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Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-

time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with

global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry

must be perturbatively stable due to what is generically known as non-renormalization theorems. As

a result, all (equilibrium) dynamical models are divided into three major categories: Markovian

models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the

mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or

self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of

instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional

phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons

disappear and SOC collapses into the “edge of chaos.” Goldstone theorem stands behind spatio-

temporal self-similarity of Q-broken phases known under such names as algebraic statistics of

avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken

phases is that they can be effectively viewed as quantum dynamics and that they must also have

time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations

(quenches, Barkhausen effect, etc.) is also briefly discussed. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4746037]

Many fundamental aspects of the theory of nonlinear

dynamical systems have already been established.

Nevertheless, our understanding of nonlinear dynamics

may benefit from turning to alternative approaches.

Here, it is shown that one of such alternatives is Witten-

type or cohomological topological field theories

(W-TFTs).
1–10

It turns out that any dynamical model

in its path-integral representation is a W-TFT. This

approach allows to clarify the physical essence of Inter-

mittency also known as self-organized criticality (SOC,

for a review see, e.g., Refs. 11) and establish its connec-

tions with the other two fundamental concepts of Chaos

and Markovianity.

I. INTRODUCTION

For the last two decades, mathematical physicists and

mathematicians have formulated and have been developing

mathematical constructions known as topological field theo-

ries ((TFTs), for a review see, e.g., Ref. 1). TFTs come in

two types: Schwartz-type or quantum TFTs and Witten-type

or cohomological TFTs (W-TFTs). Quantum TFTs already

found their applications—they are believed to stand behind

exotic low-temperature phases of condensed matter systems

such as fractional quantum Hall effects and superconductors

(see, e.g., Ref. 12 and references therein). As to the W-TFTs,

to the best of our knowledge, they are still used only for

purely mathematical purposes. From the discussion in this

paper, it will follow that W-TFTs is actually the path-

integral version of the dynamical systems theory. The latter,

in turn, has many applications in modern science.

It is well-known that Parisi–Sourlas–Wu (PSW) stochas-

tic quantization procedure13,14 applied to Langevin equations

leads to N¼ 2 supersymmetric (quasi-)Hermitian models

(Witten models, see, e.g., Refs. 1 and 15). It is also known

that deterministic conservative (classical, Hamilton) dynami-

cal systems viewed as path-integrals also possess supersym-

metry.16,17 The above supersymmetries are of topological

origin.4 In this paper, it is demonstrated that topological

supersymmetry is pertinent to any deterministic or stochastic

continuous-time dynamical model in its path-integral repre-

sentation. Based on this and on the possibility of the sponta-

neous breakdown of the topological supersymmetry by two

different mechanisms, a generic phase diagram for dynamical

models is proposed. The phase diagram is given in Fig. 4(b).

As quantum field theories, W-TFTs that show up on

PSW quantization are non-Hermitian. Therefore, our propo-

sition relies strongly on recent developments in the theory of

non-Hermitian quantum dynamics.18–20

The paper is organized as follows. In Sec. II, it is demon-

strated that any stochastic or deterministic continuous dynami-

cal model is a W-TFT. In Sec. III, we focus on models

with white noise. Non-Hermitianity of the models (Sec. III C),

their spectrum and physical states (Sec. III D), etc., are

addressed. In Sec. IV, the meaning of the ground states in

deterministic limit is analyzed. It is shown that in cases of

unbroken topological symmetry, the collection of (bra’s) ket’s

of the perturbative ground states is the representation of the

(anti-)instantonic CW-complex of the phase space. In turn,

the global ground states represent stable and unstable mani-

folds that intersect on invariant manifolds. Section V is

a)Electronic addresses: iovchinnikov@ucla.edu and igor.vlad.ovchinnikov@

gmail.com.
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devoted to models with unbroken topological symmetry, and,

in particular, to Langevin models. It is also discussed how

W-TFTs with no physical quantum excitations represent

stochastically fluctuating dynamical models (Sec. V B). In

Sec. VI, models with spontaneously broken topological sym-

metry are addressed. Qualitative difference of dynamics with

spontaneously broken topological symmetry is discussed in

general terms in Sec. VI A. Particularly, it is proposed that

such concepts of dynamical systems theory and complexity

theory as self-similarity, sensitivity to initial conditions, non-

Markovianity, etc., are actually mere consequences of the

Goldstone theorem. Two mechanisms of spontaneous topolog-

ical symmetry breaking are identified: on the mean-field level,

e.g., in the deterministic limit, and due to the dynamical

condensation of instantons and antiinstantons. It is argued

that these two mechanisms correspond respectively to chaos

(Sec. VI B) and Intermittency/SOC (Sec. VI C). In Sec. VI D,

non-equilibrium dynamics such as quenches or Barkhausen

effect is briefly addressed in the context of W-TFTs. Section

VII concludes the paper.

II. STOCHASTIC QUANTIZATION

Dynamical systems are those that are defined by specify-

ing their equations of motion. This is the most general class

of models as compared to, say, the equation of motions that

follow from least action principle.

The equations of motion can be either step-like equa-

tions or time-continuous equations. This paper deals with

time-continuous evolutions only. Continuous dynamics can

be referred to as physical dynamics since time is always con-

tinuous in physical systems.

The equations of motion can be either stochastic or deter-

ministic (partial) differential equations (SDE or DDE). DDEs

can be looked upon as SDEs with zero-variance noises.

Therefore, it suffices to construct a path-integral formulation

for an SDE, and the theory of a corresponding deterministic

model will follow by sending the parameters of the noise to

their deterministic limit. Thus, SDEs are of primary interest.

The procedure of building a partition function out of an

SDE is called stochastic quantization. There are two major

stochastic quantization procedures: PSW method16,17 and

Martin-Siggia-Rose (MSR) method.21 As discussed below,

MSR is an approximation to the most general PSW method

that we use in this paper.

Consider an SDE in its most general form

FiðR;uÞ ¼ niðR;uÞ: (1)

Here, R 2 B with B being some Riemannian base space hav-

ing the meaning of spacetime and u 2 MðR;BÞ, with M being

an infinite-dimensional space of all maps from B to a topolog-

ical target manifold, R. In Eq. (1), F’s have the meaning of a

DDE and n’s is the stochastic noise. F’s are some functionals

of u’s and may have explicit dependence on the base. Both

F’s and n’s belong to the tangent space of M, i.e.,

FiðR;uÞd=duiðRÞ; niðR;uÞd=duiðRÞ 2 TuiðRÞM. Fi’s and n’s

can also be thought of as sections of the tangent bundle TM.

The noise must obey an important physical condition. It

must experience no feedback from the system. If there is

such a feedback, the noise should be viewed as a part of the

system rather than as an external source of stochasticity.

This condition, however, does not necessarily suggest that

the stochastic correlators of the noise have no functional de-

pendence on u. For example, below we concentrate on mod-

els where the noise is decoupled from the system but its

correlators are functions of u. This possible dependence of

the correlators of the noise on u’s is emphasized by the

explicit dependence of the noise on u in the rhs of Eq. (1).

The above condition only suggests that there exists an

invertible transformation of TM! TM

ðu; nÞ ! ð~u; ~nÞ (2)

that decouples the stochastic variables from u’s. An example

of such a transformation is given in Eq. (16). The partition

function of new stochastic variables is

hh1ii ¼
ð ð
½~n�

1 � e�Snoiseð~nÞ; (3)

where Snoise is independent of ~u’s.

In Eq. (3) and in the following, the double integral sign

denotes functional integration. hh:::ii is a common notation

denoting a vacuum expectation value in the theory of quan-

tum non-Hermitian models, which the models we consider

here will turn out to be. We accept this notation from the

very beginning of our discussion.

Now, the original SDE (1) can be rewritten as

~F
aðR; ~uÞ ¼ ~n

aðRÞ; (4)

where ~F
aðR; ~uÞ ¼ ~n

aðu;FðR;uÞÞ is the functional transfor-

mation from Eq. (2) applied to F’s. Eq. (17) below is an

example of the transformed SDE (4).

We assume that the noise is “decent” and for any,

XaðRÞ, there exist a unique and well-defined functional

S�1
noiseðXÞ ¼ loghhe

Ð
R
~n

aðRÞXaðRÞii

¼
X1
n¼2

ð
R1:::Rn

Ca1:::an

ðnÞ ðR1:::RnÞ
Yn

i¼1

Xai
ðRiÞ=n!; (5)

where C’s are the irreducible stochastic correlators for ~n’s.

Here and in the following the factors representing the metric

on B are assumed whenever appropriate.

The inverse functional transformation in Eq. (5) is well

defined, e.g., when the noise has only one “vacuum,” i.e.,

only one solution for dSnoise=d~n
aðRÞ ¼ 0. This vacuum must

be stable and non-degenerate so that all the eigenvalues of

d2Snoise=d~n
aðRÞd~n

bðR0Þ are positive. Such “instanton-free”

noises can be called Markovian in the context of this paper.

The first step toward a W-TFT, which to the best of our

knowledge belongs to Parisi and Sourlas,16 is very natural. It

is the realization of the fact that the only partition function a

stochastic system may in principle have is that of its noise,

Eq. (3). Indeed, the partition function is the summation over

033134-2 Igor V. Ovchinnikov Chaos 22, 033134 (2012)
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all the realizations of a stochastic process, which is actually
~n. Furthermore, if we want that the “number” of the noise’s

degrees of freedom be the same as the number of the sys-

tem’s degrees of freedom, we must consider only temporally

periodic boundary conditions. This is nothing else but the

equilibrium situation that we will consider mostly.

The second step is to rewrite the partition function in

terms of ~u’s rather than ~n’s. Let us now recall that in the

theory of supersymmetric models, there is a concept of Nico-

lai maps.1,22 It says that for theories with global supersymme-

try, one can come up with such a transformation of bosonic

variables that the partition function will fold into that of a

noise because the Jacobian of the variable’s transformation

will cancel the fermionic determinant. What we need to do

now is essentially the opposite. We have to unfold the

partition function of the noise into some other model and

rightfully anticipate that the model will possess a global

supersymmetry-topological supersymmetry (Q-symmetry).

