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Abstract

Synchronization processes in populations of locally interacting elements are in the focus of intense research
in physical, biological, chemical, technological and social systems. The many efforts devoted to understand
synchronization phenomena in natural systems take now advantage of the recent theory of complex net-
works. In this review, we report the advances in the comprehension of synchronization phenomena when
oscillating elements are constrained to interact in a complex network topology. We also overview the new
emergent features coming out from the interplay between the structure and the function of the underly-
ing pattern of connections. Extensive numerical work as well as analytical approaches to the problem are
presented. Finally, we review several applications of synchronization in complex networks to different dis-
ciplines: biological systems and neuroscience, engineering and computer science, and economy and social
sciences.
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1. Introduction

Synchronization, as an emerging phenomenon of a population of dynamically interacting units, has
fascinated humans from ancestral times. Synchronization processes are ubiquitous in nature and play a very
important role in many different contexts as biology, ecology, climatology, sociology, technology, or even in
arts [1, 2]. It is known that synchrony is rooted in human life from the metabolic processes in our cells to
the highest cognitive tasks we perform as a group of individuals. For example, the effect of synchrony has
been described in experiments of people communicating, or working together with a background of shared,
non-directive conversation, song or rhythm, or of groups of children interacting to an unconscious beat. In
all cases the purpose of the common wave length or rhythm is to strengthen the group bond. The lack of
such synchrony can index unconscious tension, when goals cannot be identified nor worked towards because
the members are ”out of sync” [3].

Among the efforts for the scientific description of synchronization phenomena, there are several capital
works that represented a breakthrough in our understanding of these phenomena. In 1665, the mathemati-
cian and physicist, inventor of the pendulum clock, C. Huygens, discovered an odd ”kind of sympathy” in
two pendulum clocks suspended side by side of each other. The pendulum clocks swung with exactly the
same frequency and 180 degrees out of phase; when the pendula were disturbed, the antiphase state was
restored within half an hour and persisted indefinitely. Huygens deduced that the crucial interaction for this
effect came from ”imperceptible movements” of the common frame supporting the two clocks. From that
time on, the phenomenon got into the focus of scientists. Synchronization involves, at least, two elements
in interaction, and the behavior of a few interacting oscillators has been intensively studied in the physics
and mathematics literature. However, the phenomenon of synchronization of large populations is a different
challenge and requires different hypothesis to be solved. We will focus our attention on this last challenge.

In the obituary of Arthur T. Winfree, Strogatz [4] summarizes what can be considered the beginning of
the modern quest to explain the synchronization of a population of interacting units: ”Wiener [5] posed a
problem in his book Cybernetics: How is it that thousands of neurons or fireflies or crickets can suddenly
fall into step with one another, all firing or flashing or chirping at the same time, without any leader
or signal from the environment? Wiener did not make significant mathematical progress on it, nor did
anyone else until Winfree came along”. Winfree [6] studied the nonlinear dynamics of a large population
of weakly coupled limit-cycle oscillators with intrinsic frequencies that were distributed about some mean
value, according to some prescribed probability distribution. The milestone here was to consider biological
oscillators as phase oscillators, neglecting the amplitude. Working within the framework of a mean field
model, Winfree discovered that such a population of non-identical oscillators can exhibit a remarkable
cooperative phenomenon. When the variance of the frequencies distribution is large, the oscillators run
incoherently, each one near its natural frequency. This behavior remains when reducing the variance until a
certain threshold is crossed. However, below the threshold the oscillators begin to synchronize spontaneously
(see [7]). Note that the original Winfree model was not solved analytically until recently [8].

Although Winfree’s approach proved to be successful in describing the emergence of spontaneous order
in the system, it was based on the premise that every oscillator feels the same pattern of interactions.
However, this all-to-all connectivity between elements of a large population is difficult to conceive in real
world. When the number of elements is large enough, this pattern is incompatible with physical constraints
as for example minimization of energy (or costs), and in general with the rare observation of long range
interactions in systems formed by macroscopic elements. The particular local connectivity structure of the
elements was missing (in fact, discarded) in these and subsequent approaches.

In 1998, Watts and Strogatz presented a simple model of network structure, originally intended precisely
to introduce the connectivity substrate in the problem of synchronization of cricket chirps, which show a high
degree of coordination over long distances as though the insects were ”invisibly” connected. Remarkably,
this work did not end in a new contribution to synchronization theory but as the seed for the modern theory
of complex networks [9]. Starting with a regular lattice, they showed that adding a small number of random
links reduces the distance between nodes drastically, see Fig. 1. This feature, known as small-world (SW)
effect, had been first reported in an experiment conducted by S. Milgram [10] examining the average path
length for social networks of people in the United States. Nowadays, the phenomenon has been detected
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Figure 1: Small-world network construction from a regular lattice by rewiring links with a certain probability (randomness),
as proposed by Watts and Strogatz [9].

in many other natural and artificial networks. The inherent complexity of the new model, from now on
referred to as the Watts-Strogatz (WS) model, was in its mixed nature in between regular lattices and
random graphs. Very soon, it turned out that the nature of many interaction patterns observed in scenarios
as diverse as the Internet, the World-Wide Web, scientific collaboration networks, biological networks, was
even more ”complex” than the WS model. Most of them showed a heavy tailed distribution of connectivities
with no characteristic scale. These networks have been since then called scale-free (SF) networks and the
most connected nodes are called hubs. This novel structural complexity provoked an explosion of works,
mainly from the physicists community, since a completely new set of measures, models, and techniques, was
needed to deal with these topological structures.

During one decade we have witnessed the evolution of the field of complex networks, mainly from a static
point of view, although some attempts to characterize the dynamical properties of complex networks have
also been made. One of these dynamical implications, addressed since the very beginning of the subject,
is the emergent phenomena of synchronization of a population of units with an oscillating behavior. The
analysis of synchronization processes has benefited from the advance in the understanding of the topology
of complex networks, but it has also contributed to the understanding of general emergent properties of
networked systems. The main goal of this review is precisely to revise the research undertaken so far in
order to understand how synchronization phenomena are affected by the topological substrate of interactions,
in particular when this substrate is a complex network.

The review is organized as follows. We first introduce the basic mathematical descriptors of complex
networks that will be used henceforth. Next, we focus on the synchronization of populations of oscillators.
Section IV is devoted to the analysis of the conditions for the stability of the fully synchronized state using
the Master Stability Function (MSF) formalism. Applications in different fields of science are presented
afterwards and some perspectives provided. Finally, the last section rounds off the review by giving our
conclusions.

2. Complex networks in a nutshell

There exist excellent reviews devoted to the structural characterization and evolution of complex networks
[11, 12, 13, 14, 15, 16]. Here we summarize the main features and standard measures used in complex
networks. The goal is to provide the reader a brief overview of the subject as well as to introduce some
notation that will be used throughout the review.

The mathematical abstraction of a complex network is a graph G comprising a set of N nodes (or
vertices) connected by a set of M links (or edges), being ki the degree (number of links) of node i. This
graph is represented by the adjacency matrix A, with entries aij = 1 if a directed link from j to i exists,
and 0 otherwise. In the more general case of a weighted network, the graph is characterized by a matrix
W , with entries wij , representing the strength (or weight) of the link from j to i. The investigation of the
statistical properties of many natural and man-made complex networks revealed that, although representing
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very different systems, some categorization of them is possible. The most representative of these properties
refers to the degree distribution P (k), that indicates the probability of a node to have a degree k. This
fingerprint of complex networks has been taken for a long time as its most differentiating factor. However,
several other measures help to precise the categorization. Examples are the average shortest path length
ℓ = 〈dij〉, where dij is the length of the shortest path between node i and node j, and the clustering
coefficient C that accounts for the fraction of actual triangles (three vertices forming a loop) over possible
triangles in the graph.

The first classification of complex networks is related to the degree distribution P (k). The differentiation
between homogeneous and heterogeneous networks in degree is in general associated to the tail of the
distribution. If it decays exponentially fast with the degree we refer to as homogeneous networks, the most
representative example being the Erdös-Rényi (ER) random graph [17]. On the contrary, when the tail is
heavy one can say that the network is heterogeneous. In particular, SF networks are the class of networks
whose distribution is a power-law, P (k) ∼ k−γ , the Barabási-Albert (BA) model [18] being the paradigmatic
model of this type of graph. This network is grown by a mechanism in which all incoming nodes are linked
preferentially to the existing nodes. Note that the limiting case of lattices, or regular networks, corresponds
to a situation where all nodes have the same degree.

This categorization can be enriched by the behavior of ℓ. For a lattice of dimension d containing N
vertices, obviously, ℓ ∼ N1/d. For a random network, a rough estimate for ℓ is also possible. If the average
number of nearest neighbors of a vertex is k̄, then about k̄ℓ vertices of the network are at a distance ℓ from
the vertex or closer. Hence, N ∼ k̄ℓ and then ℓ ∼ ln(N)/ ln(k̄) , i.e., the average shortest-path length value
is small even for very large networks. This smallness is usually referred to as the SW property. Associated
to distances, there exist many measures that provide information about ”centrality” of nodes. For instance,
one can say that a node is central in terms of the relative distance to the rest of the network. One of the
most frequently used centrality measures in the physics literature is the betweenness (load in some papers),
that accounts for the number of shortest paths between any pair of nodes in the network that go through a
given node or link.

The clustering coefficient C is also a discriminating property between different types of networks. It is
usually calculated as follows:

C =
1

N

N
∑

i=1

Ci =
1

N

N
∑

i=1

ni

ki(ki − 1)/2
, (1)

where ni is the number of connections between nearest neighbors of node i, and ki is its degree. A large
clustering coefficient implies many transitive connections and consequently redundant paths in the network,
while a low C implies the opposite.

Finally, it is worth mentioning that many networks have a community structure, meaning that nodes
are linked together in densely connected groups between which connections are sparser. Finding the best
partition of a network into communities is a very hard problem. The most successful solutions, in terms of
accuracy and computational cost [19], are those based on the optimization of a magnitude called modularity,
proposed in [20], that precisely allows for the comparison of different partitionings of the network. The
modularity of a given partition is, up to a multiplicative constant, the number of links falling within groups
minus its expected number in an equivalent network with links placed at random. Given a network parti-
tioned into communities, the mathematical definition of modularity is expressed in terms of the adjacency
matrix aij and the total number of links M = 1

2

∑

i ki as

Q =
1

2M

∑

ij

(aij −
kikj

2M
)δci,cj

(2)

where ci is the community to which node i is assigned and the Kronecker delta function δci,cj
takes the

value 1 if nodes i and j are in the same community, and 0 otherwise. The larger the Q the more modular
the network is. This property promises to be specially adequate to unveil structure-function relationships
in complex networks [21, 22, 23, 24].
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3. Coupled phase oscillator models on complex networks

The need to understand synchronization, mainly in the context of biological neural networks, promoted
the first studies of synchronization of coupled oscillators considering a network of interactions between them.
In the late 80’s, Strogatz and Mirollo [25] and later Niebur et al. [26] studied the collective synchronization
of phase non-linear oscillators with random intrinsic frequencies under a variety of coupling schemes in 2D
lattices. Beyond the differences with the actual conception of a complex network, the topologies studied
in [26] can be thought of as a first approach to reveal how the complexity of the connectivity affects
synchronization. The authors used a square lattice as a geometrical reference to construct three different
connectivity schemes: four nearest neighbors, Gaussian connectivity truncated at 2σ, and finally a random
sparse connectivity. These results showed that random long-range connections lead to a more rapid and
robust phase locking between oscillators than nearest-neighbor coupling or locally dense connection schemes.
This observation is at the root of the recent findings about synchronization in complex networks of oscillators.
In the current section we review the results obtained so far on three different kinds of oscillatory ensembles:
limit cycle oscillators (Kuramoto), pulse-coupled models, and finally coupled map systems. We reserve
for Sect. 4 those works that use the MSF formalism. Many other works whose major contribution is the
understanding of synchronization phenomena in specific scenarios are discussed in the Applications section.

3.1. Phase oscillators

3.1.1. The Kuramoto model

The pioneering work by Winfree [6] spurred the field of collective synchronization and called for math-
ematical approaches to tackle the problem. One of these approaches, as already stated, considers a system
made up of a huge population of weakly-coupled, nearly identical, interacting limit-cycle oscillators, where
each oscillator exerts a phase dependent influence on the others and changes its rhythm according to a
sensitivity function [27, 28].

Even if these simplifications seem to be very crude, the phenomenology of the problem can be captured.
Namely, the population of oscillators exhibits the dynamic analog to an equilibrium phase transition. When
the natural frequencies of the oscillators are too diverse compared to the strength of the coupling, they
are unable to synchronize and the system behaves incoherently. However, if the coupling is strong enough,
all oscillators freeze into synchrony. The transition from one regime to the other takes place at a certain
threshold. At this point some elements lock their relative phase and a cluster of synchronized nodes develops.
This constitutes the onset of synchronization. Beyond this value, the population of oscillators is split into
a partially synchronized state made up of oscillators locked in phase and a group of nodes whose natural
frequencies are too different as to be part of the coherent cluster. Finally, after further increasing the
coupling, more and more elements get entrained around the mean phase of the collective rhythm generated
by the whole population and the system settles in the completely synchronized state.

Kuramoto [29, 30] worked out a mathematically tractable model to describe this phenomenology. He
recognized that the most suitable case for analytical treatment should be the mean field approach. He
proposed an all-to-all purely sinusoidal coupling, and then the governing equations for each of the oscillators
in the system are:

θ̇i = ωi +
K

N

N
∑

j=1

sin (θj − θi) (i = 1, ..., N) , (3)

where the factor 1/N is incorporated to ensure a good behavior of the model in the thermodynamic limit,
N → ∞, ωi stands for the natural frequency of oscillator i, and K is the coupling constant. The frequencies
ωi are distributed according to some function g(ω), that is usually assumed to be unimodal and symmetric
about its mean frequency Ω. Admittedly, due to the rotational symmetry in the model, we can use a rotating
frame and redefine ωi → ωi + Ω for all i and set Ω = 0, so that the ωi’s denote deviations from the mean
frequency.
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The collective dynamics of the whole population is measured by the macroscopic complex order param-
eter,

r(t)eiφ(t) =
1

N

N
∑

j=1

eiθj(t) , (4)

where the modulus 0 ≤ r(t) ≤ 1 measures the phase coherence of the population and φ(t) is the average
phase. The values r ≃ 1 and r ≃ 0 (where ≃ stands for fluctuations of size O(N−1/2)) describe the limits
in which all oscillators are either phase locked or move incoherently, respectively. Multiplying both parts of
Eq. (4) by e−iθi and equating imaginary parts gives

r sin(φ− θi) =
1

N

N
∑

j=1

sin(θj − θi) , (5)

yielding
θ̇i = ωi +Kr sin (φ− θi) (i = 1, ..., N) . (6)

Equation (6) states that each oscillator interacts with all the others only through the mean field quantities r
and φ. The first quantity provides a positive feedback loop to the system’s collective rhythm: as r increases
because the population becomes more coherent, the coupling between the oscillators is further strengthened
and more of them can be recruited to take part in the coherent pack. Moreover, Eq. (6) allows to calculate
the critical coupling Kc and to characterize the order parameter limt→∞ rt(K) = r(K). Looking for steady
solutions, one assumes that r(t) and φ(t) are constant. Next, without loss of generality, we can set φ = 0,
which leads to the equations of motion [29, 30]

θ̇i = ωi −Kr sin (θi) (i = 1, ..., N) . (7)

The solutions of Eq. (7) reveal two different types of long-term behavior when the coupling is larger than
the critical value, Kc. On the one hand, a group of oscillators for which |ωi| ≤ Kr are phase-locked at
frequency Ω in the original frame according to the equation ωi = Kr sin (θi). On the other hand, the
rest of the oscillators for which |ωi| > Kr holds, are drifting around the circle, sometimes accelerating
and sometimes rotating at lower frequencies. Demanding some conditions for the stationary distribution of
drifting oscillators with frequency ωi and phases θi [27], a self-consistent equation for r can be derived as

r = Kr

∫ π
2

−π
2

(

cos2 θ
)

g(ω)dθ,

where ω = Kr sin (θ). This equation admits a non-trivial solution,

Kc =
2

πg(0)
. (8)

beyond which r > 0. Equation (8) is the Kuramoto mean field expression for the critical coupling at the
onset of synchronization. Moreover, near the onset, the order parameter, r, obeys the usual square-root
scaling law for mean field models, namely,

r ∼ (K −Kc)
β (9)

with β = 1/2. Numerical simulations of the model verified these results. The Kuramoto model (KM, from
now on) approach to synchronization was a breakthrough for the understanding of synchronization in large
populations of oscillators.

Even in the simplest case of a mean field interaction, there are still unsolved problems that have resisted
any analytical attempt. This is the case, e.g., for finite populations of oscillators and some questions
regarding global stability results [28]. In what follows, we focus on another aspect of the model’s assumptions,
namely that of the connection topology of real systems [14, 15], which usually do not show the all-to-all
pattern of interconnections underneath the mean field approach.
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3.1.2. Kuramoto model on complex networks

To deal with the KM on complex topologies, it is necessary to reformulate Eq. (3) to include the
connectivity

θ̇i = ωi +
∑

j

σijaij sin(θj − θi) (i = 1, ..., N) , (10)

where σij is the coupling strength between pairs of connected oscillators and aij are the elements of the
connectivity matrix. The original Kuramoto model is recovered by letting aij = 1, ∀i 6= j (all-to-all) and
σij = K/N, ∀i, j.

The first problem when defining the KM in complex networks is how to state the interaction dynamics
properly. In contrast with the mean field model, there are several ways to define how the connection topology
enters in the governing equations of the dynamics. A good theory for Kuramoto oscillators in complex
networks should be phenomenologically relevant and provide formulas amenable to rigorous mathematical
treatment. Therefore, such a theory should at least preserve the essential fact of treating the heterogeneity
of the network independently of the interaction dynamics, and at the same time, should remain calculable
in the thermodynamic limit.

For the original model, Eq. (3), the coupling term on the right hand side of Eq. (10) is an intensive
magnitude because the dependence on the size of the system cancels out. This independence on the number of
oscillators N is achieved by choosing σij = K/N . This prescription turns out to be essential for the analysis
of the system in the thermodynamic limit N → ∞ in the all-to-all case. However, choosing σij = K/N
for the governing equations of the KM in a complex network makes them to become dependent on N .
Therefore, in the thermodynamic limit, the coupling term tends to zero except for those nodes with a degree
that scales with N . Note that the existence of such nodes is only possible in networks with power-law degree
distributions [14, 15], but this happens with a very small probability as k−γ , with γ > 2. In these cases,
mean field solutions independent of N are recovered, with slight differences in the onset of synchronization
of all-to-all and SF networks [31] .

A second prescription consists in taking σij = K/ki (where ki is the degree of node i) so that σij is a
weighted interaction factor that also makes the right hand side of Eq. (10) intensive. This form has been
used to solve the paradox of heterogeneity [32] that states that the heterogeneity in the degree distribution,
which often reduces the average distance between nodes, may suppress synchronization in networks of
oscillators coupled symmetrically with uniform coupling strength. This result refers to the stability of the
fully synchronized state, but not to the dependence of the order parameter on the coupling strength (where
partially synchronized and unsynchronized states exist). Besides, the inclusion of weights in the interaction
strongly affects the original KM dynamics in complex networks because it can impose a dynamic homogeneity
that masks the real topological heterogeneity of the network.

The prescription σij = K/const, which may seem more appropriate, also causes some conceptual prob-
lems because the sum in the right hand side of Eq. (10) could eventually diverge in the thermodynamic
limit. The constant in the denominator could in principle be any quantity related to the topology, such as
the average connectivity of the graph,〈k〉, or the maximum degree kmax. Its physical meaning is a re-scaling
of the temporal scales involved in the dynamics. However, except for the case of σij = K/kmax, the other
possible settings do not avoid the problems when N → ∞. On the other hand, for a proper comparison of
the results obtained for different complex topologies (e.g. SF or uniformly random), the global and local
measures of coherence should be represented according to their respective time scales. Therefore, given two
complex networks A and B with kmax = kA and kmax = kB respectively, it follows that to make meaningful
comparisons between observables, the equations of motion Eq. (10) should refer to the same time scales,
i.e., σij = KA/kA = KB/kB = σ. With this formulation in mind, Eq. (10) reduces to

θ̇i = ωi + σ
∑

j

aij sin(θj − θi) (i = 1, ..., N) , (11)

independently of the specific topology of the network. This allows us to study the dynamics of Eq. (11) on
different topologies, compare the results, and properly inspect the interplay between topology and dynamics
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in what concerns synchronization.
As we shall see, there are also several ways to define the order parameter that characterizes the global

dynamics of the system, some of which were introduced to allow for analytical treatments at the onset of
synchronization. We advance, however, that the same order parameter, Eq. (4), is often used to describe
the coherence of the synchronized state.

3.1.3. Onset of synchronization in complex networks

Studies on synchronization in complex topologies where each node is considered to be a Kuramoto
oscillator, were first reported for WS networks [33, 34] and BA graphs [35, 36]. These works are mainly
numerical explorations of the onset of synchronization, their main goal being the characterization of the
critical coupling beyond which groups of nodes beating coherently first appear. In [34], the authors considered
oscillators with intrinsic frequencies distributed according to a Gaussian distribution with unit variance
arranged in a WS network with varying rewiring probability, p, and explored how the order parameter,
Eq. (4), changes upon addition of long-range links. Moreover, they assumed a normalized coupling strength
σij = K/〈k〉 , where 〈k〉 is the average degree of the graph. Numerical integration of the equations of motion
(10) under variation of p shows that collective synchronization emerges even for very small values of the
rewiring probability.

