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Quantum chaos

Roderick V. Jensen

What are the special properties of strongly perturbed quantum systems when the corresponding classical
mechanical systems exhibit chaotic behaviour? This is the central question of quantum chaos. Theoretical
and experimental studies of highly excited atoms in strong magnetic fields and intense microwave fields
have revealed surprising new physical phenomena with far-reaching applications.

“The classification of the constituents of a chaos, nothing
less is here essayed.”
Herman Melville
Moby Dick, 1851

IN Melville’s time, ‘chaos’ referred to a state of disorder or
confusion. In the past 15 years, the word has been endowed
with a new meaning in the lexicon of science and mathematics.
Since May’s seminal review article' in 1976, *“ Simple mathemati-
cal models with very complicated dynamics”, chaos has emerged
as a technical term for the irregular, unpredictable and
apparently random behaviour of a wide variety of deterministic
dynamical systems such as fluctuating biological populations,
cardiac arrhythmias, oscillating electrical circuits, vibrating
structures, turbulent fluids and particle orbits in accelerators,
plasma fusion devices and the Solar System”™. In turn, this new
concept of ‘deterministic randomness’® has given birth to a
rapidly developing interdisciplinary field of research called non-
linear dynamics®.

My goal here is less ambitious than Melville’s stated aim in
his well-known treatise on ‘chaos’. Although the many new
concepts and research methods in nonlinear dynamics and chaos
have found widespread applications in the biological and social
sciences as well as in the physical sciences and engineering, |
will focus here on the classical and quantum mechanical descrip-
tion of strongly coupled and strongly perturbed nonlinear sys-
tems in physics. Specifically, I will address the profound and
often controversial problem of ‘quantum chaos’, the question
of how quantum systems behave when the corresponding
classical systems are chaotic. Extensive theoretical modelling
coupled with experimental measurements on physical systems
has uncovered a wealth of new physical phenomena at this
exciting frontier between the microscopic and the macroscopic
world, where the classical theory is chaotic and the quantum
theory can be very complicated.

Classical chaos

According to Newton, the behaviour of a mass on the end of
spring or a planet orbiting the Sun should be completely
described by the differential equations of motion of classical
mechanics’. If we specify the initial values of the positions and
momenta, then the deterministic equations uniquely specify the
motion for all times in the future (and the past). But except in
rare examples, usually emphasized in physics textbooks, these
equations do not have simple analytical solutions.

In general the classical equations of motion are nonintegrable.
Although the evolution is deterministic, in most cases we cannot
find it without the help of numerical calculations. Worse,
numerical studies of the nonlinear classical equations of motion
for many model problems, such as two or more coupled, anhar-
monic oscillators®, or asteroid orbits periodically perturbed by
the gravitational pulls of nearby planets®, have led to the realiz-
ation that the time evolution can show ‘extreme sensitivity to
initial conditions’. Uncertainties or errors in the initial condi-
tions can grow at an exponential rate which is intrinsic, not an
artefact of any numerical approximations. Remarkably, this
property of nonlinear differential equations was first pointed
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out by Poincaré'® at the turn of the century for the classical
three-body problem, long before the advent of modern digital
computers.

The local instability of motion that leads to this ‘extreme
sensitivity to initial conditions’ is the defining property of chaos
in classical systems. The laplacian ideal of perfect predictability
in these deterministic systems can only be realized if the initial
conditions are known and specified with infinite precision. Any
errors grow rapidly, preventing long-time prediction and result-
ing in behaviour that appears irregular and random™.
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FIG. 1 a A typical chaotic, classical orbit of an electron moving in the
two-dimensional potential in equation (1). b, For special initial conditions*®
the trajectory can be periodic: the particle moves away from the nucleus
at the origin, oscillates because of the force of the magnetic field, and
returns to the nucleus where it is reflected backward along its previous
path. For strong magnetic fields, however, these regular, periodic orbits are
highly unstable. If we displace the trajectory by as little as one part in 10°,
then we get the highly irregular orbit shown in a.
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To illustrate this concept of deterministic randomness, Fig. 1
shows plots of two different classical trajectories for a particle
moving without friction in a two-dimensional potential well'!

2
V()c,y)=~1/\/x2+y2+l—:;—x2 (1)

which corresponds to the effective potential experienced by an
electron moving in an attractive Coulomb field and a constant
magnetic field, B. If the potential consisted only of the first term
representing the Coulomb field or the second term correspond-
ing to a simple harmonic oscillator, then the analytical solutions
of the equations of motion could be found in many classical
physics texts”. But this simple combination of forces often yields
irregular, unpredictable, apparently random trajectories such as
that shown in Fig. 1a. For a slightly different initial condition,
corresponding to a change of the starting position by one part
in a million, the resulting trajectory (Fig. 1b) is completely
different. In this case it lies close to one of the infinitely many
(but still relatively rare) unstable periodic orbits for this dynami-
cal system.

