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Complex networks describe a wide range of systems in nature and society, much quoted examples
including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network
of routers and computers connected by physical links. While traditionally these systems were
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks is governed by robust organizing principles. Here we review the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, we discuss the
main models and analytical tools, covering random graphs, small-world and scale-free networks, as
well as the interplay between topology and the network’s robustness against failures and attacks.
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I. INTRODUCTION

Complex weblike structures describe a wide variety
of systems of high technological and intellectual impor-
tance. For example, the cell is best described as a com-
plex network of chemicals connected by chemical reac-
tions; the Internet is a complex network of routers and
computers linked by various physical or wireless links;
fads and ideas spread on the social network whose nodes
are human beings and edges represent various social re-
lationships; the Wold-Wide Web is an enormous virtual
network of webpages connected by hyperlinks. These
systems represent just a few of the many examples that
have recently prompted the scientific community to in-
vestigate the mechanisms that determine the topology of
complex networks. The desire to understand such inter-
woven systems has brought along significant challenges
as well. Physics, a major beneficiary of reductionism,
has developed an arsenal of successful tools to predict
the behavior of a system as a whole from the properties
of its constituents. We now understand how magnetism
emerges from the collective behavior of millions of spins,
or how do quantum particles lead to such spectacular
phenomena as Bose-Einstein condensation or superfluid-
ity. The success of these modeling efforts is based on
the simplicity of the interactions between the elements:
there is no ambiguity as to what interacts with what,
and the interaction strength is uniquely determined by
the physical distance. We are at a loss, however, in de-
scribing systems for which physical distance is irrelevant,
or there is ambiguity whether two components interact.
While for many complex systems with nontrivial network
topology such ambiguity is naturally present, in the past
few years we increasingly recognize that the tools of sta-
tistical mechanics offer an ideal framework to describe
these interwoven systems as well. These developments
have brought along new and challenging problems for sta-
tistical physics and unexpected links to major topics in
condensed matter physics, ranging from percolation to
Bose-Einstein condensation.

Traditionally the study of complex networks has been
the territory of graph theory. While graph theory ini-
tially focused on regular graphs, since the 1950’s large-
scale networks with no apparent design principles were
described as random graphs, proposed as the simplest

and most straightforward realization of a complex net-
work. Random graphs were first studied by the Hungar-
ian mathematicians Paul Erdős and Alfréd Rényi. Ac-
cording to the Erdős-Rényi (ER) model, we start with
N nodes and connect every pair of nodes with probabil-
ity p, creating a graph with approximately pN(N − 1)/2
edges distributed randomly. This model has guided our
thinking about complex networks for decades after its in-
troduction. But the growing interest in complex systems
prompted many scientists to reconsider this modeling
paradigm and ask a simple question: are real networks
behind such diverse complex systems as the cell or the
Internet, fundamentally random? Our intuition clearly
indicates that complex systems must display some orga-
nizing principles which should be at some level encoded
in their topology as well. But if the topology of these
networks indeed deviates from a random graph, we need
to develop tools and measures to capture in quantitative
terms the underlying organizing principles.

In the past few years we witnessed dramatic advances
in this direction, prompted by several parallel develop-
ments. First, the computerization of data acquisition in
all fields led to the emergence of large databases on the
topology of various real networks. Second, the increased
computing power allows us to investigate networks con-
taining millions of nodes, exploring questions that could
not be addressed before. Third, the slow but noticeable
breakdown of boundaries between disciplines offered re-
searchers access to diverse databases, allowing them to
uncover the generic properties of complex networks. Fi-
nally, there is an increasingly voiced need to move be-
yond reductionist approaches and try to understand the
behavior of the system as a whole. Along this route, un-
derstanding the topology of the interactions between the
components, i.e. networks, is unavoidable.

Motivated by these converging developments and cir-
cumstances, many quantities and measures have been
proposed and investigated in depth in the past few years.
However, three concepts occupy a prominent place in
contemporary thinking about complex networks. Next
we define and briefly discuss them, a discussion to be
expanded in the coming chapters.

Small worlds: The small world concept in simple
terms describes the fact that despite their often large
size, in most networks there is a relatively short path be-
tween any two nodes. The distance between two nodes
is defined as the number of edges along the shortest path
connecting them. The most popular manifestation of
”small worlds” is the ”six degrees of separation” con-
cept, uncovered by the social psychologist Stanley Mil-
gram (1967), who concluded that there was a path of ac-
quaintances with typical length about six between most
pairs of people in the United States (Kochen 1989). The
small world property appears to characterize most com-
plex networks: the actors in Hollywood are on average
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within three costars from each other, or the chemicals
in a cell are separated typically by three reactions. The
small world concept, while intriguing, is not an indication
of a particular organizing principle. Indeed, as Erdős and
Rényi have demonstrated, the typical distance between
any two nodes in a random graph scales as the logarithm
of the number of nodes. Thus random graphs are small
worlds as well.

Clustering: A common property of social networks
is that cliques form, representing circles of of friends or
acquaintances in which every member knows every other
member. This inherent tendency to clustering is quan-
tified by the clustering coefficient (Watts and Strogatz
1998). Let us focus first on a selected node i in the net-
work, having ki edges which connect it to ki other nodes.
If the first neighbors of the original node were part of a
clique, there would be ki(ki − 1)/2 edges between them.
The ratio between the number Ei of edges that actu-
ally exist between these ki nodes and the total number
ki(ki − 1)/2 gives the value of the clustering coefficient
of node i

Ci =
2Ei

ki(ki − 1)
. (1)

The clustering coefficient of the whole network is the av-
erage of all individual Ci’s.

In a random graph, since the edges are distributed ran-
domly, the clustering coefficient is C = p (Sect. III.F).
However, it was Watts and Strogatz who first pointed
out that in most, if not all, real networks the clustering
coefficient is typically much larger than it is in a random
network of equal number of nodes and edges.

Degree distribution: Not all nodes in a network have
the same number of edges. The spread in the number
of edges a node has, or node degree, is characterized by
a distribution function P (k), which gives the probability
that a randomly selected node has exactly k edges. Since
in a random graph the edges are placed randomly, the
majority of nodes have approximately the same degree,
close to the average degree 〈k〉 of the network. The degree
distribution of a random graph is a Poisson distribution
with a peak at P (〈k〉). On the other hand recent empir-
ical results show that for most large networks the degree
distribution significantly deviates from a Poisson distri-
bution. In particular, for a large number of networks,
including the World-Wide Web (Albert, Jeong, Barabási
1999), Internet (Faloutsos et al. 1999) or metabolic net-
works (Jeong el al. 2000), the degree distribution has a
power-law tail

P (k) ∼ k−γ . (2)

Such networks are called scale-free (Barabási and Albert
1999). While some networks display an exponential tail,
often the functional form of P (k) still deviates signifi-
cantly from a Poisson distribution expected for a random
graph.

These three concepts, small path length, clustering and
scale-free degree distribution have initiated a revival of
network modeling in the past few years, resulting in the
introduction and study of three main classes of model-
ing paradigms. First, random graphs, which are variants
of the Erdős-Rényi model, are still widely used in many
fields, and serve as a benchmark for many modeling and
empirical studies. Second, following the discovery of clus-
tering, a class of models, collectively called small world
models, have been proposed. These models interpolate
between the highly clustered regular lattices and random
graphs. Finally, the discovery of the power-law degree
distribution has led to the construction of various scale-
free models that, by focusing on the network dynamics,
aim to explain the origin of the power-law tails and other
non-Poisson degree distributions seen in real systems.

The purpose of this article is to review each of these
modeling efforts, focusing on the statistical mechanics
of complex networks. Our main goal is to present the
theoretical developments in parallel with the empirical
data that initiated and support the various models and
theoretical tools. To achieve this, we start with a brief
description of the real networks and databases that rep-
resent the testground for most current modeling efforts.

II. THE TOPOLOGY OF REAL NETWORKS: EMPIRICAL
RESULTS

The study of most complex networks has been initiated
by a desire to understand various real systems, ranging
from communication networks to ecological webs. Thus
the databases available for study span several disciplines.
In this section we review briefly those that have been
studied by researchers aiming to uncover the general fea-
tures of complex networks. Beyond the description of the
databases, we will focus on the three robust measures of
the network topology: average path length, clustering
coefficient and degree distribution. Other quantities, as
discussed in the following chapters, will be again tested
on these databases. The properties of the investigated
databases, as well as the obtained exponents are summa-
rized in Tables I and II.

1. World-Wide Web

The World-Wide Web (WWW) represents the largest
network for which topological information is currently
available. The nodes of the network are the documents
(webpages) and the edges are the hyperlinks (URLs) that
point from one document to another (see Fig 1). The size
of this network was close to 1 billion nodes at the end of
1999 (Lawrence and Giles 1998, 1999). The interest in
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the WWW as a network has boomed after it has been
discovered that the degree distribution of the webpages
follows a power-law over several orders of magnitude (Al-
bert, Jeong, Barabási 1999, Kumaret al. 1999). Since the
edges of the WWW are directed, the network is charac-
terized by two degree distributions: the distribution of
outgoing edges, Pout(k), signifies the probability that a
document has k outgoing hyperlinks and the distribution
of incoming edges, Pin(k), is the probability that k hyper-
links point to a certain document. Several studies have
established that both Pout(k) and Pin(k) have power-law
tails:

Pout(k) ∼ k−γout and Pin(k) ∼ k−γin . (3)

FIG. 1. Network structure of the World-Wide Web and the
Internet. Upper panel: the nodes of the World-Wide Web are
web documents, connected with directed hyperlinks (URLs).
Lower panel: on the Internet the nodes are the routers and
computers, the edges are the wires and cables that physically
connect them. Figure courtesy of István Albert.

Albert, Jeong and Barabási (1999) have studied a sub-
set of the WWW containing 325, 729 nodes and have
found γout = 2.45 and γin = 2.1. Kumar et al. (1999)
used a 40 million document crawl by Alexa Inc., obtain-
ing γout = 2.38 and γin = 2.1 (see also Kleinberg et al.
1999). A later survey of the WWW topology by Broder
et al. (2000) used two 1999 Altavista crawls containing
in total 200 million documents, obtaining γout = 2.72
and γin = 2.1 with scaling holding close to five orders
of magnitude (Fig. 2). Adamic and Huberman (2000)
used a somewhat different representation of the WWW,
each node representing a separate domain name and two

nodes being connected if any of the pages in one do-
main linked to any page in the other. While this method
lumps together often thousands of pages that are on the
same domain, representing a nontrivial aggregation of the
nodes, the distribution of incoming edges still followed a
power-law with γdom

in = 1.94.
Note that γin is the same for all measurements at the

document level despite the two years time delay between
the first and last web crawl, during which the WWW had
grown at least five times larger. On the other hand, γout

has an increasing tendency with the sample size or time
(see Table II).

Despite the large number of nodes, the WWW displays
the small world property. This was first reported by Al-
bert, Jeong and Barabási (1999), who found that the
average path length for a sample of 325, 729 nodes was
11.2 and predicted, using finite size scaling, that for the
full WWW of 800 million nodes that would be around
19. Subsequent measurements of Broder et al. (2000)
found that the average path length between nodes in a
200 million sample of the WWW is 16, in agreement with
the finite size prediction for a sample of this size. Finally,
the domain level network displays an average path length
of 3.1 (Adamic 1999).

The directed nature of the WWW does not allow us to
measure the clustering coefficient using Eq. (1). One way
to avoid this difficulty is to make the network undirected,
making each edge bidirectional. This was the path fol-
lowed by Adamic (1999) who studied the WWW at the
domain level using an 1997 Alexa crawl of 50 million
webpages distributed between 259, 794 sites. Adamic re-
moved the nodes which have only one edge, focusing on a
network of 153, 127 sites. While these modifications are
expected to increase somewhat the clustering coefficient,
she found C = 0.1078, orders of magnitude higher than
Crand = 0.00023 corresponding to a random graph of the
same size and average degree.
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FIG. 2. Degree distribution of the World-Wide Web from two
different measurements. Squares correspond to the 325, 729
sample of Albert et al. (1999), and circles represent the mea-
surements of over a 200 million pages by Broder et al. (2000)
(courtesy of Altavista and Andrew Tomkins). (a) Degree dis-
tribution of the outgoing edges. (b) Degree distribution of the
incoming edges. The data has been binned logarithmically to
reduce noise.

2. Internet

The Internet is the network of the physical links be-
tween computers and other telecommunication devices
(Fig. 1). The topology of the Internet is studied at two
different levels. At the router level the nodes are the
routers, and edges are the physical connections between
them. At the interdomain (or autonomous system) level
each domain, composed of hundreds of routers and com-
puters, is represented by a single node, and an edge is
drawn between two domains if there is at least one route
that connects them. Faloutsos et al. (1999) have studied
the Internet at both levels, concluding that in each case
the degree distribution follows a power-law. The interdo-
main topology of the Internet, captured at three different
dates between 1997 and the end of 1998, resulted in de-
gree exponents between γas

I = 2.15 and γas
I = 2.2. The

1995 survey of the Internet topology at the router level,
containing 3, 888 nodes found γr

I = 2.48 (Faloutsos et al.
1999). Recently Govindan and Tangmunarunkit (2000)
mapped the connectivity of nearly 150, 000 router inter-
faces and nearly 200, 000 router adjacencies, confirming
the power-law scaling with γr

I ≃ 2.3 (see Fig. 3a).
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FIG. 3. The degree distribution of several real networks. (a)
Internet at the router level. Data courtesy of Ramesh Govin-
dan. (b) Movie actor collaboration network (after Barabási
and Albert 1999). Note that if TV series are included as well,
which aggregate a large number of actors, an exponential cut-
off emerges for large k (Amaral et al. 2000). (c) Coauthorship
network of high energy physicists (after Newman 2001a,b).
(d) Coauthorship network of neuroscientists (after Barabási
et al. 2001).

The Internet as a network does display clustering and
small path length as well. Yook et al. (2001a) and
Pastor-Satorras et al. (2001), studying the Internet at
the domain level between 1997 and 1999 have found that
its clustering coefficient ranged between 0.18 and 0.3, to
be compared with Crand ≃ 0.001 for random networks of
similar parameters. The average path length of the In-
ternet at the domain level ranged between 3.70 and 3.77
(Yook et al. 2001a, Pastor-Satorras et al. 2001), and
at the router level it was around 9 (Yook et al. 2001a),
indicating its small world character.

3. Movie actor collaboration network

A much studied database is the movie actor collabo-
ration network, based on the Internet Movie Database
that contains all movies and their casts since the 1890’s.
In this network the nodes are the actors, and two nodes
have a common edge if the corresponding actors have
acted in a movie together. This is a continuously ex-
panding network, with 225, 226 nodes in 1998 (Watts,
Strogatz 1998) which grew to 449, 913 nodes by May
2000 (Newman, Strogatz and Watts 2000). The aver-
age path length of the actor network is close to that of
a random graph with the same size and average degree,
3.65 compared to 2.9, but its clustering coefficient is more
than 100 times higher than a random graph (Watts and
Strogatz 1998). The degree distribution of the movie ac-
tor network has a power-law tail for large k (see Fig.
3b), following P (k) ∼ k−γactor , where γactor = 2.3 ± 0.1
(Barabási and Albert 1999, Amaral et al. 2000, Albert
and Barabási 2000).

4. Science collaboration graph

A collaboration network similar to that of the movie
actors can be constructed for scientists, where the nodes
are the scientists and two nodes are connected if the two
scientists have written an article together. To uncover
the topology of this complex graph, Newman (2001a,b,c)
studied four databases spanning physics, biomedical re-
search, high-energy physics and computer science over
a 5 year window (1995-1999). All these networks show
small average path length but high clustering coefficient,
as summarized in Table I. The degree distribution of
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the collaboration network of high-energy physicists is an
almost perfect power-law with an exponent of 1.2 (Fig.
3c), while the other databases display power-laws with a
larger exponent in the tail.

Barabási et al. 2001 investigated the collaboration
graph of mathematicians and neuroscientists publishing
between 1991 and 1998. The average path length of these
networks is around ℓmath = 9.5 and ℓnsci = 6, their clus-
tering coefficient being Cmath = 0.59 and Cnsci = 0.76.
The degree distributions of these collaboration networks
are consistent with power-laws with degree exponents 2.1
and 2.5, respectively (see Fig. 3d).

5. The web of human sexual contacts

Many sexually transmitted diseases, including AIDS,
spread on a network of sexual relationships. Liljeros et
al. (2001) have studied the web constructed from the
sexual relations of 2810 individuals, based on an exten-
sive survey conducted in Sweden in 1996. Since the edges
in this network are relatively short lived, they analyzed
the distribution of partners over a single year, obtaining
both for females and males a power-law degree distribu-
tion with an exponent γf = 3.5±0.2 and γm = 3.3±0.2,
respectively.

6. Cellular networks

Jeong et al. (2000) studied the metabolism of 43 organ-
isms representing all three domains of life, reconstructing
them in networks in which the nodes are the substrates
(such as ATP, ADP, H2O) and the edges represent the
predominantly directed chemical reactions in which these
substrates can participate. The distribution of the outgo-
ing and incoming edges have been found to follow power-
laws for all organisms, the degree exponents varying be-
tween 2.0 and 2.4. While due to the network’s directed-
ness the clustering coefficient has not been determined,
the average path length was found to be approximately
the same in all organisms, with a value of 3.3.

The clustering coefficient was studied by Wagner and
Fell (2000, see also Fell and Wagner 2000), focusing
on the energy and biosynthesis metabolism of the Es-
cherichia Coli bacterium, finding that, in addition to the
power-law degree distribution, the undirected version of
this substrate graph has small average path length and
large clustering coefficient (see Table I).

Another important network characterizing the cell de-
scribes protein-protein interactions, where the nodes are
proteins and they are connected if it has been exper-
imentally demonstrated that they bind together. A
study of these physical interactions shows that the de-
gree distribution of the physical protein interaction map
for yeast follows a power-law with an exponential cutoff

P (k) ∼ (k + k0)
−γe−(k+k0)/kc with k0 = 1, kc = 20 and

γ = 2.4 (Jeong et al. 2001).

7. Ecological networks

Food webs are used regularly by ecologists to quantify
the interaction between various species (Pimm 1991). In
a food web the nodes are species and the edges represent
predator-prey relationships between them. In a recent
study, Williams et al. (2000) investigated the topology of
the seven most documented and largest food webs, such
as the Skipwith Pond, Little Rock Lake, Bridge Brook
Lake, Chesapeake Bay, Ythan Estuary, Coachella Valley
and St. Martin Island webs. While these webs differ
widely in the number of species or their average degree,
they all indicate that species in habitats are three or fewer
edges from each other. This result was supported by the
independent investigations of Montoya and Solé (2000)
and Camacho et al. (2001a), who have shown that food
webs are highly clustered as well. The degree distribu-
tion was first addressed by Montoya and Solé (2000), fo-
cusing on the Ythan Estuary, Silwood Park and Little
Rock Lake food webs, considering these networks as be-
ing nondirected. Although the size of these webs is small
(the largest of them has N = 186 nodes), they appear to
share the non-random properties of their larger counter-
parts. In particular, Montoya and Solé (2000) concluded
that the degree distribution is consistent with a power-
law with an unusually small exponent of γ ≃ 1.1. The
small size of these webs does give room, however, for some
ambiguity in P (k). Camacho et al. (2001a,b) find that
for some food webs an exponential fit works equally well.
While the well documented existence of keystone species
that play an important role in the food web topology
points towards the existence of hubs (a common feature
of scale-free networks), an unambiguous determination of
the network’s topology could benefit from larger datasets.
Due to the inherent difficulty in the data collection pro-
cess (Williams et al. 2000), this is not expected anytime
soon.

8. Phone-call network

A large directed graph has been constructed from the
long distance telephone call patterns, where nodes are
phone numbers and every completed phone call is an
edge, directed from the caller to the receiver. Abello,
Pardalos and Resende (1999) and Aiello, Chung and Lu
(2000) studied the call graph of long distance telephone
calls made during a single day, finding that the degree
distribution of the outgoing and incoming edges follow a
power-law with exponent γout = γin = 2.1.
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9. Citation networks

A rather complex network is formed by the citation
patterns of scientific publications, the nodes standing for
published articles and a directed edge representing a ref-
erence to a previously published article. Redner (1998),
studying the citation distribution of 783, 339 papers cata-
loged by the Institute of Scientific Information, and of the
24, 296 papers published in Physical Review D between
1975 and 1994, has found that the probability that a pa-
per is cited k times follows a power-law with exponent
γcite = 3, indicating that the incoming degree distribu-
tion of the citation network follows a power-law. A re-
cent study of Vázquez (2001) extended these studies to
the outgoing degree distribution as well, obtaining that
it has an exponential tail.

10. Networks in linguistics

The complexity of human languages offers several pos-
sibilities to define and study complex networks. Re-
cently Ferrer i Cancho and Solé (2001) have constructed
such a network for the English language, based on the
British National Corpus, words, as nodes, being linked if
they appear next or one word apart from each other in
sentences. They have found that the resulting network
of 440, 902 words displays a small average path length
ℓ = 2.67, a high clustering coefficient C = 0.437, and a
two-regime power-law degree distribution. Words with
degree k ≤ 103 decay with a degree exponent γ< = 1.5
while words with 103 < k < 105 follow a power-law with
γ> ≃ 2.7.

A different study (Yook, Jeong, Barabási 2001b) linked
words based on their meaning, i.e. two words were con-
nected to each other if they were known to be synonyms
according to the Merriam-Webster Dictionary. The re-
sults indicate the existence of a giant cluster of 22, 311
words from the total of 23, 279 words which have syn-
onyms, with an average path length ℓ = 4.5, and a
rather high clustering coefficient C = 0.7 compared to
Crand = 0.0006 for an equivalent random network. In
addition the degree distribution followed had a power-
law tail with γsyn = 2.8. These results indicate that in
many respects the language also forms a complex network
with organizing principles not so different from the exam-
ples discussed earlier (see also Steyvers and Tennenbaum
2001).

11. Power and neural networks

The power grid of the western United States is de-
scribed by a complex network whose nodes are gener-
ators, transformers and substations, and the edges are
high-voltage transmission lines. The number of nodes in
the power grid is N = 4, 941, and 〈k〉 = 2.67. In the
tiny (N = 282) neural network of the nematode worm
C. elegans, the nodes are the neurons, and an edge joins
two neurons if they are connected by either a synapse or
a gap junction. Watts and Strogatz (1998) found that
while for both networks the average path length was ap-
proximately equal with that of a random graph with the
same size and average degree, their clustering coefficient
was much higher (Table I). The degree distribution of
the power grid is consistent with an exponential, while
for the neural network it has a peak at an intermediate
k after which it decays following an exponential (Amaral
et al. 2000).

12. Protein folding

During folding a protein takes up consecutive confor-
mations. Representing with a node each distinct state,
two conformations are linked if they can be obtained from
each other by an elementary move. Scala et al. (2000)
studied the network formed by the conformations of a 2D
lattice polymer, obtaining that it has small-world proper-
ties. Specifically, the average path length increases log-
arithmically when the size of the polymer (and conse-
quently the size of the network) increases, similarly to
the behavior seen in a random graph. The clustering co-
efficient, however, is much larger than Crand, a difference
that increases with the network size. The degree distri-
bution of this conformation network is consistent with a
gaussian (Amaral et al. 2000).

The databases discussed above served as motivation
and source of inspiration for uncovering the topological
properties of real networks. We will refer to them fre-
quently to validate various theoretical predictions, or to
understand the limitations of the modeling efforts. In
the remaining of the review we discuss the various theo-
retical tools developed to model these complex networks.
In this respect, we need to start with the mother of all
network models: the random graph theory of Erdős and
Rényi.
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TABLE I. The general characteristics of several real networks. For each network we indicated the number of nodes, the average
degree 〈k〉, the average path length ℓ and the clustering coefficient C. For a comparison we have included the average path
length ℓrand and clustering coefficient Crand of a random graph with the same size and average degree. The last column
identifies the symbols in Figs. 8 and 9.

Network Size 〈k〉 ℓ ℓrand C Crand Reference Nr.