The results confirm that networks obtained from a regular ring by just rewiring a tiny fraction of links
(p & 0) can be synchronized with a finite K. Moreover, in contrast with the arguments provided in [34],
we notice that their results had been obtained for a fixed average degree and thus the Kuramoto’s critical
coupling can not be recovered by simply taking p → 1, which produces a random ER graph with a fixed
minimum connectivity. This limit is recovered by letting 〈k〉 increase. Actually, numerical simulations of
the same model in [33] showed that the Kuramoto limit is approached when the average connectivity grows.

In [35] the same problem in BA networks it is considered. The natural frequencies and the initial values
of θi were randomly drawn from a uniform distribution in the interval (−1/2, 1/2) and (−π, π), respectively.
The global dynamics of the system, Eq. (11), turns out to be qualitatively the same as for the original KM
as shown in Fig. 2, where the dependence of the order parameter Eq. (4) with σ is shown for several system
sizes.

The existence of a critical point for the KM on SF networks came as a surprise. Admittedly, this is
one of the few cases in which a dynamical process shows a critical behavior when the substrate is described
by a power-law connectivity distribution with an exponent γ ≤ 3 [14, 15, 37]. In principle it could be a
finite size effect, but it turned out from numerical simulations that this was not the case. To determine the
exact value of σc, one can make use of standard finite-size scaling analysis. At least two complementary
strategies have been reported. The first one allows bounding the critical point and is computationally more
expensive. Consider a network of size N , for which no synchronization is attained below σc, where r(t)
decays to a small residual value of size O(1/

√
N). Then, the critical point may be found by examining the

N -dependence of r(σ,N). In the sub-critical regime (σ < σc), the stationary value of r falls off as N−1/2,
while for σ > σc, the order parameter reaches a stationary value as N → ∞ (though still with O(1/

√
N)

fluctuations). Therefore, plots of r versus N allow us to locate the critical point σc. Alternatively, a more
accurate approach can be adopted. Assume the scaling form for the order parameter [38]:

r = N−αf(Nν(σ − σc)) , (12)

where f(x) is a universal scaling function bounded as x → ±∞ and α and ν are two critical exponents to
be determined. Since at σ = σc, the value of the function f is independent of N , the estimation of σc can
be done by plotting Nαr as a function of σ for various sizes N and then finding the value of α that gives a
well-defined crossing point, the critical coupling σc. As a by-product, the method also allows us to calculate
the two scaling exponents α and ν, the latter can be obtained from the equality

ln[(dr/dσ)|σc
] = (ν − α) lnN + const, (13)

once α is computed.
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Figure 2: Order parameter r (Eq. (4)) as a function of σ for several BA networks of different sizes. Finite size scaling analysis
shows that the onset of synchronization takes place at a critical value σc = 0.05(1). The inset is a zoom around σc. From [35].

Following these scaling procedures, it was estimated a value for the critical coupling strength σc = 0.05(1)
[35, 39, 40]. Moreover, r ∼ (σ − σc)

β when approaching the critical point from above with β = 0.46(2)
indicating that the square-root behavior typical of the mean field version of the model (β = 1/2) seems to
hold as well for BA networks.

Before turning our attention to some theoretical attempts to tackle the onset of synchronization, it is
worth to briefly summarize other numerical results that have explored how the critical coupling depends
on other topological features of the underlying SF graph. Recent results have shed light on the influence
of the topology of the local interactions on the route to and the onset of synchronization. In particular,
the authors in [41, 42, 43] explored the Kuramoto dynamics on networks in which the degree distribution
is kept fixed, while the clustering coefficient (C) and the average path length (ℓ) of the graph change. The
results suggest that the onset of synchronization is mainly determined by C, namely, networks with a high
clustering coefficient promote synchronization at lower values of the coupling strength. On the other hand,
when the coupling is increased beyond the critical point, the effect of ℓ dominates over C and the phase
diagram is smoothed out (a sort of stretching), delaying the appearance of the fully synchronized state as
the average shortest path length increases.

In a series of recent papers [31, 44, 45, 46, 47, 48], the onset of synchronization in large networks of
coupled oscillators has been analyzed from a theoretical point of view under certain (sometimes strong)
assumptions. Despite these efforts no exact analytical results for the KM on general complex networks are
available up to date. Moreover, the analytical approaches predict that for uncorrelated SF networks with
an exponent γ ≤ 3, the critical coupling vanishes as N → ∞, in contrast to numerical simulations on BA
model networks. It appears that the strong heterogeneity of real networks and the finite average connectivity
strongly hampers analytical solutions of the model.

Following [31], consider the system in Eq. (11), with a symmetric1 adjacency matrix aij = aji. Defining

1The reader can find the extension of the forthcoming formalism to directed networks in [44].
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a local order parameter ri as

rie
iφi =

N
∑

j=1

aij〈eiθj 〉t , (14)

where 〈· · ·〉t stands for a time average, a new global order parameter to measure the macroscopic coherence
is readily introduced as

r =

∑N
i=1 ri

∑N
i=1 ki

. (15)

Now, rewriting Eq. (11) as a function of ri, yields,

θ̇i = ωi − σri sin(θi − φi) − σhi(t) . (16)

In Eq. (16), hi(t) = Im{e−iθi
∑N

j=1 aij(〈eiθj〉t − eiθj )} depends on time and contains time fluctuations.
Assuming the terms in the previous sum to be statistically independent, hi(t) is expected to be proportional
to

√
ki above the transition, where ri ∼ ki. Therefore, except very close to the critical point, and assuming

that the number of connections of each node is large enough2 (ki ≫ 1 as to be able to neglect the time
fluctuations entering hi, i.e., hi ≪ ri), the equation describing the dynamics of node i can be reduced to

θ̇i = ωi − σri sin(θi − φi) . (17)

Next, we look for stationary solutions of Eq. (17), i.e. sin(θi −φi) = ωi/σri. In particular, oscillators whose
intrinsic frequency satisfies |ωi| ≤ σri become locked. Then, as in the Kuramoto mean field model, there
are two contributions (though in this case to the local order parameter), one from locked and the other from
drifting oscillators such that

ri =

N
∑

j=1

aij〈ei(θj−φi)〉t = (18)

=
∑

|ωj |≤σrj

aije
i(θj−φi) +

∑

|ωj |>σrj

aij〈ei(θj−φi)〉t .

To move one step further, some assumptions are needed. Consider a graph such that the average degree of
nearest neighbors is high (i.e., if the neighbors of node i are well-connected). Then it is reasonable to assume
that these nodes are not affected by the intrinsic frequency of i. This is equivalent to assume solutions (ri, φi)
that are, in a statistical sense, independent of the natural frequency ωi. With this assumption, the second
summand in Eq. (18) can be neglected. Taking into account that the distribution g(ω) is symmetric and
centered at Ω = 0, after some algebra one is left with [31]

ri =
∑

|ωj |≤σrj

aij cos(φj − φi)

√

1 −
(

ωj

σrj

)2

. (19)

The critical coupling σc is given by the solution of Eq. (19) that yields the smallest σ. It can be argued that
it is obtained when cos(φj − φi) = 1 in Eq. (19), thus

ri =
∑

|ωj|≤σrj

aij

√

1 −
(

ωj

σrj

)2

, (20)

which is the main equation of the time average approximation (recall that time fluctuations have been
neglected). Note, however, that to obtain the critical coupling, one has to know the adjacency matrix as

2This obviously restricts the range of real networks to which the approximation can be applied.
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well as the particular values of ωi for all i and then solve Eq. (20) numerically for the {ri}. Finally, the
global order parameter defined in Eq. (15) can be computed from ri.

Even if the underlying graph satisfies the other aforementioned topological constraints, it seems unre-
alistic to require knowledge of the {ωi}’s. A further approach, referred to as the frequency distribution
approximation can be adopted. According to the assumption that ki ≫ 1 for all i, or equivalently, that the
number of connections per node is large (a dense graph), one can also consider that the natural frequencies
of the neighbors of node i follows the distribution g(ω). Then, Eq. (20) can be rewritten avoiding the
dependence on the particular realization of {ωi} to yield,

ri =
∑

j

aij

∫ σrj

−σrj

g(ω)

√

1 −
(

ω

σrj

)2

dω

= σ
∑

j

aijrj

∫ 1

−1

g(xσrj)
√

1 − x2dx , (21)

with x = ω/(σrj). This equation allows us to readily determine the order parameter r as a function of
the network topology (aij), the frequency distribution (g(ω)) and the control parameter (σ). On the other
hand, Eq. (20) still does not provide explicit expressions for the order parameter and the critical coupling
strength. To this end, one introduces a first-order approximation g(xσrj) ≈ g(0) which is valid for small,
but nonzero, values of r. Namely, when rj → 0+

r0i =
σ

Kc

∑

j

aijr
0
j ,

where Kc = 2/(πg(0)) is Kuramoto’s critical coupling. Moreover, as the smallest value of σ corresponds to
σc, it follows that the critical coupling is related to both Kc and the largest eigenvalue λmax of the adjacency
matrix, yielding

σc =
Kc

λmax
. (22)

Equation (22) states that in complex networks, synchronization is first attained at a value of the coupling
strength that inversely depends on g(0) and on the largest eigenvalue λmax of the adjacency matrix. Note
that this equation also recovers Kuramoto’s result when aij = 1, ∀i 6= j, since λmax = N − 1. It is
worth stressing that although this method allows us to calculate σc analytically, it fails to explain why for
uncorrelated random SF networks with γ ≤ 3 and in the thermodynamic limit N → ∞, the critical value
remains finite. This disagreement comes from the fact that in these SF networks, λmax is proportional
to the cutoff of the degree distribution, kmax which in turn scales with the system size. Putting the two

dependencies together, one obtains λmax ∼ k
1
2
max ∼ N

1
2(γ−1) → ∞ as N → ∞, thus predicting σc = 0 in

the thermodynamic limit, in contrast to finite size scaling analysis for the critical coupling via numerical
solution of the equations of motion. Note, however, that the difference may be due to the use of distinct
order parameters. Moreover, even in the case of SF networks with γ > 3, λmax still diverges when we take
the thermodynamic limit, so that σc → 0 as well. As we shall see soon, this is not the case when other
approaches are adopted, at least for γ > 3.

It is possible to go beyond with the latter approximation and to determine the behavior of r near the
critical point. In [31] a perturbative approach to higher orders of Eq. (21) is developed, which is valid for
relatively homogeneous degree distributions (γ > 5).3 They showed that for (σ/σc) − 1 ∼ 0+

r2 =

(

η

η1K2
c

) (

σ

σc
− 1

)(

σ

σc

)3

, (23)

3The approach holds if the fourth moment of the degree distribution, 〈k4〉 =
R

∞

1
P (k)k4dk remains finite when N → ∞.

12



where η1 = −πg′′(0)Kc/16 and

η =
〈u〉2λ2

max

N〈k〉2〈u4〉 , (24)

where u is the normalized eigenvector of the adjacency matrix corresponding to λmax and 〈u4〉 =
∑N

j u4
j/N .

The analytical insights discussed so far can also be reformulated in terms of a mean field approximation
[46, 48, 31, 47] for complex networks. This approach (valid for large enough 〈k〉 ) considers that every
oscillator is influenced by the local field created in its neighborhood, so that ri is proportional to the degree
of the nodes ki, i.e., ri ∼ ki. Assuming this is the case and introducing the order parameter r through

r =
ri
ki

=
1

ki

∣

∣

∣

∣

∣

∣

N
∑

j=1

aij〈eiθj〉t

∣

∣

∣

∣

∣

∣

, (25)

after summing over i and substituting ri = rki in Eq. (21) we obtain [31]

N
∑

j

kj = σ

N
∑

j

k2
j

∫ 1

−1

g(xσrkj)
√

1 − x2dx . (26)

The above relation, Eq. (26), was independently derived in [46], who first studied analytically the problem
of synchronization in complex networks, though using a different approach. Taking the continuum limit,
Eq. (26) becomes

∫

kP (k)dk = σ

∫

k2P (k)dk

∫ 1

−1

g(xσrk)
√

1 − x2dx , (27)

which for r → 0+ verifies

∫

kP (k)dk = σ

∫

k2P (k)dk

∫ 1

−1

g(0)
√

1 − x2dx

=
σg(0)π

2

∫

k2P (k)dk , (28)

which leads to the condition for the onset of synchronization (r > 0) as

σg(0)π

2

∫

k2P (k)dk >

∫

kP (k)dk ,

that is,

σc =
2

πg(0)

〈k〉
〈k2〉 = Kc

〈k〉
〈k2〉 . (29)

The mean field result, Eq. (29), gives as a surprising result that the critical coupling σc in complex networks
is nothing else but the one corresponding to the all-to-all topology Kc re-scaled by the ratio between
the first two moments of the degree distribution, regardless of the many differences between the patterns
of interconnections. Precisely, it states that the critical coupling strongly depends on the topology of
the underlying graph. In particular, σc → 0 when the second moment of the distribution 〈k2〉 diverges,
which is the case for SF networks with γ ≤ 3. Note, that in contrast with the result in Eq. (22), for
γ > 3, the coupling strength does not vanish in the thermodynamic limit. On the other hand, if the
mean degree is kept fixed and the heterogeneity of the graph is increased by decreasing γ, the onset of
synchronization occurs at smaller values of σc. Interestingly enough, the dependence gathered in Eq. (29)
has the same functional form for the critical points of other dynamical processes such as percolation and
epidemic spreading processes [14, 15, 37]. While this result is still under numerical scrutiny, it would imply
that the critical properties of many dynamical processes on complex networks are essentially determined by
the topology of the graph, no matter whether the dynamics is nonlinear or not. The corroboration of this
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last claim will be of extreme importance in physics, probably changing many preconceived ideas about the
nature of dynamical phenomena.

Within the mean field theory, it is also possible to obtain the behavior of the order parameter r near
the transition to synchronization. Equation (29) was also independently derived in [48] starting from the
differential equation Eq. (11). Using the weighted order parameter

r̄(t)eiφ̄(t) =

∑N
i=1

∑N
j=1 aije

iθj

∑N
i=1 ki

,

and assuming the same magnitude of the effective field of each pair of coupled oscillators one obtains

θ̇i = ωi −
σ

〈k〉kir̄ sin(θi) , (30)

where we have set φ̄ = 0. Now, it is considered again that in the stationary state the system divides into
two groups of oscillators, which are either locked or rotating in a nonuniform manner. Following the same
procedure employed in all the previous derivations, the only contribution to r comes from the former set of
oscillators. After some algebra [48], it is shown that the critical coupling σc is given by Eq. (29) and that
near criticality

r ∼ (σ − σc)
β , (31)

for γ > 3, with a critical exponent β = 1
2 if γ ≥ 5, and β = 1

γ−3 when 3 < γ ≤ 5. For the most common
cases in real networks of 2 < γ < 3, the critical coupling tends to zero in the thermodynamic limit so that
r should be nonzero as soon as σ 6= 0. In this case, one gets r ∼ σ1/(3−γ). Notably, the latter equation is
exactly the same found for the absence of critical behavior in the region 2 < γ < 3 for a model of epidemic
spreading [49].

One recent theoretical study in [50] is worth mentioning here. They have extended the mean field
approach to the case in which the coupling is asymmetric and depends on the degree. In particular, they
studied a system of oscillators arranged in a complex topology whose dynamics is given by

θ̇i = ωi +
σ

k1−η
i

N
∑

j=1

sin(θj − θi). (32)

η = 1 corresponds to the symmetric, non-degree dependent, case. Extending the mean field formalism to the
cases η 6= 1, they investigated the nature of the synchronization transition as a function of the magnitude
and sign of the parameter η. By exploring the whole parameter space (η, σ), they found that for η = 0 and
SF networks with 2 < γ < 3, a finite critical coupling σc is recovered in sharp contrast to the non-weighted
coupling case for which we already know that σc = 0. This result seems phenomenologically meaningful,
since setting η = 0 implies that the coupling in Eq. (10) is σij = σ/ki, which, as discussed before [32], might
have the effect of partially destroying the heterogeneity inherent to the underlying graph by normalizing all
the contributions

∑N
j=1 aij sin(θj − θi) by ki =

∑N
j=1 aij .

3.1.4. Path towards synchronization in complex networks

Up to now, we have discussed both numerically and theoretically the onset of synchronization. In the
next section, we shall also discuss how the structural properties of the networks influence the stability of
the fully synchronized state. But, what happens in the region where we are neither close to the onset of
synchronization nor at complete synchronization? How is the latter state attained when different topologies
are considered?

As we have seen, the influence of the topology is not only given by the degree distribution, but also by
how the oscillators interact locally. To reduce the number of degrees of freedom to a minimum, let us focus
on the influence of heterogeneity and study the evolution of synchronization for a family of complex networks
which are comparable in their clustering, average distance and correlations so that the only difference is due
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Table 1: Topological properties of the networks and critical coupling strengths derived from a finite size scaling analyses, Eq.
(12). Different values of χ corresponds to grown networks whose degree of heterogeneity varies smoothly between the two
limiting cases of ER and SF graphs. From [40].

χ 〈k2〉 kmax σc

0.0 (SF) 115.5 326.3 0.051
0.2 56.7 111.6 0.066
0.4 44.9 47.7 0.088
0.6 41.1 25.6 0.103
0.8 39.6 16.8 0.108
1.0 (ER) 39.0 14.8 0.122

to the degree distribution.4 For these networks, the previous theoretical approaches argued that the critical
coupling σc is proportional to 〈k〉/〈k2〉 , so that different topologies should give rise to distinct critical
points. In particular, in [39, 40] it was studied numerically the path towards synchronization in ER and SF
networks. They also studied several networks whose degree of heterogeneity can be tuned between the two
limiting cases [51]. These authors put forward the question: How do SF networks compare with ER ones
and what are the roots of the different behaviors observed?

Numerical simulations [39, 40] confirm qualitatively the theoretical predictions for the onset of synchro-
nization, as summarized in Table 1. In fact, the onset of synchronization first occurs for SF networks.
As the network substrate becomes more homogeneous, the critical point σc shifts to larger values and the
system seems to be less synchronizable. On the other hand, they also showed that the route to complete
synchronization, r = 1, is sharper for homogeneous networks. No critical exponents for the behavior of r
near the transition points have been reported yet for the ER network, so that comparison with the mean
field value β = 1/2 for a SF network with γ = 3 is not possible.5 Numerically, a detailed finite size scaling
analysis in SF and ER topologies shows that the critical coupling strength corresponds in SF networks to
σSF

c = 0.051, and in random ER networks to σER
c = 0.122, a fairly significant numerical difference.

The mechanisms behind the differences in the emergence of collective behavior for ER and SF topologies
can be explored numerically by defining a local order parameter that captures and quantifies the way in
which clusters of locked oscillators emerge. The main difference with respect to r is that one measures the
degree of synchronization of nodes (r) with respect to the average phase φ and the other (rlink) to the degree
of synchronization between every pair of connected nodes. Thus, rlink gives the fraction of all possible links
that are synchronized in the network as

rlink =
1

2Nl

N
∑

i,j=1

aij

∣

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣

∣

∣

∣

∣

, (33)

being tr the time the system needs to settle into the stationary state, and ∆t a large averaging time. In
[39, 40] the degree of synchronization of pairs of connected oscillators was measured in terms of the symmetric
matrix

Dij = aij

∣

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣

∣

∣

∣

∣

, (34)

which, once filtered using a threshold T such that the fraction of synchronized pairs equals rlink, allows us
to identify the synchronized links and reconstruct the clusters of synchrony for any value of σ, as illustrated
in Fig.3. From a microscopic analysis, it turns out that for homogeneous topologies, many small clusters of

4This isolation of individual features of complex networks is essential to understand the interplay between topology and
dynamics. As we will discuss along the review, many times this aspect has not been properly controlled raising results that
are confusing, contradictory or even incorrect.

5The numerical value of β contradicts the prediction of the mean-field approach (see the discussion after Eq. (31)) The
reason of such discrepancy is not clear yet.
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Figure 3: (color online) Synchronized components for several values of σ for the two limiting cases of ER and SF networks.
The figure clearly illustrates the differences in forming synchronization patterns for both types of networks: in the SF case
links and nodes are incorporated together to the largest of the synchronized clusters, while for the ER network, what is added
are links between nodes already belonging to such cluster. From [39].

synchronized pairs of oscillators are spread over the graph and merge together to form a giant synchronized
cluster when the effective coupling is increased. On the contrary, in heterogeneous graphs, a central core
containing the hubs first comes up driving the evolution of synchronization patterns by absorbing small
clusters. Moreover, the evolution of rlink as σ grows explains why the transition is sharper for ER networks:
nodes are added first to the giant synchronized cluster and later on the links among these nodes that were
missing in the original clusters of synchrony. In SF graphs, oscillators are added to the largest synchronized
component together with most of their links, resulting in a much slower growth of rlink. Finally, it is also
computed the probability that a node with degree k belongs to the largest synchronized cluster and reported
that this probability is an increasing function of k for every σ, namely, the more connected a node is, the
more likely it takes part in the cluster of synchronized links [39, 40]. It is interesting to mention here that
a similar dependence is obtained if one analyzes the stability of the synchronized state under perturbations
of nodes of degree k. In [35] it was found that the average time 〈τ〉 a node needs to get back into the fully
synchronized state is inversely proportional to its degree, i.e., 〈τ〉 ∼ k−1.

Very recently [52], the path towards synchronization was also studied looking for the relation between
the time needed for complete synchronization and the spectral properties of the Laplacian matrix of the
graph,

Lij = kiδij − aij . (35)

The Laplacian matrix is symmetric with zero row-sum and hence all the eigenvalues are real and non-
negative. Considering the case of identical Kuramoto oscillators, whose dynamics has only one attractor,
the fully synchronized state, they found that the synchronization time scales with the inverse of the smallest
nonzero eigenvalue of the Laplacian matrix. Surprisingly, this relation qualitatively holds for very different
networks where synchronization is achieved, indicating that this eigenvalue alone might be a relevant topo-
logical property for synchronization phenomena. The authors in [53] remark the role of this eigenvalue not
only for synchronization purposes but also for the flow of random walkers on the network.