The problem of quantum chaos

Bohr’s correspondence principle'?, which requires that quantum
and classical behaviour should coincide for macroscopic sys-
tems, might suggest that some vestiges of classical chaos should
persist in the quantum theory. For bounded systems, however,
neither the quantum wavefunctions nor any observable quan-
tities can show the extreme sensitivity to initial conditions that
defines classical chaos. The quantum mechanical energy spec-
trum is discrete, and the solutions of the Schrodinger equation
restrict the quantum dynamics to quasiperiodic behaviour,
whereas the corresponding classical dynamics can be fully
chaotic.

As a consequence it does not seem possible to define quantum
chaos as a property of a quantum system that corresponds to
chaos in classical mechanics. Nevertheless, the term quantum
chaos is used to refer to the study and description of the
properties of quantum systems for which the corresponding
classical hamiltonian system is chaotic. In an effort to avoid
confusion between the definition of an attribute of a physical
system and a field of study, Berry'® has introduced the term
‘quantum chaology’ to be synonymous with this usage of ‘quan-
tum chaos’.

It may emerge from these studies of quantum chaology that
real quantum systems can exhibit true chaos. Indeed, some
peculiar theoretical models of unbounded quantum systems
(with continuous energy spectra) have been shown to be capable
of chaotic dynamics, but these models suffer from unphysical
properties such as unbounded, exponential growth of energy
and momentum'®. For realistic, few-body, quantum systems,
such as atoms and molecules, it seems that radical changes in
the present quantum theory are required for chaotic behaviour”.

Despite debate over the meaning of the term ‘quantum chaos’,
nearly everyone agrees on the important problems'>. What is
the nature of the classical-quantum correspondence principle
for classically chaotic systems? What are the characteristic
properties of the energy levels and eigenfunctions for a system
of strongly coupled nonlinear oscillators, such as a highly excited
polyatomic molecule or a simple hydrogen atom in a strong
magnetic field? How does the quantum wavefunction evolve for
strongly perturbed nonlinear oscillators such as atoms or
molecules in intense electromagnetic fields?

These problems represent an exciting frontier for modern
physics and chemistry. Pioneering experiments on highly excited
Rydberg atoms in strong magnetic static fields have been made
by groups at the University of Bielefeld'®'® and Massachusetts
Institute of Technology®®“?, and in intense microwave fields at
the University of Pittsburgh®-** and the State University of New
York at Stony Brook®*"*’. The classical descriptions of these
highly excited electron orbits are chaotic when perturbed by
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sufficiently strong magnetic and electromagnetic fields. For
example, when the Lorentz force on an electron moving in a
strong magnetic field competes with the Coulomb binding
field'***3% then the typical classical electron trajectory
resembles that shown in Fig. 1a. Similarly, when the oscillating
force due to an applied microwave field becomes comparable
to the Coulomb binding field*', a stroboscopic picture of the
classical electron motion in action-angle phase space shows a
transition from mostly regular behaviour (Fig. 2a) to widespread
chaos (Fig. 2b). Although the solutions of the Schrddinger
equations for these systems cannot satisfy the strict definition
of classical chaos, experimental and associated theoretical
studies of the quantum chaology for these simple atomic systems
have nevertheless revealed a rich variety of new physical
phenomena.
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FIG. 2 Poincaré surfaces of section provide a revealing stroboscopic picture
of the classical dynamics for a bound electron in a one-dimensional hydrogen
atom perturbed by a very intense microwave field. instead of using the usual
position and momentum variables, | have transformed to the more convenient
action-angle variables (/, 8) where the action, / is proportional to the principal
quantum number n by the Bohr-Sommerfeld quantization, and the angle
variable, 6, is conveniently measured in units of radians/2 . The numerically
calculated locations are shown for several classical orbits plotted once
every period of the oscillating perturbation. In a, the perturbing field is below
the threshold for the onset of chaotic ionization and the stroboscopic traces
of the classical orbits lie along smooth, regular curves for initial conditions
corresponding to highly excited hydrogen atoms with principal quantum
numbers between n=80 and 100. When the perturbing field is increased
above the threshold for chaotic ionization (b), many initial conditions lead
to highly irregular, chaotic orbits which rapidly ionize. (Reprinted with per-
mission from ref. 33.)
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For example, measurements and calculations of the spectra
of hydrogen atoms in strong static magnetic fields**° have
revealed relationships between the statistics of the energy level
spacings and the predictions of the random matrix theory of
nuclear physics®’. In addition, detailed investigations of the
electron dynamics in a hydrogen atom exposed to strong elec-
tromagnetic fields have shown how the quantum dynamics can
mimic the classical chaos for limited times**—* and how quantum
interference effects can suppress the chaotic classical dynamics
by localizing the wavefunction®>~*” through a mechanism related
to Anderson localization in solid-state physics.