WWW, site level, undir. 153, 127 35.21 3.1 3.35 0.1078 0.00023 Adamic 1999 1

Internet, domain level 3015 - 6209 3.52 - 4.11 3.7 - 3.76 6.36 - 6.18 0.18 - 0.3 0.001 Yook et al. 2001a,
Pastor-Satorras et al. 2001 2

Movie actors 225, 226 61 3.65 2.99 0.79 0.00027 Watts, Strogatz 1998 3

LANL coauthorship 52, 909 9.7 5.9 4.79 0.43 1.8 × 10−4 Newman 2001a,b 4

MEDLINE coauthorship 1, 520, 251 18.1 4.6 4.91 0.066 1.1 × 10−5 Newman 2001a,b 5

SPIRES coauthorship 56, 627 173 4.0 2.12 0.726 0.003 Newman 2001a,b,c 6

NCSTRL coauthorship 11, 994 3.59 9.7 7.34 0.496 3 × 10−4 Newman 2001a,b 7

Math coauthorship 70, 975 3.9 9.5 8.2 0.59 5.4 × 10−5 Barabási et al. 2001 8

Neurosci. coauthorship 209, 293 11.5 6 5.01 0.76 5.5 × 10−5 Barabási et al. 2001 9

E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner, Fell 2000 10

E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner, Fell 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya, Solé 2000 12

Silwood park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya, Solé 2000 13

Words, cooccurence 460.902 70.13 2.67 3.03 0.437 0.0001 Cancho, Solé 2001 14

Words, synonyms 22, 311 13.48 4.5 3.84 0.7 0.0006 Yook et al. 2001 15

Power grid 4, 941 2.67 18.7 12.4 0.08 0.005 Watts, Strogatz 1998 16

C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts, Strogatz 1998 17

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P (k) follows
a power-law (2). We indicate the size of the network, its average degree 〈k〉 and the cutoff κ for the power-law scaling. For
directed networks we list separately the indegree (γin) and outdegree (γout) exponents, while for the undirected networks,
marked with a star, these values are identical. The columns lreal, lrand and lpow compare the average path length of real
networks with power-law degree distribution and the prediction of random graph theory (17) and that of Newman, Strogatz
and Watts (2000) (62), as discussed in Sect. V. The last column identifies the symbols in Figs. 8 and 9.

Network Size 〈k〉 κ γout γin ℓreal ℓrand ℓpow Reference Nr.

WWW 325, 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, Barabási 1999 1

WWW 4 × 107 7 2.38 2.1 Kumar et al. 1999 2

WWW 2 × 108 7.5 4, 000 2.72 2.1 16 8.85 7.61 Broder et al. 2000 3

WWW, site 260, 000 1.94 Huberman, Adamic 2000 4

Internet, domain∗ 3, 015 - 4, 389 3.42 - 3.76 30 − 40 2.1 - 2.2 2.1 - 2.2 4 6.3 5.2 Faloutsos 1999 5

Internet, router∗ 3, 888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos 1999 6

Internet, router∗ 150, 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan 2000 7

Movie actors∗ 212, 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási, Albert 1999 8

Coauthors, SPIRES∗ 56, 627 173 1, 100 1.2 1.2 4 2.12 1.95 Newman 2001b,c 9

Coauthors, neuro.∗ 209, 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al. 2001 10

Coauthors, math∗ 70, 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al. 2001 11

Sexual contacts∗ 2810 3.4 3.4 Liljeros et al. 2001 12

Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al. 2000 13

Protein, S. cerev.∗ 1870 2.39 2.4 2.4 Mason et al. 2000 14

Ythan estuary∗ 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya, Solé 2000 14

Silwood park∗ 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya, Solé 2000 16

Citation 783, 339 8.57 3 Redner 1998 17

Phone-call 53 × 106 3.16 2.1 2.1 Aiello et al. 2000 18

Words, cooccurence∗ 460, 902 70.13 2.7 2.7 Cancho, Solé 2001 19

Words, synonyms∗ 22, 311 13.48 2.8 2.8 Yook et al. 2001 20
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III. RANDOM GRAPH THEORY

In mathematical terms a network is represented by a
graph. A graph is a pair of sets G = {P, E}, where P
is a set of N nodes (or vertices or points) P1, P2, .. PN

and E is a set of edges (or links or lines) that connect
two elements of P . Graphs are usually represented as a
set of dots, each corresponding to a node, two of these
dots being joined by a line if the corresponding nodes are
connected (see Fig. 4).

5

2

1
3

4

FIG. 4. Illustration of a graph with N = 5 nodes and n = 4
edges. The set of the nodes is P = {1, 2, 3, 4, 5} and the edge
set is E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}}.

Graph theory has its origins in the 18th century in the
work of Leonhard Euler, the early work concentrating
on small graphs with a high degree of regularity. In the
20th century graph theory has become more statistical
and algorithmic. A particularly rich source of ideas has
been the study of random graphs, graphs in which the
edges are distributed randomly. Networks with a com-
plex topology and unknown organizing principles often
appear random, thus random graph theory is regularly
used in the study of complex networks.

The theory of random graphs was founded by Paul
Erdős and Alfréd Rényi (1959,1960,1961), after Erdős
discovered that probabilistic methods were often useful
in tackling problems in graph theory. An detailed review
of the field is available in the classic book of Bollobás
(1985), complemented by the review of the parallels be-
tween phase transitions and random graph theory of Co-
hen (1988), and the guide of the history of the Erdős-
Rényi approach by Karoński and Rućinski (1997). In the
following we briefly describe the most important results
of random graph theory, focusing on the aspects that are
of direct relevance to complex networks.

A. The Erdős-Rényi model

In their classic first article on random graphs, Erdős
and Rényi define a random graph as N labeled nodes con-
nected by n edges which are chosen randomly from the

N(N−1)
2 possible edges (Erdős and Rényi 1959). In to-

tal there are C n
N(N−1)

2

graphs with N nodes and n edges,

forming a probability space in which every realization is
equiprobable.

An alternative and equivalent definition of a random
graph is called the binomial model. Here we start with
N nodes, every pair of nodes being connected with prob-
ability p (see Fig. 5). Consequently, the total num-
ber of edges is a random variable with the expectation

value E(n) = pN(N−1)
2 . If G0 is a graph with nodes

P1, P2, .. PN and n edges, the probability of obtain-
ing it by this graph construction process is P (G0) =

pn(1 − p)
N(N−1)

2 −n.

Random graph theory studies the properties of the
probability space associated with graphs with N nodes
as N → ∞. Many properties of such random graphs can
be determined using probabilistic arguments. In this re-
spect Erdős and Rényi used the definition that almost
every graph has a property Q if the probability of having
Q approaches 1 as N → ∞. Among the questions ad-
dressed by Erdős and Rényi some have direct relevance
to understanding complex networks as well, such as: Is
a typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

p=0

p=0.1 p=0.15

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N = 10 isolated nodes
(upper panel), then connect every pair of nodes with prob-
ability p. The lower panel of the figure shows two different
stages in the graph’s development, corresponding to p = 0.1
and p = 0.15. We can notice the emergence of trees (a tree of
order 3, drawn with dashed lines) and cycles (a cycle of order
3, drawn with dotted lines) in the graph, and a connected
cluster which unites half of the nodes at p = 0.15 = 1.5/N .

The construction of a random graph is often called in
the mathematical literature an evolution: starting with a
set of N isolated vertices, the graph develops by the suc-
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cessive addition of random edges. The graphs obtained
at different stages of this process correspond to larger and
larger connection probabilities p, eventually obtaining a
fully connected graph (having the maximum number of
edges n = N(N − 1)/2) for p → 1. The main goal of
random graph theory is to determine at what connection
probability p will a particular property of a graph most
likely arise. The greatest discovery of Erdős and Rényi
was that many important properties of random graphs
appear quite suddenly. That is, at a given probability
either almost every graph has the property Q (e.g. every
pair of nodes is connected by a path of consecutive edges)
or on the contrary, almost no graph has it. The transi-
tion from a property being very unlikely to being very
likely is usually swift. For many such properties there is
a critical probability pc(N). If p(N) grows slower than
pc(N) as N → ∞, then almost every graph with con-
nection probability p(N) fails to have Q. If p(N) grows
somewhat faster than pc(N), then almost every graph
has the property Q. Thus the probability that a graph
with N nodes and connection probability p = p(N) has
property Q satisfies

lim
N→∞

PN, p(Q) =

{

0 if p(N)
pc(N) → 0

1 if p(N)
pc(N) → ∞

. (4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture usually the system is viewed at a fixed system size N
and then the different regimes in (4) reduce to the ques-
tion whether p is smaller or larger than pc. The proper
value of pc, that is, the limit pc = pc(N → ∞) is ob-
tained by finite size scaling. The basis of this procedure
is the assumption that this limit exists, reflecting the fact
that ultimately the percolation threshold is independent
of the system size. This is usually the case in finite di-
mensional systems which include most physical systems
of interest for percolation theory and critical phenomena.
In contrast, networks are, by definition, infinite dimen-
sional: the number of neighbors a node can have increases
linearly with the system size. Consequently, in random
graph theory the occupation probability is defined as a
function of the system size: p represents the fraction of
the edges which are present from the possible N(N−1)/2.
Larger graphs with the same p will contain more edges,
and consequently properties like the appearance of cycles
could occur for smaller p in large graphs than in smaller
ones. This means that for many properties Q in random
graphs there is no unique, N -independent threshold, but
we have to define a threshold function which depends on
the system size, and pc(N → ∞) → 0. On the other
hand, we will see that the average degree of the graph

〈k〉 = 2n/N = p(N − 1) ≃ pN (5)

does have a critical value which is independent of the
system size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs studied by Erdős
and Rényi (1959) was the appearance of subgraphs. A
graph G1 consisting of a set P1 of nodes and a set E1 of
edges is a subgraph of a graph G = {P, E} if all nodes
in P1 are also nodes of P and all edges in E1 are also
edges of E. The simplest examples of subgraphs are cy-
cles, trees and complete subgraphs (see Fig. 5). A cycle
of order k is a closed loop of k edges such that every two
consecutive edges and only those have a common node.
That is, graphically a triangle is a cycle of order 3, while
a rectangle is a cycle of order 4. The average degree of a
cycle is equal to 2, since every node has two edges. The
opposite of closed loops are the trees, which cannot form
closed loops. More precisely, a graph is a tree of order k
if it has k nodes and k − 1 edges, and none of its sub-
graphs is a cycle. The average degree of a tree of order k
is 〈k〉 = 2− 2/k, approaching 2 for large trees. Complete
subgraphs of order k contain k nodes and all the pos-
sible k(k − 1)/2 edges, in other words being completely
connected.

Let us consider the evolution process described in Fig.
5 for a graph G = GN,p. We start from N isolated nodes,
then connect every pair of nodes with probability p. For
small connection probabilities the edges are isolated, but
as p, and with it the number of edges, increases, two edges
can attach at a common node, forming a tree of order 3.
An interesting problem is to determine the critical prob-
ability pc(N) at which almost every graph G contains a
tree of order 3. Most generally we can ask whether there
is a critical probability which marks the appearance of
arbitrary subgraphs consisting of k nodes and l edges.

In random graph theory there is a rigorously proven
answer to this question (Bollobás 1985). Consider a ran-
dom graph G = GN,p. In addition, consider a small graph
F consisting of k nodes and l edges. In principle, the ran-
dom graph G can contain several such subgraphs F . Our
first goal is to determine how many such subgraphs ex-
ist. The k nodes can be chosen from the total number
of nodes N in Ck

N ways and the l edges are formed with
probability pl. In addition, we can permute the k nodes
and potentially obtain k! new graphs (the correct value
is k!/a, where a is the number of graphs which are iso-
morphic to each other). Thus the expected number of
subgraphs F contained in G is

E(X) = Ck
N

k!

a
pl ≃ Nkpl

a
. (6)
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This notation suggests that the actual number of such
subgraphs, X , can be different from E(X), but in the
majority of the cases it will be close to it. Note that the
subgraphs do not have to be isolated, i.e. there can exist
edges with one of their nodes inside the subgraph, but
the other outside of it.

Equation (6) indicates that if p(N) is such that
p(N)Nk/l → 0 as N → 0, the expected number of
subgraphs E(X) → 0, i.e. almost none of the random
graphs contains a subgraph F . On the other hand, if
p(N) = cN−k/l, the mean number of subgraphs is a fi-
nite number, denoted by λ = cl/a, indicating that this
function might be the critical probability. The validity of
this finding can be tested by calculating the distribution
of subgraph numbers, Pp(X = r), obtaining (Bollobás
1995)

lim
N→∞

Pp(X = r) = e−λ λr

r!
. (7)

The probability that G contains at least one subgraph F
is then

Pp(G ⊃ F ) =

∞
∑

r=1

Pp(X = r) = 1 − e−λ, (8)

which converges to 1 as c increases. For p values satisfy-
ing pNk/l → ∞ the probability Pp(G ⊃ F ) converges to
1, thus, indeed, the critical probability at which almost
every graph contains a subgraph with k nodes and l edges
is pc(N) = cN−k/l.

A few important special cases directly follow from Eq.
(8):

(a) The critical probability of having a tree of order k
is pc(N) = cN−k/(k−1);

(b) The critical probability of having a cycle of order
k is pc(N) = cN−1;

(c) The critical probability of having a complete sub-
graph of order k is pc(N) = cN−2/(k−1).

C. Graph Evolution

It is instructive to view the results discussed above
from a different point of view. Consider a random graph
with N nodes and assume that the connection probabil-
ity p(N) scales as Nz, where z is a tunable parameter
that can take any value between −∞ and 0 (Fig. 6). For
z less than −3/2 almost all graphs contain only isolated
nodes and edges. When z passes through −3/2, trees of
order 3 suddenly appear. When z reaches −4/3, trees of
order 4 appear, and as z approaches −1, the graph con-
tains trees of larger and larger order. However, as long
as z < −1, such that the average degree of the graph
〈k〉 = pN → 0 as N → ∞, the graph is a union of dis-
joint trees, and cycles are absent. Exactly when z passes
through −1, corresponding to 〈k〉 =const, even though z

is changing smoothly, the asymptotic probability of cy-
cles of all orders jumps from 0 to 1. Cycles of order 3 can
be also viewed as complete subgraphs of order 3. Com-
plete subgraphs of order 4 appear at z = −2/3, and as z
continues to increase, complete subgraphs of larger and
larger order continue to emerge. Finally, as z approaches
0, almost every random graph approaches the complete
graph of N points.

1−
5
4
−3

2
− 4

3
− 1

2
−2

3
−− ∞

p∼N
z

z 2−

FIG. 6. The threshold probabilities at which different sub-
graphs appear in a random graph. For pN3/2 → 0 the graph
consists of isolated nodes and edges. For p ∼ N−3/2 trees of
order 3 appear, at p ∼ N−4/3 trees of order 4. At p ∼ N−1

trees of all orders are present, and in the same time cycles of
all orders appear. The probability p ∼ N−2/3 marks the ap-
pearance of complete subgraphs of order 4 and p ∼ N−1/2 cor-
responds to complete subgraphs of order 5. As z approaches
0, the graph contains complete subgraphs of increasing order.

Further results can be derived for z = −1, i.e. when
we have p ∝ N−1 and the average degree of the nodes is
〈k〉 =const. For p ∝ N−1 a random graph contains trees
and cycles of all order, but so far we have not discussed
the size and structure of a typical graph component. A
component of a graph is by definition a connected, iso-
lated subgraph, also called a cluster in network research
and percolation theory. As Erdős and Rényi (1960) show,
there is an abrupt change in the cluster structure of a
random graph as 〈k〉 approaches 1.

If 0 < 〈k〉 < 1, almost surely all clusters are either
trees or clusters containing exactly one cycle. Although
cycles are present, almost all nodes belong to trees. The
mean number of clusters is of order N − n, where n is
the number of edges, i.e. in this range by adding a new
edge the number of clusters decreases by 1. The largest
cluster is a tree, and its size is proportional to lnN .

When 〈k〉 passes the threshold 〈k〉c = 1, the struc-
ture of the graph changes abruptly. While for 〈k〉 < 1
the greatest cluster is a tree, for 〈k〉c = 1 it has ap-
proximately N2/3 nodes and has a rather complex struc-
ture. Moreover for 〈k〉 > 1 the greatest (giant) cluster
has [1 − f(〈k〉)]N nodes, where f(x) is a function that
decreases exponentially from 1 to 0 for x → ∞. Thus
a finite fraction S = 1 − f(〈k〉) of the nodes belongs
to the largest cluster. Except for this giant cluster, all
other clusters are relatively small, most of them being
trees, the total number of nodes belonging to trees be-
ing Nf(〈k〉). As 〈k〉 increases, the small clusters coalesce
and join the giant cluster, the smaller clusters having the
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higher chance of survival.
Thus at pc ≃ 1/N the random graph changes its topol-

ogy abruptly from a loose collection of small clusters to
being dominated by a single giant cluster. The begin-
ning of the supercritical phase was studied by Bollobás
(1984), Kolchin (1986) and Luczak (1990). Their results
show that in this region the largest cluster clearly sepa-
rates from the rest of the clusters, its size S increasing
proportionally with the separation from the critical prob-
ability,

S ∝ (p − pc). (9)

As we will see in Sect. IV.F, this dependence is anal-
ogous with the scaling of the percolation probability in
infinite dimensional percolation.

D. Degree Distribution

Erdős and Rényi (1959) were the first to study the
distribution of the maximum and minimum degree in a
random graph, the full degree distribution being derived
later by Bollobás (1981).

In a random graph with connection probability p the
degree ki of a node i follows a binomial distribution with
parameters N − 1 and p

P (ki = k) = C k
N−1p

k(1 − p)N−1−k. (10)

This probability represents the number of ways in which
k edges can be drawn from a certain node: the probability
of k edges is pk, the probability of the absence of addi-
tional edges is (1 − p)N−1−k, and there are Ck

N−1 equiv-
alent ways of selecting the k endpoints for these edges.
Furthermore, if i and j are different nodes, P (ki = k) and
P (kj = k) are close to be independent random variables.
To find the degree distribution of the graph, we need to
study the number of nodes with degree k, Xk. Our main
goal is to determine the probability that Xk takes on a
given value, P (Xk = r).

According to (10), the expectation value of the number
of nodes with degree k is

E(Xk) = NP (ki = k) = λk, (11)

where

λk = NC k
N−1p

k(1 − p)N−1−k. (12)

As in the derivation of the existence conditions of sub-
graphs (see Sect. III.B), the distribution of the Xk val-
ues, P (Xk = r), approaches a Poisson distribution

P (Xk = r) = e−λk
λr

k

r!
. (13)

Thus the number of nodes with degree k follows a Pois-
son distribution with mean value λk. Note that the dis-
tribution (13) has as expectation value the function λk

given by (12) and not a constant. The Poisson distri-
bution decays rapidly for large values of r, the standard
deviation of the distribution being σk =

√
λk. With a

bit of simplification we could say that (13) implies that
Xk does not diverge much from the approximative result
Xk = NP (ki = k), valid only if the nodes are indepen-
dent (see Fig. 7). Thus with a good approximation the
degree distribution of a random graph is a binomial dis-
tribution

P (k) = C k
N−1p

k(1 − p)N−1−k, (14)

which for large N can be replaced by a Poisson distribu-
tion

P (k) ≃ e−pN (pN)k

k!
= e−〈k〉 〈k〉k

k!
. (15)
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FIG. 7. The degree distribution that results from the numer-
ical simulation of a random graph. We generated a single
random graph with N = 10, 000 nodes and connection prob-
ability p = 0.0015, and calculated the number of nodes with
degree k, Xk. The plot compares Xk/N with the expectation
value of the Poisson distribution (13), E(Xk)/N = P (ki = k),
and we can see that the deviation is small.

Since the pioneering paper of Erdős and Rényi, much
work has concentrated on the existence and uniqueness of
the minimum and maximum degree of a random graph.
The results indicate that for a large range of p values
both the maximum and the minimum degrees are deter-
mined and finite. For example, if p(N) ∼ N−1−1/k (thus
the graph is a set of isolated trees of order at most k+1)
almost no graph has nodes with degree higher than k.
On the other extreme, if p = [ln(N)+k ln(ln(N))+c]/N ,
almost every random graph has minimum degree of at
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least k. Furthermore, for a sufficiently high p, respec-
tively if pN/ ln(N) → ∞, the maximum degree of almost
all random graphs has the same order of magnitude as
the average degree. Thus despite the fact that the posi-
tion of the edges is random, a typical random graph is
rather homogeneous, the majority of the nodes having
the same number of edges.

E. Connectedness and Diameter

The diameter of a graph is the maximal distance be-
tween any pair of its nodes. Strictly speaking, the di-
ameter of a disconnected graph (i.e. made up of several
isolated clusters) is infinite, but it can be defined as the
maximum diameter of its clusters. Random graphs tend
to have small diameters, provided p is not too small. The
reason for this is that a random graph is likely to be
spreading: with large probability the number of nodes at
a distance l from a given node is not much smaller than
〈k〉l. Equating 〈k〉l with N we find that the diameter
is proportional with ln(N)/ ln(〈k〉), thus it depends only
logarithmically on the number of nodes.

The diameter of a random graph has been studied by
many authors (see Chung and Lu 2001). A general con-
clusion is that for most values of p, almost all graphs have
precisely the same diameter. This means that when we
consider all graphs with N nodes and connection prob-
ability p, the range of values in which the diameters of
these graphs can vary is very small, usually concentrated
around

d =
ln(N)

ln(pN)
=

ln(N)

ln(〈k〉) . (16)

In the following we summarize a few important results:

• If 〈k〉 = pN < 1 the graph is composed of isolated
trees and its diameter equals the diameter of a tree.

• If 〈k〉 > 1 a giant cluster appears. The diameter of
the graph equals the diameter of the giant cluster
if 〈k〉 ≥ 3.5, and is proportional to ln(N)/ ln(〈k〉).

• If 〈k〉 ≥ ln(N) the graph is totally connected. Its
diameter is concentrated on a few values around
ln(N)/ ln(〈k〉).

Another way to characterize the spread of a random
graph is to calculate the average distance between any
pair of nodes, or the average path length. One expects
that the average path length scales with the number of
nodes in the same way as the diameter

ℓrand ∼ ln(N)

ln(〈k〉) . (17)

In Sect. II we have presented evidence that the aver-
age path length of real networks is close to the average

path length of random graphs with the same size. Eq.
(17) gives us an opportunity to better compare random
graphs and real networks (see Newman 2001a,b). Ac-
cording to Eq. (17), the product ℓrand ln(〈k〉) is equal to
ln(N), so plotting ℓrand ln(〈k〉) as a function of ln(N) for
random graphs of different sizes gives a straight line of
slope 1. On Fig. 8 we plot this product for several real
networks, ℓreal log(〈k〉), as a function of the network size,
comparing it with the prediction of Eq. (17). We can see
that the trend of the data is similar with the theoretical
prediction, and with several exceptions Eq. (17) gives a
reasonable first estimate.
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FIG. 8. Comparison between the average path length of real
networks and the prediction (17) of random graph theory
(dashed line). For each symbol we indicate the corresponding
number in Table I or Table II: small circle, I.12; large cir-
cle, I.13; star, I.17; small square, I.10; medium square, I.11;
large square, II.13; small filled circle, II.6; medium filled circle,
I.2; X, I.16; small upwards triangle, I.7; small filled square,
I.15; large upwards triangle, I.4; small left triangle, I.5; large
left triangle, I.6; large filled circle, II.6; small filled diamond,
I.1; small right triangle, I.7, downwards triangle, I.3; medium
filled diamond, II.1; large filled square, I.14; large right trian-
gle, I.5; large filled diamond, II.3.

F. Clustering coefficient

As we already mentioned in Sect. II, complex networks
exhibit a large degree of clustering. If we consider a node
in a random graph and its first neighbors, the probabil-
ity that two of these neighbors are connected is equal
with the probability that two randomly selected nodes
are connected. Consequently the clustering coefficient of
a random graph is

Crand = p =
〈k〉
N

. (18)
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According to Eq. (18), if we plot the ratio Crand/〈k〉
as a function of N for random graphs of different sizes,
on a log-log plot they will align along a straight line of
slope −1. On Fig. 9 we plot the ratio of the clustering
coefficient of real networks and their average degree as a
function of their size, comparing it with the prediction
of Eq. (18). The plot convincingly indicates that real
networks do not follow the prediction of random graphs.
The fraction C/〈k〉 does not decrease as N−1, instead,
it appears to be independent of N . This property is
characteristic to large ordered lattices, whose clustering
coefficient depends only on the coordination number of
the lattice and not their size (Watts and Strogatz 1998).
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FIG. 9. Comparison between the clustering coefficient of real
networks and random graphs. All networks from Table I are
included in the figure, the symbols being the same as in Fig.
8. The dashed line corresponds to Eq. (18).

G. Graph spectra

Any graph G with N nodes can be represented by its
adjacency matrix A(G) with N ×N elements Aij , whose
value is Aij = Aji = 1 if nodes i and j are connected,
and 0 otherwise. The spectrum of graph G is the set of
eigenvalues of its adjacency matrix A(G). A graph with
N nodes has N eigenvalues λj , and it is useful to define
its spectral density as

ρ(λ) =
1

N

N
∑

j=1

δ(λ − λj), (19)

which approaches a continuous function if N → ∞. The
interest in spectral properties is related to the fact that
the spectral density can be directly related to the graph’s
topological features, since its kth moment can be written
as

1

N

N
∑

j=1

(λj)
k =

1

N

∑

i1,i2,..ık

Ai1,i2Ai2i3 ..Aiki1 , (20)

i.e. the number of paths returning to the same node
in the graph. Note that these paths can contain nodes
which were already visited.