3.1.5. Kuramoto model on structured or modular networks

In this section, we discuss a context in which synchronization has turned out to be a relevant phenomenon
to explore the relation between dynamical and topological properties of complex networks. Many complex
networks in nature are modular, i.e. composed of certain subgraphs with differentiated internal and external
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connectivity that form communities [20, 19, 15]. This is a limiting situation in which the local structure
may greatly affect the dynamics, irrespective of whether or not we deal with homogeneous or heterogeneous
networks.

Synchronization processes on modular networks have been recently studied as a mechanism for commu-
nity detection [54, 55, 56, 57]. The situation in which a set of identical Kuramoto oscillators (i.e., ωi = ω, ∀i)
with random initial conditions evolves after a transient to the synchronized state was addressed In [55, 56].6

Note that in this case full synchronization is always achieved as this state is the only attractor of the dy-
namics so that the coupling strength sets the time scale to attain full synchronization: the smaller σ is, the
longer the time scale. The authors in [55] guessed that if high densely interconnected motifs synchronize
more easily than those with sparse connections [36], then the synchronization of complex networks with
community structure should behave differently at different time and spatial scales. In synthetic modular
networks, starting from random initial phases, the highly connected units forming local clusters synchronize
first and later on, in a sequential process, larger and larger topological structures do the same up to the
point in which complete synchronization is achieved and the whole population of oscillators beat at the
same pace. This process occurs at different time scales and the dynamical route towards the global attractor
reveals the topological structures that represent communities, from the microscale at very early states up
to the macroscale at the end of the time evolution.

The authors studied the time evolution of pairs of oscillators defining the local order parameter

ρij(t) = 〈cos[θi(t) − θj(t)]〉 , (36)

averaged over different initial conditions, which measures the correlation between pairs of oscillators. To
identify the emergence of compact clusters reflecting communities, a binary dynamic connectivity matrix is
introduced such that

Dt(T )ij =

{

1 if ρij(t) > T
0 if ρij(t) < T,

(37)

for a given threshold T . Changing the threshold T at fixed times reveals the correlations between the dynam-
ics and the underlying structure, namely, for large enough T , one is left with a set of disconnected clusters
or communities that are the innermost ones, while for smaller values of T inter-community connections
show up. In other words, the inner community levels are the first to become synchronized, subsequently
the second level groups, and finally the whole system shows global synchronization. Note that since the
function ρij(t) is continuous and monotonic, we can define a new matrix DT (t), that takes into account the
time evolution for a fixed threshold. The evolution of this matrix unravels the topological structure of the
underlying network at different time scales. In the top panels of Fig. 4 we plot the number of connected
components corresponding to the binary connectivity matrix with a fixed threshold as a function of time for
networks with two hierarchical levels of communities. There we can notice how this procedure shows the
existence of two clear time scales corresponding to the two topological scales.

It is also possible to go one step further and show that the evolution of the system to the global attractor
is intimately linked to the whole spectrum of the Laplacian matrix (35). The bottom panels of Fig. 4
show the ranked index of the eigenvalues of Lij versus their inverse. As can be seen, both representations
(top and bottom) are qualitatively equivalent, revealing the topological structure of the networks. The only
difference is that one comes from a dynamical matrix and the other from the spectrum of the Laplacian,
that fully characterizes the topology. Thus, synchronization can be used to unveil topological scales when
the architecture of the network is unknown.

The relationship between the eigenvalue spectrum of Lij and the dynamical structures of Fig. 4 can be
understood from the linearized dynamics of the Kuramoto model, which reads [55, 56]

θ̇i = −σ
N

∑

j=1

Lijθj i = 1, ..., N , (38)

6It is worth stressing here that for this purpose the assumption of ωi = ω can be adopted without loss of generality as it
makes the analysis easier. Synchronization of non-identical oscillators also reveals the existence of community structures. See
[40].
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Figure 4: (color online) Top: Number of disconnected synchronized components (d.s.c.) as a function of time. Bottom: Rank
index versus the corresponding eigenvalue of the Laplacian matrix. Each column corresponds to a network with two hierarchical
levels of communities. The difference lies in the relative weight of the two modular levels. From [55].

that is a good approximation after a fast transient starting from random initial phases in the range [0, 2π].
The solution of Eq. (38), in terms of the normal modes ψi(t), is

θi(t) =

N
∑

j=1

Bijψj(t) =

N
∑

j=1

Bijψj(0)e−σλjt , (39)

where Bij is the normalized eigenvector matrix and λi the eigenvalues of the Laplacian matrix. Going back
to the original coordinates, the phase difference between any pair of oscillators is

|θi(t) − θm(t)| ≤
N

∑

j,k=1

|Bij −Bmj | e−σλjt
∣

∣

∣
B†

jk

∣

∣

∣
|ϕk(0)| . (40)

Assuming a global bound for the initial conditions |θk(0)| ≤ Θ, ∀k and taking into account the normal-
ization of the eigenvector matrix, |Bij | ≤ 1, we can sum over the index k to get

|θi(t) − θm(t)| ≤ NΘ

N
∑

j=2

|Bij −Bmj | e−σλj t. (41)

The sum starts at j = 2 because all the components of the first eigenvector (the one corresponding to the zero
eigenvalue) are identical, which is the warranty of the final synchronization of the system. Here we can see
the clear relation between topology (represented by the eigenvectors and eigenvalues of the Laplacian matrix)
and dynamics. For long times all exponentials go to zero and the oscillators get synchronized. At short
times the main contribution comes from small eigenvalues; then those nodes with similar projections on the
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eigenvectors of small indices will get synchronized even at short times. In networks which are hierarchically
organized this happens at all topological and dynamical scales.

An additional significance of the importance of this relationship between spectral and dynamical proper-
ties of identical oscillators comes from the work in [58]. The authors propose a method of network reduction
based on the similarity of eigenvector projections. From the original network, nodes are merged according to
the similarity of their components in the different eigenvectors, producing a reduced network; this merging
procedure basically preserves the original eigenvalues of the Laplacian matrix in the new coarse grained
Laplacian matrix. The authors determine the best clustering of the nodes and show that the evolution of
identical Kuramoto oscillators in the original network and according to the original Laplacian is equivalent
to the evolution of the reduced network in terms of the reduced Laplacian matrix.

The above results refer to situations in which networks have clearly defined community structure. The
approach we have shown enables one to deal with different time and topological scales. In the current
literature about community detection [20, 19], the main goal is to maximize the modularity, see Eq. (2). In
this case the different algorithms try to find the best partition of a network. Using a dynamical procedure,
however, we are able to devise all partitions at different scales. In [59] it is found that the partition
with the largest modularity turns out to be the one for which the system is more stable, if the networks
are homogeneous in degree.7 If the networks have hubs, these more connected nodes need more time to
synchronize with their neighbors and tend to form communities by themselves. This is in contradiction with
the optimization of the modularity that punishes single node communities. From this result we can conclude
that the modularity is a good measure for community partitioning. But when dealing with dynamical
evolution in complex networks other related functions different from modularity are needed.

For real networks, it has been shown that the same phenomenology applies [54]. These authors studied a
system of Kuramoto oscillators, Eq. (10) with σij = σ/ki, arranged on the nodes of two real networks with
community structures, the yeast protein interaction network and the Autonomous System representation of
the Internet map. Both networks have a modular structure, but differ in the way communities are assembled
together. In the former one, the modules are connected diversely (as for the synthetic networks analyzed
before), while in the latter one different communities are interwoven mainly through a single module. The
authors found that the transition to synchrony depends on the type of intermodular connections such that
communities can mutually or independently synchronize.

Modular networks are found in nature and they are commonly the result of a growth process. Nev-
ertheless, these structural properties can also emerge as an adaptive mechanism generated by dynamical
processes taking place in the existing network, and synchronization could be one of them. In particular, in
[60] the authors studied the evolution of a network of Kuramoto oscillators. For a coupling strength below its
critical value, the network is rewired by replacing links between neighbors with a large frequency difference
with links between units with a small frequency difference. In this case, the network dynamically evolves
to configurations that increase the order parameter. Along this evolution they noticed the appearance of
synchronized groups (communities) that make the structure of the network to be more complex than the
random starting one.

Very recently [61], a slightly different model was considered, where the dynamics of each node is governed
by

ẋi = ωi +
σ

∑

j∈Γi
b
α(t)
ij

∑

j∈Γi

b
α(t)
ij sin(xj − xi)βe

β|xj−xi|

being bij the betweenness centrality of the link, Γi the set of nodes that are connected to i, and α a time-
dependent exponent. The authors use this dynamical evolution to identify communities. The betweenness is
used as a measure of community coparticipation, since links between nodes that are in the same community
have low betweenness [21]. Starting from a synchronized state, α is decreased from zero and then the
corresponding interaction strength on those links is increasingly enhanced. An additional mechanism that
adjusts frequencies between neighboring nodes causes the final state to show partial synchronization among
nodes that are in the same community.

7Here stability (relative) of a given structure is understood to be the ratio between the final and initial times a partition
remains synchronized. In terms of the number of connected components in Fig. 4 it corresponds to the length of the plateaus.
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3.1.6. Synchronization by pacemakers

It is worth mentioning the existence of other different approaches to the synchronization of populations of
Kuramoto oscillators. So far we have referred to populations where the oscillators are nearly identical in the
sense that they can have slightly different frequencies. Whenever there is a subset of units that play a special
role, in the sense that they have substantially different frequencies than the rest in the population or they
affect some units but are not affected by any of them, one usually refers to them as pacemakers. The effect of
pacemakers has been studied in regular networks, as for instance in one-dimensional rings, two-dimensional
tori and Cayley trees [62]. So far, the only approach in a complex topology has been performed in [63].
There, the authors considered a system of identical units (same frequency) and a singular pacemaker. For
an ER network they found that for a large coupling the pacemaker entrains the whole system (all units with
the same effective frequency, that of the pacemaker), but the phase distribution is hierarchically organized.
Units at the same downward distance from the pacemaker form shells of common phases. As the coupling
strength is decreased the entrainment breaks down at a value that depends exponentially on the depth of
the network. This result also holds for complex networks, as for instance in WS or SF networks, although
the analytical explanation is only valid for ER networks.

3.2. Pulse-coupled models

In parallel to the studies described so far, some other approaches to synchronization in networks have
invoked models where the interaction between units takes the form of a pulse. In particular, much attention
has been devoted to models akin to reproduce the dynamics of neurons, e.g. integrate-and-fire oscillators
(IFOs). The basics of an IFO system is as follows. The phase dynamics of any oscillator i is linear in time
dφi(t)/dt = 1 in absence of external perturbations. However, when the oscillator i reaches the threshold
φi(t) = 1 it sends a signal (or pulse) to the rest of the oscillators to which it is connected, and relaxes to
φi(t) = 0. The pulse can be considered to propagate instantaneously or with a certain time delay τ , and
when it reaches other oscillators induces a phase jump φj → φj + ∆(φj). The effects of the topology on the
synchronization phenomena emerging in a network of IFOs are at least as rich as those presented in Sect.
3.1, although far more difficult to be revealed analytically. The main problem here is that the dynamics
presents discontinuities in the variable states that are difficult to deal with. Nevertheless, many insights
are recovered from direct simulations and clever mappings of the system. From direct simulations the
first insights pointed directly to certain scaling relations between the synchronization time and topological
parameters of networks. In ER networks, the scaling relation between the time to needed to achieve complete
synchronization T , the number of nodes N , and the number of links M , was found to be

T

N2α−β
∼

(

M

N2

)α

, (42)

with α = 1.30(5) and β = 1.50(5). Comparing this synchronization process with the same system on a
regular square lattice, one realizes that the time needed to synchronize a random network is larger, specially
in sparse networks [64]. In between of these two extremal topologies, some WS networks with a rewiring
probability p were studied and were found to expand the synchronization time more than the original regular
lattice. However, it was first pointed out that an appropriate normalization of the pulses received by each
neuron, rescales the time to very short values. This phenomenon of normalization of the total input signal
received by each oscillator has been repeatedly used to homogenize the dynamics in heterogeneous substrates.

IFOs in SW networks were revisited later in [65] to study the possibility of self-sustained activity induced
by the topology itself. Considering a unidirectional ring of IFOs with density p of random long-range directed
connections, the authors showed that periodical patterns persist at low values of p, while long-transients of
disordered activity patterns are observed for high values of p. Responsible for this behavior is a tradeoff
between the average path length and the speed of activity propagation. For low p configurations, the
distances in the networks decrease logarithmically with size, while the superposition of activities is almost
the same than in the regular configuration, i.e. the same activity occurs but in a ”smaller” network able to
self-sustain its excitation. However for large p, the superposition of activity between excited domains plays
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also an important role, and then both effects make the synchronized self-sustained activity collapse, leading
to disordered patterns.

In [66], networks of nonidentical Hodgkin-Huxley [67] elements coupled by excitatory synapses in random,
regular, and SW topologies, were investigated for the first time. The parameters of the model neurons were
kept to stay below the bifurcation point, until the input arrives and forces the system to undergo a saddle-
node bifurcation on a limit cycle. The dynamics of the system ends up into a coherent oscillation or in
the activation of asynchronous states. In absence of a detailed analysis of the mechanism that generates
coherence, the simulations showed several effects of the topology on the dynamics, the most interesting of
which is that achieving synchronization in regular networks takes longer compared to SW, where the existence
of short-cuts favors faster synchronization. The results obtained in all cases show that the randomness of
the topology has strong effects on the dynamics of these models, in particular the average connectivity is a
control parameter for the transition between asynchronous and synchronous states. In Fig. 5 we present a
phase diagram for the Hodgkin-Huxley model in SW networks with varying average degree 〈k〉 and rewiring
probability p. A detailed analysis of sparse random networks of general IFOs was exposed in [68]. Their
analytic results are in agreement with the previous observations. Very recently [69], a SW network of
non-identical Hodgkin-Huxley units in which some of the couplings could be negative was analyzed; they
surprisingly found that a small fraction of such phase-repulsive links can enhance synchronization.

In a slightly different scenario [70] a system of pulse-coupled Bonhoeffer-van der Pol-FitzHugh-Nagumo
oscillators [71] in WS networks was studied numerically. This study reports a major influence of the average
path length of the network on the degree of synchronization, whereas local properties characterized by
clustering and loop coefficients seem to play a minor role. In any case, the authors warn that the results are
far from being conclusive, since single characteristics of the network are not easily isolated. We will come
back to this issue in the next section, when dealing with the stability of the synchronized state.

The works reviewed so far in this subsection are based on the assumption that the coupling is fixed,
and that the only source of topological complexity is embedded in the connectivity matrix. The authors in
[72] showed that for networks of pulse-coupled oscillators with complex connectivity, coupling heterogeneity
induces periodic firing patterns, which replace the state of global synchrony. The coupling heterogeneity has
a critical value from which the periodic firing patterns become asynchronous aperiodic states. These results
are in agreement with the observations described in previous works and allow us to state that a certain
degree of complexity in the interaction between pulse coupled oscillators is needed to observe regular (or
ordered) patterns. However, once a critical level of complexity is surpassed, asynchronous aperiodic states
dominate the dynamic phenomena.

3.3. Coupled maps

Maps represent simple realizations of dynamical systems exhibiting chaotic behavior. At a first sight
they can represent discrete versions of continuous oscillators. Coupled populations of such rather simple
dynamical systems have been one of the paradigmatic models to explain the emergence and self-organization
in complex systems due to the rich variety of global qualitative behavior they give rise to. From a more
practical point of view coupled map systems have found a widespread range of applications, ranging from
fluid dynamics and turbulence to stock markets or ecological systems [1]. Since these systems are nowadays
known to have complex topologies, populations of maps coupled through a complex pattern of interactions
are natural candidates to study the onset of synchronization as an overall characteristic of the population.

Coupled maps have been widely analyzed in regular lattices, trees and also in global connectivity schemes.
The first attempt to consider connectivities in between these extreme cases is [73]. He proposed a system
formed by units, whose individual dynamics are given by the logistic map, that are connected to a fixed
number k of other units randomly chosen (multiple and self-links are permitted). The evolution rule for the
units is

xi(t+ 1) =
1

k

∑

j

aijf (xj(t)) . (43)

A linear stability analysis of this system is performed in terms of the eigenvalues of the matrix A. For the
logistic map it is shown that for k > 4 the maps synchronize. The time the system needs to synchronize
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Figure 5: Phase diagram which shows the regions of oscillatory (clear) and nonoscillatory (dark) activity of the network in the
(k, p) plane. The island that appears on the right side indicates that the SW (for some range of values of k) is the only regime
capable to produce fast coherent oscillations in the average activity after the presentation of the stimulus. From [66].

decreases with the connectivity k and also with the system size, although in the latter case the time saturates
for large values of the system size. When the connectivity pattern is changed to a modified WS model (by
adding long-range short-cuts but not rewiring), the authors in [74] showed that just a nonzero value of the
addition probability is enough to guarantee synchronization in the thermodynamic limit.

In another early attempt to include non-regular topologies in chaotic dynamics [75], a SW network was
analyzed, in which

θi(t+ 1) = (1 − σ)f (θi(t)) +
σ

4 + κ

N
∑

j=1

aijf (θj(t)) , (44)

where κ is the number of shortcuts in the network, and σ the coupling constant. Each unit evolves according
to a sine-circle map [76]

f(θ) = θ + Ω − K

2π
sin(2πθ) (mod 1), (45)

which provides a simple example for describing the dynamics of a phase oscillator perturbed by a time-
periodic force. Here K is a constant related to the external force amplitude and 0 ≤ Ω < 1 is the ratio
between the natural oscillator frequency and the forcing frequency. It is observed that synchronization,
in terms of a parameter related to the winding number dispersion, is induced by long-range coupling in a
system that, in the absence of the shortcuts, does not synchronize.

A slightly different approach was conducted in [77], who considered a population of units evolving
according to

xi(t+ 1) = (1 − σ)f (xi(t)) +
σ

ki

∑

j∈Γi

f (xj(t)) . (46)

They obtain the stability condition of the synchronized state in terms of the eigenvalues of the normalized
Laplacian matrix (δij − aij/ki) and the Lyapunov exponent of the map f(x). Furthermore, they also find a
sufficient condition for the system to synchronize independently of the initial conditions, namely

(1 − σλ2) sup |f ′| < 1, (47)

where λ2 is the smallest non-zero eigenvalue of the normalized Laplacian matrix. They demonstrate their
results for regular connectivity patterns as global coupling and one-dimensional rings with a varying number
of nearest neighbors, since in these cases the eigenvalues can be computed analytically. Complexity in the

22



connectivity pattern is introduced in different ways. In these cases one needs numerical estimates of the
eigenvalues to compare the synchronization condition (47) with the simulation of the model (46). By using
a quadratic map f(x) = 1 − ax2 [76] and choosing the free parameter a in a range where different regimes
are realized, they find that in a random network the system synchronizes for an arbitrary large number of
units, whenever the number of neighbors is larger than some threshold determined by the maximal Lyapunov
exponent. This implies a remarkable difference to the one-dimensional case where synchronization is not
possible when the number of units is large enough. For a WS model their main finding is that a quite high
value of the rewiring probability (p > 0.8) is needed to achieve complete synchronization. Finally for BA
networks the behavior is comparable to the random ER case.

Following a similar line, in [78] it is studied the behavior of a model where the interaction between the
units can be strengthened according to the degree. In this case

xt+1,i = (1 − σ)f(xt,i) +
σ

Ni

∑

j∈Γi

kα
j f(xt,j), (48)

where Ni =
∑

j∈Γi
kα

j is the appropriate normalizing constant. Here the function f(x) is also a quadratic
map. The authors study first BA networks. When α = 0 the model is equivalent to that discussed previously;
in this case they find the existence of a first-order transition between the coherent and the noncoherent
phases that depends on both the mean connectivity and the coupling σ. As varying a, the parameter of the
quadratic map, they find that these two critical values are related by the power law σc ∝ k−µ

c . The effect of
α being larger than zero is only quantitative, since in this case the transition appears at smaller values of the
interaction as compared with the usual case. Additionally, the authors studied two types of deterministic SF
networks: a pseudofractal SF network introduced in [79] and the Apollonian network introduced in [80]. In
both cases, there is no coherence when α = 0 and a = 2. This fact leads the authors to conclude that some
degree of randomness that shortens the mean distance between units is needed for achieving a synchronized
state, since in these networks the SF nature is not related to a short mean distance. Nevertheless, this
situation is avoided if the contributions from the hubs are strengthened, by making α > 0.

Another set of papers deals with units that are coupled with some transmission delay [81, 82, 83]. For
instance, in [81] the authors propose a model in which all units have the same time delay (in discrete units)
with respect to the unit considered:

xi(t+ 1) = f (xi(t)) +
σ

ki

∑

j∈Γi

[f(xj (t− τij)) − f (xi(t))] . (49)

For a uniform delay τij = τ ∀i, j, they show analytically, and numerically, that the delay facilitates syn-
chronization for general topologies. In any case, this fact confirms the results obtained in [77] that ER and
SF networks are easier to synchronize than regular or SW ones. Furthermore, one of the implications of
connection delays is the possibility of the emergence of new collective phenomena. In [82, 83] the authors
considered uniform distributions of (discrete) time delays. Their main result is that in the presence of ran-
dom delays the synchronization depends mainly on the average number of links per node, whereas for fixed
delays there is also a dependence on other topological characteristics.