Moreover, theory and experiment for both systems have
exposed the importance of ‘scarred’ wavefunctions which are
highly correlated with unstable classical periodic orbits®®. Even
though the classical description of the electron motion in a
highly excited hydrogen atom in an intense microwave field or
in a strong magnetic field may be fully chaotic, many quantum
wavefunctions nevertheless seem to cling to the remnants of
regularity represented by these unstable periodic orbits.

Highly excited atoms in strong magnetic fields

The Zeeman splitting of atomic energy levels by magnetic fields*
has traditionally been a proving ground for new theoretical ideas
and approximations in the development of quantum mechanics.
For weak and moderate magnetic fields, the splitting is well
described by quantum perturbation theory*’. For example, in
moderate magnetic fields the electron energy levels in hydrogen
atoms have the regular sequence (Fig. 3a) that is predicted by
the theory of the quadratic Zeeman effect*'. In large magnetic
fields, however, where the magnetic forces on the electron
become comparable to the Coulomb binding fields, the conven-
tional tools of quantum perturbation theory break down and
the energy levels become ‘irregular’, as shown in Fig. 3b. This
transition from regular to irregular spectra, as the corresponding
classical system goes from regular to chaotic, was first conjec-
tured by Percival*? and Zaslavsky* in the 1970s, although this
conclusion was presaged by Einstein*' in 1917 when he remarked
on the difficulty of assigning quantum numbers to the energy
levels in nonintegrable systems.

For ground-state atoms this transition occurs for astronomi-
cally large fields (~10* Tesla) which can only be realized in
white dwarf and neutron stars. But as the Coulomb binding
fields decrease rapidly as 1/n* with increasing principal quan-
tum number n, this new parameter regime where the classical
mechanics is chaotic and the quantum spectrum is complex can
be readily achieved using highly excited atoms with principal
quantum numbers ranging from n = 30 to 40 in laboratory fields
of 4-6T. As a consequence, the energy spectrum of highly
excited hydrogen atoms has emerged as an important model
problem in this new field of quantum chaos.

Because of the complexity of the irregular energy spectrum
for hydrogen atoms in strong magnetic fields (Fig. 3b) and for
other model quantum systems that are classically chaotic, the
spectra were first analysed with statistical methods that had been
previously developed to characterize the complex, irregular
energy-level spectra of excited nuclei®®**°. Because the precise
coupling between strongly interacting nucleons is not known
and is presumed to be complicated, it was simply assumed that
the statistical properties of the nuclear energy-level spacings
would be indistinguishable from the distribution of eigenvalues
of large matrices with randomly chosen matrix elements®. This
random matrix theory predicts that the probability distributions
for the spacings, s, of adjacent energy levels should be well
approximated by the Wigner-Dyson distribution P(s)=
s exp (—s?), which provides an excellent description of the
spacings of the measured energy levels in excited nuclei*.

Although there are no unknown or random elements in the
hamiltonians for these classically chaotic systems, the statistics
of the energy-level spacings for these systems also agreed
remarkably well with the specific predictions of the random
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matrix theory. This striking result suggests that the quantum
dynamics of the strongly interacting nucleons in excited nuclei
may share many features with the much simpler hydrogen atom
in a strong magnetic field*’. Nuclear physicists have been greatly
interested by these results, and some have even proposed that
these statistical properties of the energy distributions should
form the definition of quantum chaos®®. But this statistical
‘structure’ in energy-level spacings is only one of the many
interesting properties of quantum systems that are classically
chaotic.

The first experiment on highly excited atoms in strong mag-
netic fields to indicate that there was even more interesting
structure in the spectrum than that described by the statistical
theories were done by Garton and Tompkins* in 1969. They
measured the photoabsorption spectrum by exposing barium
atoms in strong magnetic fields to different wavelengths of light.
When the photon energy of the light matched the excitation
energy for a highly excited state, the production of excited states
could be detected. Although the distribution of energy levels
was expected to resemble well-stirred spaghetti (like the pattern
shown in Fig. 3b), these experiments produced one of the first
surprises of the quantum description of classically chaotic
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FIG. 3 The discrete, qguantum-mechanical energy levels of a hydrogen atom
in an external magnetic show a well studied symptom of ‘quantum
chaos'?83_ When the magnetic forces on the electron are much weaker
than the Coulomb forces (a), the low-lying energy levels of the hydrogen
atom with 1=10— 16 in static magnetic fields have a regular spacing which
increases with B as predicted by the theory of the quadratic Zeeman effect.
(This figure was provided by D. Kleppner.) b, For highly excited atoms with
n = 40, magnetic fields of 5-6 T strongly perturb the electron energy levels.
The classical dynamics in the combined Coulomb and magnetic fields is
chaotic, and the calculated and measured spectra show irregular patterns
resembling well stirred spaghetti. (Reprinted with permission from ref. 74.)
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systems by exhibiting regular modulations of the photoabsorp-
tion cross section as a function of energy®.