Let us consider a random graph GN,p satisfying
p(N) = cN−z. For z < 1 there is an infinite cluster
in the graph (see Sect. III.C), and as N → ∞, any node
belongs almost surely to the infinite cluster. In this case
the spectral density of the random graph converges to a
semicircular distribution (Fig. 10)

ρ(λ) =

{ √
4Np(1−p)−λ2

2πNp(1−p) if |λ| < 2
√

Np(1 − p)

0 otherwise
. (21)

Known as Wigner’s (see Wigner 1955, 1957, 1958), or the
semicircle law, (21) has many applications in quantum,
statistical and solid state physics (Mehta 1991, Crisanti
et al. 1993, Guhr et al. 1998). The largest (principal)
eigenvalue, λ1, is isolated from the bulk of the spectrum,
and it increases with the network size as pN .

When z > 1 the spectral density deviates from the
semi-circle law. The most striking feature of ρ(λ) is that
its odd moments are equal to zero, indicating that the
only way that a path comes back to the original node is
if it returns following exactly the same nodes. This is a
salient feature of a tree structure, and, indeed, in Sect.
III.B we have seen that in this case the random graph is
composed of trees.
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FIG. 10. Rescaled spectral density of three random graphs
having p = 0.05 and size N = 100 (continuous line), N = 300
(dashed line) and N = 1000 (short-dashed line). The isolated
peak corresponds to the principal eigenvalue. After Farkas et

al. 2001.

IV. PERCOLATION THEORY

One of the most interesting findings of random graph
theory is the existence of a critical probability at which
a giant cluster forms. Translated into network language,
it indicates the existence of a critical probability pc such
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that below pc the network is composed of isolated clus-
ters but above pc a giant cluster spans the entire network.
This phenomenon is markedly similar to a percolation
transition, a topic much studied both in mathematics
and in statistical mechanics (Stauffer and Aharony 1992,
Bunde and Havlin 1994, 1996, Grimmett 1999, ben Avra-
ham and Havlin 2000). Indeed, the percolation transition
and the emergence of the giant cluster are the same phe-
nomenon expressed in different languages. Percolation
theory, however, does not simply reproduce the predic-
tions of random network theory. Asking questions from
a different perspective, it addresses several issues that
are crucial for understanding real networks, but are not
discussed by random graph theory. Consequently, it is
important to review the predictions of percolation theory
relevant to networks, as they are crucial to understand
important aspects of the network topology.

A. Quantities of interest in percolation theory

Consider a regular d-dimensional lattice whose edges
are present with probability p and absent with probabil-
ity 1 − p. Percolation theory studies the emergence of
paths that percolate the lattice (starting at one side and
ending at the opposite side). For small p only a few edges
are present, thus only small clusters of nodes connected
by edges can form, but at a critical probability pc, called
the percolation threshold, a percolating cluster of nodes
connected by edges appears (see Fig. 11). This cluster is
also called the infinite cluster, because its size diverges as
the size of the lattice increases. There are several much
studied versions of percolation, the one presented above
being “bond percolation”. The most known alternative
is site percolation, in which all bonds are present and the
nodes of the lattice are occupied with probability p. In
a similar way as bond percolation, for small p only finite
clusters of occupied nodes are present, but for p > pc an
infinite cluster appears.

The main quantities of interest in percolation are:
The percolation probability, P , denoting the probabil-

ity that a given node belongs to the infinite cluster:

P = Pp(|C| = ∞) = 1 −
∑

s<∞
Pp(|C| = s), (22)

where Pp(|C| = s) denotes the probability that the clus-
ter at the origin has size s. Obviously

P =

{

0 if p < pc

> 0 if p > pc
. (23)

The average cluster size, 〈s〉, defined as

〈s〉 = Ep(|C|) =

∞
∑

s=1

sPp(|C| = s), (24)

giving the expectation value of cluster sizes. 〈s〉 is infi-
nite when P > 0, thus in this case it is useful to work
with the average size of the finite clusters by taking away
from the system the infinite (|C| = ∞) cluster

〈s〉f = Ep(|C|, |C| < ∞) =
∑

s<∞
sPp(|C| = s). (25)

The cluster size distribution, ns, defined as the prob-
ability of a node being the left hand end of a cluster of
size s,

ns =
1

s
Pp(|C| = s). (26)

Note that ns does not coincide with the probability that
a node is part of a cluster of size s. By fixing the posi-
tion of the node in the cluster (asking it to be the left
hand end of the cluster), we are choosing one of the s
possible nodes of the cluster, reflected in the division of
Pp(|C| = s) by s, and counting every cluster only once.

 

 

 

p=0.315 p=0.525

FIG. 11. Illustration of bond percolation in 2D. The nodes
are placed on a 25×25 square lattice, and two nodes are con-
nected by an edge with probability p. For p = 0.315 (left),
which is below the percolation threshold pc = 0.5, the con-
nected nodes form isolated clusters. For p = 0.525 (right),
which is above the percolation threshold, the largest cluster
percolates.

These quantities are of interest in random networks
as well. There is, however, an important difference be-
tween percolation theory and random networks: perco-
lation theory is defined on a regular d-dimensional lat-
tice. In a random network (or graph) we can define a
non-metric distance along the edges, but since any node
can be connected by an edge to any other node in the
network, there is no regular small-dimensional lattice a
network can be embedded into. However, as we discuss
below, random networks and percolation theory meet ex-
actly in the infinite dimensional limit (d → ∞) of perco-
lation. Fortunately, many results in percolation theory
can be generalized to infinite dimensions. Consequently,
the results obtained within the context of percolation ap-
ply directly to random networks as well.
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B. General results

The subcritical phase (p < pc): When p < pc, only
small clusters of nodes connected by edges are present
in the system. The questions asked in this phase are (i)
what is the probability that there exists a path x ↔ y
joining two randomly chosen nodes x and y and (ii) what
is the rate of decay of Pp(|C| = s) when s → ∞. The first
result of this type was obtained by Hammersley (1957)
who showed that the probability of a path joining the ori-
gin with a node on the surface, ∂B(r), of a box centered
at the origin and with side-length 2r decays exponentially
if P < ∞. We can define a correlation length ξ as the
characteristic length of the exponential decay

Pp(0 ↔ ∂B(r)) ∼ e−
r
ξ , (27)

where 0 ↔ ∂B(r) means that there is a path from the
origin to an arbitrary node on ∂B(r). Equation (27)
indicates that the radius of the finite clusters in the sub-
critical region has an exponentially decaying tail, and the
correlation length represents the mean radius of a finite
cluster. It was shown (see Grimmett 1999) that ξ is equal
to 0 for p = 0 and goes to infinity as p → pc.

The exponential decay of cluster radii implies that the
probability that a cluster has size s, Pp(|C| = s), also
decays exponentially for large s:

Pp(|C| = s) ∼ e−α(p)s as s → ∞, (28)

where α(p) → ∞ as p → 0 and α(pc) = 0.
The supercritical phase (p > pc): For P > 0 there is

exactly one infinite cluster (Burton and Keane 1989). In
this supercritical phase the previously studied quantities
are dominated by the contribution of the infinite cluster,
thus it is useful to study the corresponding probabilities
in terms of the finite clusters. The probability that there
is a path from the origin to the surface of a box of edge
length 2r which is not part of the infinite cluster decays
exponentially as

Pp (0 ↔ ∂B(r), |C| < ∞) ∼ e−
r
ξ . (29)

Unlike the subcritical phase, though, the decay of the
cluster sizes, Pp(|C| = s < ∞), follows a stretch-

exponential, e−β(p)s
d−1

d , offering the first important
quantity that depends on the dimensionality of the lat-
tice, but even this dependence vanishes as d → ∞, and
the cluster size distribution decays exponentially as in
the subcritical phase.

C. Exact solutions: percolation on a Cayley tree

The Cayley tree (or Bethe lattice) is a loopless struc-
ture (see Fig. 12) in which every node has z neighbors,
with the exception of the nodes at the surface. While

the surface and volume of a regular d-dimensional ob-
ject obey the scaling relation surface ∝ volume1−1/d, and
only in the limit d → ∞ is the surface proportional with
the volume, for the Cayley tree the number of nodes
on the surface is proportional to the total number of
nodes (i.e. the volume of the tree). Thus in this re-
spect the Cayley tree represents an infinite-dimensional
object. Another argument for the infinite-dimensionality
of the Cayley tree is that it has no loops (cycles in graph
theoretic language). Thus, despite its regular topology,
the Cayley tree represents a reasonable approximation
for the topology of a random network in the subcritical
phase, where all the clusters are trees. This is no longer
true in the supercritical phase, because at the critical
probability pc(N), cycles of all order appear in the graph
(see Sect. III.C).

FIG. 12. Example of a Cayley tree with coordination num-
ber z = 3. All of the nodes have 3 edges, with the exception
of those on the surface, which have only one edge. The ra-
tio between the number of nodes on the surface and the total
number of nodes approaches a constant, z−2

z−1
, a property valid

only for infinite dimensional objects. The average degree ap-
proaches 〈k〉 = 2 as the size of the tree goes to infinity, a
property common with random trees (see Sect. III.B).

To investigate percolation on a Cayley tree, we assume
that each edge is present with probability p. Next we dis-
cuss the main quantities of interest for this system.

Percolation threshold: The condition for the existence
of an infinite path starting from the origin is that at
least one of the z − 1 possible outgoing edges of a node
is present, i.e. (z − 1)p ≥ 1. Therefore the percolation
threshold is

pc =
1

z − 1
. (30)

Percolation probability: For a Cayley tree with z = 3,
for which pc = 1/2, the percolation probability is given
by (Stauffer and Aharony 1992)
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P =

{

0 if p < pc = 1
2

(2p − 1)/p2 if p > pc = 1
2

(31)

The Taylor series expansion around pc = 1
2 gives

P ≃ 8(p − 1
2 ), thus the percolation probability is pro-

portional to the deviation from the percolation threshold

P ∝ (p − pc) as p → pc. (32)

Mean cluster size: The average cluster size is given by

〈s〉 =

∞
∑

n=1

3 × 2n−1pn =
3

2

1

1 − 2p
=

3

4
(pc − p)−1. (33)

Note that 〈s〉 diverges as p → pc, and it depends on P as
a power of the distance pc−p from the percolation thresh-
old. This behavior is an example of critical phenomena:
an order parameter goes to zero following a power-law in
the vicinity of the critical point (Stanley 1971, Ma 1976).

Cluster size distribution: The probability of having a
cluster of size s is (Durett 1985)

Pp(|C| = s) =
1

s
Cs−1

2s ps−1(1 − p)s+1. (34)

Here the number of edges surrounding the s nodes is 2s,
from which the s−1 inside edges have to be present, and
the s+1 external ones absent. The factor Cs−1

2s takes into
account the different cases that can be obtained when
permuting the edges, and the 1

s is a normalization factor.
Since ns = 1

sPp(|C| = s), after using Stirling’s formula
we obtain

ns ∝ s−5/2ps−1(1 − p)s+1. (35)

In the vicinity of the percolation threshold this expres-
sion can be approximated with

ns ∼ s−5/2e−cs with c ∝ (p − pc)
2 (36)

Thus the cluster size distribution follows a power-
law with an exponential cutoff: only clusters with size
s < sξ = 1/c ∝ (p − pc)

−2 contribute significantly to
cluster averages. For these clusters, ns is effectively equal
to ns(pc) ∝ s−5/2. Clusters with s ≫ sξ are exponen-
tially rare, and their properties are no longer dominated
by the behavior at pc. The notation sξ illustrates that as
the correlation length ξ is the characteristic lengthscale
for the cluster diameters, sξ is an intrinsic characteristic
of cluster sizes. The correlation length of a tree is not
well defined, but we will see in the more general cases
that sξ and ξ are related by a simple power-law.

D. Scaling in the critical region

The principal ansatz of percolation theory is that even
the most general percolation problem in any dimension

obeys a scaling relation similar to Eq. (36) near the per-
colation threshold. Thus in general the cluster size dis-
tribution can be written as

ns(p) ∼
{

s−τf−(|p − pc|1/σs) as p ≤ pc

s−τf+(|p − pc|1/σs) as p ≥ pc
. (37)

Here τ and σ are critical exponents whose numerical
value needs to be determined, f− and f+ are smooth
functions on [0,∞), and f−(0) = f+(0). The results of
Sect. IV.B suggest that f−(x) ≃ e−Ax and f+(x) ≃
e−Bx(d−1)/d

for x >> 1. This ansatz indicates that the
role of sξ ∝ |p− pc|−1/σ as a cutoff is the same as in the
Cayley tree. The general form (37) contains as special
case the Cayley tree (36) with τ = 5/2, σ = 1/2 and
f±(x) = e−x.

Another element of the scaling hypothesis is that the
correlation length diverges near the percolation threshold
following a power-law:

ξ(p) ∼ |p − pc|−ν as p → pc. (38)

This ansatz introduces the correlation exponent, ν, and
indicates that ξ and sξ are related by a power-law sξ =
ξ1/σν . From these two hypotheses we find that the per-
colation probability (22) is given by

P ∼ (p − pc)
β with β =

τ − 2

σ
, (39)

which scales as a positive power of p−pc for p ≥ pc, thus
it is 0 for p = pc and increases when p > pc. The average
size of finite clusters, 〈s〉f , which can be calculated on
both sides of the percolation threshold, obeys

〈s〉f ∼ |p − pc|−γ with γ =
3 − τ

σ
, (40)

diverging for p → pc. The exponents β and γ are called
the critical exponents of the percolation probability and
average cluster size, respectively.

E. Cluster structure

Until now we discussed the cluster sizes and radii, ig-
noring their internal structure. Let us first focus on the
perimeter of a cluster, t, denoting the number of nodes
situated on the most external edges (the leaf nodes). The
perimeter ts of a very large but finite cluster of size s
scales as (Leath 1976)

ts = s
1 − p

p
+ Asζ as s → ∞, (41)

where ζ = 1 for p < pc and ζ = 1− 1/d for p > pc. Thus
below pc the perimeter of the clusters is proportional with
their volume, a highly irregular property, which is never-
theless true for trees, including the Cayley tree.
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Another way of understanding the unusual structure of
finite clusters is by looking at the relation between their
radii and volume. The correlation length ξ is a measure
of the mean cluster radius, and we know that ξ scales

with the cutoff cluster size sξ as ξ ∝ s
1/νσ
ξ . Thus the fi-

nite clusters are fractals (see Mandelbrot 1982), because
their size does not scale as their radius to the dth power,
but as

s(r) ∼ rdf , (42)

where df = 1/σν. It can be also shown that at the per-
colation threshold the infinite cluster is still a fractal, but
for p > pc it becomes a normal d-dimensional object.

While the cluster radii and the correlation length ξ are
defined using the Euclidian distances on the lattice, the
chemical distance is defined as the length of the shortest
path between two arbitrary sites on a cluster (Havlin and
Nossal 1984). Thus the chemical distance is the equiva-
lent of the distance on random graphs. The number of
nodes within chemical distance ℓ scales as

s(ℓ) ∼ ℓdℓ , (43)

where dℓ is called the graph dimension of the cluster.
While the fractal dimension df of the Euclidian distances
has been related to the other critical exponents, no such
relation has been found yet for the graph dimension dℓ.

F. Infinite dimensional percolation

Percolation is known to have a critical dimension dc,
below which some exponents depend on d, but for any
dimension above dc the exponents are the same. While
it is generally believed that the critical dimension of per-
colation is dc = 6, the dimension independence of the
critical exponents is proven rigorously only for d ≥ 19
(see Hara and Slade 1990). Thus for d > dc the results of
the infinite dimensional percolation theory apply, which
predict that

• P ∼ (p − pc) as p → pc;

• 〈s〉 ∼ (pc − p)−1 as p → pc;

• ns ∼ s−5/2e−|p−pc|2s as p → pc;

• ξ ∼ |p − pc|−1/2 as p → pc.

Consequently, the critical exponents of the infinite di-
mensional percolation are τ∞ = 5/2, σ∞ = 1/2 and
ν∞ = 1/2. The fractal dimension of the infinite clus-
ter at the percolation threshold is df = 4, while graph
dimension is dℓ = 2 (Bunde, Havlin 1996). Thus the
characteristic chemical distance on a finite cluster or in-
finite cluster at the percolation threshold scales with its
size as

ℓ ∼ s2/df = s1/2. (44)

G. Parallels between random graph theory and percolation

In random graph theory we study a graph of N nodes,
each pair of nodes being connected with probability p.
This corresponds to percolation in at most N dimen-
sions, such that each two connected nodes are neighbors,
and the edges between graph nodes are the edges in the
percolation problem. Since random graph theory inves-
tigates the N → ∞ regime, it is analogous with infinite
dimensional percolation.

We have seen in Sect. IV.C that infinite dimen-
sional percolation is similar to percolation on a Cayley
tree. The percolation threshold of the Cayley tree is
pc = 1/(z − 1), where z is the coordination number of
the tree. In a random graph of N nodes the coordination
number is N − 1, thus the “percolation threshold”, de-
noting the connection probability at which a giant cluster
appears, should be pc ≃ 1/N . Indeed, this is exactly the
probability at which the phase transition leading to the
giant component appears in random graphs, as Erdős and
Rényi has showed (see Sect. III.C).

In the following we highlight some of the predictions
of random graph theory and infinite dimensional perco-
lation which reflect a complete analogy:

1. For p < pc = 1/N

• The probability of the giant cluster in a graph, and
of the infinite cluster in percolation, is equal to 0.

• The clusters of a random graph are trees, while the
clusters in percolation have a fractal structure and
a perimeter proportional with their volume

• The largest cluster in a random graph is a tree
with ln(N) nodes, while in general for percolation
Pp(|C| = s) ∼ e−s/sξ [ see Eq. (28) in Sect. IV.B]
suggesting that the size of the largest cluster scales
as ln(N).

2. For p = pc = 1/N

• A giant cluster, respectively an infinite cluster ap-
pears.

• The size of the giant cluster is N2/3, while for infi-
nite dimensional percolation Pp(|C| = s) ∼ s−3/2,
thus the size of the largest cluster scales as N2/3.

3. For p > pc = 1/N

• The size of the giant cluster is G(c)N , where
limc→∞ G(c) = 1. The size of the infinite cluster is
PN ∝ (p − pc)N .
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• The giant cluster has a complex structure, contain-
ing cycles. In the same time the infinite cluster is
not fractal anymore, but compact.

All these correspondences indicate that the phase tran-
sition in random graphs belongs in the same universality
class as mean field percolation. Numerical simulations of
random graphs (see for example Christensen et al., 1998)
have confirmed that the critical exponents of the phase
transition are equal to the critical exponents of the in-
finite dimensional percolation. The equivalence of these
two theories is very important because it offers us differ-
ent perspectives on the same problem. For example, it
is often of interest to look at the cluster size distribution
of a random network with a fixed number of nodes. This
question is answered in a simpler way in percolation the-
ory. However, random graph theory answers questions of
major importance for networks, such as the appearance
of trees and cycles, which are largely ignored by percola-
tion theory.

In some cases there is an apparent discrepancy between
the prediction of random graph theory and percolation
theory. For example, percolation theory predicts that the
chemical distance between two nodes in the infinite clus-
ter scales as a power of the size of the cluster [see Eq.
(44)]. On the other hand, random graph theory predicts
[Eq. (16)] that the diameter of the infinite cluster scales
logarithmically with its size (see Chung and Lu 2000).
The origin of the apparent discrepancy is that these two
predictions refer to different regimes. While Eq. (44) is
valid only in the case where the infinite cluster is barely
formed (i.e. p = pc, and 〈k〉 = 1), and is still a fractal,
the prediction of the random graph theory is valid only
well beyond the percolation transition, when 〈k〉 ≫ 1.
Consequently, using these two limits we can address the
evolution of the chemical distance on the infinite cluster
(see Cohen et al. 2001). Thus for a full characterization
of random networks we need to be aware of both of these
complementary approaches.

V. GENERALIZED RANDOM GRAPHS

In Sect. II we have seen that real networks differ from
random graphs in that often their degree distribution fol-
lows a power-law P (k) ∼ k−γ . Since power-laws are free
of a characteristic scale, these networks are called ’scale-
free networks’ (Barabási, Albert 1999, Barabási, Albert
and Jeong 1999). As random graphs do not capture the
scale-free character of real networks, we need a differ-
ent model to describe these systems. One approach is to
generalize random graphs by constructing a model which
has the degree distribution as an input, but is random
in all other respects. In other words, the edges connect
randomly selected nodes, with the constraint that the de-
gree distribution is restricted to a power-law. The theory

of such semi-random graphs should answer similar ques-
tions as were asked by Erdős and Rényi and percolation
theory (see Sections III and IV): Is there a threshold at
which the giant cluster appears? How does the size and
topology of the clusters evolve? When does the graph
become connected? In addition, we need to determine
the average path length and clustering coefficient of such
graphs.

The first step in developing such a theory is to identify
the relevant parameter which, together with the network
size, gives a statistically complete characterization of the
network. In the case of random graphs this parameter is
the connection probability (see Sect. III.A), for perco-
lation theory it is the bond occupation probability (see
Sect. IV). Since the only restriction for these graphs is
that their degree distribution needs to follow a power-
law, the exponent γ of the degree distribution could play
the role of the control parameter. Accordingly, we study
scale-free random networks by systematically varying γ
and see if there is a threshold value of γ at which the
networks’ important properties abruptly change.

We start by sketching a few intuitive expectations.
Consider a large network with degree distribution P (k) ∼
k−γ , and consider that γ decreases from ∞ to 0. The av-
erage degree of the network, or equivalently, the number
of edges, increases as γ decreases, since 〈k〉 ∼ k−γ+2

max ,
where kmax < N is the maximum degree of the graph.
This is very similar to the graph evolution process de-
scribed by Erdős and Rényi (see Sect. III.C). Conse-
quently, we expect that while at large γ the network con-
sists of isolated small clusters, there is a critical value of
γ at which a giant cluster forms, and at an even smaller
γ the network becomes completely connected.

The theory of random graphs with given degree se-
quence is relatively recent. One of the first results is due
to Luczak (1992), who showed that almost all random
graphs with a fixed degree distribution and no nodes of
degree smaller than 2 have a unique giant cluster. Mol-
loy and Reed (1995, 1998) have proven that for a random
graph with degree distribution P (k) the infinite cluster
emerges almost surely when

Q ≡
∑

k≥1

k(k − 2)P (k) > 0, (45)

provided that the maximum degree is less than N1/4.
The method of Molloy and Reed was applied to random
graphs with power-law degree distributions by Aiello,
Chung and Lu (2000). As we show next, their results
are in excellent agreement with the expectations outlined
above.

A. Thresholds in a scale-free random graph

Aiello, Chung and Lu (2000)introduce a two-parameter
random graph model P (α, γ) defined as follows: Let Nk
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be the number of nodes with degree k. P (α, γ) assigns
uniform probability to all graphs with Nk = eαk−γ . Thus
in this model it is not the total number of nodes which
is specified - along with the exponent γ - from the begin-
ning, but the number of nodes with degree 1. Neverthe-
less, the number of nodes and edges in the graph can be
deduced, noting that the maximum degree of the graph
is eα/γ . To find the condition for the appearance of the
giant cluster in this model, we insert P (α, γ) into Eq.
(45), finding as a solution γ0 = 3.47875... Thus when
γ > γ0 the random graph almost surely has no infinite
cluster. On the other hand, when γ < γ0 there is almost
surely an infinite cluster.

An important question is whether the graph is con-
nected or not. Certainly for γ > γ0 the graph is discon-
nected as it is made of independent finite clusters. In the
0 < γ < γ0 regime Aiello, Chung and Lu (2000) study
the size of the second largest cluster, obtaining that for
2 ≤ γ ≤ γ0 the second largest cluster almost surely has
size of order of log N , thus it is relatively small. On the
other hand, for 1 < γ < 2 almost surely every node with
degree greater than log(N) belongs to the infinite clus-
ter. The second largest cluster has a size of order 1, i.e.
its size does not increase as the size of the graph goes
to infinity. This means that the fraction of nodes in the
infinite cluster approaches 1 as the system size increases,
thus the graph becomes totally connected in the limit of
infinite system size. Finally, for 0 < γ < 1 the graph is
almost surely connected.