In a more general framework [84, 85, 86], the following problem is considered

xi(t+ 1) = (1 − σ)f (xi(t)) + σ
1

ki

∑

j∈Γi

g (xj(t)) . (50)

For a logistic map g(x) = µx(1 − x) (although analyses on other maps as the circle map and the
tent map have also been performed) the authors show a phase diagram in which the different stationary
configurations are obtained as a function of the coupling strength σ and the parameter of the map µ.
The stationary configurations are classified in the following way: turbulence (all units behave chaotically),
partially ordered states (few synchronized clusters with some isolated nodes), ordered states (two or more
synchronized clusters with no isolated nodes), coherent states (nodes form a single synchronized cluster),
and variable states (nodes form different states depending strongly on initial conditions). The critical value
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Figure 6: (color online) Left: Distribution of the topological distances for a tree with 1000 nodes (bullets) and the distance
inside the synchronized clusters (other symbols) for σ = 0.017 and different initial conditions. Right: visualization of the tree
with five interconnected clusters of synchronized nodes marked by different colors. From [87].

of the coupling above where phase synchronized clusters are observed depends on the type of network and
the coupling function. As a remarkable point, it is found that two different mechanisms of cluster formation
(partial synchronization) can be distinguished: self-organized and driven clusters. In the first case, the nodes
of a cluster get synchronized because of intracluster coupling. In the latter case, however, synchronization
is due to intercluster coupling; now the nodes of one cluster are driven by those of the others. For a linear
coupling function g(x) = x, self-organization of clusters dominates at weak coupling; when increasing the
coupling strength, a transition to driven-type clusters, almost independent of the type of network, appears.
However, for a nonlinear coupling function the driven type dominates for weak coupling, and only networks
with a tree-like structure show some cluster formation for strong coupling.

Finally, it is worth mentioning the very Ref. [87], in which the authors consider a SF tree (preferential-
attachment growing network with one link per node) of two-dimensional standard maps:

x′ = x+ y + µ sin(2πx) (mod 1)
y′ = y + µ sin(2πx).

(51)

The nodes are coupled through the angle coordinate (x) so that the complete time-step of the node i is

xi(t+ 1) = (1 − ε)x′i(t) + ε
ki

∑

j∈Γi
(xj(t) − x′i(t))

yi(t+ 1) = (1 − ε)y′i(t).
(52)

Here, (′) denotes the next iteration of the (uncoupled) standard map (51) and t denotes the global discrete
time. The update of each node is the sum of a contribution given by the updates of the nodes, the ′ part,
plus a coupling contribution given by the sum of differences, taking into account a delay in the coupling from
the neighbors. By keeping µ = 0.9 such that the individual dynamics is in the strongly chaotic regime, the
authors analyze the dependence on the interaction strength σ. For small values of the coupling the motion
of the individual units is still chaotic, but the trajectories are contained in a bounded region. With further
increments of the coupling, the units follow periodic motions which are highly synchronized. In this case,
however, synchronization takes place in clusters, each cluster having a common value of the band center
around which the periodic motion occurs, and center values appear in a discrete set of possible values. These
clusters form patterns of dynamical regularity affecting mainly nodes at distances 2, 3, and 4, as shown in
Fig. 6(left). In fact, the histograms of distances between nodes along the tree and between nodes belonging
to the same synchronized cluster have different statistical weights only for these values of the distances.

All previously discussed chaotic models are discrete time maps, which are appropriate discrete versions
of chaotic oscillators. Nevertheless, we also notice a couple of works dealing with time continuous maps.
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In [88] the authors analyze a WS network of Rössler oscillators, where the parameters are chosen to ensure
that the system generates chaotic dynamics. The basic observation is that the network synchronizes when
the coupling strength is increased, as expected. Another interesting result is that the mean phase difference
among the chaotic oscillators decreases with the increasing of the probability of adding long-range random
short-cuts. Along the same line, in [89] it is considered a system of Rössler oscillators on BA networks. The
only tuning parameter of the BA networks is m, the number of links that a newly added node has. For m = 1
(SF trees) there is no synchronized state for a large number of oscillators. Increasing m synchronization is
favored. The topological effect of increasing m is to create loops, but it is shown that this is not the only
fact that improves synchronization.

Finally, a different and interesting proposal was made in [90] where a fixed 1-d connectivity pattern
is complemented by a set of switching long-range connections. In this case, it is proven that interactions
between nodes that are only sporadic and of short duration are very efficient for achieving synchronization.

As a summary, we can say that most of the works deal with particular models of coupled maps (logistic
maps, sine-circle maps, quadratic maps, ...). Thus, it is possible, to obtain in some cases not only the
conditions of local stability of the completely synchronized state but the conditions for the synchronization
independently of the initial conditions. In general, the addition of short-cuts to regular lattices improves
synchronization. There are even some cases, for which synchronization is only attainable when a small
fraction of randomness is add to the system. On the contrary, in the next section we will discuss the linear
stability of the synchronized state for general dynamical systems.

4. Stability of the synchronized state in complex networks

In the previous section we have reviewed the synchronization of various types of oscillators on complex
networks. Another line of research on synchronization in complex networks, developed in parallel to the
studies of synchronization in networks of phase oscillators, is the investigation of the stability of the com-
pletely synchronized state of populations of identical oscillators. The seminal work by Barahona and Pecora
[91] initiated this research line by analyzing the stability of synchronization in SW networks using the Master
Stability Function (MSF). The framework of MSF was developed earlier for the study of synchronization
of identical oscillators on regular or other simple network configurations [92, 93]. The extension of the
framework to complex topologies is natural and important, because it relates the stability of the fully syn-
chronized state to the spectral properties of the underlying structure. It provides with an objective criterion
to characterize the stability of the global synchronization state, from now on called synchronizability of net-
works independently of the particularities of the oscillators. Relevant insights about the structure-dynamics
relationship has been obtained using this technique.

In this section, we review the MSF formalism and the main results obtained so far. Note that the MSF
approach assesses the linear stability of the completely synchronized state, which is a necessary, but not a
sufficient condition for synchronization.

4.1. Master Stability Function formalism

To introduce the MSF formalism, we start with an arbitrary connected network of coupled oscillators.
The assumption here for the stability analysis of synchronization is that all the oscillators are identical,
represented by the state vector x in an m-dimensional space. The equation of motion is described by the
general form

ẋ = F(x). (53)

For simplicity, we consider time-continuous systems. However, the formalism applies also to time-discrete
maps. We will also assume an identical output function H(x) for all the oscillators, which generates the
signal from the state x and sends it to other oscillators in the networks. In this representation, H is a
vector function of dimension m. For example, for the 3-dimensional system x = (x, y, z), we can take
H(x) = (x, 0, 0), which means that the oscillators are coupled only through the component x. H(x) can
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be any linear or nonlinear mapping of the state vector x. The N oscillators, i = 1, . . . , N , are coupled in a
network specified by the adjacency matrix A = (aij). We have

ẋi = F(xi) + σ

N
∑

i=1

aijwij [H(xj) − H(xi)] (54)

= F(xi) − σ

N
∑

j=1

GijH(xj), (55)

being wij ≥ 0 the connection weights, i.e., the network is, in general, weighted. The coupling matrix G is

Gij = −aijwij if i 6= j and Gii =
∑N

j=1 aijwij . When the coupling strength is uniform for all the connections
(wij = 1), the network is unweighted, and the coupling matrix G is just the usual Laplacian matrix L. By
definition, the coupling matrix G has zero row-sum. Thus there exists a completely synchronized state in
this network of identical oscillators, i.e.,

x1(t) = x2(t) = . . . = xN (t) = s(t), (56)

which is a solution of Eq. (55). In this synchronized state, s(t) also approaches the solution of Eq. (53), i.e.,
ṡ = F(s). This subspace in the state space of Eq. (55), where all the oscillators evolve synchronously on the
same solution of the isolated oscillator F, is called the synchronization manifold.

4.1.1. Linear Stability and Master Stability Function

When all the oscillators are initially set at the synchronization manifold, they will remain synchro-
nized. Now the crucial question is whether the synchronization manifold is stable in the presence of small
perturbations δxi. To assess the stability, we need to know whether the perturbations grow or decay in
time. The linear evolution of small δxi can be obtained by setting xi(t) = s(t) + δxi(t) in Eq. (55),
and expanding the functions F and H to first order in a Taylor series, i.e., F(xi) = F(s) +DF(s)δxi and
H(xi) = H(s)+DH(s)δxi. Here DF(s) and DH(s) are the Jacobian matrices of F and H on s, respectively.
This expansion results in the following linear variational equations for δxi,

δẋi = DF(s)δxi − σDH(s)

N
∑

j=1

Gijδxj . (57)

The variational equations display a block form, each block (ij) having m components. The main idea here is
to project δx into the eigenspace spanned by the eigenvectors vi of the coupling matrix G. This projection
can operate in block form without affecting the structure inside the blocks. By doing so, Eqs. (57) can be
diagonalized into N decoupled eigenmodes in the block form

ξ̇l = [DF(s) − σλlDH(s)] ξl, l = 1, · · · , N, (58)

where ξl is the eigenmode associated with the eigenvalue λl of G. Since G has the property of zero row-sum,
the minimal eigenvalue is always zero, i.e., λ1 = 0, with the corresponding eigenvector v1 = (1, 1, . . . , 1). So
the first eigenmode ξ̇1 = DF(s)ξ1 corresponds to the perturbation parallel to the synchronization manifold.
The other N − 1 eigenmodes are transverse to the synchronization manifold and should be damped out to
have a stable synchronization manifold.

In general, the eigenvalues spectrum is complex when the coupling matrix is not symmetrical, e.g.,
when the network is directed (aij 6= aji) or when the coupling weights are asymmetrical (wij 6= wji).
In the literature, the characterization of network topology and the analysis of synchronization and other
dynamical processes have mainly focused on undirected and unweighted networks. This case corresponds to
a symmetric G and therefore all its eigenvalues are real, which makes the analysis simpler. In the following
we also assume that all the eigenvalues are real, which is always the case for symmetric G but it can also
be true for non-symmetric cases, as will be discussed later.
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When the eigenvalues spectrum is real, it has the following properties: (i) λ1 = 0 due to zero row sum
of G; (ii) λl ≥ 0 since G is positive semidefinite and (iii) there is only one zero eigenvalue if the network is
connected. Accordingly, the eigenvalues can be ordered as

0 = λ1 < λ2 · · · ≤ λN . (59)

In a connected network of N oscillators, λ2 and λN are then, the minimal and the maximal non-zero
eigenvalues, respectively.

Importantly, we observe that all the individual variational equations in the system of equations Eq. (58)
have the same form

ξ̇ = [DF(s) − αDH(s)] ξ. (60)

They only differ by the parameter αl = σλl. Now if we know the stability of the solution ξ = 0 for any
reasonable value of α, then we can infer the stability for any eigenmode with αl = σλl. To assess the stability
of this master variational equation (60), we calculate its largest Lyapunov exponent λmax as a function of α,
the resulting function is the master stability function. The evolution of small ξ is then described on average
as ||ξ(t)|| ∼ exp[λmax(α)t], and the mode is stable with ||ξ|| → 0 if λmax(α) < 0.

So far, we have assumed that the eigenvalues λl are real, and the problem is to compute the MSF λmax(α)
for real values of α. For the general case of complex eigenvalues λl one needs to evaluate the MSF in the
complex plane α = (αR, αI). This scenario is mathematically more intricate and less results are available.
For many oscillators types λmax(α) < 0 in a bounded region of this plane [92, 93]. However, semi-bounded
(generally speaking unbounded) regions where λmax(α) < 0 can also occur for some specific oscillators. We
will see later how this difference between region bounds affects the measurement of synchronizability.

The reader may find the framework of master stability function abstract. Here we present it in a
physically intuitive manner with the help of a schematic diagram. For this, we restrict ourself to the case
where α is real. Let us consider first two coupled oscillators. The first one is autonomous and evolving along
the trajectory s(t), and the second one is driven by the first one with a coupling strength α, as depicted in
Fig. 7(a). The dynamical equations read,

ṡ = F(s), (61)

ẋ = F(x) + α[H(s) − H(x)]. (62)

Then immediately, we obtain the linear variational equation for the synchronization difference ξ(t) = x(t)−
s(t) as in Eq. (60). This means that the MSF describes the stability of the state in which the two oscillators
are synchronized.

In a similar spirit, the equations for the N − 1 transverse eigenmodes in Eq. (58) can be graphically
represented as N −1 oscillators driven by a common autonomous oscillator ṡ = F(s), and the corresponding
coupling strengths are σλl, as depicted in Fig. 7(b). In this representation, the mode decomposition decouples
the complex network connections into many pairs of oscillators and the stability thus can be understood
from that of the two coupled oscillators, the MSF. The complete synchronization state s is stable when all
the N − 1 oscillators in Fig. 7(b) are synchronized by the common forcing signal s. This picture will be
useful later on in this section.

4.1.2. Measures of synchronizability

In the case of real eigenvalue spectrum of G, the MSF only presents real values of α. Here we distinguish
two cases that will lead to different criteria for synchronization in networks. The first case refers to bounded
MSFs, where λmax(α) < 0 within a finite interval α1 < α < α2 (Fig. 8). A physical picture of this case for
two coupled oscillators, as those in Fig. 7(a), is that the driven oscillator will be synchronized, x(t) = s(t),
if the coupling strength α ∈ (α1, α2). Bounded MSFs are quite common for many oscillators F and many
coupling functions H .

For discrete time chaotic maps, the MSFs are always bounded, the reason is the following: in discrete
time systems, Eq. (60) reads as

ξn+1 = [DF(s(n)) − αDH(s(n))] ξn = J(α, s(n))ξn = Jnξ0,
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Figure 7: Schematic plot of the eigenmode decomposition. (a) For 2 unidirectionally coupled nodes; (b) for a network of N
coupled nodes.
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Figure 8: Four master stability functions for coupled Rössler oscillators: chaotic (bold) and periodic (regular lines); with y
coupling (dashed) and x coupling (solid lines). (The curves are scaled for clearer visualization). From [91].
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where n is the iteration step and Jn = Πn
l=0J(α, s(l)). The largest Lyapunov exponent is [94]

λmax = lim
T→∞

1

T
ln

||ξT ||
||ξ0||

= lim
T→∞

1

T
ln ||JT ||.

where T is the number of iterations. Now suppose α > 0 is a very large value, then at each step n,
J(α, s(n)) ≈ −αDH(s(n)), and JT ≈ (−α)T ΠT−1

n=0DH(s(n)). As a result, λmax ≈ lnα + µ. Here
µ = limT→∞

1
T ln ||JT

H || is a finite measure on the chaotic attractor similar to the largest Lyapunov ex-

ponent λF
1 of the isolated chaotic map F, λF

1 = limT→∞
1
T ln ||JT

F ||, where JT
H = ΠT−1

n=0DH(s(n)) and

JT
F = ΠT−1

n=0DF(s(n)), respectively. Consequently, λmax > 0 when α is large enough, i.e. the MSF always
becomes positive when the coupling strength is large enough, thus it is bounded.

There are also situations where the MSFs are unbounded, and λmax < 0 for α > α1 without the upper
limit α2. This happens, for example, in time-continuous systems with H(x) = x where the oscillators are
linearly coupled through all the m corresponding components. In this case, the driven oscillator in Fig. 7(a)
will be synchronized if the coupling strength α > α1.

To synchronize a network of oscillators, all the N−1 oscillators in Fig. 7(b) must be synchronized by the
common forcing signal s(t). In the case of bounded MSFs, this requires that σλl ∈ (α1, α2) for 2 ≤ l ≤ N .
Explicitly, the following condition is necessary for the stability of the synchronization state of the network,

α1 < σλ2 ≤ σλ3 ≤ · · · ≤ σλN < α2. (63)

This condition can be only fulfilled, for some values of σ, when the eigenratio R satisfies the following
relation

R ≡ λN

λ2
<
α2

α1
. (64)

Therefore, we conclude that it is impossible to synchronize the network if R > α2/α1, since there is no σ for
which the fully synchronized state is linearly stable. On the contrary, if R < α2/α1 the synchronous state
is stable for σmin < σ < σmax where σmin = α1/λ2 and σmax = α2/λN , respectively.

If the MSF is unbounded, then the synchronization manifold is stable if it exists σ satisfying

α1 < σλ2 ≤ σλ3 ≤ · · · ≤ σλN , (65)

which will be true for any σ larger than a certain synchronization threshold σmin. Thus, the larger λ2 the
smaller synchronization threshold σmin [95, 32, 96]. Moreover, as previously discussed in Sect. 3.1.4, λ2 also
plays a special role in the time needed to achieve complete synchronization [52].

Note that the eigenratio R and the nonzero minimal eigenvalue λ2 depend only on the network structure,
as defined by G. For bounded MSF, if R is small, the condition in Eq. (64) is, in general, easier to satisfy.
From this, it follows that the smaller the eigenratio R the more synchronizable the network and vice versa
[91]. In this sense, we can characterize the synchronizability of the networks with R and λ2, without referring
to specific oscillators. As will be discussed soon, these two types of synchronizability on a specific network
can depend on different parameters and then can be correlated to different network descriptors. In this
review, synchronization based on the eigenratio R is called Type I and synchronizability based solely on λ2

is called Type II synchronizability.
For general directed networks, the spectrum of the coupling matrix G is complex, and it is still unclear

how to develop simple measures, without referring to the MSF of specific oscillators and coupling functions,
to evaluate the synchronizability of different (directed) networks. This is probably one of the reasons why
the vast majority of works using the MSF have focused on undirected and unweighted networks whose
spectra are real. In a recent work [97], both the ratios of the real and imaginary parts of the eigenvalues
are used. However, it should be noted that networks with the same ratios (or even the same minimal and
maximal real and complex parts), but different boundaries of eigenvalues in the complex plane, will have
different synchronization thresholds for the same MSF. This is contrast to the cases of real spectra, where
the synchronization thresholds for the same MSF will be identical for networks with the same λ2 and λN ,
irrespective to the other spectral properties.
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Figure 9: (color online) Decay of the eigenratio R in a N = 100 lattice as a fraction f of the N(N − 1)/2 possible edges are
added following purely deterministic, semirandom, and purely random schemes. Networks become synchronizable below the
dashed line (β = α2/α1, where α1 and α2 are from Fig. 8). The squares (numerical) and the solid line [analytic Eq. (66)] show
the eigenratio decay of regular networks through the deterministic addition of short-range connections. The dot-dashed line
corresponds to purely random graphs [Eq. (71)], which become almost surely disconnected and unsynchronizable at f ≃ 0.0843.
The semirandom approach (dots, shown for ranges k = 1, 2, 4, 6, 10, 14) is more efficient in producing synchronization when
k < ln N . From [91].

The key advantage of the MSF framework is that it provides an objective criteria ( λ2 and λN ) to assess
the synchronizability of complex networks without referring to specific oscillators. The drawback is that it
only informs about the dynamics towards synchronization from small perturbations of the synchronization
manifold (linear stability). The study of synchronizability is then converted into the investigation of the
eigenvalues of the coupling matrix G of the networks. In the current scenario of the MSF, natural questions
are: What is the synchronizability of different types of complex networks? Which structural properties are
related to or control the synchronizability?

Note that although the more appropriate approach seems to be that of following the general framework
of graph theory to investigate the spectral properties of networks, many authors have tried to relate a
single statistical property of networks with synchronizability, sometimes misinterpreting and generalizing
the results without a proper estimation of their constraints. In the following section, we will summarize
results on the synchronizability of typical network models and then describe the relationship between graph
theoretical measures and the synchronizability of complex networks. Further insights have been obtained
in the scope of graph theory by providing with bounds that constrain the eigenvalues of the Laplacian of
networks.

4.1.3. Synchronizability of typical network models

We will present the main findings related to synchronizability in the most common classes of complex
networks found in the literature: Regular, SW, ER, and SF networks.

Regular networks. For a long time, synchronization of chaotic oscillators has been studied on regular net-
works [92, 93]. A typical example of a regular network is a cycle (or ring) of N nodes each coupled to its 2k
nearest neighbors with a total of Nk links. The eigenvalues of the coupling matrix are [98, 91]

λl = 2k − 2

k
∑

j=1

cos
(2π(l − 1)j

N

)

. (66)
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By a series expansion, we obtain

λ2 ≃ 2π2k(k + 1)(2k + 1)

3N2
, λN = (2k + 1)(1 + 2/3π). (67)

and the eigenratio R for k ≪ N can be approximated as

R ≃ (3π + 2)N2

2π3k(k + 1)
. (68)

These relations show that regular networks have a poor Type I and Type II synchronizability. The asymp-
totics on the system size λ2 ∼ 1/N2, makes synchronization effectively impossible for both bounded and
unbounded MSFs of chaotic oscillators with α1 > 0. In such regular networks, usually we have complicated
pattern formation (waves) instead of a stable spatially homogeneous (completely synchronized) state [99].
A way to improve this situation is, for fixed N , adding connections to generate a higher range k, since λ2

increases approximately as λ2 ∼ k3 the the eigenratio R decreases as R ∼ 1/k2 for k ≪ N , and synchroniz-
ability of Type I and II is enhanced.

SW networks. In [91], SW networks are obtained by adding NS links at random, to a regular network where
each node is connected to its 2k nearest neighbors, so that the average number of shortcuts per node is S.
As shown in Fig. 9, adding a small fraction of such random connections reduces the eigenratio R so that the
synchronizability is improved significantly.