Because of the enormous number of quantum levels spanned
by these early experiments, it was difficult to resolve the fine
structure of the spectrum, let alone individual quantum levels.
Higher-resolution measurements of photoabsorption in strong
magnetic fields of highly excited hydrogen atoms'®'® and of
highly excited lithium atoms”®~>*> provided a detailed picture of
the rich and intricate structure of the spectrum. For example,
Fig. 4a shows the measured photoabsorption spectrum for
hydrogen atoms in a strong, 5.96-T magnetic field. The graph
shows the laser-excitation probability from an n=2p state to
high-lying Rydberg states with principal quantum numbers n >
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FIG. 4 a The photoabsorption spectrum for a hydrogen atom in a strong,
5.96-T magnetic field as a function of laser energy for transitions near the
jonization potential £, which is shifted slightly above O in the presence of
the strong magnetic field. If the experiment had uniimited resolution, then
the spectrum for £ < £, would consist of an infinite sequence of sharp
peaks located at the transition energies in the strongly perturbed atom and
the heights of the peaks would provide a measure of the transition probabil-
ity. This ‘stick’ spectrum is smoothed because of the finite experimental
resolution and the naturai line widths of the ionizing states for £> E.
Although this complex spectrum seems to have little structure, the reader
may still discern a few Garton-Tompkins oscillations® with period ~10 cm™
on the right side of the figure. (Reprinted with permission from ref. 18.) b,
The Fourier transform of the photoabsorption spectrum in a (dotted curve),
compared with semiclassical theoretical predictions based on the contribu-
tions from short periodic (or closed) orbits in the classical description of a
highly excited hydrogen atom in a strong magnetic field. The locations of
the peaks in the Fourier transform, which represent regular modulations of
the quantum photoabsorption spectrum, correspond to the periods of these
short orbits measured in units of the classical gyro-period of a free electron
in the static magnetic field, 7. (Reprinted with permission from ref. 46.)
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60 for laser photon energies E < E;, and into free-electron
resonance states for E > E|p, where E| is the ionization poten-
tial. This complex spectrum, representing the contributions of
millions of individual energy levels, does not seem obviously
regular. If, however, we plot the Fourier transform of this
photoabsorption spectrum as a function of energy, then we find
distinct peaks as a function of time, as shown by the dotted
curve in Fig. 4b. For example, the original Garton-Tompkins
oscillations correspond to a characteristic time, 2/3 the classical
gyro-period of a free electron in the magnetic field, which gives
rise to the largest peak in Fig. 4b. Many more peaks are clearly
visible.

Extensive theoretical work'®'®?*-3® has now shown that the
characteristic times for these regular oscillations in the ‘irregular’
spectrum correspond to the periods of short, usually unstable,
periodic orbits in the classical description of electron motion
in combined magnetic and Coulomb fields, such as that shown
in Fig. 1b. The solid lines in Fig. 4b indicate the results of
theoretical calculations of the photoabsorption spectrum based
on the contributions of interfering wavefunctions that propagate
along the directions of these unstable classical orbits*.
Moreover, additional high-resolution measurements of photoab-
sorption by lithium atoms in strong magnetic fields*'*? show
that these regular features in the spectrum associated with
unstable classical periodic orbits clearly persist for positive
energies where the typical classical electron trajectories are not
only highly unstable but are not even bound.

Quantum ‘scars’ of classical orbits

Although the solutions of the time-dependent Schrdodinger
equation for this bounded quantum system cannot exhibit the
local instability of chaotic classical trajectories, like the one
shown in Fig. 1a, the eigenfunctions and eigenvalues neverthe-
less seem to be strongly correlated with the more regular classical
periodic orbits, like the one in Fig. 1b. This remarkable property
of the quantum description of classically chaotic systems was
strikingly demonstrated in a simple model problem known as
the ‘stadium billiard*®. Figure 5a shows a typical classical
trajectory of a particle moving without friction on a billiard
table shaped like a stadium. This model system can be rigorously
proven to be fully chaotic. Although there is a dense set of
periodic trajectories, they are all unstable.

The quantum description is equivalent to solving for the
electromagnetic modes in a cavity or the vibrations of a drum-
head of this shape®’. In spite of the irregular classical dynamics,
many of the quantum eigenfunctions (or normal modes of
vibration) have surprising structure with high amplitude along
short, unstable periodic orbits. For example, Fig. 5b shows a
contour map of the probability amplitude for a highly excited
eigenstate of the stadium. Heller’®, who first observed these
structured eigenstates in numerical calculations of the eigen-
functions of the stadium billiard, described them as having
‘scars’ of the classical periodic orbits, and provided theoretical
arguments for the constructive quantum interference responsible
for their appearance.