B. Generating function formalism

A general approach to random graphs with given de-
gree distribution was developed by Newman, Strogatz
and Watts (2000) using a generating function formalism
(Wilf 1990). The generating function of the degree dis-
tribution,

G0(x) =

∞
∑

k=0

P (k)xk, (46)

encapsulates all the information contained in P (k), since

P (k) =
1

k!

dkG0

dxk

∣

∣

∣

∣

x=0

. (47)

An important quantity for studying the cluster structure
is the generating function for the degree distribution of
the first neighbors of a randomly selected node. This can
be obtained in the following way: a randomly selected
edge reaches a node with degree k with probability pro-
portional to kP (k) (i.e. it is easier to find a well con-
nected node). If we start from a randomly chosen node
and follow each of the edges starting from it, then the
nodes we visit have their degree distribution generated

by kP (k). In addition, the generating function will con-
tain a term xk−1 (instead of xk as in Eq. (46)) because
we have to discount the edge through which we reached
the node. Thus the distribution of outgoing edges is gen-
erated by the function

G1(x) =

∑

k kP (k)xk−1

∑

k kP (k)
=

1

〈k〉G
′
0(x). (48)

The average number of first neighbors is equal to the
average degree of the graph,

z1 = 〈k〉 =
∑

k

kP (k) = G′
0(1). (49)

1. Component sizes and phase transitions

When we identify a cluster using a burning (breadth-
first-search) algorithm, we start from an arbitrary node,
and follow its edges until we reach its first neighbors.
We record these nodes as part of the cluster, then follow
their outside edges (avoiding the already recorded nodes)
and record the nodes we arrive to as second neighbors
of the starting node. This process is repeated until no
new nodes are found, the set of identified nodes forming
an isolated cluster. This algorithm is implicitly incor-
porated into the generating function method. The gen-
erating function, H1(x), for the size distribution of the
clusters reached by following a random edge satisfies the
iterative equation

H1(x) =

∑

k kP (k)[H1(x)]k
∑

k kP (k)
= xG1(H1(x)). (50)

Here kP (k) stands for the probability that a random edge
arrives to a node with degree k, and [H1(x)]k represents
the k ways in which the cluster can be continued recur-
sively (i.e. by finding the first neighbors of a previously
found node). If we start at a randomly chosen node then
we have one such cluster at the end of each edge leaving
that node, and hence the generating function for the size
of the whole cluster is

H0(x) = x
∑

k

P (k)[H1(x)]k = xG0(H1(x)). (51)

The average cluster size is given by

〈s〉 = H ′
0(1) = 1 +

G′
0(1)

1 − G′
1(1)

, (52)

which diverges when G′
1(1) = 1, a signature of the ap-

pearance of a giant cluster. Substituting the definition
of G0(x) we can write the condition of the emergence of
the giant cluster as
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∑

k

k(k − 2)P (k) = 0, (53)

identical to Eq. (45) derived by Molloy and Reed (1995).
Equation (53) gives an implicit relation for the critical
degree distribution of a random graph: For any degree
distribution for which the sum on the l.h.s. is negative,
no giant cluster is present in the graph, but degree distri-
butions which give a positive sum lead to the appearance
of a giant cluster.

When a giant cluster is present, H0(x) generates the
probability distribution of the finite clusters. This means
that H0(1) is no longer unity but instead takes on the
value 1−S, where S is the fraction of nodes in the giant
cluster. We can use this to calculate the size of the giant
cluster S as (Molloy and Reed 1998)

S = 1 − G0(u), (54)

where u is the smallest non-negative real solution of the
equation u = G1(u).

Since we are dealing with random graphs (although
with an arbitrary degree distribution), percolation theory
(see Sect. IV) indicates that close to the phase transition
the tail of cluster size distribution, ns, behaves as

ns ∼ s−τe−s/sξ . (55)

The characteristic cluster size sξ can be related to the
first singularity of H0(x), x∗, and at the phase transition
x∗ = 1 and sξ → ∞. Using a Taylor expansion around
the critical point we obtain that H0(x) scales as

H0(x) ∼ (1 − x)α as x → 1, (56)

with α = 1
2 . This exponent can be related to the expo-

nent τ by using the connection between ns and H0(x),
obtaining τ = α + 2 = 5

2 , regardless of degree distri-
bution. Thus close to the critical point the cluster size
distribution follows nc

s ∼ s−5/2, as predicted by infinite
dimensional percolation (Sect. IV.F), but now extended
to a large family of random graphs with arbitrary degree
distribution.

2. Average path length

Extending the method of calculating the average num-
ber of first neighbors, the average number of mth neigh-
bors is

zm = [G′
1(1)]m−1G′

0(1) =

[

z2

z1

]m−1

z1, (57)

where z1 and z2 is the number of first and second neigh-
bors. Assuming that all nodes in the graph can be
reached within ℓ steps, we have

1 +
ℓ
∑

m=1

zm = N. (58)

As for most graphs N >> z1 and z2 >> z1, we obtain

ℓ =
ln(N/z1)

ln(z2/z1)
+ 1. (59)

This result reflects several general properties of the av-
erage path length:

1. ℓ scales logarithmically with N for all random
graphs, irrespective of the degree distribution.

2. ℓ, a global measure, can be calculated from local
quantities as the average number of neighbors a node
has.

3. Even among the number of neighbors only the av-
erage number of first and second nearest neighbors are
important to the calculation of ℓ, thus two graphs with
different degree distributions but the same values of z1

and z2 will have the same average path length.

C. Random graphs with power-law degree distribution

As an application of the generating function formalism
Newman, Watts and Strogatz (2000) consider the case of
a degree distribution of type

P (k) = Ck−γe−k/κ for k ≥ 1, (60)

where C, γ and κ are constants. The exponential cut-
off, present in some social and biological networks (see
Amaral et al. 2000, Newman 2000a, Jeong et al. 2001),
has the technical advantage of making the distribution
normalizable for all γ, not just γ ≥ 2, as in the case for
a pure power-law. The constant C is fixed by normaliza-
tion, giving C = [Liγ(e−1/κ)]−1, where Lin(x) is the nth

polylogarithm of x. Thus the degree distribution is char-
acterized by two independent parameters, the exponent
γ and the cutoff κ. Following the formalism described
above, we find that the size of the infinite cluster is

S = 1 − Liγ(ue−1/κ)

Liγ(e−1/κ)
, (61)

where u is the smallest nonnegative real solution of the
equation u = Liγ−1(ue−1/κ)/[uLiγ−1(e

−1/κ)]. For graphs
with purely power-law distribution (κ → ∞), the above
equation becomes u = Liγ−1(u)/[uζ(γ − 1)], where ζ(x)
is the Riemann ζ-function. For all γ ≤ 2 this gives u = 0,
and hence S = 1, implying that a randomly chosen node
belongs to the giant cluster with probability converging
to 1 as κ → ∞. For graphs with γ > 2 this is never the
case, even for infinite κ, indicating that such a graph con-
tains finite clusters, i.e. it is not connected, in agreement
with the conclusions of Aiello, Chung and Lu (2000).

The average path length is
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ℓ =
lnN + ln[Liγ(e−1/κ)/Liγ−1(e

−1/κ)]

ln[Liγ−2(e−1/κ)/Liγ−1(e−1/κ) − 1]
+ 1, (62)

which in the limit κ → ∞ becomes

ℓ =
log N + ln[ζ(γ)/ζ(γ − 1)]

ln[ζ(γ − 2)/ζ(γ − 1) − 1]
+ 1. (63)

Note that this expression does not have a finite posi-
tive real value for any γ < 3, indicating that one must
specify a finite cutoff κ for the degree distribution to get
a well-defined average path length. Equations (59) and
(62) reproduce the result of finite size scaling simulations
of the World-Wide Web indicating that its average path
length scales logarithmically with its size (Albert, Jeong,
Barabási 1999). But do they offer a good estimate for
the average path length of real networks? In Sect. II we
have seen that the prediction of random graph theory is
in qualitative agreement with the average path length of
real networks, but that there also are significant devia-
tions from it. It is thus important to see if taking into
account the correct degree distribution gives a better fit.
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FIG. 13. Comparison between the average path length of real
scale-free networks and the prediction (62) of scale-free ran-
dom graphs (dashed line). For each network we have plotted
A(ℓ−1)−B as a function of N , where A and B are given in the
text. The networks included in the figure, indicated by their
number in Table I or Table II, are: small circle, I.12; large
circle, I.13; small square, I.10; medium square, I.11; large
square, II.13; small filled circle, II.6; medium filled circle, I.2;
small left triangle, I.6, large left triangle, I.8; large filled cir-
cle, II.7; down triangle, I.9; right triangle, I.3, medium filled
diamond, II.1, large filled diamond, II.3.

In Fig. 13 we compare the prediction of Eq. (62)
with the average path length of real networks by plot-
ting A(ℓ − 1) − B in function of the network size N ,
where A = log[Liγ−2(e

−1/κ)/Liγ−1(e
−1/κ) − 1] and

B = log[Liγ(e−1/κ)/Liγ−1(e
−1/κ)], and we use the cutoff

length κ as obtained from the empirical degree distribu-

tions. For the directed networks we used the γout val-
ues. For random networks with the same N , γ and κ as
the real networks the Aℓ − B values would align along a
straight line with slope 1 in a log-linear plot, given by the
dashed line on the figure. The actual values for the real
networks obey the trend, but they seem to be systemat-
ically larger than the prediction of Eq. (62), indicating
that the average path length of real networks is larger
than that of random graphs with power-law degree dis-
tribution. This conclusion is further supported by the
last three columns of Table II which directly compares
the average path length of real networks with power-law
degree distribution, ℓreal, and the estimates of random
graph theory, ℓrand, and scale-free random graph theory,
ℓpow. We can see that the general trend is that ℓreal

is larger than both ℓpow and ℓrand, an indication of the
non-random aspects of the topology of real networks.

D. Bipartite graphs and the clustering coefficient

The clustering coefficient of scale-free random graphs
has not been calculated yet in the literature, but we can
find out its general characteristic if we take into account
that scale-free random graphs are similar to Erdős-Rényi
random graphs in the sense that their edges are dis-
tributed randomly. Consequently, the clustering coeffi-
cient of scale-free random graphs converges to 0 as the
network size increases.
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FIG. 14. A schematic representation of a bipartite graph,
such as the graph of movies and the actors who have appeared
in them. In this small graph we have four movies, labeled 1
to 4, and eleven actors, labeled A to K, with edges joining
each movie to the actors in its cast. The bottom figure shows
the one-mode projection of the graph for the eleven actors.
After Newman et al. 2000.

It is worth noting, however, that some of the real-world
networks presented in Sect. II, for example the collab-
oration networks, can be more completely described by
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bipartite graphs (Newman, Strogatz and Watts 2000). In
a bipartite graph there are two kinds of nodes, and edges
connect only nodes of different kind. For example, the
collaboration network of movie actors is in fact a projec-
tion of a bipartite actor-movie graph, in which the two
types of nodes are the actors and movies, and an edge
connects each movie with the actors playing in it (see
Fig. 14). The same argument stands for the collabora-
tion between scientists (where scientists and papers are
the two types of nodes) and metabolic networks (where
nodes can be the substrates or reactions). The generating
function method can be generalized to bipartite graphs
(see Newman, Strogatz and Watts 2000), and it results
in a nonvanishing clustering coefficient inherent to the
bipartite structure

C =
1

1 + (µ2−µ1)(ν2−ν1)2

µ1ν1(2ν1−3ν2+ν3)

, (64)

where µn =
∑

k knPa(k) and νn =
∑

k knPm(k), and in
the actor-movie framework, Pa(k) represents the fraction
of actors which appeared in k movies, while Pm(k) means
the fraction of movies in which k actors have appeared.

The prediction of Eq. (64) has been tested for several
collaboration graphs (Newman, Strogatz, Watts 2000),
and in some cases there is an excellent agreement, but
in others it deviates by a factor of 2 from the cluster-
ing coefficient of the real network. Consequently we can
conclude that the order present in real networks is not
due solely to the definition of the network, but to a yet
unknown organizing principle.

VI. SMALL-WORLD NETWORKS

In Sects. II and III.A we have seen (see Table I, Figs. 8
and 9) that real-world networks have a small-world char-
acter like random graphs, but they have unusually large
clustering coefficients. Furthermore, as Fig. 9 demon-
strates, the clustering coefficient appears to be indepen-
dent of the network size. This latter property is charac-
teristic to ordered lattices, whose clustering coefficient is
size independent and depends only on the coordination
number. For example, a one-dimensional lattice with pe-
riodic boundary conditions (i.e. a ring of nodes), in which
each node is connected to the K nodes closest to it (see
Fig. 15), most of the immediate neighbors of any site are
also neighbors of one another, i.e. the lattice is clustered.
For such a lattice the clustering coefficient is

C =
3(K − 2)

4(K − 1)
, (65)

which converges to 3/4 in the limit of large K. Such
low-dimensional regular lattices, however, do not have
short path lengths: for a d dimensional hypercubic lat-
tice the average node-node distance scales as N1/d, which

increases much faster with N than the logarithmic in-
crease observed for random and real graphs. The first
successful attempt to generate graphs with high cluster-
ing coefficients and small ℓ is due to Watts and Strogatz
(1998).

A. The Watts-Strogatz (WS) model

Watts and Strogatz (1998) proposed a one-parameter
model which interpolates between an ordered finite di-
mensional lattice and a random graph. The algorithm
behind the model is the following (Fig. 15):

(1) Start with order: Start with a ring lattice with
N nodes in which every node is connected to its first
K neighbors (K/2 on either side). In order to have
a sparse but connected network at all times, consider
N ≫ K ≫ ln(N) ≫ 1.

(2) Randomize: Randomly rewire each edge of the lat-
tice with probability p such that self-connections and
duplicate edges are excluded. This process introduces
pNK/2 long-range edges which connect nodes that oth-
erwise would be part of different neighborhoods. Varying
p the transition between order (p = 0) and randomness
(p = 1) can be closely monitored.

FIG. 15. The random rewiring procedure of the WS model
which interpolates between a regular ring lattice and a ran-
dom network without altering the number of nodes or edges.
We start with N = 20 nodes, each connected to its 4 near-
est neighbors. For p = 0 the original ring is unchanged; as
p increases the network becomes increasingly disordered until
for p = 1 all edges are rewired randomly. After Watts and
Strogatz (1998).

This model has its roots in social systems where most
people are friends with their immediate neighbors - neigh-
bors on the same street, colleagues, people that their
friends introduce them to. On the other hand, every-
body has one or two friends who are a long way away -
people in other countries, old acquaintances, which are
represented by the long-range edges obtained by rewiring
in the WS model.

To understand the coexistence of small path length
and clustering, we study the behavior of the clustering
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coefficient C(p) and the average path length ℓ(p) as a
function of the rewiring probability p. For a ring lattice
ℓ(0) ≃ N/2K ≫ 1 and C(0) ≃ 3/4, thus ℓ scales lin-
early with the system size, and the clustering coefficient
is large. On the other hand, for p → 1 the model con-
verges to a random graph for which ℓ(1) ∼ ln(N)/ ln(K)
and C(1) ∼ K/N , thus ℓ scales logarithmically with N
and the clustering coefficient decreases with N . These
limiting cases might suggest that large C is always asso-
ciated with large ℓ, and small C with small ℓ. On the
contrary, Watts and Strogatz (1998) found that there is
a broad interval of p over which ℓ(p) is close to ℓ(1) yet
C(p) ≫ C(1) (Fig. 16). This regime originates in a
rapid drop of ℓ(p) for small p values, while C(p) stays
almost unchanged, resulting in networks that are clus-
tered but have a small characteristic path length. This
coexistence of small ℓ and large C is in excellent agree-
ment with the characteristics of real networks discussed
in Sect. II, prompting many to call such systems small
world networks.

FIG. 16. Characteristic path length ℓ(p) and clustering coef-
ficient C(p) for the WS model. The data is normalized by
the values ℓ(0) and C(0) for a regular lattice. A logarithmic
horizontal scale resolves the rapid drop in ℓ(p), correspond-
ing to the onset of the small-world phenomenon. During this
drop C(p) remains almost constant, indicating that the tran-
sition to a small world is almost undetectable at the local
level. After Watts and Strogatz (1998).

B. Properties of small-world networks

The pioneering article of Watts and Strogatz started
an avalanche of research on the properties of small-world
networks and the Watts-Strogatz (WS) model. A much
studied variant of the WS model was proposed by New-
man and Watts (1999a, 1999b) in which edges are added
between randomly chosen pairs of sites, but no edges are
removed from the regular lattice. This model is some-

what easier to analyze than the original Watts-Strogatz
model because it does not lead to the formation of iso-
lated clusters, whereas this can happen in the original
model. For sufficiently small p and large N this model is
equivalent with the WS model. In the following we will
summarize the main results regarding the properties of
small-world models.

1. Average path length

As we discussed above, in the WS model there is a
change in the scaling of the characteristic path length ℓ
as the fraction p of the rewired edges is increased. For
small p, ℓ scales linearly with the system size, while for
large p the scaling is logarithmic. As discussed by Watts
(1999), and Pandit and Amritkar (1999), the origin of the
rapid drop in ℓ is the appearance of shortcuts between
nodes. Every shortcut, created at random, is likely to
connect widely separated parts of the graph, and thus
has a significant impact on the characteristic path length
of the entire graph. Even a relatively low fraction of
shortcuts is sufficient to drastically decrease the average
path length, yet locally the network remains highly or-
dered.

An important question regarding the average path
length is whether the onset of small-world behavior is de-
pendent on the system size. It was Watts (1999) who first
noticed that ℓ does not begin to decrease until p ≥ 2/NK,
guaranteeing the existence of at least one shortcut. This
implies that the transition p depends on the system size,
or conversely, there exists a p-dependent crossover length
N∗ such that if N < N∗, ℓ ∼ N , but if N > N∗,
ℓ ∼ ln(N). The concept of the crossover length was in-
troduced by Barthélémy and Amaral (1999a), who con-
jectured that the characteristic path length scales as (see
Fig. VI.B.1):

ℓ(N, p) ∼ N∗F

(

N

N∗

)

, (66)

where

F (u) =

{

u if u ≪ 1
ln(u) if u ≫ 1

. (67)
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FIG. 17. Data collapse ℓ(N, p)/N∗(p) versus N/N∗(p) for two
different values of K. (a) Log-linear scale showing the loga-
rithmic behavior at large N/N∗; (b) Linear scale showing the
linear behavior l(N, p) ∼ N/(4K) at small N/N∗. After Bar-
rat and Weigt (2000).

Numerical simulations and analytical arguments
(Barthélémy and Amaral 1999a, Barrat 1999, Newman
and Watts 1999a, Bartélémy and Amaral 1999b, Argollo
de Menezes et al. 2000, Barrat and Weigt 2000) con-
cluded that the crossover length N∗ scales with p as
N∗ ∼ p−τ , where τ = 1/d and d is the dimension of
the original lattice to which the random edges are added
(Fig. 18). Thus for the original WS model, defined on a
circle (d = 1), we have τ = 1, the onset of small-world be-
havior taking place at the rewiring probability p∗ ∼ 1/N .
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FIG. 18. The dependence of the crossover length N∗ on the
rewiring probability in one to four dimensions. The dashed
lines represent the scaling relation N∗ ∼ p−1/d. After Argollo
de Menezes et al. (2000).

It is now widely accepted that the characteristic path
length obeys the general scaling form

ℓ(N, p) ∼ N

K
f(pKNd), (68)

where f(u) is a universal scaling function that obeys

f(u) =

{

constant if u ≪ 1
ln(u)/u if u ≫ 1

. (69)

Newman et al. (1999) have calculated the form of the
scaling function f(u) for the one-dimensional small-world
model using a mean-field method which is exact for small
or large values of u, but not in the regime where u ≃ 1,
obtaining

f(u) =
4√

u2 + 4u
tanh−1 u√

u2 + 4u
. (70)

They also solved for the complete distribution of path
lengths within this mean-field approximation.

The scaling relation (68) has been confirmed by exten-
sive numerical simulations (Newman and Watts 1999a,
Argollo de Menezes et al. 2000), renormalization group
techniques (Newman and Watts 1999a) and series expan-
sions (Newman and Watts 1999b). Equation (68) tells us
that although the average path length in a small-world
model appears at first glance to depend on three param-
eters - p, K and N - it is in fact entirely determined by
a single scalar function f(u) of a single scalar variable.
Note that both the scaling function f(u) and the scaling
variable u = pKNd have simple physical interpretations.
The variable u is two times the average number of ran-
dom links (shortcuts) on the graph for a given p, and
f(u) is the average of the fraction by which the distance
between two nodes is reduced for a given u.

Several attempts have been made to calculate exactly
the distribution of path lengths and the average path
length ℓ. Dorogovtsev and Mendes 2000a studied a sim-
pler model which contains a ring lattice with directed
edges of length 1 and a central node which is connected
with probability p to the nodes of the lattice by undi-
rected edges of length 0.5. They calculated exactly the
distribution of path lengths for this model, showing that
ℓ/N depends only on the scaling variable pN and the
functional form of this dependence is similar to the nu-
merically obtained ℓ(p) in the WS model. Kulkarni et al.
1999 calculated the probability P (m|n) that two nodes
separated by an Euclidian distance n have a path length
m. They have shown that the average path length ℓ
is simply related to the mean 〈s〉 and the mean square
〈s2〉 of the shortest distance between two diametrically
opposite nodes (i.e. separated by the largest Euclidian
distance), according to

ℓ

N
=

〈s〉
N − 1

− 〈s2〉
L(N − 1)

. (71)

Unfortunately calculating the shortest distance between
opposite nodes is just as difficult as determining ℓ di-
rectly.

2. Clustering coefficient

In addition to a short average path length, small-world
networks have a relatively high clustering coefficient. The
WS model displays this duality for a wide range of the
rewiring probabilities p. In a regular lattice (p = 0) the
clustering coefficient does not depend on the size of the
lattice but only its topology. As the edges of the network
are randomized, the clustering coefficient remains close
to C(0) up to relatively large values of p.

The dependence of C(p) on p can be derived using
a slightly different but equivalent definition of C, intro-
duced by Barrat and Weigt (2000). According to this
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definition, C′(p) is the fraction between the mean num-
ber of edges between the neighbors of a node and the
mean number of possible edges between those neighbors.
In a more graphic formulation (Newman, Strogatz and
Watts 2000),

C′ =
3 × number of triangles

number of connected triples
. (72)

Here triangles are trios of nodes in which each node is
connected to both of the others, and connected triples
are trios in which at least one is connected to both oth-
ers, the factor 3 accounting to the fact that each triangle
contributes to 3 connected triples. This definition corre-
sponds to the concept of ”fraction of transitive triples”
used in sociology (see Wasserman and Faust 1994).

To calculate C′(p) for the WS model, let us start
with a regular lattice with a clustering coefficient C(0).
For p > 0 two neighbors of a node i that were con-
nected at p = 0 are still neighbors of i and connected
by and edge with probability (1 − p)3, since there are
three edges which need to remain intact. Consequently
C′(p) ≃ C(0)(1− p)3. Barrat and Weigt (2000) have ver-
ified that the deviation of C(p) from this expression is
small and goes to zero as N → ∞. The corresponding
expression for the Newman-Watts model is (Newman,
2001e)

C′(p) =
3K(K − 1)

2K(2K − 1) + 8pK2 + 4p2K2
. (73)

3. Degree distribution

In the WS model for p = 0 each node has the same
degree K, thus the degree distribution is a delta function
centered at K. A nonzero p introduces disorder in the
network, broadening the degree distribution while main-
taining the average degree equal to K. Since only a single
end of every edge is rewired (pNK/2 edges in total), each
node has at least K/2 edges after the rewiring process.
Consequently for K > 2 there are no isolated nodes and
the network is usually connected, unlike a random graph
which consists of isolated clusters for a wide range of
connection probabilities.

For p > 0 the degree ki of a vertex i can be written as
(Barrat and Weigt 2000) ki = K/2 + ci where ci can be
divided in two parts: c1

i ≤ K/2 edges have been left in
place (with probability 1 − p), while c2

i = ci − c1
i edges

have been rewired towards i, each with probability 1/N .
The probability distributions of c1

i and c2
i are

P1(c
1
i ) = C

c1
i

K/2(1 − p)c1
i pK/2−c1

i (74)

and

P2(c
2
i ) = C

c2
i

pNK/2

(

1

N

)c2
i
(

1 − 1

N

)pNK/2−c2
i

≃ (pK/2)c2
i

c2
i !

e−pK/2 (75)

for large N . Combining these two factors together the
degree distribution follows

P (k) =

f(k,K)
∑

n=0

Cn
K/2(1 − p)npK/2−n (pK/2)k−K/2−n

(k − K/2 − n)!
e−pK/2

(76)

for k ≥ K/2, where f(k, K) = min(k − K/2, K/2).
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FIG. 19. Degree distribution of the WS model for K = 3 and
various p. We can see that only k ≥ K/2 values are present,
and the mean degree is 〈k〉 = K. The symbols are obtained
from numerical simulations of the WS model with N = 1000,
and the lines correspond to Eq. (76). As a comparison, the
degree distribution of a random graph with the same param-
eters is plotted with filled symbols. After Barrat and Weigt
(2000).

The shape of the degree distribution is similar to that
of a random graph: it has a pronounced peak at 〈k〉 = K
and decays exponentially for large k (Fig. 19). Thus the
topology of the network is relatively homogeneous, all
nodes having approximately the same number of edges.