The eigenvalues of the SW networks have been obtained [91] through a perturbation analysis of the SW
Laplacian L = L0 +Lr. Here L0 is the deterministic Laplacian of the regular networks and Lr the Laplacian
formed by the random shortcuts. In the stochastic Laplacian matrix Lr (symmetric, zero row-sum), any of
the remaining entries N(N − 2k− 1) of L0 takes the value 1 with probability ps = 2S/(N − 2k− 1) and the
value 0 with probability (1 − ps). For ps ≪ 1, and N1/3 < k ≪ N , the perturbations of the eigenvalues are

ελ
(1)
2 ≃ Nps −

√

3πps/4, ελ
(1)
N ≃ Nps +

√

3πps/4. (69)

The extreme eigenvalues are

λ2 = λ
(0)
2 + ελ

(1)
2 , λN = λ

(0)
N + ελ

(1)
N , (70)

where λ
(0)
2 and λ

(0)
N are the eigenvalues of the regular networks (L0) as in Eq. (67). From this analysis, it

follows that for a fixed small value of S, the minimal non-zero eigenvalue λ2 is driven away from λ
(0)
2 ≈ 0

to ελ
(1)
2 ≈ Nps ≈ 2S for any SW network with large N and N1/3 < k ≪ N , while the maximal eigenvalue

λN is not affected very much for small S. This means that both types of synchronizability are mainly
determined by the average number of shortcuts per node S.

In SW networks, the variance of the degree distribution raises as the regular network is rewired with
an increasing probability p [100] or when more shortcuts are added, see Fig. 10(b). This process results
in an improvement of the synchronizability (the eigenvalue ratio, R, is reduced), as illustrated in Fig. 9
and Fig. 10(a). This is because λ2 increases proportionally to the number of shortcuts per node, i.e.,
λ2 ≈ 2S = 2kp.

Random networks. In purely random graphs, in which a fraction f of the N(N − 1)/2 possible links is
established at random, the eigenratio is a function of f and N [91]. It reads

R ≃ Nf +
√

2f(1 − f)N lnN

Nf −
√

2f(1 − f)N lnN
. (71)

Note that the networks are synchronizable only when f & 2 lnN/(N + 2 lnN), where it is almost sure
that the networks are connected [101]. If this condition is verified the synchronizability is improved with
increasing f , as seen in Fig. 9.
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Figure 10: Synchronizability (eigenratio R, (a)) and heterogeneity of degrees (variance σ2

k of the degree distribution (b)) of SW
networks as a function of the rewiring probability p. Inset of (b): average path length ℓ vs p. The network has a size N = 2000
and the range k = 3. From [100].
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Figure 11: Synchronizability of random SF networks. Plotted are eigenvalues λ2 (circles) and λN (squares) and eigenratio R
(triangles). (a) As functions of the exponent γ for network size N = 210; open symbols for kmin = 5 and filled symbols for
kmin = 10. (b) As a functions of network size N at γ = 3 and kmin = 10. The results are averaged over 50 realizations.

Note that for small f . lnN/N , the purely random networks are almost surely disconnected and thus
non-synchronizable. On the contrary, the regular backbone of nearest connections with k ≥ 1 can already
make the semirandom SW networks connected regardless of N and thus synchronizable as a whole. In this
sense, semirandom SW networks turn out to be much superior to the purely random networks in terms of
synchronizability, as can be seen from Fig. 9 for small k, k . lnN (k = 1 ∼ 4 in networks with N = 100).
The improvement is even more pronounced for larger N .

SF networks. Here we discuss the synchronizability of SF networks for different values of the degree distri-
bution exponent γ. To this end, we consider a random model introduced in [102] to construct SF networks.
The algorithm works as follows, first, a degree ki is assigned to each node i according to the probability
distribution P (k) ∼ k−γ and k ≥ kmin. The network is generated by randomly connecting the nodes so that
node i has exactly the prescribed ki links to other nodes, prohibiting self- and repeated links.

The dependence of the eigenvalues λ2 and λN and the eigenratio R on γ and N are shown in Fig. 11.
We observe that λ2 has no noticeable dependence on γ and N . However, λN becomes larger as the degree
heterogeneity is increased. So the changes of the eigenratio R follow the trend of λN closely. This result
is somehow expected given that the largest eigenvalue λN is intimately related to the degree of hubs, and
this is the essential fingerprint of SF networks with different exponents γ. On the other hand, λ2 increases
with kmin, and R is larger at smaller kmin for the same γ and N . The variation of R as a function of γ
was reported in [103]. The dependence of the synchronizability on kmin and N in this random SF network
model turns out to be very similar in the BA growing model, as shown in [104]. The conclusion is that in SF
networks, the two types of synchronizability (I and II) associated to R (bounded MSF) and λ2 (unbounded
MSF) are very different.

In an early paper [105] that studied robustness and fragility of synchronization of SF networks, it was
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reported that λ2 is a constant almost unrelated with kmin (kmin = 3, 5, 7, 9, 11). This result in [105] is
inconsistent with the observation in Fig. 11, with the work in [104], and with graph theoretical analysis
in [106], which we will discuss in more detail later on. Thus the observation of robustness and fragility of
synchronizability in [105] (changes of λ2 due to random or deliberate attack of the nodes) should be taken
cautiously, and a detailed reexamination of this issue is mandatory before assessing conclusions.

4.1.4. Synchronizability and structural characteristics of networks

The relationship between structural characteristics of networks and synchronizability has been explored
intensively in the literature, mainly based on numerical experiments on various network models. The
observations, which are summarized in what follows, are quite confusing. The main problem is that many
works have made a naive use of complex network models to assess synchronizability. Very often network
models do not allow us to isolate one structural characteristic while keeping the other properties fixed. For
this reason many results have been misinterpreted. As we will see in the next section, a more objective graph
theoretical analysis sheds some light to the whole problem. Unfortunately, the complete understanding of
the structure-synchronizability relationship is still missing.

Synchronizability dependence on ℓ. The average shortest path length ℓ is a property of the network closely
related to the efficiency of information processing. Most real-world complex networks are characterized by
a small ℓ . lnN [37]. Indeed, it has been conjectured and rationalized that in biological neuronal networks,
ℓ has been minimized by evolution [107, 108]. Generally speaking, ℓ is lower in SF networks than in ER
networks due to the presence of hubs [109], and ℓ is lower in SW networks than in regular lattices due to
the presence of shortcuts.

In [9] it is suggested that the decrease in the distance in the WS network would lead to more efficient
coupling and thus enhanced synchronization of the oscillators. Investigation of phase oscillators [34] or
circle maps [75] on WS networks has shown that when more and more shortcuts are created at larger
rewiring probability p, the transition to the synchronization regime becomes easier. On the other hand,
the synchronizability of identical oscillators follows the same trend of ℓ, in networks with fixed N and k,
as p is increased (Fig. 10). A similar type of behavior is observed if shortcuts are added to the regular
networks (Fig. 9). From these observations, the generalized conclusion that smaller distances will always be
correlated to enhanced synchronization, has been intuitively used by many authors, and is not so. Indeed,
a more detailed analyses of various network models have shown that there is no direct relationship between
ℓ and the synchronizability of the networks. The reason is that the transition to the small-world regime
occurs at a value of the rewiring probability for which there is no significant effect on λ2.

In fact, in WS networks, ℓ is a function of the network size N , the degree of the nodes in the original
regular network, k, and the randomness parameter p [110]

ℓ(N, k, p) ∼ N

k
f(pkN), (72)

where f(u) is a universal scaling function, f(u) = const if u ≪ 1 and f(u) = ln(u)/u if u ≫ 1. From
this result, it turns out that ℓ begins to decrease with p, and consequently the SW behavior emerges, for
p & pSW = 1/Nk. At p = pSW the average number of shortcuts per node is S ∼ 1/N , and then λ2 ∼ 1/N as
well. This shows that at this point the synchronizability is not enhanced by the rewiring. To achieve such
an enhancement, the density of shortcuts has to be independent of N , which happens for p & psync = 1/k,
that is deep in the SW regime. In other words, in the intermediate region pSW < p < psync, ℓ decreases
while the synchronizability of the system remains roughly the same.

Barahona and Pecora [91] showed the existence of two thresholds, one for the small-world transition and
the other for the enhancement of synchronizability, in SW networks using a more rigorous analysis. They
obtained that the SW regime starts at Sℓ ∼ 1/N whereas the threshold beyond which the synchronizability

is improved goes like Ssync ∼ k. This means that when k is large, λ
(0)
2 of the underlying regular network

contributes significantly to the synchronizability, and then it can be enhanced without additional shortcuts.
This is manifested in Fig. 12 by the fast decrease of Ssync when k approaches the critical value k0

sync. On
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Figure 12: (color online) Synchronizability thresholds Ssync (◦) for graphs with N nodes (N = 300, 400, 500, 1000) and
range k ∈ [1, 70], averaged over 1000 realizations. Solid lines are based on an analytical perturbation (Eqs. (69,70) valid in
N1/3 < k < k0

sync). For most parameters, Ssync lies within the SW region between the dashed lines (depicted for N = 1000),
but it is distinct from its onset Sℓ. Inset: decay of the average distance ℓ, clustering C, and eigenratio (squares) as shortcuts
are added to a regular network of n = 500 and k = 20. We define Sℓ and SC as the points where ℓ and C are 75% of the
regular network value. From [91].
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in the WS model of SW networks). N = 500 nodes, averaged over 100 realizations. The average number of shortcut per node
S is fixed, so that the rewiring probability is p = S/2k; S = 0.3 (circle) and S = 0.5 (square).

the other hand, at low k, the approximation in Eq. (69) is not valid. However, the results in Fig. 12 show
that Ssync ∈ [0.3, 1] depends on k, but not noticeably on N .

One observation from Fig. 12 is that smaller distances are not be necessarily correlated to enhanced
synchronizability as intutively believed. Indeed, if we keep the number of shortcut per node fixed, S ∼ 1,
and increase k as in Fig. 12, we can see that the network distance decreases monotonically, while the
eigenratio does not always follow the same trend. There is a range of k where the synchronizability of
Type I is reduced (R increases) while the network distance becomes smaller, see Fig. 13. The Type II
synchronizability (λ2, unbounded MSF), however, is enhanced. In summary, it is not very meaningful to
compare the synchronizability of two SW networks (with different N , k or p) considering only ℓ.

The relationship between ℓ and the synchronizability of the system was also scrutinized for SF networks
in [103], an important work that raised the interest of studies on the structure-synchronizability relation in
complex networks. As seen in Fig. 14, for random SF networks, ℓ decreases when the degree distribution
becomes more heterogeneous (decreasing of the exponent γ), however, the network becomes less synchroniz-
able, since R increases. In these simulations, the mean degree of the network 〈k〉 = kmin

γ−1
γ−2 also changes

with γ, as well as the standard deviation of the degree distribution. As will be clarified later on (e.g.,
Eq. (80)), in this case, the eigenratio R is controlled by the heterogeneity of the degree distribution, being
R ∼ kmax/kmin if kmin is large enough, while the eigenvalue λ2 has a dependence on the mean degree when
the minimal degree is fixed [111, 112]. In [103] the authors observed similar results in a SW network model
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Figure 14: Synchronizability of SF networks of size N = 1024. The average network distance (a) and the eigenratio (b) for the
random SF model with kmin = 5. The inset of (a) shows the mean degree 〈k〉 and the standard deviation s of the connectivity
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the eigenratio R for the γ = ∞ case. The solid curve in (b) is the lower bound kmax/kmin in Eq. (79). The upper bounds of
in Eq. (79) are above the limits, but follow the same trend. All quantities are averaged over 100 realizations. From [103].

with hubs, and they considered them counterintuitive. Similar to the SW networks with different range k
in Fig. 13, where the eigenratio R is not simply controlled by ℓ, here it is also not surprising to observe that
synchronizability can be reduced when ℓ becomes smaller [103].

Besides, it should be possible to observe the situation that R decreases at smaller ℓ in random SF network
for suitable combinations of parameters N , γ and kmin, for example, when kmin increases at fixed γ and N .
Therefore, the conclusion is that the synchronizability of complex networks cannot be assessed solely on the
average shortest path length ℓ.

Synchronizability dependence on betweenness centrality. In [103] it is argued heuristically that this appar-
ently surprising behavior (smaller ℓ, less synchronizability in SF networks) is due to the fact that a few
central oscillators interacting with a large number of other oscillators tend to become overloaded. When
too many independent signals with different phases and frequencies are going through a node at the same
time, they can cancel out each other, resulting in no effective communication between oscillators. Thus
the authors were motivated to examine the influence of the load (betweenness) of the nodes. It was shown
(see the inset of Fig. 14 (b))that the synchronizability follows the same trend as the maximum load bmax

(normalized by the total load of the network). However, the load of a node in SF networks is closely related
to the degree [113, 114], i.e., nodes with large degrees or links connecting nodes with large degrees have, on
average, a large load. The correlation between reduced synchronizability and heterogeneous load has also
been observed in a variant of the WS network model by adding m shortcuts to the network from a randomly
selected node to one out of the nc center nodes [103]. In this case, when nc is small, the m shortcuts are
connected to a few hubs, and the degree becomes more heterogeneous and the maximum load bmax increases,
while the synchronizability decreases. As before, in these two examples, it is not very clear whether the
change of synchronizability is mainly influenced by the degree heterogeneity or by the load itself, because
these two properties are closely related.

In the original WS network [9], the maximum load bmax decreases when the degree distribution becomes
more heterogenous as p is increased. Based on this observation, it was claimed that more homogeneous
load predicts better synchronizability on complex networks [100]. However, a direct relationship between
load and synchronizability can not be clearly established. In fact, in[115] it is shown an example where the
network displays improved synchronizability while the load becomes more heterogeneous when an original
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Figure 15: (color online) The relationship between graph distance ℓ and clustering coefficient C. Left: the original networks
are the SW networks. Right: the original networks are the extensional BA networks. The different symbols are for different
heterogeneity of degrees, measured by the standard deviation σ of the degree distribution. All the data are the average over
20 different realizations. From [115].

random SF is rewired to obtain nontrivial clustering.
The heuristic argument in [103] is not clearly justified. If the picture described is correct, i.e., signals

can cancel out each other at the central nodes, resulting in no effective communication, then the Type II
synchronizability (λ2, unbounded MSFs) should also be reduced significantly. However, as seen in Fig. 11,
λ2 in SF networks is mainly determined by the minimal degree kmin, without a noticeable dependence on the
degree distribution exponent or load. Moreover, when the minimal degrees becomes larger at fixed γ, the
maximal load increases, however, both types of synchronizability are enhanced (smaller R and larger λ2),
in contrast to the heuristics. In fact, several further investigations have shown that the highly connected
oscillators synchronize faster among them and form synchronization clusters [48, 116, 117, 39], which is in
contrast with the argument provided in [103].

Synchronizability dependence on the clustering coefficient. In [32] it is pointed out that, in general, the
eigenratio R increases with increasing clustering in a modified version of the BA model [118]. Unlike the
original one, in this model, motivated by the evolution of language, a new node is first linked to an existing
node according to the preferential attachment rule, and also linked to the neighbors of this target node.
Thus this model displays nontrivial clustering while keeping the same SF degree distribution. Besides, the
eigenratio R is larger than that of the BA model.

A recent work demonstrated that for both SW and SF networks, large values of clustering hinders global
synchronization of phase oscillators, since the network splits into dynamical clusters that oscillate at different
frequencies [41, 43]. In [115], using the rewiring scheme proposed in [119], that changes the clustering but
keeps the degree sequence, it was shown that the eigenratio R also increases with C, for both SW and SF
networks. This indicates that synchronizability is reduced when clustering C increases.

Note that in the above investigations different structural properties change at the same time [91, 100,
103] when the parameters characterizing the original networks are modified. Once again, it is difficult to
draw conclusions about the relationship between one single statistical descriptor of the network and its
synchronizability. Special attention was paid to this problem in [115], showing that in the rewiring scheme
of [119], ℓ is correlated with the clustering coefficient C (Fig. 15).

Synchronizability dependence on degree correlations. In many real-world networks, the degree of a node is
often correlated with the degree of the neighboring nodes. Correlated networks show assortative (disas-
sortative) mixing when high degree nodes are mostly attached to nodes with high (low) degree [120]. In
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Figure 16: (color online) Synchronizability of degree correlated SF networks of size N = 1000, kmin = 5 and γ = 2.5. Left:
Behavior of the eigenratio R. Right: behavior of the second lowest eigenvalue λ2. Both as functions of the correlation coefficient
rk defined in [120], for γ varying from 2 (blue line) to 5 (red line) in steps of 0.2. The results have been averaged over 100
different realizations. From [122].

practice, the degree-degree correlation of a network can be calculated as the Pearson correlation coefficient
between degrees (jl, kl) of the nodes at the ends of the lth link, i.e.,

rk =
〈jlkl〉 − 〈kl〉2
〈k2

l 〉 − 〈kl〉2
, (73)

where 〈·〉 denotes average over the total number of links in the network. Positive values of rk indicate
assortative mixing, while negative values refers to disassortative networks. A specific correlation rk can be
obtained by rewiring the links while keeping the degree sequences unchanged [121]. However, one can expect
that ℓ and bmax change also when the networks are rewired.

The influence of degree correlations on synchronizability was addressed in [32], showing that the eigenratio
R increases when increasing the assortativity of the network. A more detailed and systematic analysis
was later on carried out in [122]. They generated random SF network as in [102] with a minimal degree
kmin = 5 and obtained the desired degree correlation rk using the rewiring procedure of Refs. [121, 32]. The
dependence of the synchronizability on rk is shown in Fig. 16. The main effect on the eigenratio R comes
from the fact that λ2 decreases when rk grows, while λN remains roughly constant [122]. As it happens for
the other parameters, the dependence of λ2 on rk can be obtained from graph theoretical analysis, which is
the subject we are going to discuss next.

4.1.5. Graph theoretical bounds to synchronizability

Previously we have seen that many structural properties can influence the synchronizability of the net-
works, but none of them can be regarded as the exclusive factor in the observed dependencies. The moral
is that all works described in the preceding paragraphs seem not to be on the most appropriate way to
elucidate the dependence of synchronizability on the network characteristics. Since the synchronizability
depends on the two extreme eigenvalues of the Laplacian matrix, a sound analysis must attack the raw
problem of the spectral properties of networks from a mathematical point of view, given that the simulation
experiments are far from being conclusive.

Graph theoretical analyses of the Laplacian matrix L, in the context of synchronizability, mainly focus
on the bounds of its extreme eigenvalues. The implications of these bounds on different types of complex
networks have been discussed in several works [123, 106, 124, 125, 126, 103, 104, 127]. Here we summarize
the main results and discuss how they help to understand the synchronizability of complex networks. Some
detailed proof of the results can be found in the corresponding references and in monographs on graph
theory, e.g. [128, 129, 130, 131].

First, we discuss the bounds for networks with prescribed degree sequences kmin = k1 ≤ k2 ≤ · · · ≤ kN =
kmax. The bounds satisfy the following relations (see [128, 129])

2
(

1 − cos(
π

N
)
)

e(G) ≤ λ2 ≤ N

N − 1
kmin, (74)

and
N

N − 1
kmax ≤ λN ≤ 2kmax, (75)
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where e(G) is the edge connectivity of the graph, i.e. the minimal number of edges whose removal would
result in losing connectivity of the graph. It follows that

kmax

kmin
≤ R ≤ kmax

(

1 − cos( π
N )

)

e(G)
. (76)

Note that the edge connectivity e(G) ≤ kmin. The equality holds only for special cases, in particular for
networks which are homogeneous in degree. Then for a network with a fixed number of nodes and edges the
edge connectivity ranges from 1 (a structured network with communities connected through single links) to
a maximum value for a homogeneous network, and this turns out in the large variability of the lower bound
for λ2.

The upper bound in Eq. (74) is approached when the network is random. As shown in [106, 124], in a
k-regular random network, where each node is randomly connected to other k = kmin nodes in the network,
λ2 = k − O(

√
k) as N → ∞. In fact, λ2 = ckk, where ck → 1 as k → ∞ both for k-regular networks and

random SF networks [106]. In this sense, the observation in [105] that λ2 is almost constant, practically
unrelated to kmin, is incorrect. So for large random networks with large enough minimal degree, λ2 ≈ kmin

is a good approximation.
Another general lower bound for λ2 is [132]

4

ND
≤ λ2 ≤ N

N − 1
kmin, (77)

so that
kmax

kmin
≤ R ≤ NDkmax

2
, (78)

where D is the diameter of the graph, i.e. the maximum value of the shortest path lengths between any two
nodes.

Let us discuss the implications of the above bounds for WS networks. In this model, when the probability
of having shortcuts is very low, pkN ≪ 1, then D ∼ N/k and the lower bound in Eq. (77) approaches zero
as 1/N2 (regular network). Beyond the onset of the SW regime (pkN ∼ 1), D decreases and approaches
D ∼ ln(N), and λ2 increases for fixed N . Thus this bound allows us to understand why the network
synchronizability is inversely proportional to ℓ, as observed numerically in [91, 100] (Figs. 9 and 10). However,
λ2 is not immediately bounded away from zero, since it approaches zero faster than 1/N just after the onset
of the SW regime. When moving deeper into the SW region, pkN ∼ N so that each node has S ∼ 1
shortcuts, and λ2 is already bounded away from the lower bound 4/ND and approaching the upper bound
kmin. In this regime, λ2 will not be sensitive to changes in the diameter D. This helps to understand why
the synchronization threshold is different from the onset of the SW behavior in Fig. 12.

Thus, in WS networks with high p, kmax/kmin provides a good lower bound to the eigenratio R. The
upper bound, NDkmax/2, still increases with N , and can be several orders of magnitude larger than the
actual value of R even for small random networks. In fact, R may not follow the variation of the distant
upper bound when the diameter D or the size N change. Thus, in complex networks with both local and
random connections, a close relationship between the synchronizability and ℓ is not expected.