These ‘scarred’ wavefunctions were subsequently found in
other classically chaotic quantum systems: they exist in the
model systems corresponding to smooth molecular potentials*®,
in numerically calculated wavefunctions for hydrogen atoms in
strong magnetic fields*’ and in experimental measurements of
the eigenmodes of microwave cavities with walls shaped like
classically chaotic billiards®®. The scars seem to be ubiquitous
in quantum descriptions of classically chaotic systems, and this
has important implications. In particular, the existence of these
highly structured wavefunctions suggests that a reinterpretation
of the correspondence principle is necessary, at least in this
intermediate regime between the microscopic quantum and
macroscopic classical worlds. For example, because of this
‘localization’ of some of the quantum wavefunctions to the
vicinity of classical periodic orbits, statistical theories that are
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applicable to the ergodic, classical systems may fail for the
quantum.

Theoretical research into the mathematical connection
between the classical periodic orbits and the spectral oscillations
and scarred wavefunctions using the elaborate, semiclassical
periodic orbit theory of Gutzwiller’', which is based on the
Feynman path-integral formulation®? of quantum mechanics, is
now beginning to bear much fruit. For example, using the
unstable periodic orbits of the highly chaotic motion of two
classical electrons orbiting the helium nucleus, Ezra ef al. have
succeeded in doing a semiclassical calculation of the energy
levels of doubly excited states of helium atoms>. This striking
illustration of the classical-quantum correspondence for classi-
cally chaotic systems finally provides the solution of a 70-year-
old problem®* which had originally led to the demise of the old
Bohr-Sommerfeld quantum theory in the 1920s.

Microwave ionization of excited atoms

Einstein’s 1905 theory of the photoelectric effect®® stated that
the ionization of an atom exposed to electromagnetic radiation

FIG. 5 & Typical, chaotic classical trajectory for a ‘stadium billiard’. Ten
thousand bounces are shown of a highly irregular orbit, which never repeats
and eventually will uniformly (ergodically) cover the area enclosed by the
stadium walls. In stark contrast, highly excited quantum eigenfunctions often
show regular structures that restrict the probability for finding the particle
to bands along some of the unstable, periodic orbits in the stadium. A
topographic map of one of these ‘scarred’” wavefunctions is shown in b, and
the guiding unstable periodic orbit is superimposed in ¢. (Reprinted with
permission from ref. 38.)
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requires the absorption of a photon with the right frequency (or
energy) to make the transition from a bound state to the con-
tinuum. As a consequence, photoionization is expected to
depend very sensitively on the radiation frequency but not on
the intensity. But in 1974, Bayfield and Koch® reported a
remarkable result from their experiments on microwave ioniz-
ation of highly excited hydrogen atoms with principal quantum
numbers near n = 66. They found that the ionization depended
strongly on the intensity of the radiation and only weakly on
the frequency. When the microwave fields were below a critical
threshold, no ionization occurred. When the microwave fields
exceeded a critical threshold, corresponding to 10-20% of the
Coulomb binding field for these highly excited states, the atoms
were rapidly ionized.

As the photon energy was only ~1% of the energy required
to ionize these atoms, this novel ionization mechanism was
presumably a high-order multiphoton process (one hundred
photons or more). A quantum mechanical, time-dependent per-
turbative treatment of this system was not feasible because both
the magnitude of the perturbation and the numbers of photons
were large. In fact, the first successful theoretical description of
these results was provided in 1978 by Leopold and Percival®®,
who used the large quantum numbers in the experiment to justify
a classical treatment of the Bohr atom in the oscillating electric
field. By numerically solving the classical equations of motion
they showed that the classical theory predicted ionization in
good agreement with experiment.

The physical mechanism responsible for the classical ioniz-
ation is the onset of chaos in this strongly perturbed nonlinear
oscillator. In the absence of the perturbation, the classical
equations of motion are integrable, and the bound electron
motion is confined to a Kepler ellipse like the orbit of a planet
about the Sun. But when the microwave perturbation is applied,
the Kepler ellipse begins to wobble, precess and elongate, and
when the perturbation exceeds a sharp threshold the electron
escapes and the atom is ionized. For example, Fig. 2 illustrates
this transition from regular, bounded motion to chaotic ioniz-
ation in a one-dimensional classical model of a hydrogen
atom in a strong oscillating field as the field is increased from
below (Fig. 2a) to above (Fig. 2b) the threshold for widespread
chaos.

