phase-entrained in the rotating spiral wave, while the aperiodic core oscillators exhibit shorter periods. e, 
Space–time plot of the spiral wave chimera from measurements along the cross-section j =​ 20 in b, during five rotational periods of the spiral. The colour 
code indicates the value of the local order parameter calculated according to equation (2) with δ =​ 2, and the level of brightness indicates the grey values 
as in b. The spiral core exhibits size fluctuations and undergoes erratic motion. Coupling parameters: K =​ 0.08, κ =​ 3.1, τ =​ 2.0 s, I0 =​ 0.06 mW cm–2, l =​ 4. 
Initial reactant concentrations: [H2SO4]0 =​ 0.77 M, [NaBrO3]0 =​ 0.51 M, [NaBr]0 =​ 0.08 M, [malonic acid]0 =​ 0.16 M. Average natural period and standard 
deviation: T0 =​ 85.7 ±​ 8.3 s.
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Fig. 2 | Core dynamics of spiral wave chimera. Experimental results for τ =​ 1.0 s (upper row) and τ =​ 5.0 s (bottom row). a, Oscillator phases of the spiral 
wave chimera (Supplementary Video 3). b, Period of oscillators in a, where the core oscillators have a mean period Tcore of ~40 s, and the oscillators in the 
spiral arm exhibit a period Tspiral of ~30 s. c, Kuramoto local order parameter Rj,k showing the core with low order for the spiral wave chimera depicted in a. 
Erratic movement of the core is indicated by the white line representing the trajectory of the location with minimum local order parameter Rj,k (equation 
(2)). The initial core location is shown by the white circle with a central black dot. d, Oscillator phases showing growth and instability of a spiral wave 
chimera leading to core splitting (Supplementary Video 4). e, Period of oscillators in d, where the period in each core is shorter than the period of the 
oscillators surrounding the core. f, Kuramoto local order parameter Rj,k showing the separated cores with low order for the spiral wave chimeras depicted 
in d, as well as the trajectories of each core after a splitting event. Experimental parameters are as in Fig. 1. Average natural period and standard deviation: 
T0 =​ 54.8 ±​ 1.4 s (a–c) and T0 =​ 84.8 ±​ 8.1 s (d–f).
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Fig. 3 | Splitting of spiral wave chimera cores and transition to incoherence. a, Simulations showing the dependence on the delay time τ of the time-averaged 
period of the spiral wave oscillators, Tspiral (solid black line), the relatively constant time-averaged period of the incoherent core oscillators, Tcore (solid grey line), 
and the time-averaged fraction of the network made up of incoherent oscillators, Acore (dashed grey line). The value of Acore is given by the relative number 
of oscillators with the local order parameter Rj,k <​ 0.4. The sharp increase in the fraction of the oscillators exhibiting asynchronous behaviour can be seen 
in the salmon-coloured region of the plot. The simulations were carried out with a 64 ×​ 64 oscillator array using the ZBKE model modified to describe the 
photosensitive BZ oscillator system (see Supplementary Section ‘Numerical Models’). b–e, Numerical simulations of splitting and growth of the spiral wave 
chimera (Supplementary Video 5). An initially small spiral wave chimera in the centre of the network undergoes growth and then splitting. Each new core is 
capable of further growth and splitting. In e, the long-term behaviour is dynamical in nature, with small spiral wave chimeras filling the domain, but with each 
in continuous motion and exhibiting shape fluctuations. The local order parameter Rj,k is shown in b–e at times 250, 1,660, 2,219 and 8,500. f–i, An initially 
small spiral wave chimera grows rapidly without splitting until it eventually occupies the majority of the network (Supplementary Video 6). The local order 
parameter Rj,k is shown in f–i for times 250, 520, 750 and 1,740, respectively. The time delay for b–e is τ =​ 6.2 and for f–i is τ =​ 6.6. Average natural period and 
standard deviation: T0 =​ 36.0 ±​ 1.6 (All times t, delay times τ and periods T0 are dimensionless from the non-dimensionalized ZBKE model.).
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rise to core splitting into separate cores as well as to the initiation 
of new wave segments. Careful examination of the time evolution 
of the spiral wave chimera core splitting reveals that topological 
charge29 is preserved in the process (Supplementary Section ‘Spiral 
wave chimera core splitting’).

The phase response curves (PRCs) for both the experimental 
and model systems provide insights into the transient order in the 
core (Supplementary Fig. 4). The PRC displays the features of the 
relaxation oscillations exhibited by the BZ reaction. Oscillators with 
phases that are in the region ranging from approximately π​ to 2π​ fire 
immediately when sufficiently perturbed, creating transient local-
ized phase alignment.

