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Abstract 

After a brief introduction to the complex Ginzburg-Landau equation, some of its important 
features in two space dimensions are reviewed. A comprehensive study of the various phases 
observed numerically in large systems over the whole parameter space is then presented. The 
nature of the transitions between these phases is investigated and some theoretical problems 
linked to the phase diagram are discussed. 

The complex Ginzburg-Landau equation (CGL) is one of the most important simple 

nonlinear partial differential equations for two main reasons. First, as we will briefly 
recall below, it arises as the natural description of many physical situations, or at least 

is the "kernel" of many systems of amplitude equations. Second, its solutions display a 
very rich spectrum of dynamical behavior when its parameters are varied, reflecting the 

interplay of dissipation, dispersion and nonlinearity. 
Here, we give a brief and mostly qualitative report of the various regimes observed 

in the two-dimensional case, and discuss several theoretical aspects of these numerical 
findings. 

1. Introduction to CGL 

A large body of work has already been devoted to the CGL equation, which reads 

OtA = A + (1 + ibl  ) X72A - (b3 - i ) I A I 2 A ,  (1) 

where A is a complex field. 
In the context of amplitude equations [ 1,5], which are large-scale descriptions of  

physical systems past (and near) symmetry-breaking instability thresholds, the CGL 
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Fig. 1. Phase diagram of the two-dimensional CGL equation. Phase turbulence is observed between lines L 
and BF, defect turbulence to the left of line T, and frozen states exist (approximately) to the fight of line 
$2. Details are given in the text. 

equation has been recognized as the relevant equation for the slow modulations of  
oscillations in a continuous medium near a Hopf  bifurcation [2] .  More generally, it 

appears in the description of  spatially-extended systems when oscillations or waves are 
present. 

Under the form (1) ,  the CGL equation has been reduced (without loss of  generality) 

to its simplest from, with only two real parameters, bl and b3. The first term of  the rhs 

is related to the linear instability mechanism which led to oscillations. The second term 
accounts for diffusion and dispersion, while the cubic nonlinear term insures - if b3 > 0, 

otherwise other terms may be necessary - the saturation of  the linear instability and is 
involved in the renormalisation of the oscillation frequency. Two important limits are 
worth mentioning: when bl = 0, b3 ~ oo, one has the real Ginzburg-Landau equation, 

which possesses a Lyapunov functional and thus exhibits only relaxational dynamics [ 3 ]. 
When bl ~ oo, b3 = 0 dispersion plays the essential role, as one recovers the nonlinear 
Schr6dinger equation [4] .  In the general case, sustained spatio-temporally digordered 
regimes are observed in large regions of  the parameter plane (Fig. 1). 

The genericity of  the CGL equation, associated to its relative simplicity, has made it 
one of  the favorite playgrounds for testing ideas about spatio-temporal chaos in a rather 
realistic context [5] .  It is only recently, though, that a comprehensive study has been 
undertaken, as it was realized that away from the intricacy of  the bifurcation diagrams at 
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small sizes, there exists a crossover size beyond which chaos becomes extensive and can 
be characterized by intensive quantities independent of system size, boundary conditions, 

and, to a large extent, initial conditions [6]. Indeed, when chaos is extensive, statistical 
approaches are legitimate and should provide rather simple descriptions. In this context, 

bifurcation diagrams - typically used for small dynamical systems - are replaced by 

"phase diagrams" delimiting the regions of different statistical signatures in parameter 

space. 
Whereas the one-dimensional case is now rather well known [7-9] ,  the situation in 

two dimensions is much less satisfactory, mainly because previous work was devoted 
to punctual problems rather than to acquiring a global picture of the properties of the 

equation. Here, thanks to current computer power, we provide a comprehensive overview 

of the two-dimensional CGL equation in the large-size limit I .  