4. Spectral properties

As discussed in Sect. III.G, the spectral density ρ(λ)
of a graph reveals important information about its topol-
ogy. Specifically, we have seen that for large random
graphs ρ(λ) converges to a semi-circle. It comes as no
surprise that the spectrum of the WS model depends on
the rewiring probability p (Farkas et al. 2001). For p = 0
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the network is regular and periodical, consequently ρ(λ)
contains numerous singularities (Fig. 20a). For inter-
mediate values of p these singularities become blurred,
but ρ(λ) retains a strong skewness (Fig. 20b,c). Finally,
as p → 1, ρ(λ) approaches the semi-circle law charac-
terizing random graphs (Fig. 20d). While the details
of the spectral density change considerably with p, the
third moment of ρ(λ) is consistently high, indicating a
high number of triangles in the network. Thus the re-
sults summarized in Fig. 20 allow us to conclude that
the high number of triangles is a basic property of the
WS model (see also Gleis et al. 2000). The high reg-
ularity of small-world models for a broad range of p is
underlined by the results concerning the spectral proper-
ties of the Laplacian operator, which tells us about the
time evolution of a diffusive field on the graph (Monasson
2000).

λ/√Np(1-p)

ρ√
N

p(
1-

p)






 0

0.5

1

1.5

-2 0 2 4
0

1

2

3

-2 0 2 4

0

0.4

0.8

-2 0 2 4 6 8

0

0.3

0.6

0.9

1.2

-2 0 2 4 6 8

(a) (b)

(c) (d)

FIG. 20. Spectral density of small-world networks, compared
to the semi-circle law corresponding to random graphs (solid
line). The rewiring probabilities are p = 0 (a), p = 0.01 (b),
p = 0.3 (c) and p = 1 (d). After Farkas et al. (2001)

VII. THE SCALE-FREE MODEL

The empirical results discussed in Sect. II demonstrate
that many large networks are scale-free, that is, their de-
gree distribution follows a power-law for large k. Fur-
thermore, even for those networks for which P (k) has
an exponential tail, the degree distribution significantly
deviates from a Poisson. We have seen in Sects. III.D
and VI.B.3 that random graph theory and the WS model
cannot reproduce this feature. While it is straightforward
to construct random graphs which have power-law degree
distribution (Sect. V), these constructions only postpone
an important question: what is the mechanism respon-
sible for the emergence of scale-free networks? We will
see in this section that this quest will require a shift from
modeling network topology to modeling the network as-
sembly and evolution. While at this point these two ap-
proaches do not appear to be particularly distinct, we will
find that there is a fundamental difference between the

modeling approach we took in random graphs and the
small-world models, and the one required to reproduce
the power-law degree distribution. While the goal of the
former models is to construct a graph with correct topo-
logical features, modeling scale-free networks will put the
emphasis on capturing the network dynamics. That is,
the underlying assumption behind evolving or dynamic
networks is that if we capture correctly the processes that
assembled the networks that we see today, then we will
obtain their topology correctly as well. Dynamics takes
the driving role, topology being only a byproduct of this
modeling philosophy.

A. Definition of the scale-free (SF) model

The origin of the power-law degree distribution in net-
works was first addressed by Barabási and Albert (1999),
who argued that the scale-free nature of real networks is
rooted in two generic mechanisms common in many real
networks. The network models discussed thus far assume
that we start with a fixed number N of vertices that are
then randomly connected or rewired, without modify-
ing N . In contrast, most real world networks describe
open systems which grow by the continuous addition of
new nodes. Starting from a small nucleus of nodes, the
number of nodes increases throughout the lifetime of the
network by the subsequent addition of new nodes. For
example the WWW grows exponentially in time by the
addition of new web pages or the research literature con-
stantly grows by the publication of new papers.

Second, network models discussed so far assume that
the probability that two nodes are connected (or their
connection is rewired) is independent of the nodes’ de-
gree, i.e. new edges are placed randomly. Most real
networks, however, exhibit preferential attachment, such
that the likelihood of connecting to a node depends on
the node’s degree. For example, a webpage will more
likely include hyperlinks to popular documents with al-
ready high degree, because such highly connected doc-
uments are easy to find and thus well known, or a new
manuscript is more likely to cite a well known and thus
much cited publications than less cited and consequently
less known papers.

These two ingredients, growth and preferential attach-
ment, inspired the introduction of the scale-free (SF)
model that has a power-law degree distribution. The
algorithm of the SF model is the following:

(1) Growth: Starting with a small number (m0) of
nodes, at every timestep we add a new node with m(≤
m0) edges that link the new node to m different nodes
already present in the system.

(2) Preferential attachment: When choosing the nodes
to which the new node connects, we assume that the
probability Π that a new node will be connected to node
i depends on the degree ki of node i, such that
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Π(ki) =
ki

∑

j kj
. (77)

After t timesteps this algorithm results in a network
with N = t + m0 nodes and mt edges. Numerical simu-
lations indicated that this network evolves into a scale-
invariant state with the probability that a node has k
edges following a power-law with an exponent γSF = 3
(see Fig. 21). The scaling exponent is independent of m,
the only parameter in the model.

B. Theoretical approaches

The dynamical properties of the scale-free model can
be addressed using various analytic approaches. The con-
tinuum theory proposed by Barabási and Albert (1999),
focuses on the dynamics of node degrees, followed by the
master equation approach of Dorogovtsev, Mendes and
Samukhin (2000a) and the rate equation approach in-
troduced by Krapivsky, Redner and Leyvraz (2000). As
these methods are often used interchangeably in the sub-
sequent section, we review each of them next.

Continuum theory: The continuum approach intro-
duced in Barabási and Albert (1999) and Barabási, Al-
bert and Jeong (1999) calculates the time dependence of
the degree ki of a given node i. This degree will increase
every time a new node enters the system and links to
node i, the probability of this process being Π(ki). As-
suming that ki is a continuous real variable, the rate at
which ki changes is expected to be proportional to Π(ki).
Consequently, ki satisfies the dynamical equation

∂ki

∂t
= mΠ(ki) = m

ki
∑N−1

j=1 kj

. (78)

The sum in the denominator goes over all nodes in the
system except the newly introduced one, thus its value is
∑

j kj = 2mt − m, leading to

∂ki

∂t
=

ki

2t
. (79)

The solution of this equation, with the initial condition
that every node i at its introduction has ki(ti) = m, is

ki(t) = m

(

t

ti

)β

, with β =
1

2
. (80)

Equation (80) indicates that the degree of all nodes
evolves the same way, following a power-law, the only
difference being the intercept of the power-law.

Using (80), the probability that a node has a degree
ki(t) smaller than k, P (ki(t) < k), can be written as

P (ki(t) < k) = P (ti >
m1/βt

k1/β
). (81)

Assuming that we add the nodes at equal time intervals
to the network, the ti values have a constant probability
density

P (ti) =
1

m0 + t
. (82)

Substituting this into Eq. (81) we obtain that

P

(

ti >
m1/βt

k1/β

)

= 1 − m1/βt

k1/β(t + m0)
. (83)

The degree distribution P (k) can be obtained using

P (k) =
∂P (ki(t) < k)

∂k
=

2m1/βt

m0 + t

1

k1/β+1
, (84)

predicting that asymptotically (t → ∞)

P (k) ∼ 2m1/βk−γ , with γ =
1

β
+ 1 = 3 (85)

being independent of m, in agreement with the numerical
results.
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FIG. 21. (a) Degree distribution of the scale-free model, with
N = m0+t = 300, 000 and m0 = m = 1 (circles), m0 = m = 3
(squares), m0 = m = 5 (diamonds) and m0 = m = 7 (trian-
gles). The slope of the dashed line is γ = 2.9. The inset
shows the rescaled distribution (see text) P (k)/2m2 for the
same values of m, the slope of the dashed line being γ = 3. (b)
P (k) for m0 = m = 5 and system sizes N = 100, 000 (circles),
N = 150, 000 (squares) and N = 200, 000 (diamonds). The
inset shows the time-evolution for the degree of two vertices,
added to the system at t1 = 5 and t2 = 95. Here m0 = m = 5,
and the dashed line has slope 0.5, as predicted by Eq. (80).
After Barabási, Albert, Jeong (1999).

28



As the power-law observed for real networks describes
systems of rather different sizes, it is expected that a cor-
rect model should provide a time-independent degree dis-
tribution. Indeed, Eq. (84) predicts that asymptotically
the degree distribution of the SF model is independent
of time (and, subsequently, independent of the system
size N = m0 + t), indicating that despite its continuous
growth, the network reaches a stationary scale-free state.
Furthermore, Eq. (84) also indicates that the coefficient
of the power-law distribution is proportional to m2. All
these predictions are confirmed by numerical simulations
(see Fig. 21).

Master equation approach: The method introduced
by Dorogovtsev, Mendes and Samukhin (2000a, see also
Kullmann and Kertész 2000) studies the probability
p(k, ti, t) that at time t a node i introduced at time ti
has a degree k. In the SF model when a new node with
m edges enters the system, the degree of node i increases
with 1 with a probability mΠ(k) = k/2t, otherwise it
stays the same. Consequently the master equation gov-
erning p(k, ti, t) for the SF model has the form

p(k, ti, t + 1) =
k − 1

2t
p(k − 1, ti, t) +

(

1 − k

2t

)

p(k, ti, t).

(86)

The degree distribution can be obtained as

P (k) = lim
t→∞

(

∑

ti

p(k, ti, t)

)

/t. (87)

Eq. (86) implies that P (k) is the solution of the recursive
equation

P (k) =

{

k−1
k+2P (k − 1) for k ≥ m + 1

2/(m + 2) for k = m
. (88)

giving

P (k) =
2m(m + 1)

k(k + 1)(k + 2)
, (89)

very close to (85) obtained using the continuum theory.
Rate equation approach: The rate equation approach,

introduced by Krapivsky, Redner and Leyvraz (2000), fo-
cuses on the average number Nk(t) of nodes with k edges
at time t. When a new node enters the network in the
scale-free model, Nk(t) changes as

dNk

dt
= m

(k − 1)Nk−1(t) − kNk(t)
∑

k kNk(t)
+ δk,m. (90)

Here the first term accounts for the new edges that con-
nect to nodes with k − 1 edges, thus increasing their de-
gree to k. The second term describes the new edges con-
necting to nodes with k edges turning them into nodes
with k + 1 edges, decreasing the number of nodes with k

edges. The third term accounts for the new nodes with
m edges. In the asymptotic limit Nk(t) = tP (k) and
∑

k kNk(t) = 2mt, leading to the same recursive equa-
tion, (88), as predicted by the master equation approach.

The master equation and rate equation approaches are
completely equivalent, and offer the same asymptotic re-
sults as the continuum theory. Thus for calculating the
scaling behavior of the degree distribution they can be
used interchangeably. In addition, these methods, not
using a continuum assumption, appear more suitable to
obtain exact results in more challenging network models.

C. Limiting cases of the SF model

The the power-law scaling in the SF model indicates
that growth and preferential attachment play an impor-
tant role in network development. But are both of them
necessary for the emergence of power-law scaling? To
address this question, two limiting cases of the SF model
have been investigated, which contain only one of these
two mechanisms (Barabási and Albert 1999, Barabási,
Albert and Jeong 1999).

Model A keeps the growing character of the network
without preferential attachment. Starting with a small
number of nodes (m0), at every time step we add a new
node with m(≤ m0) edges. We assume that the new
node connects with equal probability to the nodes al-
ready present in the system, i.e. Π(ki) = 1/(m0 + t− 1),
independent of ki.

The continuum theory predicts that ki(t) follows a log-
arithmic time dependence, and for t → ∞ the degree
distribution decays exponentially, following (Fig. 22a)

P (k) =
e

m
exp

(

− k

m

)

. (91)

The exponential character of the distribution indicates
that the absence of preferential attachment eliminates
the scale-free character of the resulting network.

Model B starts with N nodes and no edges. At each
time step a node is selected randomly and connected
with probability Π(ki) = ki/

∑

j kj to a node i in the
system. Consequently, model B eliminates the growth
process, the number of nodes being kept constant during
the network evolution. Numerical simulations indicate
that while at early times the model exhibits power-law
scaling, P (k) is not stationary (Fig 22). Since N is con-
stant, and the number of edges increases with time, after
T ≃ N2 timesteps the system reaches a state in which
all nodes are connected.

The time-evolution of the individual degrees can be
calculated analytically using the continuum theory, indi-
cating that

ki(t) ≃
2

N
t, (92)
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assuming N >> 1, in agreement with the numerical re-
sults ( Fig. 22b).

Since the continuum theory predicts that after a tran-
sient period the average degree of all nodes should have
the same value given by Eq. (92), we expect that the
degree distribution becomes a Gaussian around its mean
value. Indeed, Fig. 22b shows that the shape of P (k)
changes from the initial power-law to a Gaussian.

Motivated by correlations between stocks in finantial
markets and airline route maps, a prior model incorpo-
rating preferential attachment, while keeping N constant
was independently proposed and studied by Amaral et al.
(1999).
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FIG. 22. (a) Degree distribution for model A for m0 = m = 1
(circles), m0 = m = 3 (squares), m0 = m = 5 (diamonds)
and m0 = m = 7 (triangles). The size of the network is N =
800, 000. Inset: time evolution for the degree of two vertices
added to the system at t1 = 7 and t2 = 97. Here m0 = m = 3.
The dashed line follows ki(t) = m ln(m0 + t − 1).(b) The de-
gree distribution for model B for N = 10, 000 and t = N
(circles), t = 5N (squares), and t = 40N (diamonds). Inset:
time dependence of the degrees of two vertices. The system
size is N = 10, 000. After Barabási, Albert and Jeong (1999).

The failure of models A and B to lead to a scale-
free distribution indicates that growth and preferential
attachment are needed simultaneously to reproduce the
stationary power-law distribution observed in real net-
works.

D. Properties of the SF model

While the SF model captures the power-law tail of the
degree distribution, it has other properties which may or
may not agree with empirical results on real networks.
As we discussed in Sect. I, a characteristic feature of
real networks is the coexistence of clustering and short
path lengths. Thus we need to investigate if the network
generated by the SF model has a small-world character.

1. Average path length

Figure 23 shows the average path length of a network
with average degree 〈k〉 = 4 generated by the SF model
as a function of the network size, N , compared with the
average path length of a random graph with the same
size and average degree. The figure indicates that the
average path length is smaller in the SF network than in
a random graph for any N , indicating that the heteroge-
neous scale-free topology is more efficient in bringing the
nodes close than the homogeneous topology of random
graphs. We find that the average path length of the SF
network increases approximately logarithmically with N ,
the best fit following a generalized logarithmic form

ℓ = A log(N − B) + C. (93)
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FIG. 23. Characteristic path length ℓ versus network size N
in a network with 〈k〉 = 4 generated by the SF model (circles),
compared with a random graph with the same size and av-
erage degree generated with the algorithm described in Sect.
III.A (squares). The dashed line follows Eq. (93), and the
solid lines represent Eq. [59] with z1 = 〈k〉 and z2 the numer-
ically obtained number of second neighbors in the respective
networks.

In Figure 23 we also show the prediction of Eq. (59) for
these networks, using the numerically determined num-
ber of first and second neighbors. While the fit is good
for the random graph, Eq. (59) systematically underes-
timates the average path length of the SF network, as it
does with the average path length of real networks (see
Table II, last three columns).

In summary, apart from the empirical fit (93) there is
no theoretical expression that would give a good approx-
imation for the path length in the scale-free model (al-
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though encouraging first steps concerning the loop struc-
ture were made in Gleis et al. 2000). The failure of (59)
underlies the fact that the topology of the network gen-
erated by the SF model is different from the topology
of a random network with power-law degree distribution
(Sect. V). The dynamical process that generates the
network introduces nontrivial correlations that affect all
topological properties.

2. Node degree correlations

In the random graph models with arbitrary degree dis-
tribution (see Abello et al. 2000 and Newman et al. 2000)
the node degrees are uncorrelated. Krapivsky and Red-
ner (2000) have shown that in the SF model correlations
develop spontaneously between the degree of connected
nodes.

Let us consider all node pairs with degree k and l con-
nected by an edge. Without loss of generality we assume
that the node with degree k was added later to the sys-
tem, implying that k < l since, according to Eq. (80),
older nodes have higher degree than younger ones, and
for simplicity we use m = 1. Denoting by Nkl(t) the
number of connected pairs of nodes with degree k and l,
we have

dNkl

dt
=

(k − 1)Nk−1,l − kNkl
∑

k kN(k)
+

(l − 1)Nk,l−1 − lNkl
∑

k kN(k)

+ (l − 1)Nl−1δk1. (94)

The first term on the r.h.s. accounts for the change in
Nkl due to the addition of an edge to a node of degree
k−1 or k which is connected to a node of degree l. Since
the addition of a new edge increases the node’s degree by
1, the first term in the numerator corresponds to a gain
in Nkl, while the second to a loss. The second term on
the r.h.s. incorporates the same effects as the first ap-
plied to the other node. The last term takes into account
the possibility that k = 1, thus the edge that is added to
the node with degree l−1 is the same edge that connects
the two nodes.

This equation can be transformed into a time-
independent recursion relation using the hypotheses
∑

k kN(k) → 2t and Nkl(t) → tnkl. Solving for nkl we
obtain

nkl =
4(l − 1)

k(k + 1)(k + l)(k + l + 1)(k + l + 2)

+
12(l − 1)

k(k + l − 1)(k + l)(k + l + 1)(k + l + 2)
. (95)

For a network with an arbitrary degree distribution, if
the edges are placed randomly, nkl = nknl. The most
important feature of the result (95) is that the joint dis-
tribution does not factorize, i.e. nkl 6= nknl. This indi-
cates the spontaneous appearance of correlations between

the degrees of the connected nodes. The only case when
nkl can be simplified to a factorized expression is when
1 ≪ k ≪ l, and nkl becomes

nkl ≃ k−2l−2, (96)

but even then it is different from nkl = k−3l−3, expected
if correlations are absent from the network. This result
offers the first explicit proof that the dynamical process
that creates the scale-free network builds up nontrivial
correlations between the nodes that are not present in
the uncorrelated models discussed in Sect.V.

3. Clustering coefficient

While the clustering coefficient has been much inves-
tigated for the WS model (Sect. VI.B.2), there is no
analytical prediction for the SF model. Figure 24 shows
the clustering coefficient of the SF network with average
degree 〈k〉 = 4 and different sizes, compared with the
clustering coefficient Crand = 〈k〉/N of a random graph.
We find that the clustering coefficient of the scale-free
network is about 5 times higher than that of the random
graph, and this factor slowly increases with the number
of nodes. However, the clustering coefficient of the SF
model decreases with the network size following approx-
imately a power-law C ∼ N−0.75, which, while a slower
decay than the C = 〈k〉N−1 decay observed for random
graphs, is still different from the behavior of the small-
world models, where C is independent of N .
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FIG. 24. Clustering coefficient versus size of the SF model
with 〈k〉 = 4, compared with the clustering coefficient of a
random graph, Crand ≃ 〈k〉/N .
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4. Spectral properties

The spectral density of the scale-free model is continu-
ous, but it has a markedly different shape than the semi-
circular spectral density of random graphs (Farkas et al.
2001, Goh, Kahng and Kim 2001). Numerical simula-
tions indicate that the bulk of ρ(λ) has a triangle-like
shape with top lying well above the semi-circle and edges
decaying as a power-law (Fig. 25). This power-law decay
is due to the eigenvectors localized on the highest degree
nodes. As in the case of random graphs (and unlike small-
world networks), the principal eigenvalue, λ1, is clearly
separated from the bulk of the spectrum. A lower bound
for λ1 can be given as the square-root of the network’s
largest degree k1, and since the node degrees in the scale-
free model increase as N1/2, it results that λ1 increases
approximately as N1/4. Numerical results indicate that
λ1 deviates from the expected behavior for small net-
work sizes, reaching it asymptotically for N → ∞. This
crossover indicates the presence of correlations between
the longest row vectors, offering additional evidence for
correlations in the scale-free model.
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FIG. 25. Rescaled spectral density of three networks gen-
erated by the scale-free model having m = m0 = 5 and
size N = 100 (continuous line), N = 300 (dashed line) and
N = 1000 (short-dashed line). The semi-circle law corre-
sponding to random graphs is drawn for comparison. The
isolated peak corresponds to the largest eigenvalue, which in-
creases as N1/4. Inset: the edge of the spectral density decays
as a power-law. After Farkas et al. (2001).

The principal eigenvalue plays an important role in the
moments of ρ(λ), determining the loop structure of the
scale-free network. In contrast with the subcritical ran-
dom graph (i.e. p < 1/N), where the fraction of loops
becomes negligible, in a scale-free network the fraction of
loops with more than four edges increases with N , and
their growth rate increases with the size of the loop. Note
that the fraction of triangles decreases as N → ∞ (Gleis
et al. 2000, Bianconi 2000b).

While for random graphs ρ(λ) follows the semi-circle

law (Wigner 1955, 1957, 1958), deriving a similarly sim-
ple expression for small-world (see Sect. VI.B.4) and
scale-free networks remains a considerable challenge.

VIII. EVOLVING NETWORKS

The scale-free model discussed in the previous section
is a minimal model that captures the mechanisms respon-
sible for the power-law degree distribution. Compared
to real networks, it is easy to notice its limitations: it
predicts a power-law degree distribution with a fixed ex-
ponent, while the exponents measured for real networks
vary between 1 and 3 (see Table II). Also, the degree
distribution of real networks can have non-power-law fea-
tures like exponential cutoffs (see Amaral et al. 2000,
Newman 2001b,c and Jeong et al. 2001) or a saturation
for small k. The discrepancies between the model and
real networks led to a surge of research aiming to answer
several basic questions of network evolution: How can
we change the scaling exponents? Are there universality
classes similar to those seen in critical phenomena, char-
acterized by unique exponents? How do various micro-
scopic processes, known to be present in real networks,
influence the network topology? Are there quantities,
beyond the degree distribution, that could help classify-
ing networks? While the community is still in the pro-
cess of answering these questions, several robust results
are already available, offering much insight into network
evolution and topology.

A. Preferential attachment Π(k)

A central ingredient of all models aiming to generate
scale-free networks is preferential attachment, i.e. the
assumption that the likelihood of receiving new edges in-
creases with the node’s degree. The SF model assumes
that the probability Π(k) that a node attaches to node i
is proportional to the degree k of node i (see Eq. (77)).
This assumption involves two hypotheses: the first that
Π(k) depends on k, in contrast with random graphs in
which Π(k) = p. Second, the functional form of Π(k)
is linear in k. The precise form of Π(k) is more than
a purely academic question, as lately a series of studies
have demonstrated that the degree distribution depends
strongly on Π(k). To review these developments we start
by discussing the empirical results on the functional form
of Π(k), followed by the theoretical work predicting the
effect of Π(k) on the network topology.

1. Measuring Π(k) for real networks

The functional form of Π(k) can be determined for
networks for which we know the time at which each node
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joined the network (Jeong, Néda, Barabási 2001, New-
man 2001d, Pastor-Satorras et al. 2001). Such dynami-
cal data is available for the coauthorship network of re-
searchers, the citation network of articles, the actor col-
laboration network and the Internet at the domain level
(see Sect. II).

Consider the state of the network at a given time, and
record the number of ”old” nodes present in the network
and their degrees. Next measure the increase of the de-
gree of the ”old” nodes over a time interval ∆T , much
shorter than the age of the network. Then, according
to (77), plotting the relative increase ∆ki/∆k in func-
tion of the earlier degree ki for every node gives the Π(k)
function. Here ∆k is the number of edges added to the
network in the time ∆T . We can reduce the fluctuations
in the data by plotting the cumulative distribution

κ(k) =

k
∑

ki=0

Π(ki). (97)
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FIG. 26. Cumulated preferential attachment for (a) the cita-
tion network; (b) the Internet; (c) the neuroscience scientific
collaboration network; (d) the actor collaboration network.
In all panels the dashed line corresponds to linear preferen-
tial attachment, and the continuous line to no preferential
attachment. After Jeong, Néda, Barabási (2001).

As Fig. 26 shows, the obtained Π(k) supports the exis-
tence of preferential attachment. Furthermore, it appears
that in each case Π(k) follows a power-law, i.e.

Π(k) ∼ kα. (98)

While in some cases, such as the Internet (Jeong, Néda,
Barabási 2001, Pastor-Satorras et al. 2001), citation net-

work (Jeong, Néda , Barabási 2001), Medline and Los
Alamos archive (Newman 2001d) we have α ≃ 1, i.e.
Π(k) depends linearly on k as assumed in the SF model,
for some collaboration networks the dependence is sub-
linear, having α = 0.8 ± 0.1 for the neuroscience coau-
thorship and the actor collaboration network (Jeong et
al. 2001).