The partition function of the noise is rewritten as

hh1ii ¼
ð ð
½~u~n�

dð ~Fa � ~n
aÞJe�Snoiseð~nÞ; (6)

where J ¼ detðd ~F
aðR; ~uÞ=d~ubðR0ÞÞ is the Jacobian of the

variable transformation. The d-functional limits the integra-

tion over M only to the solutions of the SDE that serves as an

“inverse” Nicolai map. In order to bring Eq. (6) back to

Eq. (3), one must integrate out ~n’s and notice that the out-

come is actually Eq. (3) with ~n’s substituted by ~u’s accord-

ing to the variable transformation specified by Eq. (4).

The Jacobian of the variable transformation is important.

Without it, Eq. (6) is not the same as Eq. (3) and thus does not

represent the stochastic process under consideration. Neglect-

ing the Jacobian is the mathematical essence of the MSR sto-

chastic quantization procedure. Therefore, MSR picture can

only serve as an approximation, while the PSW stochastic

quantization procedure, the one we use here, is always correct.

In the standard fashion, one introduces the Lagrange

multiplier, Ba, to incorporate the d-functional

dð ~Fa � ~n
aÞ �

ð ð
½B�

e
i
Ð

R
Bað ~F

a�~n
aÞ
: (7a)

Here and in the next formula, � denotes equality up to an

unimportant constant. One also introduces the set of the

Fadeev-Popov ghosts, va�vb, integration over which provides

the desired Jacobian

J �
ð ð
½v�v�

e
�i
Ð

RR0
�vaðd ~F

a
=d~ubÞvb

: (7b)

Inserting Eqs. (7) into Eq. (6), one obtains

hh1ii ¼
ð ð
½~nU�

e
ifQ;
Ð

R
�vað ~F

a�~n
aÞg�Snoiseð~nÞ: (8)

Here and in the following U stands for the collection of all

the fields ~uBv�v. These fields constitute what could be called

the supersymmetric extension of TM. In Eq. (8), we intro-

duced the operator of the gauge-fixing Becchi-Rouet-Stora-

Tyutin supersymmetry, which is the Q-symmetry

fQ;Xg ¼
ð

R

�
vaðRÞd̂ ~uaðRÞ þ BaðRÞd̂�vaðRÞ

�
X: (9)

Here and in the following d̂ (or @̂ ) denotes functional (or par-

tial) differentiation over its subscript. Operator Q is a bi-

graded differentiation, fQ;XYg ¼ fQ;XgY þð�1ÞmXfQ; Yg,
where m is the ghost degree of X. Q is nilpotent,

fQ; fQ;Xgg ¼ 0, for any X.

Out integration of the noise in Eq. (8) leads to

hh1ii ¼
ð ð
½U�

e
ifQ;
Ð

R
�va

~F
agþS�1

noise
ð�ifQ;�vagÞ; (10)

where the last term in the action is defined in Eq. (5). This

term is a functional of only Q-exact pieces (of the form

fQ;Xg) and is Q-exact itself because of the nilpotency of Q:

fQ;XgfQ; Yg::: ¼ fQ;XfQ; Yg:::g. Thus,

hh1ii ¼
ð ð
½U�

eifQ;Hg; (11)

with the so-called gauge fermion given by

H ¼
ð

R

�vaðRÞ ~F
aðRÞ þ

X1
n¼2

ð�iÞnþ1

ð
R1:::Rn

�va1
ðR1Þ

� Ca1:::an

ðnÞ ðR1:::RnÞ
Yn

i¼2

Bai
ðRiÞ=n!: (12)

The last term in this expression comes from the noise and for

deterministic models, it vanishes.

A Q-exact action is the unique feature of W-TFTs that

all look like a gauge fixing of “nothing.” That the PSW

method leads to a W-TFT comes with no surprise. The point

is that we are computing the partition function of the

“ignorant” external noise, which does not really care about

the lhs of Eq. (4). Therefore, the deformation of the SDE

must not result in any changes in the partition function—a

feature pertinent to W-TFTs.

Topological nature of models with Q-exact actions and

with non-trivial topological content can be in particular

revealed by the provided possibility to calculate on instan-

tons1 certain topological invariants as expectation values of

collections of certain Q-closed operators also known as BPS

(Bogomol’nyi-Prasad-Sommerfield) operators.10 Neverthe-

less, even W-TFTs with topologically trivial content are of

topological origin—in Ref. 4, any model with a Q-exact

action has been given an interpretation of a generalized

Morse theory on M. Some new mathematical insights on W-

TFTs have been recently developed in Ref. 10.

A. Connection to negative probabilities

Stochastic quantization seems to have a close connec-

tion with the concept of negative probabilities (see, e.g.,

Ref. 23 and references therein). This concept shows up natu-

rally on the PSW quantization.

033134-3 Igor V. Ovchinnikov Chaos 22, 033134 (2012)
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Consider, e.g., a nearly deterministic Gaussian noise,

n 2 R1, in a (0þ 0) theory. The partition function is

hh1ii ¼
ð

n
PðnÞ ¼

ð
u

PðuÞ ¼ i

ð
U

eifQ;Hg: (13)

Here, PðnÞ � e�n2=2� with �! 0, the second integral is over

a new variable that is related to n through some many-to-one

function, n ¼ FðuÞ, PðuÞ ¼ PðFðuÞÞJðuÞ is the new pro-

bability density with JðuÞ ¼ @FðuÞ=@u being the Jacobian

of the variable transformation, and the last equality sign

establishes the connection to the previous discussion with

H ¼ �vðFðuÞ þ i�B=2Þ.
New probability distribution is given in Fig. 1. In those

regions where the Jacobian is negative, PðuÞ is also nega-

tive. These negative probabilities are necessary for the parti-

tion function to be equal to the partition function of the

original stochastic process. They always appear paired with

new positive probabilities and thus are clearly of topological

origin—the simplest realization of the Poic�are-Hoft theorem.

A mathematician would probably say that PðuÞ is a

pullback of PðnÞ by the irreversible many-to-one map,

FðuÞ : u! n. The original PðnÞ is non-negative and thus

can be interpreted as a volume form for n. From this point of

view, the stochastic quantization is the procedure of

“borrowing” the volume from the noise, so that the total vol-

ume in the new variables (the total probability to exist)

remains the same as in Eq. (13).

This simple example suggests the following stochastic

interpretation of negative probabilities. If a stochastic vari-

able has negative probabilities, it means that its partition

function actually represents/calculates a partition function of

yet another “physical” stochastic variable (noise) with ordi-

nary positive probability. The two stochastic variables must

be related through some irreversible many-to-one map, e.g.,

through a highly nonlinear SDE.

On the side of stochastic dynamics, our temporary

understanding of the negative probabilities is this. For a spe-

cific configuration of the noise, a nonlinear SDE may have a

multitude of solutions that in the high energy Physics terms

are called Gribov copies. The system has a freedom to

choose which one of the Gribov copies is going to be real-

ized. We cannot know which one of the Gribov copies the

stochastic system is going to choose. Only this chosen copy

must contribute to the partition function. At the same time,

we have to integrate over all the possible configurations of

the systems variables (over the entire M) and all the Gribov

copies are going to contribute. This would necessary lead to

overcounting unless some of the Gribov copies are contribut-

ing �1 instead of 1 due to that the probability density is neg-

ative in the corresponding regions of M. Thus, negative

probabilities represent the freedom of a stochastic system to

choose among various competing solutions of its SDE.

We would also like to note that the probabilities we

talked about in this subsection are not in the sense of on-time

probabilities represented by wavefunctions in the forthcom-

ing discussion, but rather the probabilities of the field’s con-

figurations over the entire time of evolution.

III. WHITE NOISE CASE

For the following discussion, we do not need the gener-

ality of Sec. II. We assume that spacetime, R ¼ ðt; xÞ 2 B
¼ T � S, where T is time and the space, S, is flat (e.g., a torus

S ¼ Td, i.e., periodic boundary conditions). In equilibrium

situations T ¼ S
1, while in non-equilibrium cases T ¼ R1.

We discuss mostly the equilibrium situations.

SDE has only the simplest temporal non-locality

@tu
i þ Ai ¼ ni; (14)

where the flow, Ai, is some functional of u at this specific

moment of time. A can be thought of as a vector field over

the (infinite-dimensional) phase space, H, of all maps from

the space to the target: H ¼ fuiðxÞ : S ! Rg.
The noise is assumed Gaussian and white

hhniðRÞnjðR0Þii ¼ dðR� R0ÞgijðuðRÞÞ; (15)

where gij has the meaning of the metric on R, which is a

function of only ui’s at this specific R.

Equation (14) and/or Eq. (11) with Eq. (19b) represent a

very wide class of stochastic dynamical models. In particu-

lar, this class includes systems defined by SDEs that are not

first-order in time-derivative. One can bring such higher-

order SDEs to the form of Eq. (14) by the introduction of

new fields. In case of Kramer’ s equation this works like

this: @2
t u� A ¼ n is rewritten as @tp� A ¼ n; @tu� p ¼ n0,

where n0 is a zero-variance Gaussian noise.

The transformation that decouples the noise from u’s

has the following form:

~n
aðRÞ ¼ ea

i ðuðRÞÞniðRÞ; (16)

where e’s have the meaning of vielbeins: ea
i dabeb

j ¼ gij and

ei
ad

abej
b ¼ gij. The transformed SDE from Eq. (4) takes the

following form:

ea
i ð@tu

i þ AiÞ ¼ ~n
a
: (17)

Straightforward application of the PSW stochastic quantiza-

tion procedure from Sec. II to the partition function of the

white noise

hh1ii ¼
ð ð
½~n�

e
�
Ð

R
ð~naÞ2=2

; (18)

leads to a W-TFT for the collection of fields,

U ¼ ðui; vi;Ba; �vaÞ, with a Q-exact action, S ¼ fQ;Hg,

FIG. 1. (a) Graphical explanation of how negative probabilities show up in

stochastic quantization. Original noise has a positive delta-function-like

probability distribution. (b) Corresponding to a highly nonlinear many-to-

one variable transformation, FðuÞ ¼ n (dashed curve), that has the meaning

of an SDE, the probability distribution, PðuÞ (solid think curve), is negative

in those regions where the Jacobian @F=@u < 0.
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defined by the gauge fermion, H ¼
Ð

R
�vaðea

i ð@tui þ AiÞ
þ idabBb=2Þ, and the supersymmetry operator fQ;Xg
¼
Ð

RðviðRÞduiðRÞ þBaðRÞd̂�vaðRÞÞX:
It is more convenient, however, to introduce a new set

of fields, U ¼ ðui; vi;Bi; �viÞ, where ui and vi are the same,

while �vi ¼ �vaea
i and Bi ¼ fQ; �vig ¼ Baea

i � �vkC
k
ilv

l with

Ck
il ¼ ek

aðea
i Þ0l being the Christoffel symbol. There are two

things to note in this redefinition of the fields. First,

fQ;Big ¼ fQ; fQ; �vigg ¼ 0 automatically because of the

nilpotency of Q. Second, the measure in the pathintegral in

unchanged.