2. Waves, phase instability and defects 

We now introduce a few important features of the CGL equation before proceeding 

to the description of the phase diagram. 
Early work on CGL has dealt with the problem of the linear stability of its family 

of plane-wave solutions A = akexpi (kx  + to~t) with a 2 = (1 - k 2 ) / b 3  and w~ = 

1/b3 - (bl + 1/b3)k 2. All these solutions are unstable for bl > b3 (Newell criterion), 

a condition which defines the so-called "Benjamin-Feir" (BF) line (Fig. 1). For bi < 

b3, plane-wave solutions with k 2 < k2max = (b3 - b l ) / ( 3 b 3  - b l  + 2/b3) are linearly 
stable [ 10]. The instability of the travelling wave solutions above the BF line is readily 

verified as to be linked to the "gauge" invariance of the equation, i.e. its invariance 
by an arbitrary phase shift (A ~ Aexpi~b0). Near the BF line, the amplitude modes 

are strongly damped, "slaved" to the marginal phase mode, so that one often speaks 
of a phase instability. This instability has been conjectured to lead to a disordered 

regime called phase turbulence [ 11 ], in which the field A never reaches zero, so that 
the phase ~b = arg A is defined everywhere. Near the BF line, the phase gradient xT~b 
is expected to remain small, and a systematic expansion can be performed, leading 
to a description of the large-scale dynamics in terms of the phase only. The behavior 
of the resulting series of  phase equations obtained by truncation of this expansion is 
actually not very well known, except for the Kuramoto-Sivashinsky (KS) equation to 

which these equations reduce infinitely close to the BF line. If phase turbulence (i.e. 
spatio-temporal chaos) has been established for the KS equation, it is the subject of an 
ongoing controversy away from the BF line, both for the phase equations and for the 
CGL equation itself [ 11,9,12,13 ]. 

I A previous study (see [ 21 ] ), using a discretized version of the CGL equation, attempted such a task. In 
view of the results presented here, it appears that the effects of the discretization scheme on the phase diagram 
are rather drastic. In particular, no phase turbulence regime was observed by these authors, an artifact, we 
believe, due to their numerical scheme. Other discrepancies will be discussed elsewhere [ 18]. 
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Another important feature of the CGL equation is the structure, nature, and role of 
"defects", i.e. points in space-time where A -- 0. At such points, the phase is not defined, 
and it varies by a multiple of 2~r when going around them. For space dimensions d > 2, 
defects are topologically constrained. This has been recognized for a long time as one 
of the salient features of the two-dimensional CGL [ 14,15]. For d = 2, defects are 
points and can only appear and disappear by pairs. For small enough bl values, they 
appear in two different types, "spirals" and "shock-line vertices" (Fig. 2). The shock- 
line vertices have mostly been considered as "passive" objects which play no important 
role. However accurate this statement may be, it remains that the spiral defects have 
attracted the most attention [ 15,16]. In spite of all these efforts, no exact expression is 
available; on the other hand, much is known about the core structure and the "wings", 
i.e. the emitted outward-going waves. Away from the core, these waves are asymptotic 
to a planewave with a well-defined wavenumber ksp depending only on bl and b3. The 
stability properties of the k = ksp planewave solution give rise to two important lines in 

the (bl, b3 ) parameter plane. On the 51 line, ksp = kmax, the maximum wavenumber of 
linearly stable planewaves (Fig. 1 ). This line delimits the region of linear stability of the 
k -- ksp wave. To its left, the wave is linearly unstable (perturbations grow exponentially 
in phase space); this is in fact a convective instability: a localized perturbation indeed 
grows, but is advected away from its initial position at the group velocity of the k = ksp 
planewave. At this initial position, the solution relaxes to the planewave. According to 
Aranson et al. [ 16], the k = ksp planewave becomes absolutely unstable to the left of 
the 52 line: any initial perturbation grows at its initial location (in addition to spreading 
in the direction of the wave). 