2. Nonlinear preferential attachment

The effect of a nonlinear Π(k) on the network dynam-
ics and topology was explained by Krapivsky, Redner
and Leyvraz (2000). Replacing the linear preferential at-
tachment (77) with (98) in a directed network model,
Krapivsky, Redner and Leyvraz calculate the average
number Nk(t) of nodes with k − 1 incoming edges at
time t by the rate equation approach (see Sect. VII.B).
The time evolution of Nk(t) follows

dNk

dt
=

1

Mα
[(k − 1)αNk−1 − kαNk] + δk1, (99)

where Mα(t) =
∑

kαNk(t) is the αth moment of Nk(t).
In (99) the first term accounts for the new nodes that
connect to nodes with k − 1 edges, thus increasing their
degree to k. The second term describes the new nodes
connecting to nodes with k edges turning them into nodes
with k + 1 edges, decreasing the number of nodes with k
edges. The third term accounts for the continuous intro-
duction of new nodes with a single outgoing edge.

Depending on the value of α, several distinct phases
have been identified:

Sub-linear case (α < 1): In this regime in the long-
time limit Mα(t) satisfies Mα(t) = µt, with a prefactor
1 ≤ µ = µ(α) ≤ 2. Substituting Mα(t) and Nk into Eq.
(99) we obtain the degree distribution

P (k) =
µ

kα

k
∏

j=1

(

1 +
µ

jα

)−1

. (100)

This product can be expanded in series, and the result is a
stretch-exponential in which a new term arises whenever
α decreases below 1/l, where l is an arbitrary positive
integer.

Superlinear preferential attachment (α > 1): In this
regime Eq. (99) has no analytical solution, but its dis-
cretized version can be used to determine recursively the
leading behavior of each Nk as t → ∞. For α > 2 a
”winner-takes-all” phenomenon emerges, such that al-
most all nodes have a single edge, connecting them to a
”gel” node which has the rest of edges of the network. For
3/2 < α < 2 the number of nodes with two edges grows
as t2−α, while the number of nodes with more than two
edges is again finite. Again, the rest of the edges belong
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to the gel node. In general for (l + 1)/l < α < l/(l − 1)
the number of nodes with more than l edges is finite even
in infinite systems, while Nk ∼ tk−(k−1)α for k ≤ l.

In conclusion, the analytical calculations of Krapivsky,
Redner and Leyvraz demonstrate that the scale-free na-
ture of the network is destroyed for nonlinear preferential
attachment. The only case in which the topology of the
network is scale-free is when the preferential attachment
is asymptotically linear, i.e. Π(ki) ∼ a∞ki as ki → ∞.
In this case the rate equation leads to

P (k) ∼ k−γ with γ = 1 +
µ

a∞
. (101)

This way the exponent of the degree distribution can be
tuned to any value between 2 and ∞.

3. Initial attractiveness

Another general feature of Π(k) in real networks is that
Π(0) 6= 0, i.e. there is a nonzero probability that a new
node attaches to an isolated node (Jeong, Néda, Barabási
2001). Thus in general Π(k) has the form

Π(k) = A + kα, (102)

where A is the initial attractiveness of the node i (Doro-
govtsev, Mendes, Samukhin 2000a). Indeed, if A = 0, a
node that has k = 0 can never increase its connectivity
according to Eq. (77). However, in real networks every
node has a finite chance to be ”discovered” and linked to
even if it has no edges to start with. Thus the param-
eter A describes the likelihood that an isolated node is
discovered, such as a new article is cited the first time.

Dorogovtsev, Mendes and Samukhin (2000a) gave an
exact solution for a class of growing network models us-
ing the master equation approach (see Sect. VII.B).
In their model at every timestep a new node is added
to the network, followed by the addition of m directed
edges pointing from any node in the network to prefer-
entially chosen nodes. The probability that a node re-
ceives an incoming edge is proportional to the sum of
an initial attractiveness and the number of its incoming
edges, i.e. Π(kin) = A + kin. The calculations indicate
that the degree distribution follows P (k) ∼ k−γ with
γ = 2 + A

m . Consequently, initial attractiveness does not
destroy the scale-free nature of the degree distribution,
only changes the degree exponent. These results agree
with the conclusion of Krapivsky, Redner and Leyvraz
(2000), who find that the power-law P (k) is preserved
for a shifted linear Π(k), since the effect of the initial
attractiveness diminishes as k → ∞. A generalization of
the Dorogovtsev, Mendes, Samukhin model (Dorogovt-
sev, Mendes and Samukhin 2000b) allows for the random
distribution of nr edges and an initial degree n of every

new node. These changes do not modify the asymptot-
ically linear scaling of the preferential attachment, thus
this model also gives a power-law degree distribution with
γ = 2 + (nr + n + A)/m.

B. Growth

In the SF model the number of nodes and edges in-
creases linearly in time, and consequently the average
degree of the network is constant. In this section we
discuss the effect of the nonlinear growth rates on the
network dynamics and topology.

1. Empirical results

The fact that networks can follow different growth pat-
terns is supported by several recent measurements. For
example, the average degree of the Internet in November
of 1997 was 3.42, but it increased to 3.96 by December
of 1998 (Faloutsos et al. 1999). Similarly, the WWW
has increased its average degree from 7.22 to 7.86 in the
five months between the measurements of Broder et al.
(2000). The average degree of the coauthorship network
of scientists has been found to continuously increase over
an eight year period (Barabási et al. 2000). Finally,
comparison of the metabolic network of organisms of dif-
ferent sizes indicates that the average degree of the sub-
strates increases approximately linearly with the number
of substrates involved in the metabolism (Jeong et al.
2000). The increase of the average degree indicates that
in many real systems the number of edges increases faster
than the number of nodes, supporting the presence of a
phenomenon called accelerated growth.

2. Analytical results

Dorogovtsev and Mendes (2000d) studied analytically
the effect of accelerated growth on the degree distribu-
tion, generalizing the directed model with asymptotically
linear preferential attachment of Dorogovtsev, Mendes
and Samukhin 2000a (Sect VIII.A). In this model at
every step a new node is added to the network which
receives n incoming edges from random nodes in the sys-
tem. Additionally c0t

θ new edges are distributed, each
of them being directed from a randomly selected node to
a node with high incoming degree with asymptotically
linear preferential attachment Π(kin) ∝ A + kin. The
authors show that accelerated growth, controlled by the
exponent θ, does not change the scale-free nature of the
degree distribution, but it modifies the degree exponent,
which now becomes

γ = 1 +
1

1 + θ
. (103)
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While the model of Dorogovtsev and Mendes (2000d)
is based on a directed network, Barabási et al. 2001 dis-
cuss an undirected model motivated by measurements on
the evolution of the coauthorship network. In the model
new nodes are added to the system with a constant rate,
and these new nodes connect to b nodes already in the
system with preferential attachment

Pi = b
ki

∑

j kj
. (104)

Additionally, at every timestep a linearly increasing num-
ber of edges (constituting a fraction a of the nodes which
are present in the network) are distributed between the
nodes, the probability that an edge is added between
nodes i and j being

Pij =
kikj

∑′

s,l kskl

N(t)a. (105)

Here N(t) is the number of nodes in the system and the
summation goes over all non-equal values of s and l. As
a result of these two processes the average degree of the
network increases linearly in time, following 〈k〉 = at+2b,
in agreement with the measurements on the real coauthor
network. The continuum theory predicts that the time-
dependent degree distribution displays a crossover at a
critical degree

kc =
√

b2t(2 + 2at/b)3/2, (106)

such that for k ≪ kc, P (k) follows a power-law with expo-
nent γ = 1.5 and for k ≫ kc the exponent is γ = 3. This
result explains the fast-decaying tail of the degree distri-
butions measured by Newman (2001a), and it indicates
that as time increases the scaling behavior with γ = 1.5
becomes increasingly visible. An equivalent model, pro-
posed by Dorogovtsev and Mendes (2001), was able to re-
produce the two separate power-law regimes in the distri-
bution of word coocurences (Ferrer i Cancho, Solé 2001).

C. Local events

The SF model incorporates only one mechanism for
network growth: the addition of new nodes that con-
nect to the nodes already in the system. In real systems,
however, a series of microscopic events shape the network
evolution, including the addition or rewiring of new edges
or the removal of nodes or edges. Lately several models
have been proposed to investigate the effect of selected
processes on the scale-free nature of the degree distribu-
tion, offering a more realistic description of various real
networks. Any local change in the network topology can
be obtained through a combination of four elementary
processes: addition and removal of a node and addition
or removal of an edge. But in reality these events come

jointly, such as the rewiring of an edge is a combination
of an edge removal and addition. Next we briefly review
several studies that address in general terms the effect of
local events on the network topology.

1. Internal edges and rewiring

A model that incorporates new edges between existing
nodes and the rewiring of edges was discussed by Albert
and Barabási (2000). Starting with m0 isolated nodes,
at each timestep we perform one of the following three
operations:

(i) With probability p we add m(m ≤ m0) new edges.
One end of a new edge is selected randomly, the other
with probability

Π(ki) =
ki + 1

∑

j(kj + 1)
. (107)

(ii) With probability q we rewire m edges. For this
we randomly select a node i and remove an edge lij con-
nected to it, replacing it with a new edge lij′ that con-
nects i with node j′ chosen with probability Π(k′

j) given
by (107).

(iii) With probability 1−p−q we add a new node. The
new node has m new edges that with probability Π(ki)
are connected to nodes i already present in the system.

In the continuum theory the growth rate of the degree
of a node i is given by:

∂ki

∂t
= (p − q)m

1

N
+ m

ki + 1
∑

j(kj + 1)
. (108)

The first term in the r.h.s. corresponds to the random
selection of node i as a starting point of a new edge (with
probability p) or as the endpoint from which an edge is
disconnected (with probability q). The second term cor-
responds to the selection of node i as an endpoint of an
edge with the preferential attachment present in all three
of the possible processes.

The solution of (108) has the form

ki(t) = (A(p, q, m) + m + 1)

(

t

ti

)
1

B(p,q,m)

− A(p, q, m) − 1,

(109)

where

A(p, q, m) = (p − q)

(

2m(1 − q)

1 − p − q
+ 1

)

,

B(p, q, m) =
2m(1 − q) + 1 − p − q

m
. (110)

The corresponding degree distribution has the gener-
alized power-law form
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P (k) ∝ (k + κ(p, q, m))−γ(p,q,m), (111)

where κ(p, q, m) = A(p, q, m) + 1 and γ(p, q, m) =
B(p, q, m) + 1.

Eq. (111) is valid only when A(p, q, m) + m + 1 > 0,
which, for fixed p and m, translates into q < qmax =
min{1− p, (1− p + m)/(1 + 2m)}. Thus the (p, q) phase
diagram separates into two regions: For q < qmax the
degree distribution is given by (111), following a gener-
alized power-law. For q > qmax, however, Eq.(111) is
not valid, but numerical simulations indicate that P (k)
approaches an exponential.

While a power-law tail is present in any point of the
scale-free regime, for small k the probability saturates at
P (κ(p, q, m)), a feature seen in many real networks (Fig
3b,d). Also, the exponent γ(p, q, m) characterizing the
tail of P (k) for k >> κ(p, q) changes continuously with
p, q and m, predicting a range of exponents between 2
and ∞. The realistic nature of P (k) was confirmed by
successfully fitting it to the degree distribution of the
actor collaboration network (Albert and Barabási 2000).

2. Internal edges and edge removal

Dorogovtsev and Mendes (2000c) consider a class of
undirected models in which new edges are added between
old sites and existing edges can be removed. In the first
variant of the model called developing network, c new
edges are introduced at every timestep, which connect
two unconnected nodes i and j with a probability pro-
portional to the product of their degrees (as in Eq. 105),
an assumption confirmed by the empirical measurements
on the coauthorship network (Barabási et al. 2000). It
is assumed that c can be tuned continuously, such that
c > 0 for the developing and c < 0 for the decaying net-
work. The continuum theory predicts that the rate of
change of the node degrees has the form

∂ki

∂t
=

ki(t)
∫ t

0
kj(t)dtj

+ 2c
ki(t)

[

∫ t

0
kj(t)dtj − ki(t)

]

[

∫ t

0 kj(t)dtj

]2

−
∫ t

0 k2
j (t)dtj

,

(112)

where the summation over all nodes
∑

j kj has been ap-
proximated by an integral over all introduction times tj .
The first term in the right hand side incorporates lin-
ear preferential attachment, while the second term cor-
responds to the addition of c new edges. Every node can
be at either end of the new edge, and the probability of a
node i becoming an end of the new edge is proportional
to the product of its degree ki and the sum of the de-
grees kj of all other nodes. The normalization factor is
the sum of all products kikj with i different from j.

In the asymptotic limit the second term can be ne-
glected compared with the first term in both the numer-
ator and denominator, and (112) becomes

∂ki

∂t
= (1 + 2c)

ki(t)
∫ t

0 kj(t)dtj
, (113)

which predicts the dynamic exponent (80) as

β =
1 + 2c

2(1 + c)
, (114)

and the degree exponent as

γ = 2 +
1

1 + 2c
. (115)

The limiting cases of this developing network are c = 0
when the familiar SF values β = 1/2 and γ = 3 are
obtained, and c → ∞, when β → 1 and γ → 2.

In the decaying network at every timestep |c| edges
are removed randomly. The decrease of the node degrees
due to this process is proportional to their current value,
so equation (113) applies here as well, the only differ-
ence being that now c < 0. A more rigorous calculation
accounting for the fact that only existing edges can be re-
moved confirms that the end result is identical with Eqs.
(114) and (115), only with negative c. The limiting value
of c is −1, since the rate of removal of edges cannot be
higher than the rate of addition of new nodes and edges,
leading to the limit exponents β → −∞ and γ → ∞.

D. Growth constraints

For many real networks the nodes have a finite life-
time (for example in social networks) or a finite edge ca-
pacity (Internet routers or nodes in the electrical power
grid). Recently several groups have addressed the degree
to which such constraints effect the degree distribution.

1. Aging and cost

Amaral et al. (2000) suggested that while several net-
works do show deviations from the power-law behavior,
they are far from being random networks. For example,
the degree distribution of the electric powergrid of South-
ern California and of the neural network of the worm C.
elegans is more consistent with a single-scale exponential
distribution. Other networks, like the extended actor col-
laboration network, in which TV films and series are in-
cluded, have a degree distribution in which the power-law
scaling is followed by an exponential cutoff for large k. In
all these examples there are constraints limiting the ad-
dition of new edges. For example, the actors have a finite
active period during which they are able to collect new
edges, while for the electrical powergrid or neural net-
works there are constraints on the total number of edges
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a particular node can have, driven by economic, physical
or evolutionary reasons. Amaral et al. propose that in
order to explain these deviations from a pure power-law
we need to incorporate aging and cost or capacity con-
straints. The model studied by them evolves following
growth and preferential attachment, but when a node
reaches a certain age (aging) or has more than a critical
number of edges (capacity constraints), new edges can-
not connect to it. In both cases numerical simulations
indicate that while for small k the degree distribution
still follows a power-law, for large k an exponential cut-
off develops (Fig. 27).
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FIG. 27. Deviation from a power-law of the degree distribu-
tion due to adding age (a) and capacity (b) constraints to the
SF model. The constraints result in cutoffs of the power-law
scaling. After Amaral et al. (2000).
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FIG. 28. The dependence of the degree exponent γ on the
aging exponent ν in the model of Dorogovtsev and Mendes
(2000b). The points are obtained from simulations, while the
solid line is the prediction of the continuum theory. After
Dorogovtsev and Mendes (2000b).

2. Gradual aging

Dorogovtsev and Mendes (2000b) propose that in some
systems the probability that a new node connects to a
node i is proportional not only to the degree ki of node

i, but it also depends on its age, decaying as, (t − ti)
−ν ,

where ν is a tunable parameter. Papers or actors grad-
ually lose their ability to attract more edges, the model
assuming that this phase-out follows a power-law. The
calculations predict that the degree distribution depends
on the exponent ν: the power-law scaling is present only
for ν < 1, and the degree exponent depends on ν (Fig.
28). Moreover, when ν > 1 the power-law scaling com-
pletely disappears, the degree distribution approaching
an exponential.

E. Competition in evolving networks

The SF model assumes that all nodes increase their
degree following a power-law time dependence with the
same dynamic exponent β = 1/2 (Eq. (80)). As a con-
sequence, the oldest nodes have the highest number of
edges, since they had the longest lifetime to accumu-
late them. However, numerous examples indicate that
in real networks a node’s degree and growth rate do not
depend on age alone. For example, on the World-Wide
Web some documents acquire a large number of edges in
a very short time through a combination of good content
and marketing (Adamic and Huberman 2000), or some
research papers acquire much more citations than their
peers. Several studies offered models that address this
shortcoming.

1. Fitness model

Bianconi and Barabási (2000a) argue that real net-
works have a competitive aspect, as each node has an
intrinsic ability to compete for edges at the expense of
other nodes. They propose a model in which each node
is assigned a fitness parameter ηi which does not change
in time. Thus at every timestep a new node j with a fit-
ness ηj is added to the system, where ηj is chosen from a
distribution ρ(η). Each new node connects with m edges
to the nodes already in the network, and the probability
to connect to a node i is proportional to the degree and
the fitness of node i,

Πi =
ηiki

∑

j ηjkj
. (116)

This generalized preferential attachment assures that
even a relatively young node with a few edges can acquire
edges at a high rate if it has a large fitness parameter.
The continuum theory predicts that the rate of change
of the degree of node i is

∂ki

∂t
= m

ηiki
∑

k ηjkj
. (117)

Assuming that the time-evolution of ki follows (80)
with a fitness dependent β(η),
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kηi(t, ti) = m

(

t

ti

)β(ηi)

, (118)

the dynamic exponent satisfies

β(η) =
η

C
with C =

∫

ρ(η)
η

1 − β(η)
dη. (119)
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FIG. 29. Time dependence of the degree kη(t), for nodes with
fitness η = 0.3, 0.6 and 0.9. Note that kη(t) follows a power-
law in each case and the dynamic exponent β(η), given by the
slope of k(t), increases with η. After Bianconi and Barabási
(2000a)

Thus β is described by a spectrum of values governed
by the fitness distribution (Fig. 29). Equation (118) indi-
cates that nodes with larger fitness increase their degree
faster than those with smaller fitness. Thus the fitness
model allows for late but fit nodes to take a central role
in the network topology. The degree distribution of the
model is a weighted sum of different power-laws

P (k) ∼
∫

ρ(η)
C

η

(m

k

)
C
η +1

, (120)

which depends on the choice of the fitness distribution
(see Sect. VIII.G.2). For example, for a uniform fit-
ness distribution Eq. (119) gives C = 1.255 and β(η) =
η/1.255, and the degree distribution is

P (k) ∼ k−C−1

log(k)
, (121)

i.e, a power-law with a logarithmic correction. The fit-
ness model can be extended to incorporate additional
processes, such as internal edges, which affect the expo-
nents, a problem studied by Ergün and Rodgers (2001).

2. Edge inheritance

A different mechanism that gives individuality to the
new nodes is proposed by Dorogovtsev, Mendes and
Samukhin (2000c). They build on the evolving di-
rected network algorithm introduced in their earlier pa-
per (Dorogovtsev, Mendes and Samukhin 2000a), this

time assuming that the degree of the new nodes is not
constant, but it depends on the state of the network at
the time the new node is added to the system. Specif-
ically, every new node is assumed to be an ”heir” of a
randomly chosen old node, and it inherits a fraction c of
the old node’s incoming edges (i.e. a fraction c of the
nodes which point to the parent node will point also to
the heir). The parameter c is assumed to be distributed
with a probability density h(c).

The time-dependent degree distribution for uniformly
distributed c indicates that the fraction of nodes with
no incoming edges increases and tends to 1 asymptoti-
cally. The distribution of nonzero incoming edges tends
to distribution

P (kin, kin 6= 0) =
d

k
√

2
in

ln(akin), (122)

where d ≃ 0.174 and a ≃ 0.84.

F. Alternative mechanisms for preferential attachment

It is now established that highly connected nodes have
better chances of acquiring new edges than their less con-
nected counterparts. The SF model reflects this fact by
incorporating it explicitly through the preferential at-
tachment (77). But where does preferential attachment
come from? We do not yet have a universal answer
to this question, and there is a growing suspicion that
the mechanisms responsible for preferential attachment
are system-dependent. On the other hand, recently sev-
eral papers have offered promising proposals and models
that shed some light into this issue. The unifying theme
of these models is that while preferential attachment is
not explicitly introduced, the mechanisms used to place
nodes and edges effectively induces one. The diversity
of the proposals vividly illustrates the wide range of mi-
croscopic mechanisms that could effect the evolution of
growing networks and still lead to the observed scale-free
topologies.

Copying mechanism: Motivated by the desire to ex-
plain the power-law degree distribution of the WWW,
Kleinberg et al. (1999) and Kumar et al. (2000a,b) as-
sume that new webpages dedicated to a certain topic
copy links from existing pages on the same topic. In
this model at each timestep a new node is added to the
network, which connects to the rest of the nodes with
a constant number of directed edges. In the same time
a ”prototype” node is chosen randomly from the nodes
already in the system. The outgoing edges of the new
node are distributed in the following way: with probabil-
ity p the destination of the ith edge is selected randomly,
and with probability 1 − p it is taken to be the destina-
tion of the ith edge of the prototype node. This second
process increases the probability of high degree nodes to
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receive new incoming edges. In fact, since the proto-
type nodes are selected randomly, the probability that
a webpage with degree k will receive a new hyperlink is
proportional with (1 − p)k, indicating that the copying
mechanism effectively amounts to a linear preferential at-
tachment. Kumar et al. prove that the expectation of

the incoming degree distribution is

P (kin) = k−(2−p)/(1−p), (123)

thus P (k) follows a power-law with an exponent which
varies between 2 (for p → 0) and ∞ (for p → 1).

TABLE III. Summary of the mechanisms behind the current evolving network models. For each model (beyond the SF model)
we list the concept or mechanism deviating from the linear growth and preferential attachment, the basic ingredients of the SF
model, and the interval in which the exponent γ of the degree distribution can vary.

New concept or mechanism Limits of γ Reference

Linear growth, linear pref. attachment γ = 3 Barabási and Albert 1999

Nonlinear preferential attachment
Π(ki) ∼ kα

i no scaling for α 6= 1 Krapivsky, Redner, Leyvraz 2000

Asymptotically linear pref. attachment γ → 2 if a∞ → ∞
Π(ki) ∼ a∞ki as ki → ∞ γ → ∞ if a∞ → 0 Krapivsky, Redner, Leyvraz 2000

Initial attractiveness γ = 2 if A = 0
Π(ki) ∼ A + ki γ → ∞ if A → ∞ Dorogovtsev, Mendes, Samukhin 2000a,b

Accelerating growth 〈k〉 ∼ tθ γ = 1.5 if θ → 1
constant initial attractiveness γ → 2 if θ → 0 Dorogovtsev and Mendes 2000d

Accelerating growth γ = 1.5 for k ≪ kc(t) Barabási et al. 2000
〈k〉 = at + 2b γ = 3 for k ≫ kc(t) Dorogovtsev, Mendes 2001

Internal edges with probab. p γ = 2 if q = 1−p+m
1+2m

Rewiring of edges with probab. q γ → ∞ if p, q, m → 0 Albert and Barabási 2000

c internal edges γ → 2 if c → ∞
or removal of c edges γ → ∞ if c → −1 Dorogovtsev and Mendes 2000c

Gradual aging γ → 2 if ν → −∞
Π(ki) ∼ ki(t − ti)

−ν γ → ∞ if ν → 1 Dorogovtsev and Mendes 2000b

Multiplicative node fitness P (k) ∼ k−1−C

log(k)

Πi ∼ ηiki Bianconi and Barabási 2000

Additive-multiplicative fitness P (k) ∼ k−1−m

ln(k)

Πi ∼ ηi(ki − 1) + ζi 1 ≤ m ≤ 2 Ergün, Rodgers 2001

Edge inheritance P (kin) = d

k
√

2
in

ln(akin) Dorogovtsev, Mendes, Samukhin 2000c

Copying with probab. p γ = (2 − p)/(1 − p) Kumar et al. 2000a,b

Redirection with probab. r γ = 1 + 1/r Krapivsky, Redner 2000

Walking with probab. p γ ≃ 2 for p > pc Vázquez 2000

Attaching to edges γ = 3 Dorogovtsev, Mendes, Samukhin 2000d

p directed internal edges γin = 2 + pλ
Π(ki, kj) ∝ (kin

i + λ)(kout
j + µ) γout = 1 + (1 − p)−1 + µp/(1 − p) Krapivsky, Rodgers, Redner 2001

1 − p directed internal edges γin = 2 + p
Shifted linear pref. activity γout ≃ 2 + 3p Tadić 2001a

Edge redirection: Although inspired by a different
mechanism, the growing network with redirection model
of Krapivsky and Redner (2000) is mathematically equiv-
alent with the model of Kumar et al. (2000a,b) discussed
above. In this model at every timestep a new node is
added to the system and an earlier node i is selected uni-
formly as a possible target for attachment. With prob-
ability 1 − r a directed edge from the new node to i is
created, however, with probability r the edge is redirected
to the ancestor node j of node i (i.e. the node at wich i
attached when it was first added to the network).