In terms of the new fields, the model is a W-TFT

hh1ii ¼
ð ð
½U�

eifQ;Hg; (19a)

with

H ¼
ð

R

�vi

�
@tu

i þ Ai þ igijðBj þ �vkC
k
jlv

lÞ=2
�
; (19b)

fQ;Xg ¼
ð

R

ðviðRÞd̂uiðRÞ þ BiðRÞd̂�v iðRÞÞX: (19c)

We purposely used the transformed SDE method to quantize

the model in order to make direct connection with the discus-

sion in Sec. II. In fact, model (19) can be obtained with less

effort (with no redefinition of the fields)—out integration of

the noise in the model constructed from the original SDE (14)

hh1ii ¼
ð ð
½~nU�

e
ifQ;
Ð

R
�v ið@tuiþAi�ei

a
~n

aÞg�ð~naÞ2=2
; (20)

with Q from Eq. (19c), leads directly to Eqs. (19).

For d ¼ 0 (i.e., (0þ 1)-theory), model (19) is topologi-

cal quantum mechanics,4 in which case H ¼ R. In many

cases, we consider this situation. Higher dimensional theo-

ries with d > 0 can be viewed as infinite-dimensional gener-

alizations of topological quantum mechanics.

A. Schr€odinger picture

In passing from the path-integral representation of the

theory to the operator algebra representation, the partition

function is rewritten as

hh1ii ¼
ð ð
½U�

e
Ð

t

�Ð
x
ðiBi@tui�i�v i@tviÞ�HðUÞ

�
: (21)

From here, the composition laws for the operators follow in

the standard manner

½ûiðxÞ; B̂jðx0Þ�� ¼ �½v̂
iðxÞ; �̂vjðx0Þ�þ ¼ idi

jdðx� x0Þ: (22)

The subscripts denote commutation for bosonic fields and

anticommutation for the ghosts. Other (anti-)commutators

are zero.

We chose to work in the representation where u’s and

v’s are diagonal. There are two reasons for this choice. First,

these fields are superpartners. Second, in this basis the

N€oether charge associated with the topological symmetry is

the exterior derivative that has no explicit dependence on the

metric, which emphasizes the topological nature of the

model.

In this basis, Eq. (22) suggests

B̂iðxÞ ¼ �id̂uiðxÞ; �̂viðxÞ ¼ �id̂viðxÞ: (23)

Wavefunctions, jWi, are functionals of u’s and v’s only. We

can formally Taylor expand in v’s:

jWi ¼
X1

n¼0
jWiðnÞ;

jWiðnÞ ¼ WðnÞðx1k1Þ:::ðxnknÞ � ðv
k1ðx1Þ:::vknðxnÞÞ:

(24)

Here, the integration over x’s and summation over k’s is

assumed, and WðnÞðx1k1Þ:::ðxnknÞ are antisymmetric in the pairs of

subscripts due to the anticommutation composition law for

the ghosts. For this reason, jWiðnÞ’s can be interpreted9 as

forms from the exterior algebra of H which thus is the Hil-

bert space, H, of the model.

In Eq. (24), � denotes the Hedge star, which is intro-

duced for convenience. Within this definition, the probability

density, which is a form of maximal degree, corresponds to

jWið0Þ as in Eq. (27).

The dynamical equation governing the time-evolution

follows directly from the path-integral formulation in

Eq. (21) and is the generalized Fokker-Planck equation

@tjWi ¼ �Ĥ jWi: (25a)

Its time reversed version for bra’s, hWj � ð�jWiÞ�, that are

also forms on H, is

@thWj ¼ hWjĤ
†
: (25b)

The Hamitlonian in Eqs. (25) is the generalized Fokker-

Planck Hamiltonian. It’s explicit form can be derived

straightforwardly by the bi-graded symmetrization of its

path-integral expression and with the use of Eq. (23). The

result is well-documented in the literature10 and is know to

have a form of an N¼ 2 (pseudo-)supersymmetric (pseudo-)

Hermitian model:19

Ĥ ¼ ½Q̂; �̂Q�þ=2 ¼ �r2=2� LA: (26a)

Here

Q̂ ¼
ð

x

viðxÞd̂uiðxÞ (26b)

is the conserved N€oether charge associated with Q-symme-

try. Operator Q̂ is nothing else but the exterior derivative on

H. Besides Q̂, the Hamiltonian also conserves the number of

ghosts given by the operator

F̂ ¼
ð

x

viðxÞd̂viðxÞ: (26c)

In Eq. (26a),
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�̂Q ¼ Q̂
† � 2

ð
x

AiðxÞd̂viðxÞ (26d)

is what could be called the (pseudo-)conjugate supercharge

with

Q̂
† ¼ �

ð
x

d̂viðxÞg
ijðd̂ujðxÞ � vkCl

jkd̂vlðxÞÞ; (26e)

being the adjoint of the exterior derivative.

In Eq. (26a), �r2 ¼ ½Q̂; Q̂†�þ is the Laplace-Beltrami

operator, explicit form of which is provided by the Weit-

zenb€ock formula, and LA ¼ ½Q̂;
Ð

xAiðxÞd̂viðxÞ�þ is the Lie de-

rivative along A.

We would also like to note that formally the model is

not an N¼ 2 pseudo-supersymmetric in general for that rea-

son that �̂Q is not nilpotent, �̂Q
2

6¼ 0, and it is not commutative

with the Hamiltonian, ½Ĥ ; �̂Q�� 6¼ 0.

B. Connection to conventional Fokker-Planck equation

Because number of ghosts is the integral of motion, the

time evolution does not mix wavefunctions of different ghost

number. This, in particular, suggests that the time evolution

of the wavefunction of the trivial (or rather maximal) ghost

content,

jWið0Þðu; tÞ � �ðPðu; tÞÞ; (27)

depends only on itself

@tP ¼ �Ĥ
cnv

P; (28)

where (g1=2’s come from the Hedge star in Eq. (27))

Ĥ
cnv ¼

ð
x

g�1=2d̂uiðxÞg
1=2
�
�gijd̂ujðxÞ=2� AiðxÞ

�
; (29)

is the conventional Fokker-Planck operator acting on the

probability density, P.

If from a physical point of view, the probability density

is a function(al), P, from the topological point of view, it is a

form of the maximal degree as it is in Eq. (27). Notably, in

stochastic quantization the probability density is not a

“square” of a wave-function (of trivial ghost content) but

rather the wave-function itself. The corresponding bra is

actually the cycle over the entire H. This unconventional

meaning of wave-functions is the direct consequence of the

non-Hermitianity of the model that we discuss below.

C. Meaning of wavefunctions andQ-symmetry

In relation to the physical meaning of P, it is worth to

briefly discuss the physical meaning of wavefunctions with

non-trivial ghost content. In literature, jWið1Þ is interpreted as

current.24 It represents the flow of probabilities. This inter-

pretation can be supported within the TFT formalism in the fol-

lowing manner. Consider topological quantum mechanics with

d-dimensional phase space. Consider also Stock’s theorem:

ð
@X
jWið1Þ ¼

ð
X

Q̂jWið1Þ
� �

;

where X is a (fixed, time-independent) d-dimensional part of

the phase space, @X is its (d-1)-dimensional boundary, and

jWið1Þ is any wave-function with d-1 ghosts. We know that�
Q̂jWið1Þ

�
has the meaning of probability density so that

jWið1Þ must have the meaning of the probability flow though

@X. Inductively, wavefunctions of even more non-trivial

ghost content must have the meaning of currents of currents

of probability, etc. Within this interpretation of wavefunc-

tions, the model complies with the continuous higher-dimen-

sional version of Kirchhoff’s law.39 Then, operator from Eq.

(26d) must be identified as resistance (or rather resistance

over capacitance).

The previous Stock’s equality must hold at any moment

of time and thus it shows that jWið1Þ and Q̂jWið1Þ evolve in

time equivalently. Time evolution for both is given by Fok-

ker-Plank equation so that the Fokker-Plank Hamiltonian

must be commutative with Q̂, which is the N€other charge of

Q-symmetry. In other words, if a theory describes a dynami-

cal model in terms of probability, currents of probabilities

etc. it must possess topological supersymmetry in order to be

consistent with Stock’s theorem.

This meaning of wavefunctions also suggests that sta-

tistical description (in terms of probability density) of

stochastic models is not applicable when Q-symmetry is

spontaneously broken. Indeed, Q̂jgroundi 6¼ 0 automatically

suggests that the ground state is not a (pure) probability den-

sity since Q̂jWið0Þ ¼ 0 for any jWið0Þ.

D. Non-Hermitianity

There is a natural composition for bra’s and ket’s

hW1jW2i ¼
ð ð

H

ð�W1Þ��W2: (30)

In Hermitian/unitary models, Eq. (30) is the metric in the

Hilbert space, H. In models under consideration, however,

Hamiltonians are not Hermitian and the metric is not the one

provided by Eq. (30). To see how non-trivial metric shows

up in non-Hermitian models, we address here the spectrum

and eigenstates of the model.

It is convenient to think of Ĥ as of an infinite dimen-

sional matrix with real entries. Its spectrum consists of either

real eigenvalues or pairs of complex conjugate eigenvalues.