It is not exactly known how these stability limits of the planewave with wavenum- 
bet ksp are related to the actual stability properties of the spiral solution and to its 
observability in an experimental context. In most of the region of the parameter plane 
considered here, the spiral solution exists and is core-stable [ 17]. In consequence, it can 
be argued that its stability properties are essentially related to those of the asymptotic 
k = ksp planewave in a semi-infinite domain (with the core sitting at one end). We now 
formulate, at a somewhat conjectural level, the stability properties of the spiral solution 
and their consequences observable in experiments (be they numerical or not). To the 
right of line 51, one expects the spiral to resist a (small) amount of noise, due to 
its "complete" (core and wings) linear stability. Between 51 and 52, perturbations are 
amplified but convected away from the core at the group velocity of the k = k~p solution. 
Numerical experiments have shown that the spiral is most sensitive to perturbations in 
the crossover region between the core and the wings [ 18]. At a given level of (ex- 
perimental) noise, perturbations coming from this region are the most dangerous ones. 
This convective instability in fact takes the form of growing oscillations of the modulus 

IA I as one goes away from the core (see Fig. 6). Experimentally, these oscillations do 
not saturate, and the wave breaks down, creating more defects. This mechanism defines 
a maximum radius Rnoise which limits the size of observable spirals, and depends on 
the instability rate and (weakly) on the noise level. Approaching the limit of absolute 
instability (line 52), this diameter goes to zero, and beyond 52 the spiral is "completely" 
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Fig. 2. 
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unstable and cannot be observed in an experimental (noisy) context. 

Finally, we note that if defects do play an important role in the two-dimensional CGL 
equation, as we will show below, their topological character is not crucial in determining 
the dynamical regimes: for d = 1, localized "quasi-defects" - where IAI remains locally 

very close to zero - have been shown to be the key-ingredient in some disordered 
regimes [ 8]. But the topological constraint on defects for d > 2 does provide them with 
a large domain of existence in parameter space, insuring their relevance in most of the 
regimes of interest. 

3. Phases 

Fig. 1 shows the phase diagram of the two-dimensional CGL equation established 
from a numerical exploration of systems of linear size of the order of L = 512 with 
periodic boundary conditions, using a pseudospectral code. Details about the integration 
scheme and the numerical protocol will be given elsewhere [ 18]. The various transition 
lines are discussed in detail in Section 4. 

As in the one-dimensional case [7,8], two types of disordered regimes can be dis- 
tinguished, depending on whether they exhibit defects or not. To the right of the line 
L in the parameter plane, phase turbulence (no defects) is observed, whereas defect 
turbulence occurs to the left of line T. 

3.1. Phase turbulence 

Between the BF and the L lines, spatio-temporally chaotic regimes of phase turbulence 
- where no defect occurs - are observed. With periodic boundary conditions, the total 
phase gradient across the system (the "winding number") is conserved. This introduces 
a new invafiant to the problem. Most results reported here (in particular the location of 
line L) are for the case of zero winding number. 

In phase turbulence, the solution consists of a disordered cellular structure, (best seen 
in plots of IAI or V4,) slowly evolving in time (Fig. 3a). The typical size of the cells 
diverges like (b3 - bl) -U2 when approaching the BF line; this size is in fact of the 
order of the wavelength of the most unstable mode in the corresponding KS equation. 
If the correlations of the modulus IAI still decay rapidly, those of the phase ~b decay 
slowly, with power-law-like behavior. This is apparent in the large-scale modulations of 
the phase field (Fig. 3b). In Section 5, we discuss the effective large-scale model for 
phase turbulence and the asymptotic behavior of the correlations in phase turbulence. 