Further confirmation®® of this chaotic ionization mechanism
was provided by experimental measurements of the threshold
fields for the onset of microwave ionization over a wide range
of excited states of hydrogen with principal quantum numbers
from n =32 to 90. Figure 6 shows a comparison of the experi-
mental thresholds with the numerically calculated classical and
quantum thresholds for the onset of chaotic ionization®'**** in
a one-dimensional model of the experiment. The threshold
microwave fields, F, for the measured onset of ionization are
plotted in scaled atomic units, n*F, against the scaled microwave
frequency, n°§), for many different initial quantum states and
two different microwave frequencies, 9.9 and 36 GHz. For both
frequencies, the classical predictions for the onset of chaotic
ionization are in remarkably good agreement with the quantum
ionization thresholds (both experimental and theoretical) as
long as the microwave frequency, {1, is less than the Kepler
orbital frequency, 1/#° in atomic units. These results clearly
indicate that, although quantum mechanics cannot satisfy the
strict definitions of classical chaos, the quantum dynamics may
nevertheless mimic the chaotic classical ionization, at least on
the limited timescales of these experiments.

For higher frequencies, n°Q > 1, the classical and quantum
thresholds start to diverge. This apparent breakdown of the
correspondence principle was theoretically predicted by Casati
et al®” who argued that the chaotic classical ionization should
be suppressed by quantum interference effects related to the
mechanism of Anderson localization in solid-state physics. As
in the previous example of highly excited atoms in strong mag-
netic fields, these novel results for the interaction of intense

315

© 1992 Nature Publishing Group



REVIEW ARTICLE

0.10 -

L
<t
<
0.05
| N i
o
(=14}
0.00 L Lo | L L i | : P S
0.0 0.5 1.0 1.5
n3Q

FIG. 6 Experimental measurements of the threshold microwave fields for
the onset of ionization in scaled atomic units, Ff,=n"F, are plotted as a
function of the scaled microwave frequency, Q,=n>Q, for highly excited
hydrogen atoms with principal guantum numbers n=232 to 90, exposed to
a 9.92-GHz field®® ([1) and a 36 GHz field®® (O). Each experimental data
point indicates a different initial quantum state. For ), <1 these experi-
mental results are in very good agreement with the classical predictions of
the onset of chaotic ionization (solid curve) and the (less accurate) quantum
calculations (crosses with iarge error bars) for a one-dimensional model of
the experiment®>. For higher scaled frequencies, (05> 1, the experimental
thresholds continue to show good detailed agreement with the quantum
calculations but at fields much larger than the classical thresholds. The
arrow indicates the initial state, n=62, that is stabilized by the excitation
of the ‘scarred’” wavefunction shown in Fig. 7. (Reprinted with permission
from ref. 60.)

electromagnetic fields with matter demand a careful reassess-
ment of the correspondence principle.

In particular, for this time-dependent problem, the classical-
quantum correspondence depends on a timescale known as the
‘break-time’, tz which is roughly determined by the energy-level
spacing of interacting quantum states, AEoC1/1ty, through the
Heisenberg uncertainty principle®***’. Roughly speaking’’, for
short times ¢ < tg, the quantum system cannot recognize the
discrete nature of the interacting quantum states with typical
energy spacing AE, and the quantum evolution of observable
quantities such as the expectation of position and momentum
may be well approximated by classical dynamics. For longer
times, the quantum discreteness of the coupled states requires
that the quantum evolution of observables be quasiperiodic
rather than chaotic.

For experiments at low scaled frequencies (n’Q2<1 in Fig.
6), many quantum states are strongly coupled by multiphoton
processes of all orders, so the effective AE is small and the
classical theory is a good approximation on the short timescales
of the experiment. For higher frequencies, however, a dynamical
selection rule restricts the coupling to relatively few quantum
states that are close to resonance for single photon excita-
tions®®*°. This reduction in the density of coupied states
decreases the break-time so that quantum interference effects
can inhibit the classical chaotic ionization on the timescales of
the experiment.

High-scaled-frequency experiments®**S have confirmed this
prediction that the quantum system tends to be more stable
against ionization than the classical. But the quantum excitation
still seems to fluctuate considerably depending on the experi-
mental parameters. For example, Fig. 6 shows that the quantum
state with n =62 is much harder to ionize than n =61 or n = 63.
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Theoretical work on the physical mechanisms responsible for
this striking fluctuation in the quantum transport again illustrates
the important role of scarred wavefunctions. Specifically, Jensen
et al®® showed that this enhanced stabilization in the quantum
calculations is due to the selective excitation of a quantum
wavefunction that is highly localized to the vicinity of an
unstable periodic orbit in the classical phase space. A topo-
graphic map of this scarred wavefunction is superimposed on
the corresponding classical phase space in Fig. 7. The quantum
probability for this state is strongly peaked near an unstable
periodic orbit and its associated stable and unstable manifolds.
In contrast, the wavefunctions excited from n=61 and n =63
are extended throughout the chaotic region of the classical phase
space in Fig. 7 and therefore ionize more readily.