Applying the rate-equation approach (Sect. VII.B),
the number of nodes N(k) with degree k evolves as

dN(k)

dt
= δk1 +

1 − r

M0
(Nk−1 − Nk)

+
r

M0
[(k − 2)Nk−1 − (k − 1)Nk]. (124)

The first term corresponds to the nodes which are just
added to the network. The second term indicates the
random selection of a node that the new node will attach
to. This process affects N(k) if this node has a degree
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k − 1 (in which case its degree will become k, increasing
N(k)) or k (in which case N(k) decreases by one). The
normalization factor M0 is the sum of all degrees. The
third term corresponds to the rewiring process. Since the
initial node is chosen uniformly, if redirection does occur,
the probability that a node with k− 1 pre-existing edges
receives the redirected edge is proportional with k−2, the
number of pre-existing incoming edges. Thus redirection
also leads to a linear preferential attachment.

This rate equation is equivalent with Eq. (99) with
an asymptotically linear attachment Π(k) ∼ k − 2 + 1/r.
Thus this model leads to a power-law degree distribution
with degree exponent γ = 1 + 1/r, which can be tuned
to any value larger than 2.

Walking on a network: The walking mechanism pro-
posed by Vázquez (2000) was inspired by citation net-
works. Entering a new field, we are usually aware of a
few important papers and follow the references included
in these to find other relevant articles. This process is
continued recursively, such that a manuscript will con-
tain references to papers discovered this way. Vázquez
formulates the corresponding network algorithm in the
following way: We start with an isolated node. At every
timestep a new node is added which links with a directed
edge to a randomly selected node, and then it follows the
edges starting from this node and links to their endpoints
with probability p. This last step is repeated starting
from the nodes to which connections were established,
until no new target node is found. In fact, this algorithm
is similar to the breadth-first search used in determining
the cluster structure of a network, with the exception
that not all edges are followed, but only a fraction equal
with p. In the special case of p = 1 one can see that
nodes with high in-degree will be more likely to acquire
new incoming edges, leading to a preferential attachment
Π(k) = (1+k)/N . Consequently, the degree distribution
follows a power-law with γ = 2. If p varies between 0
and 1, numerical simulations indicate a phase-transition:
for p < pc ≃ 0.4 the degree distribution decays exponen-
tially, while for p > pc it has a power-law tail with γ very
close to 2, the value corresponding to p = 1. Thus, while
the model does not explicitly include preferential attach-
ment, the mechanism behind creating the edges induces
one.

Attaching to edges: Perhaps the simplest model of
a scale-free network without explicit preferential at-
tachment was proposed by Dorogovtsev, Mendes and
Samukhin (2000d). In this model at every timestep a
new node connects to both ends of a randomly selected
edge. Consequently, the probability that a node receives
a new edge is directly proportional with its degree, in
other words, this model has exactly the same preferen-
tial attachment as the SF model. It readily follows that
the degree distribution has the same asymptotic form as
the SF model, i.e. P (k) ∼ k−3.

The evolving network models presented in this section
focus on capturing the mechanisms that govern the evo-
lution of network topology (see Table III), guided by the
information contained in the degree distribution. Less is
known, however, about the clustering coefficient of these
models. Notable exceptions are the models of Barabási
et al. (2001) (Sect. VIII.B) and Dorogovtsev, Mendes,
Samukhin (2000c) (Sect. VIII.F). The clustering coeffi-
cient of the model of Barabási et al. displays a complex
behavior as the network increases, first decreasing, go-
ing through a minimum, then increasing again, while the
model of Dorogovtsev, Mendes and Samukhin (2000c)
has a constant asymptotic clustering coefficient. These
results suggest that evolving network models can capture
the high clustering coefficient of real networks.

G. Connection to other problems in statistical mechanics

Modeling complex networks offered a fertile ground for
statistical mechanics. Indeed, many advances in under-
standing the scaling properties of both small world and
evolving networks have benefited from concepts rang-
ing from critical phenomena to nucleation theory and
gelation. On the other hand, there appears to be an-
other close link between statistical mechanics and evolv-
ing networks: the continuum theories proposed to predict
the degree distribution can be, often exactly, mapped
into some well known problems investigated in statisti-
cal physics. In the following we will discuss two such
mappings, relating evolving networks to the Simon model
(1955) (Amaral et al. 2000, Bornholdt and Ebel 2000)
and a Bose gas (Bianconi and Barabási 2000b).

1. The Simon model

Aiming to account for the wide range of empirical dis-
tributions following a power-law, such as the frequency
of word occurrences (Zipf 1949), the number of articles
published by scientists (Lotka 1926), the city populations
(Zipf 1949) or incomes (Pareto 1898), Simon (1955) pro-
posed a class of stochastic models that result in a power-
law distribution function. The simplest variant of the
Simon model, described in term of word frequencies, has
the following algorithm: Consider a book that is being
written, and has reached a length of N words. Denote by
fN(i) the number of different words that each occurred
exactly i times in the text. Thus fN (1) denotes the num-
ber of different words that have occurred only once. The
text is continued by adding a new word. With probabil-
ity p, this is a new word. However, with probability 1−p,
this word is already present. In this case Simon assumes
that the probability that the (N +1)th word has already
appeared i times is proportional to ifN(i), i.e. the total
number of words that occurred i times.
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As noticed by Bornholdt and Ebel (2000), the Simon
model can be mapped exactly into the following network
model: Starting from a small seed network, we record
the number of nodes that have exactly k incoming edges,
Nk. At every timestep one of two processes can happen:

(a) With probability p a new node is added, and a
randomly selected node will point to the new node.

(b) With probability 1 − p a directed edge between
two existing nodes is added. The starting point of this
edge is selected randomly, while its endpoint is selected
such that the probability that a node belonging to the
Nk nodes with k incoming edges will be chosen is

Π(class k) ∝ kNk. (125)

To appreciate the nature of this mapping, we need to
clarify several issues:

(1) While Eq. (125) represents a form of ”rich-gets-
richer” phenomenon, it does not imply the preferential
attachment (77) used in the scale-free model. On the
other hand, (77) implies (125). Thus the Simon model
describes a general class of stochastic processes that can
result in a power-law distribution, appropriate to capture
Pareto and Zipf’s laws.

(2) The interest in the scale-free model comes from
its ability to describe the topology of complex networks.
The Simon model does not have an underlying network
structure, as it was designed to describe events whose
frequency follows a power-law. Thus network measures
going beyond the degree distribution such as the aver-
age path length, spectral properties, clustering coefficient
cannot be obtained from this mapping.

(3) The mapping described above leads to a directed
network with internal edges, different from the scale-free
model. On the other hand, it is close to the model pro-
posed by Dorogovtsev, Mendes and Samukhin (2000a,b)
discussed in Sect. VIII.A.3, with the only difference that
here the initial attractiveness is present only for the iso-
lated nodes. Since (125) corresponds to an asymptot-
ically linear preferential attachment, a correspondence
can be made with the model of Krapivsky, Redner and
Leyvraz (2000) as well.

2. Bose-Einstein condensation

Bianconi and Barabási (2000b) show the existence of a
close link between evolving networks and an equilibrium
Bose gas. Starting with the fitness model introduced in
Sect. VIII.E.1, the mapping to a Bose gas can be done
by assigning an energy ǫi to each node, determined by its
fitness through the relation

ǫi = − 1

β
log ηi, (126)

where β = 1/T plays the role of inverse temperature. An
edge between two nodes i and j, having energies ǫi and

ǫj, corresponds to two non-interacting particles, one on
each energy level (see Fig. 30). Adding a new node, l, to
the network corresponds to adding a new energy level ǫl

and 2m new particles to the system. Half of these par-
ticles are deposited on the level ǫl (since all new edges
start from the new node), while the other half are dis-
tributed between the energy levels of the endpoints of the
new edges, the probability that a particle lands on level
i being given by

Πi =
e−βǫiki
∑

e−βǫiki
. (127)
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FIG. 30. Mapping between the network model and the Bose
gas. (a) On the left we have a network of five nodes, each
characterized by a fitness ηi. Equation (126) assigns an en-
ergy ǫi to each ηi (right). An edge from node i to node j
corresponds to a particle at level ǫi and one at ǫj . The net-
work evolves by adding a new node (dashed circle, η6) which
connects to m = 2 other nodes (dashed lines), chosen fol-
lowing (77). In the gas this results in the addition of a new
energy level (ǫ6, dashed) populated by m = 2 new particles
(open circles), and the deposition of m = 2 other particles to
energy levels to which the new node is connected to (ǫ2 and
ǫ5). (b) In the FGR phase we have a continuous degree distri-
bution, the several high degree nodes linking the low degree
nodes together. In the energy diagram this corresponds to
a decreasing occupation number with increasing energy. (c)
In the Bose-Einstein condensate the fittest node attracts a fi-
nite fraction of all edges, corresponding to a highly populated
ground level, and sparsely populated higher energies. After
Bianconi and Barabási (2000b).

The continuum theory predicts that the rate at which
particles accumulate on energy level ǫi is given by

∂ki(ǫi, t, ti)

∂t
= m

e−βǫiki(ǫi, t, ti)

Zt
, (128)

where ki(ǫi, t, ti) is the occupation number of level i
and Zt is the partition function, defined as Zt =
∑

j=1 te−βǫjkj(ǫj , t, tj). The solution of Eq. (128) is
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ki(ǫi, t, ti) = m

(

t

ti

)f(ǫi)

, (129)

where the dynamic exponent f(ǫ) satisfies f(ǫ) =
e−β(ǫ−µ), µ plays the role of the chemical potential, sat-
isfying the equation

∫

deg(ǫ)
1

eβ(ǫ−µ) − 1
= 1, (130)

and deg(ǫ) is the degeneracy of the energy level ǫ. Eq.
(130) suggests that in the t → ∞ limit the occupation
number, giving the number of particles with energy ǫ,
follows the familiar Bose statistics

n(ǫ) =
1

eβ(ǫ−µ) − 1
. (131)

The existence of the solution (129) depends on the
functional form of the distribution g(ǫ) of the energy lev-
els, determined by the ρ(η) fitness distribution (see Sect.
VIII.E.1). Specifically, if Eq. (130) has no nonnegative
solution for a given g(ǫ) and β, we can observe a Bose-
Einstein condensation, indicating that a finite fraction of
the particles condensate on the lowest energy level (see
Fig. 30c).

This mapping to a Bose gas predicts the existence of
two distinct phases as a function of the energy distribu-
tion. In the fit-get-rich (FGR) phase, describing the case
of uniform fitness discussed in Sect. VIII.E.1, the fitter
nodes acquire edges at a higher rate than older but less
fit nodes. In the end the fittest node will have the most
edges, but the richest node is not an absolute winner,
since its share of the edges (i.e. the ratio of its edges and
the total number of edges in the network) decays to zero
for large system sizes (Fig. 30b). The unexpected out-
come of this mapping is the possibility of a Bose-Einstein
condensation for T < TBE, when the fittest node acquires
a finite fraction of the edges, and maintains this share of
edges over time (Fig. 30c). A representative fitness dis-
tribution which leads to condensation is ρ(η) = (1 − η)λ

with λ > 1.
The temperature in (126) plays the role of a dummy

variable, since if we define a fixed distribution ρ(η), the
existence of a Bose-Einstein condensation or the fit-get-
rich phase depends only on the functional form of ρ(η)
and is independent of β. Indeed, β falls out at the end
from all topologically relevant quantities. As Dorogovt-
sev and Mendes (2000d) have subsequently shown, the
existence of Bose-Einstein condensation can be derived
directly from the fitness model, without employing the
mapping to a Bose gas. While the condensation phe-
nomenon appears to be similar to the gelation process
observed by Krapivsky, Redner and Leyvraz (2000a) su-
perlinear preferential attachment, it is not clear at this
point if this similarity is purely accidental or there is
a deeper connection between the fitness model and the
fitness-free superlinear model.

IX. ERROR AND ATTACK TOLERANCE

Many complex systems display a surprising degree of
tolerance against errors. For example, relatively simple
organisms grow, persist and reproduce despite drastic
pharmaceutical or environmental interventions, an error
tolerance attributed to the robustness of the underlying
metabolic and genetic network (Jeong et al. 2000, 2001).
Complex communication networks display a high degree
of robustness: while key components regularly malfunc-
tion, local failures rarely lead to the loss of the global
information-carrying ability of the network. The stability
of these and other complex systems is often attributed to
the redundant wiring of their underlying network struc-
ture. But could the network topology, beyond redun-
dancy, play a role in the error tolerance of such complex
systems?

While error tolerance and robustness almost always
has a dynamical component, here we will focus only on
the topological aspects of robustness, caused by edge
and/or node removal. The first results regarding network
reliability under edge removal came from random graph
theory (Moore and Shannon 1956a,b, Margulis 1974 and
Bollobás 1985). Consider an arbitrary connected graph
HN of N nodes, and assume that a p fraction of the edges
have been removed. What is the probability that the re-
sulting subgraph is connected, and how does it depend
on the removal probability p? For a broad class of start-
ing graphs HN (Margulis 1974) there exists a threshold
probability pc(N) such that if p < pc(N) the subgraph is
connected, but if p > pc(N) it is disconnected. This phe-
nomenon is in fact an inverse bond percolation problem
defined on a graph, with the slight difference (already en-
countered in the evolution of a random graph) that the
critical probability depends on N .

As the removal of a node implies the malfunctioning of
all of its edges as well, node removal inflicts more dam-
age than edge removal. Does a threshold phenomenon
appear for node removal too? And to what degree does
the topology of the network determine the network’s ro-
bustness? In the following we will call a network error
tolerant (or robust) if it contains a giant cluster com-
prised of most of the nodes even after a fraction of its
nodes are removed. The results indicate a strong cor-
relation between robustness and network topology. In
particular, scale-free networks are more robust than ran-
dom networks against random node failures, but are more
vulnerable when the most connected nodes are targeted.

A. Numerical results

To compare the robustness of the Erdős-Rényi ran-
dom graph and the scale-free model, Albert, Jeong and
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Barabási (2000) investigated networks that have the same
number of nodes and edges, differing only in the degree
distribution. Two types of node removal were consid-
ered. Random perturbations can cause the failure of
some nodes, thus the first mechanism studied was the
removal of randomly selected nodes. The second mech-
anism, in which the most highly connected nodes are re-
moved at each step, was selected because it is the most
damaging to the integrity of the system. This second
choice emulates an intentional attack on the network.

node
removal

A

B

A

B

FIG. 31. Illustration of the effects of node removal on an ini-
tially connected network. In the unperturbed state the dis-
tance between node A and B is 2, but after two nodes are
removed from the system, it increases to 6. In the same time
the network breaks into five isolated clusters.

Let us start from a connected network, and at each
timestep remove a node. The disappearance of the node
implies the removal of all edges that connect it to it, dis-
rupting some of the paths between the remaining nodes.
One way to monitor the disruption of an initially con-
nected network is to study the relative size of the largest
cluster that remains connected, S, and the average path
length ℓ of this cluster, in function of the fraction f of
the nodes removed from the system. We expect that the
size of the largest cluster decreases and its average path
length increases as an increasing number of nodes are
removed from the network.

1. Random network, random node removal

We start by investigating the response of a random net-
work to the random removal of its nodes (see Fig. 32a,
squares), looking at the changes in the relative size of the
largest cluster, S (i.e. the fraction of nodes contained in
the largest cluster), and its average path length, ℓ, as an
increasing number of nodes are randomly removed.

The size of the largest cluster: As expected, for a ran-
dom network S decreases from S = 1 as f increases.
If only the removed nodes would be missing from the
largest cluster, S would follow the diagonal correspond-

ing to S = 1 for f = 0 and S = 0 for f = 1. While
for small f , S follows this line, as f increases the de-
crease becomes more rapid, indicating that clusters of
nodes become isolated from the main cluster. At a criti-
cal fraction fc, S drops to 0, indicating that the network
breaks into tiny isolated clusters. These numerical re-
sults indicate an inverse percolation transition. Indeed,
percolation theory can be used to calculate the critical
fraction fc (Sect. IX.B).

The average path length: The behavior of ℓ also con-
firms this percolation-like transition: it starts from the
value characteristic to an unperturbed random graph; in-
creases with f as paths are disrupted in the network, and
it peaks at fc (Fig. 32c, filled squares). After the network
breaks into isolated clusters ℓ decreases as well since in
this regime the size of the largest cluster decreases very
rapidly.
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FIG. 32. The relative size S (a, b) and average path length ℓ
(c, d) of the largest cluster in an initially connected network
when a fraction f of the nodes are removed. (a, c) Erdős-
Rényi random network with N = 10, 000 and 〈k〉 = 4. (b,
d) Scale-free network generated by the scale-free model with
N = 10, 000 and 〈k〉 = 4. Squares indicate random node re-
moval, while circles correspond to preferential removal of the
most connected nodes. After Albert, Jeong, Barabási (2000).

When f is small we can use the prediction of ran-
dom graph theory, (16), indicating that ℓ scales as
log(SN)/ log(〈k〉), where 〈k〉 is the average degree of the
largest cluster (Sect. IV.G). Since the number of edges
decreases more rapidly than the number of nodes during
node removal (the disruption of each node inducing the
disruption of several edges), 〈k〉 decreases faster with in-
creasing f than SN , and consequently ℓ increases. On
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the other hand, for f ≃ fc the prediction of percolation
theory becomes valid, and Eq. (44) indicates that ℓ does
not depend on 〈k〉 any longer, and decreases with S.

2. Scale-free network, random node removal

While a random network undergoes an inverse perco-
lation transition when a critical fraction of its nodes are
randomly removed, the situation is dramatically different
for the SF network (Fig. 32b, d, squares). Simulations in-
dicate that while the size of the largest cluster decreases,
it reaches 0 at a higher f . In the same time, ℓ increases
much slower than in the random case, and its peak is
much less prominent. The behavior of the system still
suggests a percolation transition, but analytical calcula-
tions indicate that this is merely a finite size effect, and
fc → 1 for a scale-free network as the size of the network
increases (Sect. IX.B). In simple terms, scale-free net-
works display an exceptional robustness against random
node failures.

3. Preferential node removal

In the case of an intentional attack, when the nodes
with the highest number of edges are targeted, the net-
work breaks down faster than in the case of random node
removal. The general breakdown scenario follows again
an inverse percolation transition, but now the critical
fraction is much lower than in the random case. This
is understandable, since at every step the highest possi-
ble number of edges are removed from the system. Again,
the two network topologies respond differently to attacks
(Fig. 32, circles): the scale-free network, due to its re-
liance on the highly connected nodes, breaks down earlier
than the random network.

In conclusion, the numerical simulations indicate
that scale-free networks display a topological robustness
against random node failures. The origin of this error
tolerance lies in their heterogeneous topology: low de-
gree nodes are far more abundant than nodes with high
degree, thus random node selection will more likely affect
the nodes that play a marginal role in the overall network
topology. But the same heterogeneity makes scale-free
networks fragile to intentional attacks, since the removal
of the highly connected nodes has a dramatic disruptive
effect on the network.

B. Error tolerance: analytical results

The critical threshold for fragmentation, fc, of a net-
work under random node failures was first calculated by
Cohen et al. (2000) and Callaway et al. (2000). Cohen
et al. (2000a) argue that for a random network with a

given degree distribution fc can be determined using the
following criterion: a giant cluster, with size proportional
to the size of the original network, exists if an arbitrary
node i, connected to a node j in the giant cluster, is also
connected to at least one other node. If i is connected
only to j, the network is fragmented. If we assume that
loops can be neglected (true for large fragmented sys-
tems), this criterion can be written as

〈k2〉
〈k〉 = 2. (132)

Consider a node with initial degree k0 chosen from an
initial distribution P (k0). After the random removal of a
fraction f of the nodes the probability that the degree of
that node becomes k is Ck

k0
(1 − f)kfk0−k, and the new

degree distribution is

P (k) =

∞
∑

k0=k

P (k0)C
k
k0

(1 − f)kfk0−k. (133)

Thus the average degree and its second moment for
the new system follows 〈k〉 = 〈k0〉(1 − f) and 〈k2〉 =
〈k2

0〉(1 − f)2 + 〈k0〉f(1 − f), allowing us to rewrite the
criterion (132) for criticality as

fc = 1 − 1
〈k2

0〉
〈k0〉 − 1

, (134)

where fc is the critical fraction of removed nodes and
〈k2

0〉, 〈k0〉 are computed from the original distribution
before the node removal.

Random graphs: As a test of the applicability of Eq.
(132), let us remove a fraction f of the nodes from a
random graph. Since in the original graph k0 = pN and
k2
0 = (pN)2+pN (see Sect. III.C), Eq. (134) implies that

fc = 1− 1/(pN). If in the original system 〈k2
0〉/〈k0〉 = 2,

meaning that pN = 〈k〉 = 1 (the familiar condition of the
appearance of the giant cluster in a random graph), the
above equation indicates that fc = 0, i.e. any amount of
node removal leads to the network’s fragmentation. The
higher the original degree 〈k0〉 of the network, the larger
the damage it can survive without breaking apart.

Scale-free networks: The critical probability is rather
different if the degree distribution follows a power-law

P (k) = ck−γ , k = m, m + 1, ...K, (135)

where m and K ≃ mN1/γ−1 are the smallest and the
largest degree values, respectively. Using a continuum
approximation valid in the limit K ≫ m ≫ 1, we obtain
that

〈k2
0〉

〈k0〉
→ |2 − γ|

|3 − γ| ×







m if γ > 3;
mγ−2K3−γ , if 2 < γ < 3;
K if 1 < γ < 2.

(136)
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We can see that for γ > 3 the ratio is finite and there
is a transition at

fc = 1 − 1
γ−2
γ−3m − 1

. (137)

However, for γ < 3 Eq. (136) indicates that the ratio
diverges with K and thus fc → 1 when N → ∞. This
result implies that infinite systems do not break down
under random failures, as a spanning cluster exists for
arbitrarily large f . In finite systems a transition is ob-
served, although the transition threshold is very high.
This result is in agreement with the numerical results
discussed in the previous subsection (Albert, Jeong and
Barabási 2000) indicating a delayed and very small peak
in the ℓ curve for the failure of the SF model (having
γ = 3).
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FIG. 33. The fraction of nodes in the giant cluster, S, as a
function of the fraction of randomly removed nodes for scale-
free random networks with γ = 3.5 (crosses) and γ = 2.5 (all
other symbols). In the latter case three different system sizes
were used, with corresponding largest degree values K = 25
(circles), K = 100 (squares) and K = 400 (triangles). The
different curves illustrate that the fragmentation transition
exists only for finite networks, while fc → 1 as N → ∞.
After Cohen et al. 2000

Callaway et al. (2000) investigate percolation on gener-
alized random networks, considering that the occupation
probability of nodes is coupled to the node degree. The
authors use the method of generating functions discussed
in Sect. V.B and generalize it to include the probability
of occupancy of a certain node. The generating function
for the degree distribution, corresponding to Eq. (46) in
Sect. V.B, becomes

F0(x) =
∞
∑

k=0

P (k)qkxk, (138)

where qk stands for the probability that a node with de-
gree k is present. The overall fraction of nodes which are

present in the network is q = F0(1) which is also equal
to 1 − f where f is the fraction of nodes missing from
the system. This formulation includes the random occu-
pancy (or conversely, random failure) case as the special
case of uniform occupation probability qk = q.

The authors consider random networks with a trun-
cated power-law degree distribution

P (k) =

{

0 for k = 0

Ck−γe−k/κ for k ≥ 1
(139)

The exponential cutoff of this distribution has the role
of regularizing the calculations in the same way as the
largest degree K in the study of Cohen et al. (2000).

In the case of uniform occupation probability q corre-
sponding to the random breakdown of a fraction f = 1−q
of the nodes, the critical occupation probability follows

qc = 1 − fc =
1

Liγ−2(e−1/κ)

Liγ−1(e−1/κ)
− 1

. (140)

Here Lin(x) is the nth polylogarithm of x, defined as
Lin(x) =

∑∞
k=1 xk/kn. This expression is similar with

Eq. (137) derived by Cohen et al., but we can notice
that in contrast with Eq. (137), which is valid for γ > 3,
this equation gives nonzero values even for 2 < γ < 3.
The origin of the discrepancy is the cutoff κ which cap-
tures the effects of size and capacity constrains (see Sect.
VIII.D). Indeed, if we consider κ → ∞, the expression
for the critical occupation probability becomes

qc =
1

ζ(γ−2)
ζ(γ−1) − 1

, (141)

where ζ(x) is the Riemann ζ function defined in the re-
gion x > 1, thus this expression is valid only for γ > 3.
Since ζ(x) → ∞ as x → 1, qc becomes zero as γ ap-
proaches 3, indicating that for infinite scale-free networks
even infinitesimal occupation probabilities can assure the
presence of an infinite cluster.