Fig. 2. Snapshot of  a simple frozen configuration with one spiral defect and one shock-line defect. System of 
size L = 512 with periodic boundary conditions and parameters bl = 2 and b3 = 1.67. (a):  image of IA] in 
grey scale from ]A I = 0 (black) to IAI = 1.33 (white); (b):  lines Re(A) = 0 (light grey) and Ira(A) = 0 
(dark grey). 
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Even though they are certainly important to better understanding the dynamics of 

phase turbulence, the "elementary processes" at play in this regime are not known. 
For d = 1, it has been shown that propagative structures are the objects triggering 
the breakdown of phase turbulence [9]. Here, no equivalent has so far been found 
(see below). One should also investigate whether the evolution of the cellular structure 
involves some of the elementary events observed in the coarsening of soap froths [ 19] 

(even though these cannot account for all the dynamics here, since the cellular structure 
is statistically stationary). Knowledge of the local dynamics is necessary to build a 

large-scale effective description of two-dimensional phase turbulence in the spirit of the 

work of Chow and Hwa [20] for the one-dimensional KS equation. 

3.2. Defect turbulence 

Defect turbulence is the most chaotic regime of the two-dimensional CGL equation: 
correlations decay exponentially, with short correlation lengths and times. Depending 

mostly on bl, the space-time signature of the solutions varies. For large bl, the density 
of defects is large, they come and go rapidly, and they rarely form spirals (Fig. 4). 

Indeed, it can be argued that defects per se are not crucial features in this case. 

"Amplitude turbulence" is a better name for such spatio-temporal chaos regimes. Fur- 
thermore, increasing bl toward the nonlinear Schr0dinger equation limit, pulses become 
the relevant objects: the solutions consist of localized regions where A 4= 0. Approach- 
ing the BF line, the defect density decreases, the characteristic scales increase, and 

spirals can be observed. In fact well-developed spirals can only be observed in the 

defect turbulence region, to the right of the 52 line (see the discussion of the transition 
lines in the next section). 

3.3. Frozen states 

Cellular structures also appear in the two-dimensional CGL equation in the form of 
quasi-frozen arrangements of spiral defects surrounded by shock lines. In these states, the 
field IAI is generally completely stationary in time. The network of these lines form the 

cells of these spatially-disordered states (Fig. 5). Non-spiral defects lie at the shock-line 
vertices, sometimes also along the shock lines themselves, in metastable arrangements. 
Because the timescales involved are very long, it is actually difficult to decide when 
these structures stop evolving. Residual, intermittent, local rearrangements - less and 
less frequent along time - are observed, and this relaxation process is reminiscent of 
that taking place in glasses. In fact, much remains to be done in order to decide to what 

Fig. 3. Snapshot of phase turbulence in a system of linear size L = 5120 with periodic boundary conditions 
and parameters bl = 2 and b3 = 1.33. (a): field IAI in a sub-system of linear size g = 640; grey scale from 
]A[ = 0.87 (black) to IA I = 1.12 (white); (b): phase field ~b = argA in the whole system (grey scale from 
black to white over the total range of variation of the phase A~b ~ 4.27) . 
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Fig. 4. For caption see p. 359, 
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(c) 

(d) 

Fig. 4 --continued. 
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Fig. 5. 
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extent these dynamical states are glassy states. A first study along these lines can be 

found in Huber [21 ]. A particular point of  interest is to investigate whether some kind 

of  aging phenomena are taking place in these frozen structures. 

The frozen states are easily observed in the region of  the parameter space to the right 

of  line T, where they are the only asymptotic solutions possessing defects. Their total 

domain of  existence in the (bl ,  b3) plane can be estimated on the basis of  the stability 

properties o f  spirals, as discussed in Section 2. The frozen states do not exist to the left 

of  line $2, since there the spirals are absolutely unstable. On the other hand, nothing 

precludes their existence to the right of  $2. The size of  the cells is not limited, except 

in the presence o f  noise, since in this case, between $2 and $1, spirals have a maximum 

radius Rnoise. In practice, the dynamical "history" which led to a given frozen structure 

greatly influences the distribution of  sizes of  cells in the structure (see the discussion 

in Section 4.1 below). 