Applications and new directions

Quantum mechanics has traditionally (and very successfully)
dealt with problems involving weakly interacting or weakly
perturbed microscopic systems. Strongly coupled or strongly
perturbed systems in atomic, molecular, solid-state, nuclear and
elementary particle physics represent a new and difficult regime
for quantum mechanics, requiring new theoretical as well as
experimental methods.

In the past six years, theoretical and experimental investiga-
tions of hydrogen atoms in intense microwave fields or highly
excited hydrogen and lithium atoms in strong magnetic fields
have been the principal focus of much of the research in quantum
chaos. Despite the relative simplicity of these physical systems,
remarkable and unexpected properties of strongly perturbed
quantum systems have appeared which have required a careful
reassessment of our understanding of the classical-quantum
correspondence principle. For example, the chaotic ionization
of highly excited hydrogen atoms has shown how the quantum

FIG. 7 A topographic map (light lines) of the highly localized, ‘scarred’
wavefunction that is responsible for the anomalous stability of n=62 is
superimposed on the corresponding classical Poincaré surface of section
(dots and heavy lines) similar to those shown in Fig. 2. For the more
experienced quantum chaologist, the relative size of Planck’s constant for
these experimental parameters is indicated in the upper right-hand corner,
and the lines of arrows indicate the classical stable and unstable manifolds
emanating from the unstable periodic orbit centred at /=56 and 6=0, 1.
(Reprinted with permission from ref. 60.)
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FIG. 8 The differential cross-section for the two-dimensional, etastic scatter-
ing of a plane wave from three perfectly reflecting discs, plotted as a function
of incident wavenumber k. This scattering cross-section is only weakly
correlated with the real parts of the resonance energies, indicated by the
vertical broken lines, because the widths of the resonances are comparable
to or greater than their separation. In this regime the irregular fluctuations
of the scattering cross-section are reminiscent of the Ericson fluctuations
in neutron scattering from heavy nuclei®®, the conductance fluctuations in
small solid-state devices®®’ and the large fluctuations in the quantum
transport measured by the threshold fields for microwave ionization for
n®Q>1 in Fig. 6. (Reprinted with permission from ref. 67.)

dynamics can mimic the chaotic classical dynamics for limited
times®'**** and the high-frequency stabilization of these
Rydberg atoms has revealed the important role of quantum
interference effects in localizing the quantum wavefunction®**’,
in close analogy with the mechanism of Anderson localization
in solid-state physics. In addition, experimental measurements
and theoretical calculations of the energy-level spectrum of
highly excited atoms in strong, static magnetic fields have shown
that the irregular spectrum for this simple quantum system with
chaotic classical dynamics has the same statistical laws as the
much more complicated and poorly understood spectrum of
excited nuclei*’. Finally, experiments on both physical systems
have shown quantum wavefunctions that seem to have scars*>
associated with unstable classical periodic orbits embedded in
the chaotic classical phase space.

The lessons learned from these studies of single hydrogen
atoms in strong fields promise to have many important applica-
tions in different areas of physics and chemistry. For example,
in nuclear physics a realistic model of the low-lying collective
states of nuclei®' (which is chaotic in a classical limit) has been
found to have statistical distributions of energy-level spacings
and transition amplitudes that are similar to those for the chaotic
hydrogen atoms in strong magnetic fields. Moreover, in atomic
physics it has been suggested®” that the quantum mechanical
scarring of unstable periodic orbits may provide a mechanism
for the suppression of ionization of ground-state atoms in super-
intense laser fields.