If complex conjugate pairs exist, the model is said to be

pseudo-Hermitian, while if the spectrum is purely real the

model is said to be quasi-Hermitian.19

For pseudo-Hermitian Hamitlonians, there exist a bi-

orthogonal basis in the Hilbert space

Ĥ jnii ¼ Enjnii; hhnjĤ ¼ hhnjEn: (31)

Here, jnii � jni are merely the eigenstates of H, while

hhnj ¼ hmjĝmn are related to hnj’s through some non-trivial

metric of the Hilbert space such that
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ĝĤ ĝ�1 ¼ Ĥ
†
: (32)

The bi-orthogonal basis is complete

hhnjmii ¼ dnm; 1̂H ¼
X

n
jniihhnj; (33)

where 1̂H is the unity operator on H. The metric mixes the

“original” eigenstates with complex conjugate eigenvalues

because

hnjĝĤ ¼ hnjĝE�n: (34)

The pairs of states with complex conjugate eigenvalues are

time-reversal companions. This means that time-reversal

operation acts non-trivially on such states.

The dynamical equation for a generic hhWj � hWjĝ is

@thhWj ¼ hhWjĤ ; (35)

instead of Eq. (25b).

In the literature on W-TFTs, pathintegrals as the one in

Eq. (21) are often called Euclidian. This identification has a

hidden danger in the context of dynamical systems. It may

sound like the “actual” (or physical) temporal evolution is

governed not by Eqs. (25) but by the Schr€odinger equation

related to Eqs. (25) through Wick rotation of time. The point

here is that the time in Eq. (21) is the actual time of the SDE

and the fundamental dynamical equation is the Fokker-

Planck equation as it should. Therefore, apart from the subtle

question of the validity of Wick rotation in pseudo-

Hermitian models, this line of thinking may lead to an acci-

dental “switching” of the physical meanings of the real and

imaginary parts of the eigenvalues of the Hamiltonian.

To separate the real and imaginary parts of the eigenval-

ues we introduce

En ¼ Cn þ iEn: (36)

In stochastic quantization, C’s are the attenuation rates

(inverse lifetimes of eigenstates), while E’s are quantum me-

chanical energies (inverse periods of closed classical trajec-

tories associated with the eigenstates). This in particular

suggests that stochastic quantization has a subtle difference

with quantum dynamics. The role of the conventional kinetic

term in quantum systems (�� D=2) is to set the lower limit

on the energies thus ensuring the existence of a ground state.

In stochastic quantization, the kinetic term sets the lower

limit on the attenuation rates thus caring more about the

“stability” of the dynamics.

From physical reasonings, it follows that the lower limit

on C’s must be zero. Indeed, the states with C < 0 would

grow infinitely as time flows, thus indicating some sort of

instability in the pathintegral representation of an SDE. On

the other hand, the pathintegral represents actually the sto-

chastic noise, which does not have any instabilities. Thus,

states with Cn < 0 must not exist. On the other hand, the par-

tition function (which is again that of the noise) cannot van-

ish in the T !1 limit and thus must possess at least one

“physical” state (see below) with C being exactly zero.

The above physical reasoning about the possible generic

form of the spectrum has its counterpart in the dynamical

systems theory (see, e.g., Sec. III of Ref. 26). There, the trace

of the evolution operator plays the similar role as the parti-

tion function in the W-TFT approach. Perron-Frobenius

operator is the analogue of the Fokker-Planck operator of the

W-TFT. The zero-eigenvalue state, which must always

exists, is called “ergodic” zero. All the other eigenstates

must obey C 	 0. Complex eigenvalues also come in conju-

gate pairs and are called Ruelle-Pollicott resonances.

E. Physical and ground states

Let us now turn back to the path-integral representation

of the theory. Consider the expectation value of some

observable, O,

hhOii ¼
ð ð
½U�
OeifQ;Hg: (37)

We are considering the equilibrium case, so that all the fields

have periodic boundary conditions on a large temporal circle

t 2 ½T=2;�T=2�. By integrating out the fields Bi’s and �v’s,

one obtains Eq. (37) in the operator algebra representation

hhOii ¼ TrHð�1ÞF̂T ½ÔSÛ �;

where ÔS is the observable in Schr€odinger picture,

Û ¼ e
�
Ð T=2

t¼�T=2
ĤðtÞ

is the time evolution operator, and T denotes

chronological ordering. In the previous formula, ð�1ÞF̂ shows

up because of the periodic boundary conditions for ghosts

(see, e.g., Ref. 29). In “normal” case of anti-periodic boundary

conditions for fermionic fields, this factor does not exist.

One can now plug the unity from Eq. (33) at temporal

infinity, 6T=2, and rewrite Eq. (37) as

hhOii ¼
X

n

ð�1ÞFnhhnjT ½ÔSÛ �jnii:

The operator of temporal evolution acts on bra’s and ket’s in

a simple manner: Û jnii ¼ e�EnT jnii; hhnjÛ ¼ hhnje�EnT .

Using this, we further rewrite Eq. (37) as

hhOii ¼
X

n

ð�1ÞFn e�EnThhnjT ½ÔH�jnii: (38)

Here, T ½ÔH� � Û
�1T ½ÔSÛ � is the chronologically ordered

Ô in the Heisenberg representation. Diagonal matrix ele-

ments of T ½ÔH� do not depend on T. For example, if the op-

erator is a two-time correlator, Ô ¼ X̂ðtÞŶðt0Þ; t > t0, its

diagonal matrix element is

hhnjT ½ÔH�jnii ¼
X

m

XnmYmne�ðEm�EnÞðt�t0Þ: (39)

Now it follows that in the T ! 0 limit, only states with

Cn ¼ 0 contribute to Eq. (37). Only these states can be con-

sidered physical ones as only they survive the infinitely long
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Fokker-Planck evolution and thus can appear as the out-

states in the scattering matrix.

In fact, Cn ¼ 0 should be looked upon only as a neces-

sary condition for a state to be a physical. Other conditions

may apply. One of the examples of such conditions exists in

quantum field theories where states that have negative norm

are viewed as non-physical. This condition does not apply,

however, to W-TFTs (see, e.g., Sec. 3.6.3. of Ref. 1). Our

temporal understanding of the physical meaning of the

negative-norm states (those with odd number of ghosts) is

through the concept of negative probabilities discussed in

Sec. II A.

We can adopt yet another condition for physicality of a

state by requiring that the norm of a state is non-zero. We will

encounter such possibility in Sec. III E. At this moment, we

are not aware of any other conditions for states to be consid-

ered physical. For this reason, allow us to call all states with

Cn ¼ 0 physical ones. The Hilbert spaceH is split now as

H ¼ Hp �Hu; (40)

where Hp is spanned by all the physical states, and Hu is

spanned by the non-physical states with Cn > 0.

In the T !1 limit, Eq. (38) takes the form

hhOii ¼
X
jnii2Hp

ð�1ÞFn e�iEnThhnjT ½ÔH�jnii: (41)

One notes that there is an oscillating factor, e�iEnT , that sup-

presses the summation (or rather the integration in the higher

dimensional theories) over the physical states. In the spirit of

quantum field theories, one can formally Wick rotate “a

little” the parameter T ! Tð1� i0þÞ. Again, in the T !1
limit this will eliminate all the physical states from Eq. (41)

except those with the lowest Eg ¼ minn2Hp En. These physi-

cal states could be called ground states. In result we get

hhOii �
X
jnii2Hg

ð�1ÞFnhhnjT ½ÔH�jnii; (42)

where Hg is the part of the Hilbert space spanned by the

ground states.

The meaning of the similarity sign in the last expression

is twofold. First, we dropped the factor e�iEgT . The second

meaning is more fundamental. The point is that for Q-sym-

metry broken cases, Eq. (42) may not be a good approxima-

tion for some observables. An example of such an

observable is the unity operator. For O ¼ 1̂H, the average is

the Witten index

hh1ii ¼
X

n

ð�1ÞFn e�TEn ; (43)

which is a well known fact that the partition function of a

W-TFT is the Witten index. The only difference in the sto-

chastic quantization case is that En’s can be complex.

As it will be discussed in Subsection III E, all the eigen-

states with non-zero eigenvalues break Q-symmetry and thus

must come in bosonic-fermionic pairs, whose contribution

must cancel each other out of the partition function. There-

fore, only the zero-eigenvalue states must contribute. In

result, in topological quantum mechanics Witten index

equals Euler characteristic of the target manifold, which in

general is not zero. This must be true even for cases with

broken Q-symmetry - after all, the partition function is that

of the noise and thus it must not depend on the flow. On the

other hand, if we used Eq. (42) for the calculation of the par-

tition function in this cases, we would get zero. Conse-

quently, it is Eq. (41) that must be used for a general

observable.

Turning back to the path-integral representation brings

Eq. (41) to a “more” field-theoretic form

hhOii ¼
X
jnii2Hp

ð�1ÞFn

ð ð
½U�
hhnjOeifQ;Hgjnii (44)

that will be helpful in Subsection III E.

The purpose of the textbook-level exercise in this sub-

section was twofold. First, it showed that the non-trivial met-

ric of the Hilbert space of a pseudo-Hermitian model is

automatically incorporated into the pathintegral representa-

tion.25 Second, it revealed the essence of the unphysical,

physical, and ground states of the model.

F. Q- and time reversal symmetries of eigenstates

Q-symmetry is pertinent to path-integral representations

of all dynamical systems. A generic eigenstate, however,

does not possess the symmetry of the Hamiltonian. If this is

true for a ground state, it is said that the symmetry is broken

spontaneously. Therefore, in order to judge if Q-symmetry is

broken or not, it is important to understand which eigenstates

break it. This is the primary goal of this subsection.