C. Attack tolerance: analytical results

In the general framework of Callaway et al. (2000),
intentional attack targeted at the nodes with highest de-
gree is equivalent with setting

qk = θ(kmax − k) =

{

1 if k ≤ kmax

0 if k > kmax
. (142)

This way only the nodes with degree k ≤ kmax are oc-
cupied, which is equivalent with removing all nodes with
k > kmax. The number of removed nodes can be in-
creased by lowering the value of kmax. Callaway et al.
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(2000) calculate the fraction of nodes in the infinite clus-
ter S as a function of f and kmax (Fig. 34). This figure is
in agreement with the results of Albert et al. (2000) indi-
cating that scale-free networks become fragmented after
a small fraction fc of highly connected nodes is removed.
It also indicates that a small percentage of the highest
connected nodes contains in fact nodes with surprisingly
low degree, agreeing also with the finding of Broder et
al. (2000) that the World-Wide Web is resilient to the
removal of all nodes with degree higher than 5.
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FIG. 34. Fraction of nodes in the spanning cluster in scale-
free random networks with all nodes with degree greater than
kmax unoccupied, for γ = 2.4 (circles), γ = 2.7 (squares) and
γ = 3.0 (triangles). The solid lines are the analytical predic-
tion. Upper frame: as a function of f . Lower frame: as a
function of the cutoff kmax. After Callaway et al. 2000.

The theoretical framework of Cohen et al. (2000) can
also be extended to the case of intentional attack on a
scale-free network with degree distribution (135) (Cohen
et al. 2001). Under attack two effects arise: (a) the cutoff
degree K is reduced to a new value K̃ < K, and (b) the
degree distribution of the remaining nodes is changed.
The new cutoff can be estimated from the relation

K
∑

k=K̃

P (k) =

∞
∑

k=K̃

P (k) − 1

N
= f, (143)

which for large N implies

K̃ = mf1/(1−γ). (144)

The removal of a fraction f of the most connected nodes
results in a random removal of a fraction f̃ of edges from
the remaining nodes. The probability that an edge leads
to a deleted node equals the fraction of edges belonging
to deleted nodes

f̃ =

∑K
k=K̃ kP (k)

〈k0〉
= f (2−γ)/(1−γ), (145)

for γ > 2. In the limit γ = 2, f̃ = ln(Nf/m), thus

very small f values can lead to the destruction of a large
fraction of the edges as N → ∞.

Since for random node deletion the probability of an
edge leading to a deleted node equals the fraction of
deleted nodes, Cohen et al. (2001) argue that the net-
work after undergoing an attack is equivalent with a
scale-free network with cutoff K̃ that has undergone ran-
dom removal of a fraction f̃ of its nodes. Replacing f
with f̃ and K with K̃ in Eq. (134), we obtain the fol-
lowing equation for K̃:

(

K̃

m

)2−γ

− 2 =
2 − γ

3 − γ
m





(

K̃

m

)3−γ

− 1



 . (146)

This equation can be solved numerically to obtain K̃ as
a function of m and γ, then fc(m, γ) can be determined
from (144). The results indicate that a breakdown phase
transition exists for γ > 2, and fc is very small for all γ
values, on the order of a few percent. An interesting fea-
ture of the fc(γ) curve is that it has a maximum around
γ = 2.25. It is not surprising that smaller γ values lead
to increased vulnerability to attacks due to the special
role the highly connected nodes play in connecting the
system. On the other hand, Cohen et al. (2001) argue
that the cause of the increased susceptibility of high γ
networks is that for these even the original network is
formed by several independent clusters, and the size of
the largest cluster decreases with increasing γ. Indeed,
the results of Aiello, Chung and Lu (2000) (see Sect.V)
indicate that for 2 < γ < 3.478 the original network con-
tains an infinite cluster and several smaller clusters of
size at most log N and for γ > 3.478 the original network
has no infinite cluster.

D. The robustness of real networks

Systematic studies on error and attack tolerance of real
networks are available for four systems highly relevant to
science an technology.

Communication networks: The error and attack tol-
erance of the Internet and the WWW was investigated
by Albert, Jeong and Barabási (2000). Of the two net-
works, the Internet’s robustness has more practical sig-
nificance, as about 0.3% of the routers regularly mal-
function (random errors), and the Internet is occasionally
subject to hacker attacks targeting some of the most con-
nected nodes. The results, based on the latest map of the
Internet topology at the inter-domain (autonomous sys-
tem) level, indicate that the average path length on the
Internet is unaffected by the random removal of as many
as 60% of the nodes, while if the most connected nodes
are eliminated (attack), ℓ peaks at a very small f (Fig.
35a). Similarly, the large connected cluster persists for
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high rates of random node removal, but if nodes are re-
moved in the attack mode, the size of the fragments that
break off increases rapidly, the critical point appearing
at a very small threshold, f I

c ≃ 0.03 (Fig. 35c).
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FIG. 35. The relative size S (a, b) and average path length
ℓ (c, d) of the largest cluster in two communication networks
when a fraction f of the nodes are removed. (a, c), Internet
at the domain level, N = 6, 209, 〈k〉 = 3.93. (b, d) Subset of
the WWW with N = 325, 729 and 〈k〉 = 4.59. Squares indi-
cate random node removal, circles mean preferential removal
of the most connected nodes. After Albert, Jeong, Barabási
2000.

The WWW study was limited to a subset of the web
containing 325, 729 nodes, the sample investigated in Al-
bert, Jeong and Barabási (1999). As the WWW is di-
rected, not all nodes can be reached from all nodes even
for the starting network. To resolve this problem, only
distances between nodes that have a path between them
are included in the average distance between nodes. Sec-
ond, directed networks cannot be separated into clusters
unambiguously: two nodes can be seen as part of the
same cluster when starting from a certain node, and ap-
pear to be in separate clusters when starting from an-
other. This way the number of independent clusters is
not unambiguous, but the largest cluster can be deter-
mined. Third, when simulating an attack on the WWW,
the nodes with the highest number of outgoing edges were
removed, since kout can be readily obtained by looking on
a web document, while kin can be only determined when
the map of the whole web is available. Despite these
methodological differences, the response of the WWW
is similar to the undirected networks: after a slight ini-
tial increase, ℓ remains constant in the case of random

failures (Fig. 35b), while it increases for attacks. The
network survives as a large cluster under high rates of
failure, but under attack the system abruptly falls apart
at fw

c = 0.067 (Fig. 35d).
Cellular networks: Cellular networks can be subject to

random errors as a result of mutations or protein mis-
folding, as well as harsh external conditions eliminating
essential metabolites. Jeong et al. (2000) study the re-
sponse of the metabolic networks of several organisms to
random and preferential node removal. Removing up to
8% of the substrates they obtain that the average path
length does not increase when the nodes are removed ran-
domly, but it increases rapidly under the removal of the
most connected nodes, attaining a 500% increase with
the removal of only 8% of the nodes. Similar results have
been obtained for the protein network of yeast as well
(Jeong et al. 2001, see also Vogelstein, Lane and Levine
2000).

Ecological networks: As a result of human actions or
environmental changes, species are deleted from food
webs, an issue of major concern for ecology and envi-
ronmental science. Solé and Montoya (2000) study the
response of the food webs discussed in Sect. II to the re-
moval of species (nodes) (Montoya and Solé 2000). The
authors measure the relative size S of the largest cluster,
the average size 〈s〉 of the rest of the species clusters,
and the fraction of species becoming isolated due to re-
moval of other species on whom their survival depends
(secondary extinctions). The results indicate that under
random species removal the fraction of species contained
in the largest cluster decreases linearly. In the same time
the values of 〈s〉 remain 0 or 1, and the secondary ex-
tinction rates remain very low (smaller than 0.1) even
when a high fraction of the nodes is removed. The esti-
mate of Eq. (134) for the critical fraction at which the
network fragments gives ffail

c values around 0.95 for all
networks, indicating that these networks are error tol-
erant. However, when the most connected (keystone)
species are successively removed, S decays quickly and
becomes zero at fattack

c ≃ 0.2, while 〈s〉 peaks. The sec-
ondary extinctions increase dramatically, reaching 1 at
relatively low values of f (f ≃ 0.16 for the Silwood Park
web).

The results presented in this section offer a simple but
compelling picture: scale-free networks display a high de-
gree of robustness against random errors, coupled with a
susceptibility to attacks. This double feature is the result
of the heterogeneity of the network topology, encoded by
the power-law degree distribution. While we focused on
two measures only, S and ℓ, it is likely that most net-
work measures will show distinct behavior for scale-free
and random networks.

The type of disturbances we considered were static,
that is, the removal of a node affected other nodes only
in the topological sense. On the other hand, in many
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networks there is a dynamical aspect to error tolerance:
the removal of a node could affect the functionality of
other nodes as well. For example, the removal of a highly
connected router on the Internet will redirect traffic to
other routers that may not have the capacity to han-
dle the increased traffic, creating an effective denial of
service attack. Thus in many systems errors lead to cas-
cading failures, affecting a large fraction of the network.
While little is known about such events, Watts (2001)
has recently shown that the network topology makes a
big difference under cascading failures as well. He in-
vestigated a binary model in which the state of a node
changes from off to on if a threshold fraction of its neigh-
bors are on. In this model the probability that a per-
turbation in an initially all-off state spreads to the entire
network can be connected to the existence of a giant clus-
ter of vulnerable nodes. Using the method of generating
functions, Watts (2001) showed that scale-free random
graphs are much less vulnerable to random perturbations
than Erdős-Rényi random graphs with the same average
degree.

It is often assumed that the robustness of many com-
plex systems is rooted in their redundancy, which for net-
works represents the existence of many alternative paths
that can preserve communication between nodes even if
some nodes are absent. We are not aware of any research
that would attempt to address this issue in quantitative
terms, uncovering to which degree does redundancy play
a role.

X. OUTLOOK

Just like its main subject, the field of complex networks
is rapidly evolving. While the potential for new and im-
portant discoveries is high, it has attained a degree of
coherence that made a review necessary and appropri-
ate. The fact that the obtained results have reached a
critical mass is best illustrated by the amount of work
that we had no space to review above. Being forced to
make a choice, we focused on the mechanisms and mod-
els that describe network topology. In the following we
briefly discuss the results that could not fit in this ap-
proach, but are important for the field. In many ways
the list is as prominent as the works covered so far.

1. Dynamics on networks

Most networks offer a support for various dynamical
processes, as often the topology plays a crucial role in de-
termining the system’s dynamical features. The range of
possible dynamical processes is wide. Watts (1999) stud-
ied the impact of clustering on several processes, includ-
ing games, cooperation, the Prisoner’s Dilemma, cellular
automata and synchronization (see also Lago-Fernández

et al. 2001). Wang and Chen (2001) have shown that in-
homogeneous scale-free topology plays an important role
in determining synchronization on a complex network,
but search and random walks on complex networks is
also a much investigated topic (Huberman et al. 1998,
Kleinberg 2000, Adamic et al. 2001, Burda et al. 2001,
Walsh 2001, Bilke and Peterson 2001). Modeling dynam-
ics on a fixed topology is legitimate when the timescales
describing the network topology and the dynamics on
the network differ widely. A good example is Internet
traffic, whose modeling requires time resolutions from
milliseconds up to a day (Willinger et al. 1997, Crov-
ella and Bestavros 1997, Solé and Valverde 2001), com-
pared with the months required for significant topological
changes. Similarly, within the cell the concentrations of
different chemicals change much faster than the cellular
network topology (Schilling and Palsson 1998, Savageau
1998, Gardner et al. 2000, Elowitz and Leibler 2000),
which is shaped by evolution over many generations.

The network structure plays a crucial role in deter-
mining the spread of ideas, innovations or computer
viruses (Coleman, Menzel and Katz 1957, Valente 1995).
In this light, spreading and diffusion has been studied
both on regular (Kauffman 1992, Keeling 1999), random
(Solomonoff, Rapoport 1951, Rapoport 1957, Weigt and
Hartmann 2001), small-world (Abramson and Kuperman
2000, Newman and Watts 1999, Moukarzel 1999, New-
man, Moore, Watts 2000, Moore and Newman 2000a,b)
and scale-free (Johansen and Sornette 2000, Watts 2001,
Bilke and Peterson 2001 ,Tadić 2001b) networks. A par-
ticularly surprising result was offered recently by Pastor-
Satorras and Vespignani (2001a,b), who studied the ef-
fect of the network topology on disease spreading. They
show that while for random networks a local infection
spreads to the whole network only if the spreading rate
is larger than a critical value λc, for scale-free networks
any spreading rate leads to the infection of the whole net-
work. That is, for scale-free networks the critical spread-
ing rate reduces to zero, a highly unexpected result that
goes against volumes of results written on this topic.

When the timescales governing the dynamics on the
network are comparable to that characterizing the net-
work assembly, the dynamical processes can influence
the topological evolution. This appears to be the case
in various biological models inspired by the evolution of
communities or the emergence of the cellular topology
(Slanina and Kotrla 1999, 2000, Bornholdt and Snep-
pen 2000, Jain and Krishna 2001, Lässig et al. 2001).
In the current models often these systems are not al-
lowed to ”grow”, but they exist in a stationary state that
gives room for diverse network topologies (Slanina and
Kotrla 1999, 2000). Interestingly, these models do not
lead to scale-free networks in the stationary state, while
it is known that cellular networks are scale-free (Jeong
et al. 2000, 2001, Wagner and Fell 2000). Thus it is an
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open challenge to design evolutionary models that, based
on selection or optimization mechanisms, could produce
topologies similar to those seen in the real world.

In general, when it comes to understanding dynamics
on networks, as well as the coupling between the dynam-
ics and network assembly, we are only at the beginning of
a promising journey (Strogatz 2001). So far we are miss-
ing simple organizing principles that would match the
coherence and universality characterizing network topol-
ogy. Due to the importance of the problem, and the rapid
advances we witnessed in descibing network topology, we
foresee it as being a rapidly growing area.

2. Directed networks

Many important networks, including the WWW or
metabolic networks, have directed edges. In directed net-
works, however, not all nodes can be reached from a given
node. This leads to a fragmented cluster structure, where
the clusters are not unique, but they depend on the start-
ing point of the inquiry. Beyond some general aspects, lit-
tle is known about such directed networks, but important
insights could emerge in the near future. A promising
step in this direction is the empirical study of the cluster
structure of the World-Wide Web (Broder et al. 2000),
finding that the WWW can be partitioned into several
qualitatively different domains. The results indicate that
28% of the nodes are part of the strongly connected com-
ponent (SCC), in which any pair of nodes is connected
by paths in either direction. Another 23% of the nodes
can be reached from the SCC, but cannot connect to it
in the other direction, while a roughly equal fraction of
the nodes have paths leading to the SCC but cannot be
reached from it. As several groups have pointed out, this
structure is not specific to the WWW, but common to
all directed networks, ranging from the cell metabolism
to citation networks (Newman, Strogatz and Watts 2000,
Dorogovtsev, Mendes and Samukhin 2001).

Most network models (including small world and evolv-
ing networks) ignore the network’s directedness. On the
other hand, as the WWW measurements have shown, the
incoming and outgoing edges could follow different scal-
ing laws. In this respect, the scale-free model (Barabási
and Albert 1999) explains only the incoming degree dis-
tribution, as, due to its construction, each node has ex-
actly m outgoing edges, thus the outgoing degree dis-
tribution is a delta function (Sect. VII.A). While re-
cently several models have investigated directed evolving
networks, obtaining a power-law for both the outgoing
and incoming edges (Tadić 2001a,b, Krapivsky, Rodgers,
Redner 2001), the generic features of such complex di-
rected models could hold further surprises.

3. Weighted networks, optimization, allometric scaling

Many real networks are weighted networks, in contrast
with the binary networks investigated so far, where the
edge weights can have only two values 0 and 1 (absent or
present). Indeed, in social networks it is often important
to assign a strength to each acquaintance edge, indicating
how well the two individuals know each other (Newman
2001b,c). Similarly, cellular networks are characterized
by reaction rates, and the edges on the Internet by band-
width. What are the mechanisms that determine these
weights? Do they obey nontrivial scaling behavior? To
what degree are they determined by the network topol-
ogy? Most answers to these questions come from two di-
rections: theoretical biology and ecology, concerned with
issues related to allometric scaling, and random resis-
tor networks (Derrida and Vannimenus 1982, Duxbury,
Beale and Moukarzel 1995), a topic much studied in sta-
tistical mechanics. Allometric scaling describes the trans-
port of material through the underlying network charac-
terizing various biological systems. Most of these systems
have a branching tree-like topology. The combination of
the tree topology with the desire to minimize the cost of
transportation leads to nontrivial scaling in the weights
of the edges (West et al. 1997, Enquist et al. 1998, 1999).

In a more general context, Banavar and collabora-
tors have shown that when the aim is to minimize the
cost of transportation, the optimal network topology can
vary widely, ranging from tree-like structures to spirals
or loop-dominated highly interconnected networks (Ba-
navar at al. 1999, 2000). Beyond giving systematic meth-
ods and principles to predict the topology of transporta-
tion networks, these studies raise some important ques-
tions that need to be addressed in the future. For ex-
ample, to which degree is the network topology shaped
by global optimization, or the local processes seen in
scale-free networks? There are fundamental differences
between transportation and evolving networks. In trans-
portation models the network topology is determined by
a global optimization process, in which edges are posi-
tioned to minimize, over the whole network, some prede-
fined quantity, such as cost or energy of transportation.
In contrast, for evolving networks such global optimiza-
tion is absent, as the decision where to link is delegated to
the node level. However, this decision is not entirely local
in scale-free networks either, as the node has information
about the degree of all nodes in the network, from which
it chooses one following (77), the normalization factor in
making the system fully coupled. The interplay between
such local and global optimization processes is far from
being fully understood (Carlson and Doyle 1999, 2000,
Doyle and Carlson 2000).

While edge weights are well understood for trees and
some much studied physical networks, ranging from river
networks (Rodŕiguez-Iturbe and Rinaldo 1997, Banavar
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et al. 1997) to random resistor networks (Derrida and
Vannimenus 1982, Duxbury, Beale and Moukarzel 1995),
little work is done on these problems in the case of small
world or scale-free networks. Recently Yook et al. (2001)
have investigated an evolving network model in which
the weights were added dynamically, resulting in unex-
pected scaling behavior. Newman (2001b) has also as-
signed weights to characterize the collaboration strength
between scientists. These studies make an important
point, however: despite the practical relevance and po-
tential phenomenological richness, the understanding of
weighted networks is still in its infancy.

4. Internet and World-Wide Web

A few real networks, with high technological or intel-
lectual importance, have received special attention. In
these studies the goal is to develop models that go be-
yond the basic growth mechanisms and incorporate the
specific and often unique details of a given system. Along
these lines much attention has focused on developing re-
alistic World-Wide Web models that explain everything
from the average path length to incoming and outgo-
ing degree distribution (Adamic, Huberman 1999, Flake
et al. 2000, Tadić 2001a, Krapivsky, Rodgers, Redner
2001). Many studies focus on the identification of web
communities as well, representing clusters of nodes that
are highly connected to each other (Gibson et al. 1998,
Flake et al. 2000, Pennock et al. 2000, Adamic and Adar
2000).

There is a race in computer science to create good In-
ternet topology generators (Paxson, Floyd 1997, Comel-
las et al. 2000). New Internet protocols are tested on
model networks before their implementation, and proto-
col optimization is sensitive to the underlying network
topology (Labovitz et al. 2000). Prompted by the dis-
covery that the Internet is a scale-free network, all topol-
ogy generators are being reviewed and redesigned. These
studies have resulted in careful investigations into what
processes could contribute to the correct topology, reaf-
firming that growth and preferential attachment are nec-
essary conditions for realistic Internet models (Medina
et al. 2000, Palmer, Steffan 2000, Yook et al. 2001b,
Pastor-Satorras et al 2001, Jeong, Néda, Barabási 2001).
In addition, an interesting link has been recently found
(Caldarelli et al. 2000) to river networks, a much studied
topic in statistical mechanics (see Banavar et al. 1999,
Dodds and Rothman 2000, 2001a,b,c).

5. General questions

The high interest in scale-free networks might give
the impression that all complex networks in nature have
power-law degree distributions. As we discussed in Sect.

II, that is far from being the case. It is true that several
complex networks of high interest for the scientific com-
munity, such as the WWW, cellular networks, Internet,
some social networks and the citation network are scale-
free. However, others like the power grid or the neural
network of C. elegans appear to be exponential. Does
that mean that they are random? Far from it. These
systems are also best described by evolving networks. As
we have seen in many examples in Sect. VIII, evolving
networks can develop both power-law and exponential de-
gree distributions. While the power-law regime appears
to be robust, sublinear preferential attachment, aging ef-
fects, growth constraints lead to crossovers to exponential
decay. Thus, while evolving networks are rather success-
ful at describing a wide range of networks, the functional
form of P (k) cannot be guessed until the microscopic de-
tails of the network evolution are fully understood. If
all processes shaping the topology of a certain network
are properly incorporated, the resulting P (k) often has
a rather complex form, described by a combination of
power-laws and exponentials.

In critical phenomena we are accustomed to unique
scaling exponents that characterize complex systems. In-
deed, the critical exponents are uniquely determined by
robust factors, such as the dimension of the space or con-
servation laws (Stanley 1971, Ma 1976, Hohenberg and
Halperin 1977). The most studied exponents in terms of
evolving networks are the dynamic exponent, β and the
degree exponent γ. While the former characterizes the
network dynamics, the latter is a measure of the network
topology. The inseparability of the topology and the dy-
namics of evolving networks is shown by the fact that
these exponents are related by the scaling relation (85)
(Dorogovtsev, Mendes, Samukhin 2000a), underlying the
fact that the network assembly uniquely determines the
network topology. However, in no case are these expo-
nents unique. They can be tuned continuously by such
parameters as the frequency of internal edges, rewiring
rates, initial node attractiveness and so on. While it is
difficult to search for universality in the value of the ex-
ponents, this does not imply that the exponents are not
uniquely defined. Indeed, if all processes contributing to
the network assembly and evolution are known, the ex-
ponents can be calculated exactly. But they do not take
up the discrete values we are accustomed to in critical
phenomena.

Some real networks have an underlying bipartite struc-
ture (Sect. V.D). For example, the actor network can be
represented as a graph consisting of two types of nodes:
actors and movies, the edges always connecting two nodes
of different type. These networks can be described as gen-
eralized random graphs (Newman, Strogatz and Watts
2000). It is important to note, however, that both sub-
sets of these bipartite graphs are growing in time. While
it has not been attempted yet, the theoretical methods
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developed for evolving networks can be generalized for
bipartite networks as well, leading to coupled continuum
equations. We expect that extending these methods,
whenever appropriate, would lead to a much more re-
alistic description of several real systems.

The classical thinking of complex networks, rooted in
percolation and random graph theory (see Aldous 1999),
is that they appear as a result of a percolation process
in which isolated nodes eventually join a giant cluster
as the number of edges increases between them. Thus a
much studied question concerns the threshold at which
the giant cluster appears. With a few exceptions (Call-
away et al. 2001), evolving networks do not follow this
percolation picture, since they are connected from their
construction. Naturally, if node or edge removal is al-
lowed, percolation-type questions do emerge (Sect. IX).

6. Conclusions

The shift that we experienced in the past three years
in our understanding networks was rather swift and un-
expected. We have learned through empirical studies,
models and analytic approaches that real networks are
far from being random, but display generic organizing
principles shared by rather different systems. These ad-
vances have created a prolific branch of statistical me-
chanics, followed with equal interest by sociologists, bi-
ologists and computer scientists. Our goal here was to
summarize, in a coherent fashion, what is known so far.
Yet, we believe that these results are only the tip of the
iceberg. We have uncovered some generic topological and
dynamical principles, but the answers to the open ques-
tions could hide new concepts and ideas that might turn
out to be equally exciting as those we encountered so far.
The future could bring a new infusion of tools as well, as
the recent import of ideas from field theory (Burda et al.
2001) and quantum statistics (Bianconi 2000a, Bianconi
and Barabási 2000, Zizzi 2001) indicate. Consequently,
this article is intended to be as much a review a catalyst
for further advances. We hope that the latter aspect will
dominate.
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Ferrer i Cancho, R., R. V. Solé, 2001, Santa Fe working paper
01-03-016.

Flake, G., S. Lawrence and C. L. Giles, 6th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining,
Boston, MA, August 2000, p. 150.

Gardner, T. S., C. R. Cantor and J. J. Collins, 2000, Nature
403, 520.

Gleis, P. M., P. F. Stadler, A. Wagner, D. Fell, 2000, cond-
mat/0009124.

Gibson, D., J. Kleinberg and P. Raghavan, 1998, Proc. 9th
ACM Conf. on Hypertext and Hypermedia.

Goh, K.-I., B. Kahng and D. Kim, 2001, arXiv:cond-
mat/0103337.

Govindan, R. and H. Tangmunarunkit, 2000, Proc. IEEE In-
focom 2000, Tel Aviv, Israel.

Granovetter, M. S., 1973, Am. Journ. Soc. 78, 1360.
Grimmett, G., 1999, Percolation (Springer, Berlin).
Guhr, T., A. Müller-Groeling and H. A. Weidenmüller, 1998,
Phys. Rep. 299, 189.
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