In [103] similar bounds are obtained but as a function of ℓ and bmax as

kmax

kmin
≤ R ≤ NkmaxbmaxDℓ. (79)

These authors pointed out that experimental values of R are closer to the lower bound, and far away from the
upper bound (Fig. 14). Thus quite probably such upper bound does not provide meaningful understanding
of the relationship between synchronizability and ℓ, D or bmax, since the change of the upper bound by
these structural measures is likely not to be reflected in the actual value of R. Indeed, for the SF model
considered in this paper and arbitrary random enough networks with suffiently large mimimal degrees, recent
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Figure 17: A schematic plot of the bounds of λ2 for networks with minimal degree kmin.

results[111] showed that the eigenvalues are bounded as

kmin(1 − 2
√

〈k〉
) . λ2 . kmin,

kmax ≤ λN ≤ kmax(1 +
2

√

〈k〉
), (80)

which can explain more clearly how the eigenvalues in Fig. 11 and in [103] depend precisely on the maximal
degree kmax and the mean degree 〈k〉 . A recent advance [112] in spectral analysis of random SF networks
shows that the maximal eigenvalue is very close to the lower bound in Eq. (75), λN ≃ kmax + 1. The
observation in [103] that the synchronizability (Type I) is anti-correlated with a more heterogeneous load
distribution, and smaller distance, is a consequence of the positive correlations between the load and the
degree, and negative correlation between the distance and the degree, in the models considered. Indeed,
when keeping the degree sequence unchanged, it is observed that more heterogeneous load distributions can
be positively correlated with synchronizability of Type I [115].

The above analysis of bounds provides justification about why we can observe different R for increased
or decreased heterogeneity, distances or loads. Moreover, the bounds expressed by these quantities are not
tight at all in the particular examples, e.g., in Eq. (79). In general, the graph theoretical analysis states
that randomness improves the synchronizability, since λ2 is well bounded away from 0, while in networks
with dominantly local connections, λ2 approaches to 0 in large networks. In other words, for a prescribed
degree sequence, the eigenratio R changes mainly because of λ2. A schematic plot of the bounds of λ2 is
shown in Fig. 17.

On the other hand, the local organization of the connections even within a small part of the network,
can make the eigenvalue λ2 deviate significantly from the upper bound kminN/(N − 1). For an arbitrary
network, there is a better upper bound for λ2 as

λ2 ≤ 2iG , (81)

where iG is the isoperimetric number of a graph [133, 125, 126], which is defined as

iG = min
S

|∂S|
|S| . (82)

Here S ⊂ G is a subset of the nodes, with G − S denoting its complement, and |S| is the number of nodes
within S, with 0 < |S| < N/2. Besides, |∂S| is the number of connections between S and its complement,
namely,

|∂S| =
∑

i∈S

∑

j∈(G−S)

aij . (83)

For an arbitrary partition of the network into S and G, we have [126]

λ2 ≤ 2
|∂S|
|S| . (84)
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This means that the synchronizability of the network is determined by the sparse connections between the
two subnetworks. For instance, if a small set S made up of, say, 20 nodes, is connected to G−S with just one
link, then λ2 < 0.1, regardless of how the nodes are connected within S and within the large complement
G − S. It follows that the statistical properties of the network G are mainly determined by the huge part
G − S, while λ2 is independently constrained by the small subgraph. This result is in complete agreement
with the path towards synchronization in modular networks presented in section 3.1.5, where the community
structure has been demonstrated to impose scales in the synchronization process.

Everything up to now indicates that statistical properties, such as degree distribution, ℓ, etc., may
not be always correlated with the synchronizability of the network. In fact, it was particularly shown in
[124, 125, 126], that networks with very different synchronizability can be constructed for the same prescribed
degree sequences, because iG can be at any place in a broad range between the lower and upper bounds in
Eq. (74), see also Fig. 17.

Another similar bound in graph theory is based on the Cheeger inequality [134, 122],

λ2 ≤ hG , (85)

where hG = minS hG(S) and

hG(S) =
|∂S|N

|S|(N − |S|) . (86)

As for correlated networks, in [122] the authors showed that in random networks with degree correlations
rk

∂hG(S)

∂rk
< 0, (87)

which explains why the synchronizability is reduced in networks with assortative connections, as shown
in Fig. 16. Along the same line, the dependence of the minimum nonzero eigenvalue on the topological
properties of the network and its degree-degree correlation coefficient r was also analyzed in [127]. The
authors derived a rigorous upper bound for λ2 as,

λ2 ≤ (1 − r)
〈k〉〈k3〉 − 〈k3〉〈k2〉
〈k〉(〈k2〉 − 〈k〉2) . (88)

It is worth mentioning also the inequality presented in [133, 122],

λ2 ≥ kmax −
√

k2
max − i2G . (89)

Note that kmax −
√

k2
max − i2G is a decreasing function of kmax if iG is fixed. Based on this bound, we can

expect some apparently counterintuitive effects on the synchronizability of complex networks. Suppose we
put more links to the graph G, but only add them to the nodes within G − S and S, but not to the nodes
between S and G − S so that iG does not change. For simplicity, we can further assume that the nodes
within S and G − S are connected with a uniform probability f (random networks), so that kmax and the
mean degree 〈k〉 increase when more and more links are added. In this case, the synchronizability of the
subnetworks S and G − S is enhanced at larger f , see Fig. 9. However, λ2 of the whole network G is reduced
according to Eq. (89). Therefore, in the case of two coupled networks, enhancing the synchronizability of
the subnetworks may actually reduce the synchronizability of the whole network. Phenomenologically, this
is intuitively expected, because the subnetworks tend to form distinct synchronized clusters.

Based on the above arguments (Eqs. (81,85,89)), networks possessing a clear community organization
display a small synchronizability, since the density of connection between different communities can be much
smaller than the density within the communities [135, 136, 52].

Recapitulating, we have seen that for a prescribed degree sequence, it is possible to construct a very
large number of networks ranging from fully local connections to fully random networks [124], with many
possible structures in between. However, the degree sequence by itself is not sufficient to determine the

40



synchronizability. On the other hand, we have seen that the synchronizability is not directly related to graph
measures, such as distance, clustering or maximal betweenness. Admittedly, the weak connections between
two subnetworks (characterized by the isoperimetric number iG) determine the behavior of the eigenvalue
λ2, and hence that of the synchronizability of the whole network. The bounds discussed in this section are
valid for any network. However, we would like to point out that one needs to be careful in the interpretation
of these general analytical results. A linear relationship between the bound and some network descriptor
does not mean that we can always expect the same relation to hold between these descriptors and the actual
eigenvalues for particular types of networks. The reason is that the bounds, the network descriptors and
the eigenvalues of the Laplacian can follow totally different scaling laws in particular types of networks.
For example, for random SF networks with large enough minimal degree, R ≈ kmax/kmin ∼ N1/(γ−1) from
Eq. 80, while the upper bound in Eqs. (78,79) increase faster than N · N1/(γ−1). The numerical results
in [103] showed that the eigenratio R and the load follow different scaling laws also. This indicates that
one must be cautious not to generalize the observation of such correlations in one type of network, not to
interpret such observed correlations as the ultimate responsible for the synchronizability without a deep
analysis of their constrains.

4.1.6. Synchronizability of weighted networks

Up to now, we have considered the influence of the network topology on synchronization, assuming that
the connection weights are the same for all the links in the network, i.e., the networks are unweighted.
However, this is not the case for many real-world networks. Indeed, many complex networks where synchro-
nization is relevant are actually weighted and display a highly heterogeneous distribution of both degrees
and weights [137, 138, 139, 140]. Examples include neural networks [141, 142], airport networks [137] and
the structure of the networks characterizing epidemic outbreaks in different cities [143, 144]. Furthermore,
it has been observed that in many cases, the connection strength is not an independent parameter, but it
is correlated to the network topology. The analysis of some real networks [137] yields the following main
properties:

(i) the weight wij of a connection between nodes j and i is strongly correlated with the product of the
corresponding degrees as 〈wij〉 ∼ (kikj)

θ;
(ii) the average intensity S(k) of nodes with degree k increases as S(k) ∼ kβ. Here the intensity Si of a

node i is defined as the total input weight of the node:

Si =

N
∑

j=1

aijwij . (90)

Note that the inclusion of a distribution of weights in the network affects directly its classification within
topological homogeneity or heterogeneity. For example, a regular lattice with a very skewed distribution of
weights can eventually represent a SF topology. From a mathematical point of view, the adjacency matrix
is in this case simply substituted by the weight matrix. On the contrary, from a physical perspective, it is
still interesting to keep separated the topology of interactions from the distribution of weights, and answer
questions, whenever possible, discriminating these two topological aspects.

The first works on synchronization in weighted networks considered that the weighted input of a node i
from a node j depends on the degree ki of node i [95, 32], with a model of weighted coupling as wij = kθ

i ,
so that the matrix G = (Gij) in Eq. (55) reads

G = Dθ(D −A) = DθL. (91)

Here Dij = δijki is the diagonal matrix of degrees. θ is a tunable parameter that keeps the network topology
unchanged, but varies the distribution of the weights of the links.

Within this scheme, the weights between a pair of nodes i and j are in general asymmetric, because
wij = kθ

i and wji = kθ
j . However, since

det(DθL− λI) = det(Dθ/2LDθ/2 − λI), (92)
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Figure 18: Eigenratio R as function of θ in Eq. (91): (a) random SF networks with γ = 3 (•), γ = 5 (�) and γ = ∞ (solid
line), for kmin = 10; (b) random networks with expected SF sequence for γ = 3 and k̃min = 10; (c) growing SF networks for
γ = 3 and m = 10; (d) SW networks with M = 256 (•) and M = 512 (�), for k = 1. Each curve is the result of an average
over 50 realizations for N = 1024. Modified after [32].

is valid for any λ, the spectrum of eigenvalues of the matrix G is equal to the spectrum of a symmetric
matrix defined as H = Dθ/2LDθ/2. As a result, all the eigenvalues of G are real, and the synchronizability
can still be characterized in the framework of the MSF.

The synchronizability of various complex networks as a function of the parameter θ is shown in Fig. 18.
Except for k-regular networks, in all other cases, including the SW networks, the eigenratio R exhibits a
pronounced minimum at θ = −1. Here the SW networks are obtained by adding M ≤ N(N − 2k − 1)/2
new links between randomly chosen pairs of nodes on the basic regular array where each node is connected
to its 2k first neighbors.

In [95, 32] the authors also characterize the synchronizability of the network, related to λ2, using the
notion of the cost of the network. When Eq. (64) is satisfied, the fully synchronized state is linearly stable
for σ > σmin ≡ α1/λ2. The cost is defined as the total input strength of the connections of all nodes at the

synchronizability threshold: σmin

∑

i,j wijaij = σmin

∑N
i=1 Si. A more convenient definition for comparisons

is obtained normalizing by the number of nodes, such that

C0 ≡ σmin

∑N
i=1 Si

Nα1
= 〈S〉/λ2, (93)

where 〈S〉 is the average intensity of nodes in the network. Similar to R, C0 is also minimal at θ = −1
(Fig. 19).

Interestingly enough, in [95, 32] it was obtained that in SF networks with fixed minimal degrees kmin, the
weighted versions (θ = −1) behave differently to the unweighted networks when one looks at the dependence
of both the eigenratio R and the cost C0 on the scaling exponent γ, as shown in Fig. 20 .

θ = −1 is a special case. The coupling matrix is now G = D−1L, and all the diagonal elements Gii ≡ 1.
It is usually called the normalized Laplacian of a graph. Based on graph spectral analysis results in [123]
for random networks with arbitrary given degrees, it can be shown that the spectrum of the normalized
Laplacian tends to the semicircle law for large networks. In particular, for kmin ≫

√

〈k〉 ln3N , one has

max{1 − λ2, λN − 1} = [1 + O(1)]
2

√

〈k〉
. (94)

This result is rigorous for ensembles of networks with a given expected degree sequence and sufficiently
large minimum degree kmin, but the numerical results reported in Fig. 20 support the hypothesis that the
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approximate relations
λ2 ≈ 1 − 2/

√

〈k〉, λN ≈ 1 + 2/
√

〈k〉 (95)

hold under much milder conditions. In particular, the relations (95) are expected to hold for any large
network with a sufficient number of random connections, kmin ≫ 1.

Furthermore, the synchronizability in this case seems to be independent of the degree distribution. It is
only controlled by the average degree 〈k〉 , since the synchronizability of the weighted SF networks is almost
identical to that of a regular random network where each node has the same degree ki = 〈k〉 . These results
demonstrate that the topological degree of networks is not the only determinant of the synchronizability of
the networks; having a heterogeneous distribution for the connection strengths can significantly influence
the synchronizability.

4.1.7. Universal parameters controlling the synchronizability

What are the leading parameters governing the synchronizability for the more general case in which
weighted networks are considered? It [111] it has been proved analytically and verified numerically what
controls the synchronizability of sufficiently random networks with large enough minimal degree (kmin ≫ 1).
It is the distribution of the intensities Si defined in Eq. (90). The intensity of a node incorporates both the
information about the topology and the weights of the connections in the networks. The main finding is
that the synchronizability is sensitively controlled by the heterogeneity of the intensity Si. The eigenratio
R and the normalized cost C0 can be expressed as

R = AR
Smax

Smin
, C0 = AC

〈S〉
Smin

, (96)

where Smin, Smax, and 〈S〉 are the minimum, maximum and average intensities, respectively. The pre-factors
AR and AC are expected to approach 1 for large average degree 〈k〉 . Equations (96) are universal in the sense
that they apply to many random networks with arbitrary degree and weight distributions provided that the
minimal degree is sufficiently large. The main hypothesis behind this result is the assumption that the local
mean fields H̃i = (1/ki)

∑

j aijH(xj) can be substituted by the global mean field H̃i ≈ H̃ = (1/N)
∑

j H(xj).
In Fig. 21, Eq. (96) is corroborated by numerical results of R and C0 for networks with several degree

and intensity distributions of degrees, using the weighted coupling scheme

wij = Si/ki. (97)

This coupling scheme means that the intensity of the nodes, which is not necessarily correlated with the
degrees, is uniformly distributed into the input links of the nodes. It covers the coupling scheme in Eq. (91)
as a special example: Si = k1+θ

i . Recent analysis in [145] on the spectral density of SF networks with a
weighted Laplacian matrix similar to Eq. (91), also confirms that Eq. (96) holds.

In [111] the authors also presented results for the following coupling scheme

wij = (kikj)
θ, (98)

that describes the relationship between the weights and the degrees in some real networks [137, 146]. The
tunable parameter θ controls the heterogeneity of the intensity Si and the correlation between Si and ki,
since Si = k1+θ

i 〈kθ
j 〉i, where 〈kθ

j 〉i = (1/ki)
∑

kθ
j is approximately constant for ki ≫ 1 when the degree

correlations can be neglected. Variations of θ have a significant impact on the synchronizability of networks
which are heterogeneous in degree(Fig. 22). Note that in heterogeneous in degree networks, the weighted
coupling in Eq. (98) may result in a broad distribution of the input weights wij among the ki links of the
node i, especially when θ is not close to 0. However, as shown in the insets of Fig. 22 for various networks
and θ values, R and C0 collapse again to the universal curves when regarded as functions of Smax/Smin and
〈S〉/Smin, respectively. The fact that the universal formula holds for a broad range of θ values shows that
the mean field approximation used to obtain Eq. (96) often remains valid under milder conditions.

It is important to stress that these results also hold for unweighted random networks. In this case
Si = ki for all the nodes and one gets the results in Eq. (80) for large random networks with minimal degree
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Figure 21: (a) R as a function of Smax/Smin and (b) C0 as a function of 〈S〉/Smin, averaged over 50 realizations of the
networks. Filled symbols: uniform distribution of Si ∈ [Smin, Smax]. Open symbols: power-law distribution of Si, P (S) ∼ S−Γ

for 2.5 ≤ Γ ≤ 10. Different symbols are for networks with different topologies: BA networks (◦), growing SF network with
aging exponent α = −3 (�), random SF network with γ = 3 (⋄), and k-regular random networks (△). The number of nodes
is N = 210 and the average degree is 〈k〉 = 20. Insets of (a) and (b): AR and AC as functions of 〈k〉 for Smax/Smin = 1 (◦),
2 (�), 10 (△), and 100 (∗), obtained with uniform distribution of Si in k-regular networks. The dashed lines are the bounds.
Solid lines in (a) and (b): Eqs. (96) with AR = AC = 1. From [111].
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Figure 23: (a) Eigenratio R as a function of Smax/Smin for BA growing networks with m = 1(〈k〉 = 2) (◦), m = 2(〈k〉 = 4)
(�) and m = 10(〈k〉 = 20) (△). (b) R for SW networks with 〈k〉 = 20 and rewiring probability p = 0.01 (◦), p = 0.1 (�) and
p = 0.3 (△). Solid lines: Eqs. (96) with AR = AC = 1.

kmin ≫ 1. These results provide much tighter bounds than those discussed in the previous sections (e.g., cf.
Eqs. (76,78, 79)) which depend on the system sizeN . Interestingly, Eqs. (96) also provide meaningful insights
into the problem for other special networks. For example, consider the class of SF networks generated using
the BA model. When m = 1, the network is a tree, and R is much larger than Smax/Smin. However, it
is an increasing function of Smax/Smin, showing that the heterogenity of the intensity is still an important
parameter. But for m = 2 (〈k〉 = 4) it approaches the universal curve quickly (Fig. 23 (a)). The drastic
change of synchronizability from m = 1 to m = 2 can be attributed to the appearance of loops [89]. In WS
networks [9] with N = 210 and 〈k〉 = 20, R collapses to the universal curve even when the networks are
dominated by local connections, e.g. for a rewiring probability p = 0.3 with intensities Smax/Smin & 10, see
Fig. 23 (b).

4.2. Design of synchronizable networks

An interesting subject related to the impact of network structure on synchronization dynamics is the
design of synchronizable networks. Here we review several ideas exploring this issue: weighting the couplings
leaving the topology unchanged, perturbing part of the network topology, and finally searching for optimal
topologies with respect to synchronizability. Note that the following theoretical schemes may not directly
apply to real complex networks. It is difficult to conceive real systems where the weights can be tuned at
discretion, or where the topological substrate of interactions can be changed accordingly. Nevertheless, the
insights given by these works allow for a deeper understanding of the synchronizability of networks.

4.2.1. Weighted couplings for enhancing synchronizability

The previous analysis shows that for networks that are heterogeneous in degree, synchronizability can
be enhanced by balancing the heterogeneity in the degree distribution with suitable weighted couplings,
towards the obtention of a homogeneous distribution of the intensities Si.

A different scheme is presented in [147], where it is assumed that the weight of a link is related to its
betweenness bij as

Gij = −
bαij

∑

j∈Γi
bαij
, (99)

where α is a tunable parameter that controls the dependence of the weights wij on the loads bij . The
zero-sum requirement of the matrix G implies that Gii = 1 for all i. Note that α = 0 corresponds to the
weighted coupling scheme in Eq. (91) at the optimal point θ = −1. As seen in Fig. 24, the eigenratio R
depends on α, reaching a minimum at a value 0 < α . 1, showing that the synchronizability in SF networks
can be slightly enhanced compared to the optimal case of the weighted coupling scheme [95, 32, 111].
The SF network considered in [147] is a generalized BA model with a preferential attachment probability
πi ∼ ki + B [148], where the parameter B controls the exponent γ = 3 + B/m of the power law degree
distribution, and m = kmin. At large α values, only the links with the largest loads bij are significant, which
can lead to effectively disconnected nodes, so that synchronizability is reduced. In [147] it is also pointed out
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Figure 24: (color online) (a) eigenratio λN /λ2 (in logarithmic scale) for SF networks in the parameter space (α, B). (b)The
relative synchronizability Γ = log(λN /λ2) − [log(λN /λ2)]α=0 vs (α, B). In all cases m = 2, and the graphs refer to averaging
over 10 realizations of networks with N = 1000. The domain with with Γ < 0 is outlined by the black contours drawn on the
figure. From [147].

that for large minimal degrees, the regimes corresponding to enhanced synchronizability are reduced so that
the minimum approaches to α = 0. This demonstrates again that for random networks with large enough
minimal degree, Eq. (95) is asymptotically valid regardless of the detailed weighted scheme, as claimed in
[111].

The explanation of the observed enhanced synchronizability proposed in [147] is that the load bij reflects
the global information of the network, while at α = 0 only the local information (degree) is employed.
Such a heuristic explanation, however, is not supported by several further investigations. In fact, only the
local information can also lead to similar enhanced synchronizability. For example, consider that the weights
depend on the degrees following Eq. (98), and then normalize to allow fully uniform intensity Si = 1, namely
[149]

Gij = − (kikj)
α

∑

j∈Γi
(kikj)α

= −
kα

j
∑

j∈Γi
kα

j

. (100)

Again, α = 0 corresponds to the optimal case (Eq. (91), θ = −1) of the weighted coupling scheme [95, 32,
111]. Similar to [147], the synchronizability can be further enhanced in a range α > 0 (Fig. 25). However,
the minimum moves closer to α = 0 when the networks are larger, indicating that the synchronizability
in large random networks with kmin ≫ 1 can hardly be enhanced further with other weighted coupling
schemes different from the optimal case in Eq. (91). This coupling scheme was also considered in [78] where
synchronizability in SF networks of maps is enhanced for α > 0. Additionally, we note that the coupling
form in Eq. (100) has been recently revisited from the viewpoint of gradient-network [150].
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Figure 25: Eigenratio R (a) and normalized cost C0 (b) as a function of the parameter α in Eq. (100), for random SF networks
with γ = 3 and kmin = 10. From [149]

Another work [151] introduced an additional parameter β into the coupling scheme in Eq. (100), as

Gij = −
kα

j
(
∑

j∈Γi
kα

j

)β
. (101)

In this case, the intensity of the node is Si =
(
∑

j∈Γi
kα

j

)1−β
. If β 6= 1, the intensity is not uniform and

becomes more heterogeneous when |1 − β| increases. For any given α, the synchronizability is optimal at
β = 1 where the intensity is fully uniform. Besides, for a fixed β, there is also a value of α for which the
best synchronizability is achieved.