The most general criterion of that an eigenstate does not

break some continuous symmetry is that the expectation value

of any observable, which is a result of acting by an infinitesi-

mal operator of this symmetry on something, is zero. For Q-

symmetry, this criterion takes the following form (cf. Eq. (44)):

ð ð
U
hhnjfQ;XgeifQ;Hgjnii ¼ 0; (45)

for any X. Using integration by parts with respect to Q and

fQ; eifQ;Hgg ¼ 0, Eq. (45) reduces to

fQ; jniig ¼ Q̂jnii ¼ 0; (46a)

6fQ; hhnjg ¼ hhnjQ̂ ¼ 0: (46b)

Here we used the fact that bra’s and ket’s depend only on

u; v so that Q operator from Eq. (9) becomes Q̂ operator

from Eq. (26b). The choice of sign in the second line

depends on the ghost degree of hhnj.
In combination with Eqs. (31) and (26a), Eqs. (46) also

suggests that

Q̂ �̂Qjnii ¼ 2Enjnii; (47a)

hhnj �̂QQ̂ ¼ 2Enhhnj; (47b)
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with �̂Q from Eq. (26d). Accordingly, bra’s and ket’s of

eigenstates that do not break Q-symmetry and at the same

time have En 6¼ 0 are Q-exact: jnii ¼ Q̂jxnii; hhnj ¼ hhxnjQ̂,

where jxnii ¼ �̂Qjnii=ð2EnÞ; hhxnj ¼ hhnj �̂Q=ð2EnÞ. This, in

turn, suggests that hhnjnii ¼ hhxnjQ̂
2jxnii ¼ 0. In other

words, if Q-symmetry is not broken by an eigenstate with

non-zero eigenvalue, then it has zero norm. This situation is

exotic. If such situation occurs, some measures must be

undertaken to get rid of this state.

The temporary conclusion is that all the eigenstates with

non-zero eigenvalue break Q-symmetry. From this it follows

that the Q-symmetry is unbroken spontaneously if the only

physical states (those with Cn ¼ 0) are those with En ¼ 0. In

other words, the only physical states are the ground states

that satisfy (n 2 Hg ¼ Hp)

Q̂jnii ¼ 0; hhnjQ̂ ¼ 0; (48a)

Q̂ �̂Qjnii ¼ 0; hhnj �̂QQ̂ ¼ 0: (48b)

These conditions are very similar to those of the unbroken

N¼ 2 pseudo-supersymmetry19 with the only difference

that the second line is weaker than its N¼ 2 pseudo-

supersymmetric version: �̂Qjnii ¼ 0; hhnj �̂Q ¼ 0.

The comparison of spectra of models with broken and

unbroken Q-symmetry is given in Fig. 2(b). In essence, the

spontaneous Q-symmetry breaking can be interpreted as the

condensation of (a branch of) Ruelle-Pollicot resonances

(i.e., eigenstates with imaginary eigenvalues) into the physi-

cal part of the Hilbert space.

Speaking of time-reversal symmetry, as it follows from

Eq. (34), each Ruelle-Pollicott resonance, either condensed

or not, is not the time-reversal companion of itself. This sug-

gests that time-reversal symmetry must be broken on these

states. It then follows (see Fig. 2(b)) that the spontaneous

breakdown of Q-symmetry must always be accompanied by

the spontaneous breakdown of time-reversal symmetry. This

line of thinking is very similar to that about the spontaneous

breakdown of N¼ 2 pseudo-supersymmetry in Ref. 20,

where it was shown that it must always come together with

the spontaneous breaking of time-reversal symmetry.

We would also like to note that the reasonings in this

subsection do not rule out the possibility that all the ground

state have zero eigenvalue but the Q-symmetry is broken on

them. We do not consider this possibility here.

IV. DETERMINISTIC LIMIT: GROUND STATES

In this section, we would like to discuss the form of the

ground states of topological quantum mechanics ((0þ 1)

theory) in the deterministic limit for cases of unbroken

Q-symmetry. The discussion will provide a route to under-

standing the origin of the spontaneous Q-symmetry breaking

on the mean-field level, which happens in chaotic models

(see Sec. VI B).

In the deterministic limit, when the Fokker-Planck Ham-

iltonian reduces to the Lie derivative, the ground states, j0ii,
are closed states (Q̂j0ii ¼ 0) that satisfy

LAj0ii ¼ 0: (49)

Lie derivative, however, is not a bounded operator. There-

fore, a more appropriate route is to perform a one-loop anal-

ysis of a model with the metric

gij ¼ �gij
0 (50)

and then send the “intensity” of the noise to its deterministic

limit, �! 0. The exact form of gij
0 must not matter as long as

it is decent, e.g., positive definite.

Let us first consider an isolated critical point,

u0;A
iðu0Þ ¼ 0. The one-loop partition function of the tower

of the one-loop eigenstates around u0 is

hhj1jii1�loop
u0

¼
ð ð

eifQ;Hðu0Þg

¼
X

n
ð�1ÞFn e�TEn ¼ ð�1ÞDu0 : (51)

Here the gauge fermion generating the corresponding gaus-

sian action is Hðu0Þ ¼
Ð T=2

t¼�T=2
�við@tdui þ Ai

jduj þ i�gij
0BjÞ,

dui ¼ ui � ui
0, n enumerates the one-loop eigenstates,

Ai
j ¼ @uj Aiðu0Þ so that AiðuÞ 
 Ai

jduj.

The last equality sign in Eq. (51) follows from the fa-

mous cancelation of bosonic and fermionic determinants in

W-TFTs (see, e.g., Ref. 4), with Du0
being the number of

negative real eigenvalues of Ai
j.

Equation (51) says that there exist (at least one) one-

loop state with zero eigenvalue of the Hamiltonian. The

zero-energy state is either bosonic or fermionic depending

on Du0
. All the states with non-zero eigenvalues come in

bosonic-fermionic pairs so that their contribution cancels out

from the partition function.

In this subsection, we call zero-energy state a ground

state. As long as we are talking about the unbroken

Q-symmetry case, this is reasonable.

FIG. 2. (a) Graphical representation of the manipulations with the path-integral

in Sec. III D. Curly arrows represent the direction of time. The infinitely far

future and past are integrated out around some finite time domain t > t0, of

some observable denoted as a collection of dots. This evolves the eigenstates

according to hhnjðtÞ ¼ hhnje�EnðT=2�tÞ and jniiðt0Þ ¼ e�Enðt0�ð�T=2ÞÞjnii. In the

physical limit, T !1, only the physical states with zero real parts of their

eigenvalues, En, survive. (b) Qualitative comparison of the generalized Fokker-

Planck Hamiltonian spectra in models with unbroken (top) and spontaneously

broken (bottom) Q-symmetry. En ¼ ImEn and Cn ¼ ReEn are the imaginary

and the real parts of the eigenvalues of the Fokker-Planck Hamiltonian, En.

Unphysical states with Cn > 0, physical states with Cn ¼ 0, and physical

ground states with minimal En are represented, respectively, as hollow circles,

circles with grey filling, and black circles.Q-symmetry is broken on states with

En 6¼ 0 and time-reversal symmetry must be broken on states with En 6¼ 0

(Ruelle-Pollicott resonances). In case of unbrokenQ-symmetry, the only physi-

cal states are the ground states.

033134-9 Igor V. Ovchinnikov Chaos 22, 033134 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.155.81.2 On: Sun, 23 Nov 2014 04:59:50



We consider what could be called the minimal “non-

potential” generalization of a potential flow near u0. We

assume that there exist local orthogonal coordinates,

~ui ¼ Oi
jduj, in which Ai

j is block-diagonal with diagonal ele-

ments being either 1� 1 or 2� 2 matrices. One-dimensional

blocks corresponds to real eigenvalues of Ai
j and to the direc-

tions, in which the flow is locally potential. The two-

dimensional blocks correspond to pairs of complex conjugate

eigenvalues that represent, e.g., sinks. All eigenvalues have

non-zero real part. Otherwise, the critical point is not isolated

and belongs to a higher-dimensional invariant manifold.

In these coordinates, the directions corresponding to

different eigenvalues of Ai
j become independent (we chose

gij
0 that does not mix coordinates of different diagonal blocks

of Ai
j). The ground state will be the wedge product of the

ground states in each of the coordinates or the pairs of

coordinates

ju0ii ¼
Yð�Þ

a
jaii
Yð�Þ

b
jbii; (52)

where a and b numerate, respectively, the coordinates of the

single real eigenvalues of Ai
j and the pairs of coordinates of

the complex eigenvalues. Similar factorization holds for bra

of the ground state.

We consider first a coordinate, ~ua � ~u, corresponding

to a real eigenvalue of Ai
j, k. We chose metric gaa

0 ¼ 1. It is

straightforward to verify that the ground state satisfying

Eqs. (48) with

Q̂ ¼ v@̂ ~u ; �̂Q ¼ @̂vð��@̂ ~u � 2k~uÞ (53)

is

jaii � e�jkj~u
2=�v; hhaj � 1; (54)

for a stable coordinate (k > 0) and jaii $ hhaj for an unsta-

ble coordinate (k < 0).

In the Hermitian basis of a Langevin model (see Eqs.

(63b) and (63c)) and with the corresponding superpotential,

W ¼ k~u2=2�, the wave-function localizes to the critical point

jaiL ¼ �ðhajLÞ
� � e�jkj~u

2=ð2�Þ v; k > 0

1; k < 0
:

�
(55)

This is the well-known one-loop ground state in Witten mod-

els (see, e.g., chap. 10.3.3 of Ref. 29). The only difference

here is that we are using the representation in which v̂’s are

diagonal instead of �̂v’s, so that v$ 1 brings Eq. (55) to its

more conventional form.

Let us turn to two coordinates, ~ub � ð~u1; ~u2Þ, with a

complex conjugate pair of eigenvalues, k6 ¼ k06k00. First,

we note that the two coordinates contribute the factor þ1

into Eq. (51). This suggests that the ground state is bosonic,

i.e., it has either two or zero ghosts. As in case of a single

eigenvalue of Â, the first case corresponds to two stable

coordinates (k0 > 0) and the second case corresponds to two

unstable coordinates (k0 < 0). Let us consider the first case.

Without loss of generality

Ai
j ¼

k0 k00ej

�k00e�j k0

� �
; (56)

with j 	 0. We can now use the freedom in Eq. (50) of

choosing a metric and set

ĝ0 ¼ Â
þ
=K; K ¼ ð~k�~k

þÞ1=2: (57)

Here Â
þ ¼ ðÂ þ Â

TÞ=2 and ~k
6 ¼ k06k00sinh j are the eigen-

values of Â
þ

. At this, the condition shows up that Â
þ

is posi-

tive definite. We assume it is satisfied.