Another exciting direction is the extension of these new ideas
to irregular, or chaotic, scattering processes®. Conventional
quantum collision theory requires that the collisions be weak
(so that perturbation theory can be applied) or that the collisions
be very slow (adiabatic approximation) or fast (sudden approxi-
mation). If the collisions of electrons on atoms, atoms on
molecules, molecules on surfaces, neutrons on nuclei or pions
on protons are neither weak, nor slow, nor fast, then the scatter-
ing process may be very complex and difficult to describe. In
the course of such a scattering event a collision complex is
formed, the constituents rattle around, and the pieces fly apart.
Chemists have already shown that the quantum description of
this classically chaotic process can exhibit intricate interference
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associated with the unstable periodic orbits in the collision
complex, reminiscent of the scars in bounded atomic sys-
tems® %, Moreover, it has been shown that fluctuations in the
collision cross-sections for electromagnetic waves in curved
waveguides®”*® (shown in Fig. 8) and for electrons in mesoscopic
solid-state devices® obey the same statistical laws found empiri-
cally for the scattering of neutrons from compound nuclei®.
Like the oscillations of the photoabsorption spectrum of
hydrogen atoms in strong magnetic fields and the fluctuations
in the threshold fields for the microwave ionization of highly
excited hydrogen atoms for n*Q > 1, these so-called Ericson
fluctuations® in the scattering cross-sections seem to be inti-
mately related to the classical properties of unstable periodic
orbits. Many experimental and theoretical studies of these inter-
connections between classical and quantum physics are in pro-
gress®>~*°. For example, detailed comparisons of the classical,
semiclassical and quantum theories with experimental measure-
ments of the simplest inelastic and reactive atom-molecule
collisions D+ H, have recently been announced. In solid-state
physics the efforts to fabricate smaller and smaller electronic
devices have led to the discovery that electron scattering in
‘mesoscopic’ wires with widths smaller than 1 um produces
‘universal conductance fluctuations’, which are ‘random’ repro-
ducible variations in the resistance or conductance of the wire’".
These fluctuations even arise when the wires are so small that
the electron collides only with the curved boundary of the wire®’.
As a final illustration, it has also been suggested that the scatter-
ing cross-sections of elementary particles, such as pions on
protons, may exhibit Ericson fluctuations’® due to the strong
many-body interaction of the quark constituents. Since asymp-
totic freedom was discovered in the mid-1970s, most experi-
mental emphasis has been on high-energy scattering, where the
quarks are weakly coupled and perturbation theory can be
applied”?, so this last extension of quantum chaos to the farthest
boundaries of modern physics remains to be explored. [
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The structure of the E. coli recA protein

monomer and polymer
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The crystal structure of the recA protein from
Escherichia coli at 2.3-A resolution reveals a major
domain that binds ADP and probably single- and
double-stranded DNA. Two smaller subdomains at
the N and C termini protrude from the protein and
respectively stabilize a 6, helical polymer of protein
subunits and interpolymer bundles. This polymer
structure closely resembles that of recA/DNA
filaments determined by electron microscopy.
Mutations in recA protein that enhance coprotease,
DNA-binding and/or strand-exchange activity can
be explained if the interpolymer interactions in the
crystal reflect a regulatory mechanism in vivo.

THE recA protein (recA) has a pivotal role in homologous DNA
recombination and DNA repair in E. coli and other eubacteria.
The gene encoding recA was first shown in 1965 to be essential
for genetic recombination and resistance to ultraviolet irradi-
ation'. The 352-residue protein®? encoded by this gene has a
remarkable range of activities in vitro (for reviews, see refs 4-6).
RecA protein alone catalyses the central steps of recombination:
the pairing and strand exchange of homologous DNA molecules.

RecA protein polymerizes cooperatively and nonspecifically
on DNA to form a helical filament that is the active species in
the DNA-strand exchange and repressor-cleavage reactions.
Filaments are formed by rapid polymerization 5’ to 3’ on single-
stranded DNA or duplex DNA possessing a single-stranded

* Present address: Department of Pharmacology, Thomas Jefferson Univer-
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gap’. Stable binding to duplex DNA is also observed, but this
process is slow at neutral pH (ref. 8). Formation of active recA
filaments requires ATP or an analogue such as ATP-y-S°. Such
filaments can then specifically bind homologous duplex DNA
and promote a strand-exchange reaction'®. They can also induce
the cleavage of lexA (which leads to the SOS response'!),
umuD'? and the repressor proteins of A and other phages,
binding these proteins and stimulating their intrinsic ability to
self-cleave'’, thereby acting as a ‘coprotease’.

Image reconstructions of electron micrographs have provided
a low-resolution structure of the recA protein filament bound
to single- or double-stranded DNA'*'*. These filaments have a
pitch of 85-100 A, 6.1-6.2 monomers per turn, and a distinct
polarity. The DNA in recA/DNA filaments is extended by
~150% relative to B-form DNA, and unwound to ~18.6 nucleo-
tides (or base pairs) per turn'®. The stoichiometry of binding is
three nucleotides (or base pairs) per recA monomer'’.
Geometrical constraints require that the DNA must lie near the
centre of the helical filament'®. In the absence of DNA, recA
protein exists in various states of aggregation, including pure
protein polymers'®. These polymers have a shorter pitch than
the active recA/DNA filaments (~70 A); refs 19, 20), but under
certain conditions, such as high salt, they assume the higher
pitch and have the ATPase and coprotease activities normally
associated with the recA/DNA filament*!*??,

For a full understanding of recA protein function we need
details of the structure of the recA filament because of its
importance in recA activity. We have established and refined at
2.3 A resolution the crystal structure of the recA protein that
forms a recA polymer in the crystal. This polymer closely
resembles the low-resolution structure of recA/DNA filaments
seen in the electron microscope, and contains an extensive
interface between subunits. The study of recA structure and
function has been complicated by the interrelatedness of the
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