More weighted coupling methods have been proposed. In [97] the authors use the information about the
age of the nodes in growing networks and introduce asymmetrical coupling between old and young nodes
(first and latest nodes to join the network, respectively). Old nodes in general have large degree and young
nodes small degree. The authors propose a connectivity matrix

Gij = − aijΘij
(
∑

j∈Γi
Θij

) , (102)

where Θij = (1 − θ)/2 if the connection is from old to young nodes (i > j) and Θij = (1 + θ)/2 if the
connection is from young to old nodes (i < j). The limit θ = −1 (θ = 1) gives a unidirectional coupling
where the old (young) nodes drive the young (old) ones. It was shown that in SF networks, synchronizability
is enhanced when couplings from older to younger nodes are dominant (θ < 0). When large heterogeneous
degrees between the old and young nodes occur, this scheme is quite similar to those in Eqs. (99,100,101).
However, in this case the eigenvalues are complex, and both, the ratios of the real and imaginary parts of
the eigenvalues were employed simultaneously to characterize the synchronizability.

In spite of these numerical observations, a clear understanding about why the synchronizability is further
enhanced with the various weighted coupling schemes (Eqs. (99,100,101)) has not been obtained. The same
scheme as in (102), but without the normalization (Gij = −aijΘij) was considered in [152], and again
the synchronizability is enhanced for θ < 0. In this case, the change of synchronizability is mainly due
to the heterogeneity of the intensity distribution Si, which becomes more homogeneous for θ < 0 because
the old nodes are hubs and have most of the connections to young nodes. In this case, the universality
in Eq. (96) should apply when the minimal degree is large enough. Finally, it has also been shown that
a random distribution of the weights of the connections of regular networks, with only nearest neighbors,
can also enhance synchronizability. This fact is related to the effective presence of short cuts in terms of
weights [153].

As it has been already pointed out, the particular scientific course of action taken by proposing different
weighting schemes to enhance synchronizability is unfinished, and probably an unfruitful quest given the
many possibilities of inventing new weights. A more rigorous analysis of the eigenspectra of general graphs
beyond the already obtained bounds is absolutely required to boost this line of research.

On the other hand, the above weighted coupling schemes are static. In many real-world systems, the
network structure evolves and changes with time. In [117] the authors proposed a scheme that can adaptively
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Figure 26: The average input weight V (k) of nodes with degree k as a function of k for the Rössler oscillators (◦) and the
food-web model (•) (a) and its dependence on various parameters: m (b), N (c) and ρ (d). Results in (b-d) are averaged over
10 realizations of the networks with random initial conditions. For clarity, only the results for the Rössler oscillators are shown
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tune the correlation between the degrees of the nodes and the weights of the links as in Eq. (91), with
θ ≈ −0.5, so that synchronizability can be significantly enhanced compared to the unweighted counterpart.
The adaptation scheme is based on the local synchronization between a node and its ki direct neighbors in
the network. Each node tries to synchronize to its neighbors by increasing the connection strength among
them. By doing this, the coupling strength of the node i with its neighbors increases uniformly trying to
suppress the difference ∆i with the mean activity of its neighbors, namely,

Gij(t) = aijVi(t), V̇i = ρ∆i/(1 + ∆i), (103)

where ∆i = |H(xi)−(1/ki)
∑

j aijH(xj)|, and ρ > 0 is the tuning parameter. Note that with this adaptation
scheme, the input weight (wij = Vi) and the output weight (wji = Vj) of a node i are in general asymmetrical.

This adaptive process was simulated using Rössler oscillators and a chaotic food web model on BA
networks, and both the unbounded and bounded MSFs were considered. For the unbounded case, the
system approaches complete synchronization when ρ > 0, while for the bounded case, one has that this
happens for 0 < ρ < ρc, where ρc depends on the particular oscillators, and on the system size N . In
both situations, when synchronization is achieved, the adaptation process will lead to a weighted coupling
structure where the input strength of the links of a node displays a power law dependence on the degree as

V (k) ∼ kθ, (104)

with θ ≃ −0.5. The results for the unbounded MSF, which are rather robust to variations in network
models, parameters and oscillator models, are shown in Fig. 26.

The mechanism underlying such a self-organization of the weighted structure is due to the degree-
dependent synchronization difference ∆i [116, 117]. Starting from random initial conditions on the chaotic
attractors, both the local synchronization difference ∆i ≫ 1 and the input weights for each node increase
rather homogeneously in the whole network, i.e., wij = Vi(t) ≈ γt. Now, the intensity of the node Si(t) =
Vi(t)ki = ρkit. Hence, nodes with large degrees are coupled stronger to the mean activity of their neighbors.
As a consequence, after a short period of time the synchronization difference ∆i for those highly connected
nodes decreases, and the weights Vi of different nodes evolve at different rates and converge to different
values. Once synchronization is achieved, the input strength wij = Vi is small for nodes with large degrees.

The adaptation process makes the intensity more homogeneous, so that it is expected that the synchro-
nizability is enhanced. In Fig. 27 we show the eigenratio R, as a function of the network size N . There we
compare the original unweighted network with two weighted networks after the adaptation. Suppose that the
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Figure 27: The eigenratio R as a function of N averaged over 20 realizations of the networks. The solid lines are power-law
fitting. The weighted networks are obtained by the adaptive process with the conditions: M = 5, γ = 0.002 with H(x) = (x, 0, 0)
for the Rössler oscillators (�) and H(x) = (0, y, z) for the food-web model (△). The networks are synchronizable if R < Rα:
Rössler oscillators, Rα = 40 (dashed line), food-web model, Rα = 29 (dashed-dotted line). From [117]

largest network size synchronizable for the bounded MSF (R = α2/α1) is N1 for unweighted networks andN2

for weighted networks obtained from adaptation. It then follows that N2/N1 ∼ (α2/α1)
1/(1+θ) ∼ (α2/α1)

2

for power law degree distributions regardless of the exponent γ [117].

4.2.2. Topological modification for enhancing synchronizability

Some authors have proposed to enhance synchronizability by perturbing the network topology. Based
on the argument that heterogeneity in the betweenness distribution is related to poor synchronizability, in
[154, 155] it is proposed to modify the nodes or links with the highest maximal betweenness. As already
noticed, in SF networks, the betweenness of a node and a link is strongly correlated with the degree ki,
and the product of degrees kikj of the two nodes at the ends, respectively. The perturbation proposed in
[154] consists of dividing the node with the highest degree into a group of several fully connected nodes
and redistribute the ki links equally over the new nodes. Following this scheme, the synchronizability can
be substantially enhanced by modifying a very small portion of the nodes. The enhanced synchronizability
follows closely the reduced maximal degree in the networks. It was also shown that the average distance
actually increases when the hubs are divided. In [155] the authors propose that the connections with the
largest kikj are broken, and again the synchronizability can be enhanced by cutting a small fraction of
links with high betweenness. These ideas can plausibly be implemented in technological networks, where
the substitution of hubs by a core of nodes is possible. In this way, the redistribution of load will improve
traffic, and as a by-product, the synchronizability.

4.2.3. Optimization of synchronizability

A more straightforward approach to the design is that of asking which are the best network architectures
to get an optimal synchronizability. In [156] an optimization scheme (e.g. simulated annealing) combined
with a network rewiring algorithm to minimize the eigenratio R is applied. In this case, the total number
of nodes and links are preserved. The resulting networks, with optimal synchronizability, called entangled
networks, are found to be very homogeneous in many topological measures, such as degrees, distance between
nodes, betweenness etc. This result is quite relevant because it provides a null model that allows to compare
the synchronizability of networks directly with its optimal counterpart.

A similar optimization scheme was applied to study the optimal synchronizability in networks with
a preserved SF degree sequence [157]. In this case, the synchronizability can only be slightly enhanced.
An interesting finding is that the optimized networks become disassortative and the clustering and the
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Figure 28: (color online) Eigenvalue ratio R as a function of the number of algorithmic iterations. Starting from different
initial conditions, with N = 50, and 〈k〉 = 4, the algorithm converges to entangled networks with very similar values of R.
From [156].

maximal betweenness is reduced, which is consistent with the observed enhanced synchronizability obtained
by changing these features.

Thus, optimization schemes are helpful to identify meaningful topological features that correlate with the
synchronizability of complex networks. However, such optimization schemes are computationally demanding
when we deal with large networks. The development of analytical tools to attack this optimization problem
is currently a major challenge in the subject.

Furthermore, in these two studies, the underlying network topology is bi-directional. In many of the
weighted coupling schemes previously mentioned, the connections are effectively directed, since the coupling
strength is asymmetrical for the input and output links. In [158] the authors went to the extreme by imposing
an unidirectional information flow so that the networks become optimally synchronizable with R = 1. For
any topology, the maximally synchronizable network can be achieved by imposing that the network: (i)
embeds a directed spanning tree, (ii) has no directed loop, and (iii) has normalized input strengths. With
these conditions, the original networks are changed into feedforward networks without any feedback, and
0 = λ1 < λ2 = · · · = λN = λ. Furthermore, the synchronization of the whole network is achieved in a
hierarchical way. The conditions (i)-(iii) lead to the following path towards synchrony. There is a node in
the directed spanning tree that has no input and acts as a master oscillator driving the network dynamics. If
α = σλ, the oscillators that are just one hierarchical level below the master oscillator will synchronize. Then,
the next lower level oscillators will also get synchronized and so on until the whole network reaches complete
synchronization. Note that this happens for the entire range of the coupling strength where α = σλ.

Note that the optimization schemes discussed above have considered maximizing the Type I synchroniz-
ability by minimizing the eigenratio R under certain constrains. Such optimized networks, however, may
not have enhanced synchronizability of Type II and smaller cost of synchronization that are associated to
the eigenvalue λ2. Furthermore, in these studies, the underlying network topology is un-directed.

Is it possible to find the network structures that have the optimal synchronizability of both Type I and
Type II and the smallest cost, among all possible network configurations? In [96, 158] an elegant answer is
provided. They assume that MSF has a bounded convex region in the complex plane and denote α1 and α2

as the thresholds along the real axis. For any networks of oscillators, if synchronization manifold is stable
for the coupling strength σmin ≤ σ ≤ σmax, the synchronizability and cost of synchronization can be defined
as

Ssyn =
σmax

σmin
, Csyn = σmin

n
∑

i,j

wij .

51



For real eigenvalues ordered as in Eq. 59, we have

Ssyn =
σmax

σmin
· λ2

λN
, Csyn =

α1

λ2

n
∑

i=1

λi.

As in Eq. 93, the cost is the minimal total coupling strength when the network is just able to synchronize.
In [96] it is proven that for any network

Ssyn ≤ α2

α1
, Csyn ≥ α1(N − 1).

If the spectum of the coupling matrix satisfys

0 = λ1 < λ2 = · · · = λN = 1 (105)

then the network will achieve the maximal synchronizability and the minimal cost, i.e.,

Ssyn =
α2

α1
, Csyn = α1(N − 1).

In [96, 158] such optimal networks are obtained by imposing an unidirectional information flow. For any
topology, the maximally synchronizable network can be achieved by imposing that the network: (i) embeds
a directed spanning tree, (ii) has no directed loop, and (iii) has normalized input strengths. With these
conditions, the original networks are changed into feedforward networks without any feedback (reciprocial
links or loops). Furthermore, the synchronization of the whole network is achieved in a hierarchical way. The
conditions (i)-(iii) lead to the following path towards synchrony. There is a node in the directed spanning
tree that has no input and acts as a master oscillator driving the network dynamics. If σ ∈ (α1, α2),
the oscillators that are just one hierarchical level below the master oscillator will synchronize. Then, the
next lower level oscillators will also get synchronized and so on until the whole network reaches complete
synchronization. Finally, we note that it could take a very long time to achieve complete synchronization
when the number of effective layers is large. It would be interesting to see how the topology of the original
networks is related to the depth of such effective directed trees and how it influences the transient time
towards synchronization. Very recently, it was shown [159] that an age-based coupling similar to Eq. 102,
but with Θij = e−α(i−j)/N , will lead to such an effective directed tree with R = 1 at large values of α [159].

The findings of [96, 158] have important implications on the structural properties and dynamical processes
in real networks. Although most analysis of complex networks have been developed for undirected networks,
many real networks are directed. Recent studies about the local organization of directed networks found
that reciprocity (percentage of bi-directional links) in real networks differ clearly from models [160, 161],
and suprisingly many real directed networks have very few short loops as compared to random networks
[162]. These properties seem to be constrained by the degree correlations [161, 162], and therefore it will
be interesting to study the impact of these properties on the synchronizability of directed networks in the
future.

Optimizing networks for synchronization has also been considered for networks of phase oscillators with
natural frequencies uncorrelated with the initial random network configuration[60, 163]. If the network is
rewired with a bias towards connecting oscillators with similar average frequencies, synchronization is en-
hanced and for intermediate coupling strength non trivial network properties, such as high number of cliques
and large average distance, emerge [60]. When a measure that combines the local [39] and global synchro-
nization is optimized by network rewiring, communities having similar natural frequencies are obtained at
intermediate coupling, while strong coupling between dissimilar oscillators leads to highly synchronizale
networks at large coupling strength [163].

Optimization approaches in networks thus are very useful to explore the structure-dynamics relation in
model and real networked systems and also in various applications aiming at enhancing the performance of
the networks, see [164] for a recent focus issue on this interesting topic.
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Figure 29: The average values ∆X(k) as a function of k in SF networks of Rössler oscillators outside the complete synchro-
nization regime. (a) At various coupling strengths g = σ〈k〉 below the threshold for complete synchronization and (b) the
synchronized state is perturbed by noise of different intensities D. Qualitatively, the same behavior is observed when the
oscillators are nonidentical. From [116].

4.3. Beyond the Master Stability Function formalism

We have discussed how the impact of network topology on synchronizability can be addressed using
the MSF and graph theory. Away from the complete synchronization regime, the linear stability does not
strictly apply. However, it is still possible to go one step forward to further understand some aspects of the
dynamical synchronization patterns.

In [116] the authors studied effective synchronization patterns in unweighted SF networks of chaotic oscil-
lators (with the coupling function H(x) = x) in several situations: away from the complete synchronization
regime, when the coupling strength is smaller than the threshold for complete synchronization, when the
oscillators have mismatches in parameters, and when there are noise perturbations. They considered a mean
field approximation in which each oscillator is influenced by a global mean field X, with a coupling strength
σki, namely,

ẋi = F(xi) + σki(X − xi), ki ≫ 1. (106)

The authors compared the synchronization of each oscillator to X by computing ∆Xi = |xi − X| and then
obtained the average ∆X(k) over all nodes with the same degree k. It was shown that out of the complete
synchronized state

∆X(k) ∼ k−γ , (107)

where the exponent γ ≈ 1, as seen in Fig. 29. This result shows that in heterogenous networks, the hubs
(ki > kth) will synchronize more closely with the mean field and they will form effective synchronization
clusters (|xi − xj | < ∆th). However, there is not a unique threshold to define such effective clusters (see
Fig. 29). This path to synchronization, i.e., the formation of clusters by the hubs, was further described
later in [39], see also Sect. 3.1.4.

The formation of such SF or hierarchical clusters could be understood from a linear analysis using the
MSF formalism. The linear variational equations of (106) read

ξ̇i = [DF(X) − σkiI] ξi, ki ≫ 1. (108)

They have the same form as (58), except that λi is replaced by ki and DH by the identity matrix I. The
MSF for the coupling function H(x) = x is λmax(α) = λF

1 − α, where λF
1 is the largest Lyapunov exponent

of the isolated oscillator F. Thus the largest Lyapunov exponent λmax(ki) of the linearized Eq. (108) is
a function of ki and becomes negative for σki > λF

1 . For large k values satisfying σk ≫ λF
1 , we have

λmax(k) ≈ −σk.
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Now suppose that the network is not completely synchronized, but slightly perturbed from the state of
complete synchronization, when the coupling strength σ is below the complete synchronization threshold,
or when there is noise present in the system. For nodes with large degree k, so that λmax(k) ≈ −σk is large
enough in absolute value but negative, the dynamics of the averaged synchronization difference ∆X(k) over
large time scales can be expressed as

d

dt
∆X(k) = λmax(k)∆X(k) + c, (109)

where c > 0 is a constant denoting the level of perturbation with respect to the complete synchronization
state, and depends either on the noise level D or on the coupling strength σ. From this we get the asymptotic
result ∆X(k) = c/|λmax(k)|, yielding

∆X(k) ∼ k−1, (110)

which explains qualitatively the numerically observed scaling (solid lines in Fig. 29). Interestingly, the same
scaling dependence but for the time needed to get back into the fully synchronized state was obtained in
[35] for a population of Kuramoto oscillators, see Sect. 3.1.4.

To round off this section, let us mention other works about synchronizability in complex networks that
make use of linear criteria similar to the MSF [105, 165, 166]. The analysis of the global stability of
the synchronized state, was first carried out for general graphs [167] and then followed for specific complex
networks [168, 169, 170, 171]. The global stability requires additional constraints on the dynamical properties
of the individual oscillators. For example, consider the form of coupling as in Eq. (54), the requirement
imposed by [168, 169] is that the following auxiliary system of the synchronization difference Xij = xi −xj ,

Ẋij =

[
∫ 1

0

DF(βxj + (1 − β)xi)dβ − αDH

]

Xij ,

be globally stable at the fixed point Xij = 0 for α > αc. With this requirement, the condition for global
synchronization of a network is

σ > σ∗ = max
l

(
αc

N
bl), (111)

where bl is the sum of the lengths of all chosen paths that pass through a given link l in the network. Note
that bl is related to both the betweenness and the path length of the link. The result, which is for undirected
networks, also holds for directed networks where the input and output degrees are equal for every node of
the network. Finally, in [168, 169] it is also derived the condition needed for global synchronization in more
general cases where each link in the network may have a different coupling strength that is allowed to vary
in time.

5. Applications

The focus of the review up to now has been to revise the main contributions, from theoretical and
computational points of view, to our understanding of synchronization processes in complex networks. In
this section we will overview the applications to specific problems in such different scientific fields as biology
and neuroscience, engineering and computer science, and economy and social sciences. There are nowadays
several problems where the application of the ideas and techniques developed in relation to synchronization
in complex networks are very clear and the results help to understand the interplay between topology and
dynamics in very precise scenarios. There are other cases, also included here for completeness, for which
most of the applications so far have been developed in simple patterns of interaction, but extension to
complex topologies is necessary because it is its natural description.

5.1. Biological systems and neuroscience

In biology, complex networks are found at different spatio-temporal scales: from the molecular level up
to the population level, passing through many intermediate scales of biological systems. In some of these
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Figure 30: Dependency of the order parameter R on the the coupling strength Q, which is linearly proportional to the cell
density. The two curves correspond to different values of the ratio between mRNA and protein lifetimes variance ∆β. From
[173].

networks, dynamical interactions between units, which are crucial for our current understanding of living
systems, can be analyzed in the framework of synchronization phenomena developed so far. Here we review
some of these application scenarios where synchronization in networks has been shown to play an essential
role. Thus, at the molecular level we can analyze the evolution of genetic networks and at the population
level the dynamics of populations of species coupled through diffusion along spatial coordinates and through
trophic interactions. Amongst these two extremes we find a clear application in the analysis of circadian
rhythms. On a different context, neuroscience offers applications also at two different levels, one for the
synchronization of individual spiking neurons and the other for the coupling between cortical areas in the
brain.

5.1.1. Genetic networks

The finding that a few basic modules are the building blocks of large real regulatory networks has enabled
the design and construction of small synthetic regulatory circuits to implement particular tasks. One of the
most salient examples of a synthetic gene network is the ”repressilator”, that has become one of the best
studied model systems of this kind. The repressilator is a network of three genes, whose products (proteins)
act as repressors of the transcription of each other in a cyclic way. This synthetic network was implemented
experimentally in the bacterium E. coli, so that it periodically induces the synthesis of a green fluorescent
protein as a readout of the repressilator state [172]. It turns out that the temporal fluctuations in the
concentration of each of the three components of the repressilator can be reproduced by a system of six
ordinary differential equations,

d[xi]

dt
= −[xi] +

α

1 + [yj ]n
, (112)

d[yi]

dt
= −β([yi] − [xi]), (113)

where the couples (i, j) assume the values (1, 3), (2, 1) and (3, 2). The variable [xi] is the mRNA concentration
encoded by gene xi, and [yi] is the concentration of its translated protein yi. The parameter α is the
promoter rate, the parameter β is the ratio of the protein decay rate to the mRNA decay rate, and time has
been rescaled in units of the mRNA lifetime. This system has a unique steady state which can be stable or
unstable depending on the parameter values and constitutes an illustrative example of the experience gained
by identifying network modules and modeling its dynamical behavior in real networks.