It can be straightforwardly verified that

jbii � e�K~u2=�v1v2; hhbj � 1; (58)

with ~u2 ¼ ð~u1Þ2 þ ð~u2Þ2, satisfies Eqs. (48) with

Q̂ ¼ vi@̂ ~u i ; �̂Q ¼ @̂við��gij
0 @̂ ~u j � 2Ai

j ~u
jÞ; (59)

where i; j ¼ 1; 2, and g0 and A from Eqs. (57) and (56). In a

similar way, for a pair of unstable coordinates, one similarly

gets the ground state with jbii $ hhbj.
Equations (54) and (58) show that in the deterministic

limit, �! 0, and under certain conditions, the one-loop bra

and ket of the ground state of an isolated critical point local-

ize and/or represent, respectively, stable and unstable mani-

folds, that intersect on this critical point. Bra’s and ket’s are

forms in the transverse directions and have no coordinate de-

pendence in the tangential directions. This picture must hold

for more intricate flows of hyperbolic critical points. The

coordinate dependence of the ket of the ground state must be

related to Lyapunov function on the stable manifold. Such

function must always exist on the stable manifold.

The closest concept in dynamical systems theory we

managed to find in the Literature are discussed in Secs. 3.3-4.

of Ref. 30. There, the distributions that localize to unstable

manifolds of critical points were identified as Gel’fand-

Schwartz distributions.

The analysis can be generalized to cases when critical

points are not isolated and form higher-dimensional critical

manifolds, Mc (Morse-Bott-type case). The analysis near

each point of Mc is split into the directions tangent and trans-

verse to Mc. In tangent directions, the Hamiltonian is the

Laplacian and ground states are harmonic forms, jxiii,
DMc
jxiii ¼ 0. In transverse directions, if conditions are

right, the ground state is the one discussed previously in the

context of an isolated critical point, i.e., the ket, jlii, is a

volume form on stable manifold and is localized to the unsta-

ble manifold. Provided that jlii’s at different points of Mc

can be glued together over the entire Mc, the ground states

are ji;Mcii ¼ jxiii�jlii.
Similar situation occurs for perturbative ground states

around invariant manifolds, Mi. Again, the analysis is split

into tangent and transverse directions. In transverse directions,

the ground state is the same as in Bott-Morse-type case, jlii.
In tangent directions, one can chose such metric g0 from Eq.

(50) (if it exists) that A is a Killing vector field on Mi. Then,
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the tangential ground states are the invariant harmonic forms

also satisfying LAjxiii ¼ 0. The ground states again are as in

the Bott-Morse case, ji;Miii ¼ jxiii�jlii. A toy model of

the simplest invariant manifold, a limit cycle, could be a topo-

logical quantum mechanics on a circle with constant A consid-

ered in Sec. VI B 1. In this case, the ground states are from the

cohomology of the circle, jxiii ¼ 1; v, i.e., jWiið0Þ0 and

jWiið1Þ0 in notations of Sec. VI B 1.

For the perturbative analysis, only the combinations/

intersections of bra’s and ket’s are important. These combi-

nation are localized to invariant manifolds. However, bra’s

and ket’s separately are not localized. In fact, perturbative

analysis does not say how far bra and ket stretch away from

the invariant manifold. This provides some sort of a freedom

in the definition of perturbative ground states. One can use

this freedom to incorporate the effect of instantons—classi-

cal solutions that connect different invariant manifolds. The

point is that instantons provide natural boundaries to stable

and unstable manifolds of a given invariant manifold. An

example of such a definition of perturbative ground states is

given in Fig. 3(b), where a potential-like flow in a two

dimensional phase space is presented. There, the perturbative

ground states are given for three critical points with indices

zero (stable critical point, a), one (saddle, b), and two (unsta-

ble critical point, c). jaii is a maximal-degree form that is

localized to the critical point, while hhaj is a zero-ghost con-

stant form that represents the entire basin of attraction of a.

jbii and hhbj are forms localized to, respectively, the unsta-

ble and stable manifolds of b and they both have ghosts in

the transverse directions. jcii is a constant form representing

the “repulsion” basin of c, while hhcj is a maximal degree

form localized to this critical point.

As is seen, ket’s of perturbative ground states represent

the instantonic CW-complex of the phase space, while bra’s

represent the dual anti-instantonic CW-complex. It is also

seen that Q̂ operator acts on perturbative ground states just

as a boundary operator would have acted on the correspond-

ing CW-complex. For example,

Q̂jbii ¼ jaii � ja0ii; (60)

or, similarly,

hhbjQ̂ ¼ jcii � jc0ii: (61)

In case of a potential flow with isolated critical points, per-

turbative ground states and equalities like the one in Eq. (60)

form Morse-Witten complex, cohomology of which must be

equivalent to the homology of the instantonic CW-complex

as follows from above discussion. Under certain conditions,

methodology of the Morse-Bott complex can be generalized

to non-potential flows. The proposed view on the perturba-

tive ground states can be useful for such generalization.

From the global point of view, the perturbative ground

states are not Q̂-closed as is seen, e.g., from Eq. (60). This,

however, plays no role on the perturbative level since, e.g.,

hhbjQ̂jbii ¼ 0. In order to get the global ground states

beyond the perturbative analysis, one must glue perturbative

ground states to form globally defined stable and unstable

manifolds, i.e., consider superposition of perturbative ground

states that are globally Q-closed.

In the dynamical systems theory, there are theorems that

establish the conditions, under which the global topologically

well-defined stable and unstable manifolds criss-crossing on

invariant manifolds exist. It is natural to expect that these con-

ditions are also necessary conditions for unbroken Q-symme-

try in the deterministic limit. Those may not be sufficient

conditions, however. Establishing the conditions of unbroken

Q-symmetry in the deterministic limit in terms of the proper-

ties of the flow may turn out to be a non-trivial problem that

we leave open. We would only like to mention here that to

our temporary and mostly intuitive understanding these condi-

tions may have a lot to do with the integrability conditions.

In terms of the spectrum of Fokker-Planck Hamiltonian,

however, the necessary and sufficient conditions for unbroken

Q-symmetry look fairly clear (see Fig. 2(b)).

As a closing part of this section, we would like to point

out the equivalence of Eq. (60) and the supersymmetry oper-

ator in stochastic networks discussed, for example, in Ref.

40. There, the supersymmetry relates probability currents

and probability densities defined on a network. The direct

analogy with our case is as follows: the supersymmetry is

the exterior derivative, the network is the instantonic CW-

complex, and, say, jbii is the current between jaii and jaii.

V. UNBROKENQ-SYMMETRY

A. Langevin SDEs

The important class of models with unbroken Q-symme-

try is the Langevin SDEs. They represent purely dissipative

dynamics. This is the most studied class of dynamical sys-

tems in the context of W-TFTs. The models are quasi-

Hermitian and have a Hermitian representation known as

Witten models.9 As we discuss in this subsection, Q-symme-

try is never broken for Langevin dynamics.

Langevin SDEs are those with a potential flow

Ai
LðxÞ ¼ gijd̂uiðxÞW; (62)

FIG. 3. (a) In deterministic limit and under some general conditions on the

flow, bra’s, hhMij, and ket’s, jMiii, of perturbative ground states around an

invariant manifold, Mi, represent, respectively, local stable, Ms
i , and unsta-

ble, Mu
i , manifolds intersecting on Mi. (b) An example of perturbative

ground states for a potential-like flow. A stable critical point, a, a saddle, b,

and an unstable critical point, c, are under consideration. jaii (black circle)

is a maximal-degree form that is localized to the critical point, while hhaj
(area with horizontal filling) is a constant form with no ghosts and represents

the entire basin of attraction of this critical point. jbii (think curve aba0) and

hhbj (think curve c0bc) are forms representing, respectively, unstable and sta-

ble manifolds of b. They are forms in transverse directions. jcii (area with

vertical filling) is a constant form with no ghosts representing the basin of

repulsion of c, while hhcj (hollow circle) is a maximal degree form localized

at this critical point.
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where W is some functional called superpotential. The Ham-

iltonian can be brought to a Hermitian form by the similarity

transformation

Ĥ ! ĤL ¼ Ĥ
†

L ¼ ĝ1=2
L Ĥ ĝ�1=2

L ; (63a)

where ĝL ¼ e2W is the Hilbert space metric discussed in

Sec. III C. The corresponding transformation of the Hilbert

space and the supercharges is

hhWj ! hWjL ¼ hhWjĝ
�1=2
L ; (63b)

jWii ! jWiL ¼ ĝ1=2
L jWii; (63c)

Q̂ ! Q̂L ¼ Q̂ þ
ð

x

viðxÞðd̂uiðxÞWÞ; (63d)

�̂Q ! �̂QL ¼ Q̂
† �

ð
x

d̂viðxÞg
ijðd̂ujðxÞWÞ: (63e)

It is easy to see in this Hermitian form that the model has yet

another nilpotent supersymmetry charge, �̂QL; �̂Q
2

L ¼ 0;

½Ĥ ; �̂QL�� ¼ 0, which is the Hermitian conjugate and the

time-reversal companion of Q̂L ¼ �̂Q
†

L. The model became

N¼ 2 supersymmetric with the Hamiltonian

2ĤL ¼ ½Q̂L; Q̂
†

L�þ ¼ Q̂
2

1 ¼ Q̂
2

2; (64)

where the two Hermitian supercharges are Q̂1 ¼ Q̂L þ �̂QL

and Q̂1 ¼ iðQ̂L � �̂QLÞ.
Hermitian representation is particularly useful to see

that all eigenvalues are real and non-negative, En ¼ Cn:

2Cn ¼ jQ̂LjniLj
2 þ j �̂QLjniLj

2 	 0: (65)

For ground states, we have Cn ¼ 0 so that

Q̂LjniL ¼ 0; �̂QLjniL ¼ 0: (66)

Now it follows that Q-symmetry, together with the N¼ 2

supersymmetry, cannot be broken if at least one physical

ground state exist. Such ground state does always exist. It

has the form of Eq. (27):

j0ii ¼ ð�P0Þ; hh0j ¼ ð�j0iiÞ�ĝL ¼ 1: (67)

Here, we turned back to the original bi-orthogonal basis in

the Hilbert space in order to emphasize the physical meaning

of this ground state—the stationary probability distribution

given by P0 � e�2W . We only consider physically meaning-

ful superpotentials, W. In particular, W must be bounded

from below. As is seen, Ĥ
cnv

P0 ¼ 0, with the conventional

Fokker-Planck operator from Eq. (29), or, equivalently,

Ĥj0ii ¼ 0. Unconditional existence of this ground state sug-

gests that Q-symmetry is never broken for Langevin SDEs

with physically meaningful W’s.