The actual observation of  frozen states in the region between lines $2 and "I-, where 

defect turbulence exists, is not easy, though, because these states are metastable with 

respect to defect turbulence. Coming, for example, from a frozen asymptotic state to 

the right o f  line T, the parameters have to be changed "adiabatically" to prevent the 

nucleation o f  defect turbulence. Even then, the necessary rearrangements of  the cellular 

structure, which involve the rapid motion of  some defects, most often trigger the "melt- 

ing" of  the frozen structure. Frozen structures are most easily observed far to the right 

of  line T, and especially to the right of  $1. Their domain of  existence probably extends 

to large values of  b3 (except maybe for large Ibll)- At any rate, along the bl = 0 axis, 

it extends to the real Ginzburg-Landau (b3 ~ oo) limit, where the spirals become the 

vortex excitations of  the XY model [22] .  

4. Transitions 

The respective domains of  existence of  the three disordered phases described above 

are delimited by the lines BF, T, L, and S2. We discuss now the nature o f  the various 

(phase) transitions observed when crossing these lines and comment on the relative 

stability of  the disordered phases. 

Fig. 4. Snapshots of defect turbulence in a system of linear size L = 256 with parameters (bl, b3) = (2, 1 ) 
(a),(b) and (bb b3) = (0,0.56) (c),(d). There are 268 defects in the first case, but no well-formed spirals 
are observed; in the second case, on the other hand, spirals are clearly visible. (a): field IAI; greY scale from 
IA I = 0 (black) to IAI = 1.32 (white); (b): Re(A) = 0 (light grey) and Ira(A) = 0 (dark grey) lines; (c): 
field IAI; grey scale from IAI = 0 (black) to IAI = 1.0 (white); (d): Re(A) = 0 (light grey) and Ira(A) = 0 
(dark grey) lines. 

Fig. 5. Frozen state in a system of linear size L = 256 with parameters bl = 2 and b3 = 5. (a): field IA{; grey 
scale from IAI = 0 (black) to IAI = 1.17 (white); (b): lines Re(A) = 0 (light grey) and Re(A) = 0 (dark 
grey). 
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4.1. Lines T and $2 

As already mentioned, line T delimits the (numerically estimated) domain of ex- 
istence of sustained regimes of defect turbulence. Starting from a defect turbulence 
regime, increasing b3, this highly chaotic regime is maintained until line T is crossed; 
defect turbulence is only transient then, and is followed by the nucleation of a frozen 
state (Fig. 6). As observed by Huber et al. [21], this transition is indeed reminiscent of 
a first-order phase transition. Depending both on the amplitude of the "quench" beyond 
line T (i.e. the distance of the current parameters to line T) and the b] value of the 
crossing point, the duration of the transient varies widely. The smaller the quench and 
the larger bl, the longer the transient. As a matter of fact, line T can be seen as the line 
where this transient is infinite. 

The nucleation process involves the appearance of a sufficiently large spiral core. To 
the right of line T, the spiral may then grow, but its size is limited to a maximum radius 
Rturb (Fig. 6a). This radius results from the interaction between the outward-going spiral 
waves and the strong, finite-amplitude fluctuations characteristic of the defect turbulence 
"bath" surrounding it. These fluctuations trigger the most unstable mode of the spiral 
solutions, i.e. the oscillations of IAL which are the signature of the nonlinear stage 
of the convective instability, and influence the spiral wave inward. We stress that this 
is different from the problem usually considered when studying convective instabilities. 
Here a semi-infinite convectively-unstable medium is put in contact "downstream" with a 
turbulent medium. The balance between the (destabilizing) turbulent fluctuations and the 

(regularizing) advection of perturbations by the spiral waves takes place at the nonlinear 
level, so that the radius Rt~rb cannot be determined from the stability properties of the 
spiral alone [18]. 