Our studies suggest that the spiral wave chimeras, core expan-
sion and core splitting observed in the BZ system are likely to be 
found in a range of other systems with the common properties of 
immediate firing following a perturbation and long-range inter-
actions. For example, we have found similar spiral wave chimera 
behaviour, with core splitting and the transition to predominantly 
asynchronous behaviour, in populations of nonlocally coupled 
FitzHugh–Nagumo oscillators (Supplementary Fig. 3). The PRC for 
the FitzHugh–Nagumo system resembles the PRC of the BZ system 
and ZBKE model, with an immediate firing region (Supplementary 
Fig. 4). Pulse coupled oscillator models of neuronal systems can also 
have immediate firing dynamics30, suggesting that certain neuronal 
networks might exhibit spiral wave chimera behaviour similar to 
that described here. Other possible systems where these behaviours 
might be found include biological tissues24,25 and arrays of physical 
oscillators9,26.
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Methods
Experiments. The chemical micro-oscillators used in this study are catalyst-loaded 
cation-exchange beads in a catalyst-free BZ reaction mixture10,18,31–33. To increase 
oscillator homogeneity, the particles (DOWEX WX4 100–200, diameters 75–150 μ​m)  
were sieved to obtain a narrow size distribution of 106–112 μ​m. The ruthenium-
tris-dimethylene-bipyridine ( +Ru(dmbpy)3

2 ) catalyst was slowly added to 5.0 ml 
water containing 1.0 g of doubly-sieved beads and stirred with a vortex mixer for 
one day. For storage purposes the beads were filtered and dried. The dimethylene 
ligands of the ruthenium complex lead to greater stability of the catalyst in the 
bead–polymer matrix. The beads were wetted with a water–methanol solution 
and distributed onto wells of depth 150 μ​m drilled into an acrylic plate. Once 
the solution had evaporated, silica hydrogel and surfactant (Triton X-100) were 
applied to the surface in a spray. The acrylic glass, with an array of 2,816 chemical 
oscillators, was mounted in a thermostatted reactor, and 1,600 oscillators were 
selected that fell in a narrow period distribution. The oscillators were sufficiently 
separated (400 μ​m) to exclude diffusive coupling. Each oscillator was individually 
illuminated with a light intensity based on the oxidation state of oscillators in its 
neighbourhood, according to equation (1). The coupling was updated every 1.0 s.

Grey value. The fluorescence of the reduced catalyst ( +Ru(dmbpy)3
2 ) was 

monitored in the experiments, giving its concentration. However, the sharp rise 
in the leading edge of the spiral wave occurs with an increase of the oxidized 
catalyst ( +Ru(dmbpy)3

3 ) corresponding to the oscillators firing. Because 
the sum of the concentrations of the two forms of the catalyst is a constant, 
[Ru(ii)] +​ [Ru(iii)] =​ total catalyst, we can obtain the grey values corresponding 
to the concentration of Ru(iii) by calculating the normalized complement of 
the measured grey values: gox =​ 1 −​ gred, where gox and gred are the grey values 
corresponding to the concentrations of the oxidized catalyst [Ru(iii)] and reduced 
catalyst [Ru(ii)]. We use the grey values gox for gj,k and gm,n in equation (1).

Core tracking. The core centre position used for tracking was obtained by 
evaluating the weighted minimum in the local order parameter field. Core splitting 

events require the algorithm to track new spiral cores. This was achieved by 
tracking connected sets of cells for which the local order parameter Rj,k was less 
than 0.4 and calculating their centroids.

Initial conditions. The initial conditions in the experiments and simulations are 
given by the phase distribution φj,k =​ arctan[(k −​ k0)/(j −​ j0)], with (j0, k0) being the 
centre of the spiral.

Simulations. We used the non-dimensionalized ZBKE model10,28,31 (see 
Supplementary Section 'Numerical models') with a rectangular distribution in the 
parameter q ∈​ [0.6, 0.8] that leads to a heterogeneous period distribution with a 
standard deviation of 4.4% of the mean period. Nonlocal coupling was applied 
to each oscillator via the model parameter Ij,k in a similar manner to equation 
(1), but with the measured greyscale value gj,k replaced by the oxidized catalyst 
concentration of the model. The resulting equations were integrated in time with a 
forward Euler solver in CUDA on a graphics card (Nvidia GTX 970).

Code availability. The numerical simulation code is available on a public Git 
repository: https://github.com/bzjan/Spiral_Wave_Chimera_Solver.git

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding authors upon request.
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