The above discussion suggests that a model must have a

non-potential part in its flow for theQ-symmetry to be sponta-

neously broken. In physical terms, to break Q-symmetry of a

Langevin SDE one has to externally “drive” the system

through its phase space by a non-potential flow. This driving

is actually a well-documented condition for SOC dynamics.11

It is possible that there exist other classes of models

with unbroken Q-symmetry even in the presence of noise.

One of the possible candidates is the conservative models. If

it turns out to be true, one would say that a nearly conserva-

tive model must possess dissipative part in its drift term for

Q-symmetry to be broken. This is actually one of the condi-

tions for the observation of chaotic behavior in nearly con-

servative models. Therefore, it is reasonable to expect that in

some subclass of stochastic conservative models Q-symme-

try is also unbroken.

B. Quantum excitations vs. stochastic fluctuations

Here we would like to address the following subtle

point. It is known that W-TFTs with unbroken Q-symmetry

do not possess physical excitations (see, e.g., Refs. 4 and 5

as well as Sec. III E). This may sound suspicious: how can a

theory with no quantum excitations represent a stochastically

fluctuating system such as a Langevin SDE? To get around

this controversy, in Ref. 27 it was wrongfully conjectured

that the PSW stochastic quantization is applicable only to

stochastic systems with slow colored noises that do not pro-

vide high enough frequencies for the system to fluctuate.

This is not true—PSW method is applicable to all dynamical

models.

The resolution of the seeming controversy is this. Con-

sider again Langevin SDEs as an example. They have only

one physical ground state of trivial ghost content—the

stationary probability distribution from Eq. (67). This, how-

ever, does not mean that there are no stochastic fluctuations.

The very necessity to use the probability distribution for the

description of the model suggests that the bosonic variables

fluctuate. These fluctuations, however, are in the sense of the

zero quantum fluctuations within a ground state.

Furthermore, W-TFTs with unbroken Q-symmetry pro-

vide perfectly defined correlators that represent the stochas-

tic fluctuations in the bosonic variables. For example, the

one-loop propagator for the fluctuating bosonic fields near an

isolated stable critical point, u0, of a (0þ 1) theory (not nec-

essarily Langevin) is hhu0jduiðtÞdujð0Þju0ii ¼ ðD̂
†
D̂Þ�1

,

where D̂ ¼ di
j@t þ @uj Â

iðu0Þ and ju0ii is the one-loop

ground state at u0. These correlators are not BPS observ-

ables and thus belong to the general class of observables

studied in Refs. 10. The above propagator is exactly the one-

loop propagator that would follow from the more wide-

spread MSR approximation to stochastic quantization

[higher-order perturbative corrections will be different, how-

ever, due to the neglect of the contributions from the virtual

ghosts in MSR].

VI. SPONTANEOUSLY BROKENQ-SYMMETRY

In thinking about models with spontaneous Q-symmetry

breaking, it is an important question on which level the sym-

metry is broken. For any global continuous symmetry, there

are three such levels—the mean-filed level, the perturbative

033134-12 Igor V. Ovchinnikov Chaos 22, 033134 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.155.81.2 On: Sun, 23 Nov 2014 04:59:50



level also known as quantum anomaly, and by the dynamical

condensation of instantons and anti-instantons. The last pos-

sibility is particularly important for supersymmetries such as

Q-symmetry.6 The reason for this is that certain class of

supersymmetries, including Q-symmetry, cannot be broken

on the perturbative level. This is related to the concepts of

the cancelation of bosonic and fermionic determinants, of

the localization of path-integrals to classical solutions in W-

TFTs (see, e.g., Ref. 4), and to non-renormalization

theorems.

This leaves out only two possibilities: Q-symmetry can

be broken either on the mean-field level (which in our case

corresponds to the deterministic limit) or by the dynamical

condensation of instantons and anti-instantons. Below we

argue that these two situations represent, respectively, cha-

otic behavior (Sec. VI B) and Intermittent/SOC dynamics

(Sec. VI C).

Dynamical (anti-)instanton-mediated breaking of

Q-symmetry must not exist in the deterministic limit because

of the disappearance of anti-instantons. Nevertheless, in non-

equilibrium situations such as quenches instantons are not

required to be matched by anti-instantons and consequently

instanton(s) alone can break Q-symmetry even in the deter-

ministic limit.10 This possibility is briefly discussed in

Sec. VI D. Let us first, however, address some general

aspects of Q-symmetry broken dynamics.

A. Qualitative difference ofQ-broken dynamics

Models with unbroken and spontaneously broken

Q-symmetry must have qualitatively very different dynam-

ics. This difference has a few separate points. Allow us

address some of them here.

First, spontaneously broken Q-symmetry results in the

liberation of quantum dynamics in the following sense. If

one randomly chooses a wavefunction, jWii, and propagates

it in time long enough, he will have

jWiiðtÞ !t!1
X
jnii2Hp

e�iEntjniihhnjWii: (68)

Now it is seen that in case of unbroken Q-symmetry, when

the only physical states are the ground states with En ¼ 0

(see Fig. 2(b)), the quantum evolution in Eq. (68) stops. In

contrary, if Q-symmetry is spontaneously broken, the time

evolution will never stop.

If one would want to construct an effective field theory

out of a Q-broken model, he could as well try to write down

a theory that covers the physical states only. Such theory

would necessary be Hermitian. In other words, on physical

states the Fokker-Planck equation becomes a Sch€odinger

equation without Wick rotation, i.e., preserving the original

meaning of time. This line of thinking can be useful for

establishing a long-suspected connection between chaotic

and quantum dynamics. (see, e.g., Ref. 28) W-TFTs may

provide a firm basis for such connection.

Second, Goldstone theorem ensures that if a global con-

tinuous symmetry is spontaneously broken then there must

exist a gapless particle. In case of Q-symmetry, the gapless

particles are ghosts called Goldstinos. Goldstinos provide the

system with long-range spatiotemporal correlations in some

observables related to them. These long-range correlations

are known under various names such as sensitivity to initial

conditions, self-similarity, algebraic statistics of avalanches

in SOC dynamics, 1/f noise, non-Markovian memory, etc.

Such long-range correlations must not exist in models with

unbroken Q-symmetry that are thus could be called Marko-

vian dynamics.

Third, the time-reversal symmetry must also be broken

in Q-broken phases as was discussed in the end of Sec. III E.

This must be related to the concept of irreversibility of, e.g.,

chaotic dynamics.

B. Chaotic dynamics

As it follows from Sec VI A, models with spontaneously

broken Q-symmetry must have qualitatively very different

behavior. In deterministic limit, there is only one class of dy-

namics general enough to be associated with the mean-field

level spontaneous Q-symmetry breaking on the W-TFT side.

This class is the deterministic chaos.

In the deterministic limit, the effects of quantum-

mechanical tunneling (anti-instantons) between perturbative

ground states can be neglected. Perturbative ground states

discussed in Sec. IV become a good approximation for unbro-

ken Q-symmetry cases. Then, the rhs of Eq. (68) for a ran-

domly chosen initial probability distribution (a wave-function

of the maximal degree, jWii) is the sum over all the stable

attracting invariant manifolds, while the overlapping coeffi-

cients, hhnjWii, are the integrals of jWii over the correspond-

ing attracting basins. The absence of quantum evolution

means that the deterministic model with unbroken Q-symme-

try will always find its attractor and stay there forever. In con-

trary, when Q-symmetry is broken and the evolution nether

stops, it must mean that a model is not capable of finding its

topologically well-defined attractor—a feature pertinent to

chaotic behavior.

Yet another way to see that mean-field Q-symmetry

breaking must be associated with chaos it through consid-

ering models with fractal strange attractors. In such cases,

one will certainly find it difficult to represent such an

invariant “manifold” (formally a fractal is not a topological

manifold) as an intersection of forms, that the ground states

are supposed to be in the unbroken Q-symmetry models.

The first problem here is the differentiability issue. The

second problem is more fundamental. The point is that

states can only be forms of integer degree. Such forms can

only represent integer dimensional manifolds but not

fractals.

Looking at deterministic chaotic models as at the mean-

field level Q-symmetry breaking suggests why they must ex-

hibit long-range correlations in observables related to ghosts.

These correlations is the W-TFT way to explain the high sen-

sitivity to initial conditions in chaotic models. In dynamical

systems theory, this sensitivity is often considered as one of

the necessary conditions for the system to be chaotic. On the

W-TFT side, the sensitivity is the consequence of the Gold-

stone theorem. Furthermore, time-reversal symmetry of
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deterministic chaos must also be broken. This is most prob-

ably the W-TFT way of encoding the temporal irreversibility

of chaos.31

The above reasons are only indications on the equiva-

lence between deterministic chaos and mean-field level

spontaneous Q-symmetry breaking. A rigorous prove of this

equivalence has obstacles. One of them is the absence of the

universal definition of deterministic chaos. From this per-

spective, one can as well think that W-TFTs approach pro-

vides its own version of this definition.

If Q-symmetry is broken in the deterministic limit, i.e.,

on the mean-field level, the addition of noise will not restore

it. In fact, as is discussed in Subsection VI C, the noise can

only break Q-symmetry if it was not broken on the mean-

field level. Stochastic models with Q-symmetry broken on

the mean-field level can be called stochastic chaos.

1. Refined definition of deterministic chaos

So far, the W-TFT definition of chaos is a model with

Q-symmetry spontaneously broken on the mean-field level.

This definition needs further clarification. The reason for this

is seen from the following example.

Consider a dynamical model on a circle, S
1
, of circum-

ference, L, with constant flow, A. The operators defining the

Fokker-Planck Hamiltonian through Eq. (26a) are

Q̂ ¼ v@̂u; �̂Q ¼ @vð��@u � 2AÞ: (69)

The eigenstates and the spectrum are known exactly

jWiið0Þk ¼ veiku; jWiið1Þk ¼ eiku; (70)

Eð0Þk ¼ E
ð1Þ
k ¼ �k2=2� 2ikA; (71)

where u 2 ½0; L� and the momentum is kL=ð2pÞ 2 Z. As is

seen in Fig. 4(a), the spectrum looks like that of broken Q-

symmetry in the strict deterministic limit, � ¼ 0. On the

other hand, for any small but finite noise, 0 < �� 1, the

spectrum is that of unbroken Q-symmetry. Such situation

must appear in all conservative models.