Approaching line T from the right, Rturb decreases. Numerical experiments [ 18] show 
that the line T r, where Rturb = 0 (not shown in Fig. 1), is located to the left of line T. 
Note that, in contrast with line T, line T r is defined via a local dynamical phenomenon. 
In the region between lines T and T I, "fully developed" defect turbulence decays to 
mixed states, i.e. mostly-frozen structures in which some localized patches of turbulence 
subsist (Fig. 6b). Numerically speaking, this residual turbulence does not seem to vanish 
at long times; extensive statistical data has to be compiled in order to decide whether 
this remains true in the infinite-time limit, in which case lines T and T t are distinct. 
In the other case, one must conclude that line T, in the thermodynamic limit, moves to 

Fig. 6. Nucleation of a frozen state from defect turbulence in a system of linear size L = 1024 with parameters 
bl = 2 and b3 = 1.33. (a): two spirals have been nucleated and have reached their maximal size Rturb ~ 225; 
(b) : asymptotic state consisting of a frozen structure of spirals with maximum radius Rturb with some residual 
turbulence for L = 1024, bl = 2, and b3 = 1.43. This asymptotic state is typical of the region between lines 
T and T'  (compare with Fig. 5). (Snapshots of field IAI, color scale from IAI = 0 (dark red) to IAI = 1.22 
(light yellow)). Note the oscillations of IAI away from the spiral cores, near their maximum radius, which 
are the signature of the convective instability of the k = ksp planewave. 
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the left to coalesce with line T ~. However, in a similar fashion to what happens with 
line L in phase turbulence (see next section), line T is numerically well-defined for 
all practical purposes, and it is only a theoretical point to know whether it is distinct 
from T t in the infinite-time limit. We note finally that the frozen states nucleated this 
way (i.e. from the spontaneous decay of defect turbulence) possess a maximal cell size 

given by Rtur b. 

The transition from defect turbulence to frozen states is hysteretic: coming from a 
frozen state, and decreasing b3, it is, in principle, possible to keep completely frozen 
structures past line T, (even if "partially" frozen structures, such as the one shown in 
Fig. 6b, coexist in the region between lines T and T~). As mentioned in Section 3, line 
$2 is only an absolute and approximate limit of the hysteresis region: in theory, the 
effects of the curvature of the waves and the spiral core should be taken into account, 
and in practice, in this region of parameter space, the frozen states are easily destroyed 
by perturbations, so that it is extremely difficult to observe the frozen states far to the 
left of line T. In fact, the real limit of existence of frozen states might be actually 
determined by the properties of the nonlinear stage of the convective instability of the 
waves and possibly also by the stability properties of the shock-line vertices, the other 
key-component of frozen structures. This very intricate situation will be examined in 
detail in [ 18]. The distance between lines T and $2 is thus only an approximate measure 
of the maximal width of the hysteresis loop. 

4.2. Line L 

Line L is the (numerically-determined) line beyond which (to its left) phase turbu- 
lence is only transient. To its right, phase turbulence can be observed for as big a system 
and as long a time as current computers allow. A brief discussion of the existence of 
phase turbulence in the infinite-size, infinite-time limit is given in the next section, but, 
numerically speaking, line k is rather well defined, with the probability of breakdown 
of phase turbulence being finite to its left and essentially zero to its right. 

The breakdown of phase turbulence is also a nucleation process (Fig. 7). 
A pair of defects is nucleated by some fluctuation on one side of a cell, triggering a 

"chain-reaction" leading to the quasi-deterministic invasion of the system by a growing 
bubble of the defect turbulence phase. The diameter of this bubble increases linearly 
with time (Fig. 7d). 

A priori, three sections of line L have to be considered, delimited by the crossing 
points with lines T and 52 (or, rather, the line actually delimiting the existence of 
frozen states). Below line T, the only possible regime is defect turbulence, so that the 
breakdown of phase turbulence can only lead to this regime. Between lines 52 and T, 
defect turbulence and frozen states coexist, and the breakdown could lead to either state. 
In fact, the nucleation events at the origin of the breakdown are always highly chaotic, 
and only defect turbulence arises (this is not surprising, considering the metastability of 
frozen states in this region). The third portion of line L, above its crossing with line T, 
offers an interesting possibility: there, only frozen states are expected asymptotically. But 
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the breakdown of phase turbulence first triggers a defect turbulence transient which then 
itself nucleates a frozen state. No direct transition from phase turbulence to frozen states 
seems possible, although it is conceivable that one might observe, in a large system, a 
nucleating frozen state within the growing bubble of defect turbulence invading phase 
turbulence. 