To get around this seeming controversy, we have to

refine the definition of the mean-field level Q-symmetry

breaking and thus that of chaos. Chaotic system is such that

its Q-symmetry is spontaneously broken in the limit of infin-

itely weak but finite noises. This weak but finite noise is

related to the concept of sensitivity to initial condition on the

dynamical systems side. To see if a deterministic model is

sensitive to initial conditions one must consider infinitely

close but still different initial points in the phase space. This

can be interpreted as the addition of infinitely weak but still

finite uncertainty (noise).

C. Intermittency/SOC

In stochastic models, there is yet another mechanism for

spontaneous Q-symmetry breaking. This mechanism is the

dynamical condensation of instantons and anti-instan-

tons.3,6,7 We have already encountered instantons in Sec. IV

in the discussion of the ground states in the deterministic

limit. Let us, however, briefly recollect again on what these

tunneling processes are.

Instantons correspond to classical solutions of SDE (so-

lution of a corresponding DDE) that start on one invariant

manifold and end at another. Thus, instantons always lead

from “less stable” invariant manifolds to more stable ones.

Anti-instantons, in turn, are time-reversed instantons. They

lead from more stable invariant manifolds to less stable ones.

The essence of anti-instantons is the motion against the

flow, which is only possible in the presence of noise. Matrix

elements of anti-instantons come with exponentially weak

factors that disappear in the deterministic limit. A hydrody-

namical example of an instanton/antiinstanton is the proc-

esses of annihilation/creation of (pairs of) vortices or vortex

lines.

(Anti-)instantons intrinsically break Q-symmetry as, in

particular, is seen in Eq. (60), from which it follows that the

matrix element of the expectation value of a Q-symmetry

operator on the ðbaÞ-instanton (see Fig. 3(b)) is non-zero:

hhajQ̂jbii ¼ 1.

In equilibrium situations, condensation of instantons

must be accompanied by the condensation of antiinstantons.

Indeed, for the instantonic processes of annihilation of vorti-

ces to be happening forever they must be complemented by

the antiinstantonic processes of creation of vortices. In other

words, separately each (anti-)instanton is ultimately non-

equilibrium processes leading from one state to another.

Therefore, in equilibrium situations, only configurations of

equal number of instantons and anti-instantons that lead from

a state to itself exist. This, combined with the realization of

the fact that anti-instantons disappear in the deterministic

limit leads to the conclusion that in equilibrium situations

(anti-)instanton mediated dynamical Q-symmetry breaking

can only happen in stochastic but not deterministic models.

The dynamics in a phase with the (anti-)instanton-medi-

ated Q-symmetry breaking must look as an infinite series of

jumps (e.g., avalanches of sandpile models). At each jump a

concurrent stable solitonic configuration (a pattern, various

FIG. 4. (a) The spectrum of a toy model considered in Sec. VI B 1. In the

deterministic limit, �! 0, the Fokker-Planck eigenvalues tend to lay on the

imaginary axis, as though Q-symmetry is broken. This situation must also

occur in other conservative models. As is explained in the text, this situation

must not be viewed as the mean-field level Q-symmetry breaking. (b) The

generic phase diagram of a stochastic dynamical system. It consists of three

phases. The first is the chaotic phase, where the topological symmetry is bro-

ken on the mean-field level. The second phase is intermittent chaos or self-

organized criticality, where the topological symmetry is dynamically broken

by the condensation of instantons and antiinstantons. SOC is not a “critical

state” but rather is a full-dimensional phase. However, in the deterministic

limit when antiinstantons disappear, the SOC phase collapses into the criti-

cal “edge of chaos.” Chaotic and SOC phases must possess spatiotemporal

self-similarity due to the existence of gapless goldstinos. The temporal as-

pect of the self-similarity represents dynamical non-Markovian long-term

memory. By the same token, the phase with unbroken topological symmetry

can be called Markovian dynamics (MD).
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configurations of vortices, etc.) suddenly changes. This is

nothing else but the physical picture of SOC.11 In a more

general case, these jumps happen not between stable points

in the phase space (patterns) but between more intricate sta-

ble manifolds (e.g., limit cycles). In this case, the term SOC

must be substituted by a more general concept of Intermit-

tency (see, e.g., Ref. 32). Let us recall that in dynamical sys-

tems theory a system is called intermittent if it is subject to

infrequent variations of large amplitude. These variations

((anti-)instantons) separate periods of different (quasi-)peri-

odic behaviors (e.g., limit cycles). Roughly speaking, the dif-

ference between Intermittency and SOC is that the jumps

happen between limits cycles or more complicated higher-

dimensional stable sets for the former and between stable

points in the phase space for the later. We do not see, how-

ever, more fundamental difference between SOC and Inter-

mittency. The conclusion we just arrived is that (anti-)

instanton-mediated Q-symmetry broken phase must be asso-

ciated with Intermitency/SOC.27

On the phase diagram, intermittent/SOC phase must

occupy a region between chaotic and Markovian phases.

Importantly, Intermittency/SOC is not a critical state. It is a

rightful full-dimensional phase, just as chaos and Markovian

systems. This explains why by moderate variation of param-

eters of the model one cannot destroy intermittent/SOC

behavior. In the literature of SOC, this fact is sometimes

attributed to the mysterious tendency of SOC systems to

“evolve” to a critical “edge of chaos.” W-TFT picture of

Intermittency/SOC resolves this issue.

Only in the deterministic limit, anti-instantons vanish

and intermittent/SOC phase collapses into the “edge of

chaos” (see, e.g., Ref. 33). The above discussion is summar-

ized in Fig. 4(b) where chaotic, intermittent/SOC, and Mar-

kovian phases are schematically presented.

The proposed phase diagram complies with previous

studies. One of the examples is the phase diagram of water

moving between two rotating cylinders.34 The Couette (lami-

nar) flow phase can be identified with Markovian phase, the

featureless turbulence with chaos, while the intermediate

region, where the dynamics is dominated by creation/annihi-

lation of solitons in the form of vortices and vortex lines,

must be identified with Intermittency/SOC. Yet another

example is neuroscience, where the three phases in Fig. 4(b)

are often called, respectively, supercritical, critical, and sub-

critical phases.35

D. Non-equilibrium dynamics

Let us also briefly address non-equilibrium situations. In

these situations, the temporal boundary conditions are not

periodic and the system is allowed to end up in a state

different from the initial state. Physically, this corresponds to

quenches for instance. Quench dynamics can be assumed

deterministic and it can be looked upon as a composite

instanton leading from one of unstable configurations to one

of the stable configurations. Barkhausen-like effects (see,

e.g., Ref. 36 and references therein) such as crumpling paper

(see, e.g., Ref. 37 and references therein) can effectively be

viewed as “slow” quenches where the time evolution is due

to varying external parameter. Gradual variation of the exter-

nal parameter (e.g., magnetic field in Barkhausen effect)

makes previously stable configurations unstable ones thus

initiating instantons that look like a sequence of sudden

jumps. As follows from the next paragraph, these models

must also exhibit “power-laws” which is the reason why they

also sometimes attributed to the SOC family.

Mathematical aspects of non-equilibrium deterministic

dynamics in potential flows (Langevin DDEs) were studied,

e.g., in Ref. 10. There, it was found that the corresponding

theory is a log-conformal theory. Roughly, one can attribute

the long-range log-conformal correlations to the Q-symme-

try spontaneously broken by a given composite instanton.

Interestingly, a quench must not necessary be across some-

other-symmetry breaking phase transition in order to exhibit

long-range correlations, e.g., Barkhausen-like dynamics. It is

also interesting that for quenches one can straightforwardly

use BPS observables that may provide certain topological

invariants in topologically non-trivial theories. It is tempting

to believe that so-calculated topological invariants may have

something to do with the probabilities of the system to end

up in one or the other competing stable configurations.

VII. CONCLUSION

In this paper, it is shown that the most general stochastic

quantization procedure applied to any stochastic or determin-

istic continuous-time (partial) differential equations leads to

a Witten-type topological field theory—a theory with global

topological supersymmetry. This topological symmetry must

be perturbatively stable and consequently can be spontane-

ously broken only either on the mean-field level by, say,

fractal invariant sets, or dynamically by the condensation of

instantons and anti-instantons. According to this, we propose

a generic phase diagram given in Fig. 1(a). The mean-field

level spontaneous Q-breaking must be associated with cha-

otic behavior. The instanton-anti-instanton mediated break-

ing of topological symmetry corresponds to Intermittency/

SOC—a full dimensional phase surrounding chaos. Its full-

dimensionality explains why algebraic correlations of SOC

dynamics are robust against moderate variation of the param-

eters of a system. Full-dimensional Intermittency/SOC phase

exists, however, only in stochastic models. In deterministic

models, when anti-instantons disappear, Intermittency/SOC

phase degenerates into the critical “edge of chaos” between

deterministic chaos and deterministic Markovian dynamics.

According to Goldstone theorem, both phases with spon-

taneously broken topological symmetry must exhibit long-

range correlations. These correlations are related to such

well-established concepts as self-similarity, sensitivity to ini-

tial conditions and/or non-Markovian scale-free memory,

power-law statistics of avalanches, algebraic power-spectrum

in turbulence, etc. Accordingly, dynamical systems with un-

broken topological symmetry can be called Markovian in that

sense that they do not exhibit long-range dynamical memory

so one can always look at the system at such temporal scale

that the dynamics will look effectively Markovian.38

The phase diagram and the interpretation of the physical

essence of the three phases is the only result of this paper.
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There is certainly much more in the W-TFT of dynamical

systems to be understood in the future. In particular, in this

paper, we never used one of the most fascinating possibilities

that W-TFTs offer—the possibility to calculate certain topo-

logical invariants as expectation values of BPS observables

on instantons. One of the candidate ways to exploit these

observables (most probably in combination with their anti-

instantonic counterparts) is in the form of order parameters

for Q-broken phases. In fact, a rigorous way for construction

of effective field theories is one of the most important

advancements that W-TFT may offer. W-TFT of dynamical

systems may also hold the key to some novel topological

aspects of probability theory.
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