Finally, we note, not surprisingly, that the breakdown of phase turbulence is also an 
hysteretic transition. Crossing line I_ from left to fight, one remains in either defect 
turbulence or a frozen state. 

5. Discussion 

After this brief description of the "phase diagram", we comment on important related 
points as well as some theoretical problems currently under investigation. 

5.1. Infinite-size, inf ini te- t ime l imit  

The phase diagram of Fig. 1 summarizes numerical results. As such, even though 
customary precautions have been taken (e.g. to insure the extensivity of chaos in the 
disordered regimes), it does not represent the "true" phase diagram, i.e. that of the 
infinite-size, infinite-time, "thermodynamic" limit. This question, which also arises in 
the d = 1 case, has been recently investigated [ 13], in particular with respect to the 
existence of phase turbulence in the thermodynamic limit (represented by line 1_ here). 
Indeed, the very existence of phase turbulence is questioned. As for the d = 1 case, 
it is currently impossible to make a definitive statement, on the basis of numerical 
simulations alone, as to whether line I_ coalesces with the BF line in the thermodynamic 
limit. A careful analysis of statistical data about phase turbulence in one and two 
dimensions for various system sizes and integration times is under way and will be 
reported elsewhere [ 18]. Extrapolation of size effects, though, seems to lead to the 
conclusion that phase turbulence might not exist in the thermodynamic limit. It remains 
nevertheless that for all practical purposes (numerical or experimental), there exists a 
domain of parameter space where phase turbulence is statistically stationary and subsists 
- even in very large systems - for times as long as desired. At any rate, Fig. 1 is 
representative of system sizes and integration times accessible to current computers 
(say up to linear size L in the order of 104 and integration times up to 105), and line 
I_ is probably slightly shifted for much larger systems. 

The status of line T, which delimits the domain of existence of sustained regimes of 
defect turbulence, is subjected to similar remarks. Statistical data about the probability 
of breakdown (to a frozen state) should be cumulated in order to estimate the position 
of line T in the thermodynamic limit. This should be completed by a detailed study of 
the variation of Rturb with parameters bl and b3 to provide a precise determination of 
line T'.  The question, raised in Section 4.1, of whether lines T and T'  coalesce in the 
thermodynamic limit, could thus be addressed. The existence of defect turbulence is not 
in question, though, as line T is bound to be situated to the fight of line 52 (which 
limits absolutely the domain of existence of frozen states). 
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Fig. 7. (a),(b) 
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Fig, 7. Breakdown of phase turbulence in a system of linear size L = 512 with paran~ters bl = 2 and 
b3 = 1.28 coming from a phase turbulent system at bl = 2 and b3 = 1.33. ( a ) - ( c ) :  snapshots of field [A[ at 
time t = 600,700,800 in grey scale from IAI = 0 (black) to IAI = 1.29 (white). Note the growing "bubble" 
of defect turbulence, whose diameter increases linearly with time ((d) :  square root of the surface S of the 
bubble along time). 
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5.2. Cellular structures 

Cellular structures appear both in phase turbulence (Fig. 3) and, of course, as frozen 
states (Fig. 5). In phase turbulence, the dynamics produces statistically stationary con- 

figurations which can be studied along the lines of what is usually done for, say, the 
coarsening of soap froths [ 19]. For example, a first step would be to estimate the statis- 

tical properties of  cells - their sizes, their number of sides - and a second stage could 
consist in determining the local events of which their dynamical evolution is composed. 

As mentioned in Section 3.2, this should provide a better understanding of the elemen- 

tary processes involved in phase turbulence, as well as a better statistical description of 
this regime. This could also pave the way to a simple "particle model" sharing the same 

statistical properties, similar to the work of Rost and Krug [23] on the KS equation. 

In the case of the frozen states, as discussed earlier, the characteristics of the structures 
depend strongly on the "dynamical history" that led to them, so that an investigation of 
their geometrical properties must be correlated to their origin and formation. 

5.3. Complete phase diagram 

Admittedly, the phase diagram of Fig. 1 is not quite complete. Work remains to be 

done, in particular on the following points: 
- The bl ~ c~, "nonlinear Schrrdinger", limit needs to be clarified: Where are lines 

52 and T located? How does the core instability of spirals intervene in the dynamical 

regimes? 
- The bl < 0 region, and especially the prolongation of line T, should be investigated, 

as well as the bl ~ -cx~ limit. 
- It is known that, at least for d = 1, the CGL equation exhibits well-behaved disordered 

regimes in some parts of the b3 < 0 half-plane [24], in spite of the absence of the 
usual nonlinear saturation mechanism. Such a possibility should also be explored in 

the two-dimensional case. 
- The processes of nucleation of the spiral cores should be studied in detail, at least 

from a statistical point of view. In particular, the minimal core size that can possibly 

lead to the growth of a spiral should be estimated, as well as the probability of such 
an event. This would help define a line to the right of line T beyond which nucleation 
is immediate (corresponding to the line "NUC" in [21]),  as well as clarify the nature 
of the frozen states with residual turbulence observed experimentally between lines T 
and T ~. 

5.4. Large-scale description 

The possibility of large-scale descriptions of deterministic spatio-temporal chaos in 
terms of Langevin-like, (nonlinear) stochastic equations, is a question currently being 
debated, essentially because one can then hope to apply methods of statistical mechan- 
ics [25]. One central point is to investigate to what extent and under what conditions 
the local chaotic fluctuations are equivalent to a "noise" at large scales. 
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The CGL equation offers, here also, a good testground for such questions. In this 
spirit, phase turbulence has been proposed [26] to be described, at large scales, by 
the noisy Burgers or Kardar-Parisi-Zhang (KPZ) [27] equation, which is (among 
other things) a model for the kinetic roughening of stochastic interfaces. Indeed, since 
the phase 4, = arg A is always defined in this regime, one can consider the evolution 
of the phase field only (at least on an experimental level), which, in turn, can be 
seen as the progression of a d-dimensional interface in a (d + 1 )-dimensional medium 
(unwinding the phase advance on the real axis). Numerical results for d -- 1 and d = 2 
seem to confirm the validity of the KPZ ansatz [ 18]. The KPZ picture also reveals the 
asymptotic behavior of correlations in phase turbulence. In particular, spatial correlations 
of the phase should decrease either algebraically ("linear regime" of KPZ) or like a 
stretched exponential ("nonlinear regime"). 

To go beyond this type of numerical observation, the effective large-scale stochastic 
equation has to be built from the original model. An important step toward this aim has 
been achieved recently for the one-dimensional Kuramoto-Sivashinsky equation (which 
is also believed to be described by KPZ at large scales [28] ). Carefully studying the 
elementary mechanisms at the origin of spatio-temporal chaos, Chow and Hwa [20] 
have succeeded in calculating, from data on local chaos only, the parameters of the 
effective KPZ equation. It is not clear how such a program could be carried out for 
the CGL equation in any of its disordered regimes - even for phase turbulence - but a 
detailed analysis of the elementary processes at work in each case appears as a necessary 
step deserving further work. 

6. Condus ion  

The general picture of the two-dimensional CGL equation presented here, even though 
it should be completed along the lines mentioned above, already provides a good starting 
point to people wanting to study various aspects of spatio-temporal chaos in this system. 
In particular, our study should help choose specific parameter values. It should also help 
experimentalists recognize whether the physical or numerical problems they study are 
typical of the CGL equation and, if so, of what particular regime. Finally, natural 
extensions of this work include a similar study of the three-dimensional case, and of the 
various modifications of CGL usually considered in the literature. 
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