Not surprisingly, the repressilator has called much attention from experts on biological synchronization,
since it offers good prospectives for further insights into the nature of diverse biological rhythms -whose
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mechanisms remain to be understood- which are generated by thousands of cellular oscillators that operate
synchronously. In [173] it has been recently proposed a simple modular addition of two proteins to the
repressilator original design that could be used to describe the metabolic oscillations observed in a well
mixed suspension of yeast cells. In the new setting, one of the new proteins can diffuse through the cell
membrane, thus providing a coupling mechanism between cells containing repressilator networks. This
inter-cell communication couples the dynamics of the different cell oscillators (with different repressilator
periods) and thus allows us to study the transition to synchronization of coupled phase oscillators in a
biological system. In particular, in the limit of infinite cell dilution, the system is made up of a population
of uncoupled limit-cycle oscillators. This is not anymore the case when the cell density increases, as now
extracellular diffusion provides a mechanism of intercell coupling. As a result, the system shows partial
frequency locking of the cells. Finally, if the cell density is large enough, complete locking and synchronized
oscillations are observed. The authors proposed an order parameter to measure the degree of synchronization
of oscillatory behavior. The dependence of this order parameter R defined as the ratio of the standard
deviation of the time series of the average signal to the standard deviation of each individual signal [xi]
averaged over all signals i, as a function of the coupling strength, is shown in Fig. 30 for different values of
the ratio between the mRNA and protein lifetimes width distribution (δβ). Note that the phase diagram
of the coupled repressilators can be explained by the very same mechanism involved in the transition to
synchronization for systems of coupled oscillators (e.g., Kuramoto oscillators) studied in Sec. 3.1. What
is relevant here is that the transition from an unsynchronized to a synchronized regime is caused by an
increase in cell density and therefore the experimental observation of a synchronizing transition in biological
phase oscillators might be achieved. In fact, it has been recently designed a simple electronic circuit analogy
of a population of globally coupled repressilators [174]. They show that coupling is more efficient than
externally forcing for the achievement of synchronization. In contrast to the existence of a unified rhythm
that gives rise to synchronization, in [175] it is analyzed the mechanisms of intercell communication that can
be responsible for multirhythmicity in coupled genetic units. We foresee that works on this line of research
will incorporate more genetical interactions in the near future, being the complex network substrate and the
synchronization dynamics key aspects of the whole problem.

5.1.2. Circadian rhythms

A circadian rhythm is a roughly 24-hour cycle in the physiological processes of living systems; usually
endogenous, or when it is exogenous it is mainly driven by daylight. Understanding circadian rhythms is
crucial for some physiological and psychological disorders. A nice description of experiments carried out in
human beings, in which their circadian rhythms are altered, can be found in the books by Strogatz [176] and
Pikovsky et al. [1]. Circadian rhythms are known to be dependent on the network of interactions between
different subsystems. For example, daylight sensed by eyes and processed by the brain develops a chain of
interactions that affects even the behavior of certain groups of cells. On a different scenario, [177] reports
how non-oscillatory cardiac conducting tissues, when driven rhythmically by repetitive stimuli from their
surroundings, produce temporal patterns including phase locking, period-doubling bifurcation and irregular
activity.

Synchronization phenomena in complex networks of coupled circadian oscillators has been recently inves-
tigated experimentally [178] on plant leaves. The vein system is in this case the complex network substrate
of the synchronization process. Plant cells are coupled via the diffusion of materials along two types of con-
nections: one type that directly connects nearest-neighboring cells and the other type that spreads over the
whole plant to transport material among all tissues quickly. Analyzing the phase of circadian oscillations,
the phase-wave propagations and the phase delay caused by the vein network, the authors describe how
global synchronization of circadian oscillators in the leaf can be attained. As we have seen throughout this
review, the role of the topology of interactions is again fundamental in the development of synchronization.
This work is representative of the new type of applications we can find in the very recent literature about
synchronization in complex networks. This particular case of circadian rhythms in plants might be extended
to other living systems, including humans.
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5.1.3. Ecology

It is a well known observation in nature that fluctuations in animal and plant populations display complex
dynamics. Mainly irregular, but some of them can show a remarkably cyclical behavior and take place over
vast geographical areas in a synchronized manner [179]. One of the best documented cases of such situation
are the population fluctuations in the Canadian lynx, obtained from the records of the fur trade between
1821 and 1939 in Canada. Fluctuations in lynx populations show a 10-year periodic behavior from three
different regions in Canada [180, 181, 182]. On the other hand, there are some evidences that the existence of
conservation corridors favoring the dispersal of species and enhancing the synchronization over time increases
the danger of global extinctions [183].

One of the first explanations for such types of behavior was that of synchronous environmental forcing,
this is the so-called Moran effect [184]. There are, however, other explanations for this phenomenon [185],
but in any case the problem highlights the importance of integrating explicitly spatial and trophic couplings
into current metacommunity theories [186, 187]. Some efforts along these lines have already been made
by considering very simple trophic interaction in spatially extended systems. For example, the authors in
[181] analyze a three-level system (vegetation, herbivores, and predators), where diffusive migration between
neighboring patches is taken into account. They find that small amounts of migration are required to induce
broad-scale synchronization. Another interesting study is performed in [188], where, again in an extremely
simple model, it is found that changing the patterns of interaction between consumers and resources can
lead to either in-phase synchrony or antiphase synchrony.

Nowadays we know, however, about the inherent complexity of food-webs [189]. Food webs have been
studied as paradigmatic examples of complex networks, because they show many of their non-trivial topo-
logical features. Furthermore, the existence of conservation corridors affecting the migration between regions
adds another ingredient to the structure of the spatial pattern. It is precisely this complexity in the trophic
interactions coupled to the spatial dependence that must to be considered in detail in the future to get a
deeper understanding of ecological evolution.

5.1.4. Neuronal networks

Synchronization has been shown to be of special relevance in neural systems. The brain is composed of
billions of neurons coupled in a hierarchy of complex network connectivity. The first issue concerns neural
networks at the cellular level. In the last years, significant progress has been made in the studies about
the detailed interconnections of different types of neurons at the level of cellular circuits [190, 191, 192]. At
this level, the neuronal networks of mammalian cortex also possess complex structure, sharing SW and SF
features. Here are two basic neuron types: excitatory principal cells and inhibitory interneurons. In contrast
to the more homogeneous principal cell population, interneurons are very diverse in terms of morphology and
function. There is an apparently inverse relationship between the number of neurons in various interneuron
classes and the spatial extent of their axon trees–most of the neurons have only local connections, while
a small number of neurons have long-range axons [193]. These properties of neuronal networks reflects a
compromise between computational needs and wiring economy [194, 195].

On the one hand, the establishment and maintenance of neuronal connections require a significant
metabolic cost that should be reduced, and consequently the wiring length should be globally minimized.
Indeed, the wiring economy is apparent in the distributions of projection length in neural systems, which
show that most neuronal projections are short [196, 197]. However, there also exists a significant number of
long-distance projections [198, 108].

Large-scale synchronization of oscillatory neural activity has been believed to play a crucial role in the
information and cognitive processing [199]. At the level of cellular circuits, oscillatory timing can transform
unconnected principal cell groups into temporal coalitions, providing maximal flexibility and economic use
of their spikes [200]. Brains have developed mechanisms for keeping time by inhibitory interneuron networks
[201]. The wiring will be the most economic if the connections were all local. However, in this case physically
distant neurons are not connected, and synaptic path length and synaptic delays become exceedingly long
for synchronization in large networks. From previous analysis of synchronization of random networks, we
know that synchronizability (stability of the synchronized state) is optimal in fully random networks with
a uniform connectivity per node, independent of the network size [111]. The same happens if interneuronal
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oscillators are coupled [193]. However, fully random connections irrespective of physical distance are not
economic if wiring cost is taken into account.

In [193], it was shown with a model of interneuronal networks containing local neurons (Gaussian dis-
tribution of projection length) and a fraction of long-range neurons (power law distribution of projection
length), that the ratio of synchrony to wiring length is optimized in the SW regime with a small fraction of
long-range neurons. Thus, most wiring is local and neurons with long-range connectivity and large global
impact are rare, as consistent with observations. It was argued that the complex wiring of diverse interneu-
ron classes could represent an economic solution for supporting global synchrony and oscillations at multiple
time scales with minimum axon length [193]. While such mathematical consideration can predict the scaling
relationship among the interneuron classes in brain structures of varying sizes, understanding the role of
complex neuronal connectivity, most likely mediated by synchronization, is still one of the main challenges
in neuroscience. The theory reviewed in this article will surely contribute to their understanding when more
systematic information of neuronal connectivity becomes available in the future.

5.1.5. Cortical networks

The application of graph theoretical approaches, and the characterization of the functional activity by
neural synchronization, have significantly contributed to the understanding of complex networks in the brain
[202, 203].

On a larger neurophysiological scale, the activity observed experimentally by electroencephalographs or
functional magnetic resonance imaging, is characterized by oscillations occurring over a broad spectrum
and by synchronization phenomena over a wide range of spatial and temporal scales. Reliable databases are
available now for large-scale systems level connectivity formed by long-range projections among cortical areas
in the brains of several animals [142, 204]. Large-scale brain networks are found to be densely connected, with
very complex and heterogeneous connectivity patterns [205, 206, 207]. In parallel, the investigation of brain
activity has also put significant emphasis on large-scale functional interactions, characterized by coherence
and synchronization between the activity of cortical regions [208, 209, 210, 211]. Both the structural and
functional connectivity of the brain display SW and SF features. The relationship between structural and
functional connectivity remains an important open problem in neuroscience.

Recent simulations of synchronization dynamics of brain networks have shed light on this challenging
problem. In a series of papers [212, 213, 214] the dynamics of a realistic cortico-cortical projection network
of the cat has been modeled at the level of functional areas [142]. At this level, the network (see Fig. 31)
displays a hierarchical cluster organization [207]. There are four prominent clusters that agree broadly
with the four functional subsystems: visual (V), auditory (A), somatomotor (SM), and frontolimbic (FL).
They simulated the network dynamics by a 2-level model: each node (cortical area) is represented by a SW
subnetwork of neurons (network of networks). It was shown that the model possesses two distinguished
regimes, weak and strong synchronization. In the weak synchronization regime, the model displays biologi-
cally plausible dynamical clusters. The functional connectivity, obtained by passing the correlation matrix
through various thresholds, exhibits various levels of organization. The clusters with the highest levels of
synchronization are from respective functional subsystems (Fig. 32 (a,b)) and are related to specialized
functions of the subsystems. The specialized clusters are integrated into larger clusters through brain areas
having many inter-community connections (Fig. 32 (c,d)). As a whole, the functional connectivity reveals
the hierarchical organization of the structural connectivity [212]. The dynamics forms four major clusters
(Fig. 33), in excellent agreement with the four functional subsystems [213]. Furthermore, brain areas that
bridge different dynamical clusters are found to be the areas involved in multisensory associations. In a
comparative study [214], it was shown that representing the brain areas with a periodic, low-dimensional
neuronal mass oscillator describing alpha waves [215] cannot resolve these four clusters. The detailed net-
work topology becomes rather irrelevant to the dynamical patterns which is not very much changed when
the network is randomized. This is the same for the strong synchronization regime in the 2-level model
which resembles epileptic-like activity [213].). This can be understood recalling previous analysis based on
random networks where is shown that synchronization is mainly determined by the node intensity [111, 117]
(see Section IV 6). Furthermore, the transition from the weak to the strong synchronization regime shares
a similar picture with the Kuramoto model in complex networks [39, 40] (see Section III 4).
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Figure 31: (Color online) Connection matrix MA of the cortical network of the cat brain. The different symbols represent
different connection weights: 1 (◦ sparse), 2 (• intermediate) and 3 (∗ dense). The organization of the system into four
topological communities (functional sub-systems, V, A, SM, FL) is indicated by the solid lines. From [212]).

Figure 32: (Color online) The functional networks (◦) at various thresholds: Rth = 0.070 (a), Rth = 0.065 (b), Rth = 0.055
(c) and Rth = 0.019 (d). The small dots indicate the anatomical connections. From [212].
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Figure 33: (Color online) Four major dynamical clusters (◦) in the weak synchronization regime, compared to the underlying
anatomical connections (·). From [213].

Shortly after these works, a very similar structure-function relationship was observed [216]. Each area of
the macaque neocortex was represented by a neural mass model in the regime of spontaneous activity with
complicated temporal patterns. It was shown that the functional connectivity, measured over a very long
time, is closely shaped by the underlying structural connectivity as described in [212, 213, 214]. On short
time-scales, the functional connectivity changes, forming two anticorrelated clusters, similar to functional
networks obtained from brain imaging data [217].

These findings support the idea that the brain is an active network, and it can generate activity by
itself in the absence of external signals. Classical theories in cognitive neuroscience viewed the brain as a
passive, stimulus-driven device and the spontaneous on-going activity of the brain had been regarded as
background noise [218]. It is still customary in data analysis to take the average signals over many trials of
electroencephalographs as the event-related activation and associate them with cognitive processes. In the
view of active dynamical brain networks, it has been shown that the spontaneous on-going activity imposes
significant impact on the selective responses to stimuli [218, 199]. The intricate relationship between large-
scale structural and functional networks revealed in these works [212, 213, 214, 216]) will contribute to
this reorientation of concepts in neuroscience. On the other hand, excessive activation and synchronization
of neural networks have been found to associate with dysfunctions and disorders of the brain, such as
the epileptic seizure [219] and the Parkinsonian disease [220]. Understanding synchronization in neuronal
networks of various level, especially studying the role played by the complex network topology, is crucial
to elucidate how normal brains can maintain desirable levels of synchronization. It will also contribute
significantly to biomedical data analysis of pathological brain activities [221], for example, the challenging
task of detecting precursors that can make prediction much before the clear onset of seizures , and design
suitable methods for treatments of neural diseases [222].

5.2. Computer science and engineering

Complex networks and synchronization dynamics are relevant in many computer science and engineering
problems. For example, in computer science, synchronization is desirable for an efficient performance of
distributed systems. Sometimes, the goal of the distributed system is to achieve a global common state
(consensus). Nowadays these systems are becoming larger and larger and their topologies more and more
complex. On the other hand, some engineering problems also face the need of maintaining coordination at
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Figure 34: (Color online) Virtual time horizon snapshots in the steady state for 10000 sites in one dimension. (a) For a regular
network. The lateral correlation length ξ and width w are shown for illustration in the graph. (b) For the SW network with
p = 0.1, the heights are effectively decorrelated and both the correlation length and the width are reduced. From [224].

the level of large scale complex networks, for example in problems of distribution of information, energy or
materials.

5.2.1. Parallel/Distributed computation

The simulation of large systems are, nowadays, mainly implemented as parallel distributed simulations
where parts of the system are allocated and simulated on different processors. A large class of interacting
systems including financial markets, epidemic spreading, traffic, and dynamics of physical systems in general,
can be described by a set of local state variables allowing a finite number of possible values. As the system
evolves in time, the values of the local state variables change at discrete instants, either synchronously or
asynchronously, depending on the dynamics of the system. The instantaneous changes in the local configura-
tion are called discrete events, forming what has been coined as a parallel discrete-event simulation (PDES)
[223]. The main difficulty of PDES is the absence of a global pacemaker when dealing with asynchronous
updates. This imposes serious problems because causality and reproducibility of experimental results are
desired. In a conservative scheme, processes modeling physical entities are connected via channels that
represent physical links in the target system. Since PDES events are not synchronized via a global clock,
they must synchronize by communication between nodes.

The essentials of a PDES are: a set of local simulated times of the processors and a synchronization
schedule. As the grid-computing networks with millions of processors emerge, fundamental questions of the
scalability of the underlying algorithms must be addressed. The properties of a PDES to be scalable are:

(i) the virtual time horizon {τi(t)}Np

i , a set of time simulated instants in Np processors after t parallel steps,
should progress on average with a non-zero rate, and (ii) the width of the time horizon should be bounded
when Np → ∞.

In [225], it was studied the asymptotic scaling properties of a conservative synchronization algorithm in
massive PDESs where the discrete events are Poisson arrivals. They found an interesting analogy between
the evolution of the simulated time horizon and the growth of a nonequilibrium surface.8 They showed that
the steady-state behavior of the macroscopic landscape of the simulated time horizon, in one dimension, is
governed by the Edwards-Wilkinson Hamiltonian [228].

8Note that the first analogy between synchronization processes and the theory of surface growth appeared in [226], posteriorly
revisited in [227] (see [1] for a comprehensive review).
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The analogy becomes clear by interpreting the virtual times τi as the height of a surface, and defining
the width of the simulated times surface as the mean root square of the virtual times with respect to the
mean τ . This width provides a measure for de-synchronization

〈w2〉 = 〈 1

Np

Np
∑

1

[τi(t) − τ̄ (t)]2〉. (114)

The problem that now is faced is how the width of the synchronization landscape scales with the number
of processors. If the scaling diverges, it means that the synchronization is hardly achievable. In one- and
two-dimensional regular lattices, the width of the synchronization landscape diverges with the number of

processors as w ∼ N
1/d
p where d is the dimension. This effect can be traced back to the lateral correlation

length ξ of the surface that also diverges with the number of processors ξ ∼ N [229]. An interesting solution
to this problem has been proposed in [230] and [224]. It consists of adding a few random links to the
regular lattices resulting in a SW structure. This structure has the effect of de-correlating the lateral length,
suppressing large fluctuations in the synchronization surface (roughness), and producing finite average values
of w in the large system-size limit, see Fig. 34. Moreover, the extreme height diverges only logarithmically in
this limit. This latter property ensures synchronization in a practical sense in a SW topology of processors.

5.2.2. Data mining

The term data mining refers to the process of automatically searching large volumes of data for patterns
that provide some useful information for classification. In [231] it has been proposed a new method of
data mining based on spontaneous data clustering using a network of locally coupled limit-cycle phase
oscillators. The method is closely related to the determination of community structure via synchronization
processes devised by several authors [55, 61]. The idea is to encode multivariate data vectors (that are the
elements of the database) into vectors of natural frequencies for an oscillators’ dynamical model, akin to
the KM, expecting that the dynamics of the system will group similar data in clusters of synchronization.
More precisely, given n multivariate data points with m degrees of freedom, ~xi = (xi(1), xi(2), ..., xi(m)),
i = 1, . . . , n, they write the dynamical model:

θ̇i(l) = xi(l) +
σ

ki

n
∑

j=1

H(di,j) sin(θj(l) − θi(l)) (115)

where θi(l) is the l-th component of the phase vector ~θi = (θi(1), θi(2), ..., θi(m)), H(di,j) is a function

that determines the neighborhood of ~θi based on the distance di,j = |~xi − ~xj |. The determination of the
neighborhood provides the network of interactions between oscillators. The proposal by the authors is a
neighborhood centered at ~xi defined by the hyper-sphere of radius d0, being d0 = α|~xi| and α a tuning
parameter. The function H(di,j) = 1 if di,j ≤ d0 and 0 otherwise. The application of the method in a
database of aging status in frail elderly reported in [231] shows a good performance of the method, and gives
a nice expectative of exploitation of the concepts of synchronization in the area of data mining.

5.2.3. Consensus problems

Consensus problems, understood as the ability of an ensemble of dynamic agents to reach a unique
and common value in an asymptotically stable stationary state, have a long history in the field of computer
science, particularly in automata theory and distributed computation. In many applications, like for instance
cooperative control on unmanned air vehicles, formation control or distributed sensor networks, groups of
agents need to agree upon certain quantities of interest [232]. As a result, it is important to address these
problems of agreement within the assumption that agents form a complex pattern of interactions. These
interactions can be directed or undirected, fixed or mobile, constant or weighted, keeping then many of the
ingredients we have been discussing in this review. Another interesting fact in this sort of problems is the
existence of time delays in the communication process.
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In [232] the authors define consensus problems on general graphs. Let us consider a dynamic graph in
which the connectivity pattern of the nodes can change in time. At each node, a dynamical agent evolves
in time according to the dynamics

ẋi = f(xi, ui), (116)

where f(xi, ui) is a function that depends on the state of the unit xi, and on ui that describes the influence
from the neighbors. The χ-consensus problem in a dynamical graph is a distributed way to reach an
asymptotically stable equilibrium x∗ satisfying x∗i = χ(x(0)), ∀i, where χ(x(0)) is a prescribed function of
the initial values (e.g., the average or the minimum values).

They present two protocols that solve consensus problems in a network of agents:

1. fixed or switching topology and zero communication time-delay:

ẋi =
N

∑

i,j=1

aij(t)(xj(t) − xi(t)), (117)

2. fixed topology and non-zero communication time-delay τij > 0

ẋi =

N
∑

i,j=1

aij(xj(t− τij) − xi(t− τij)). (118)

We note that the analysis of the asymptotic behavior of such linear system is similar to the stability analysis
performed in the framework of the MSF (Sect. 4).

The authors find very interesting results in terms of network properties. For instance, a network with
fixed topology that is a strongly connected digraph (a subgraph connected via a path that follows the
direction of the edges of the graph). solves the average consensus problem if and only if all the nodes of the
network have the same indegree as the outdegree, i.e. kin

i = kout
i , ∀i, as the balanced networks discussed in

[169] (see Sect. 4.3). Furthermore, the performance of the network measured in terms of the speed in which
the global asymptotic equilibrium state is reached, is proportional to λ2(Ĝ) where Ĝ is the mirror graph
induced by G, which is defined as an undirected graph with symmetric adjacency matrix âij = (aij + aji)/2.

For a switching topology, they find that if the dynamics of the network is such that any graph along the
time evolution is strongly connected and balanced then the switching system asymptotically converges to an
average consensus. Concerning time communication-delays, the important result is that if all links have the
same time-delay τ > 0, and the network is fixed, undirected and connected, the system solves the average
consensus if τ ∈ (0, π/2λN ). In this case, in a similar way as discussed in previous applications, there are
two tradeoff issues that can be related to problems of network design; one concerns the robustness of the
protocol with respect to time-delays, and the other to communication cost.

When applying this framework to a certain class of networks, it is found [233] that the speed of conver-
gence, as the inverse of λ2 (as was also found in synchronization problems [52]), can be increased by orders
of magnitude by simply rewiring a regular lattice, while this change has a negligible effect on λN , which
measures the robustness to delays of the system. This can be understood by the eigenvalues of the SW
network in Eq. (70) as compared to the regular networks in Eq. (67). Some other variations can be found
in the recent literature; e.g., in [234] several network models with physical neighborhood connectivity are
analyzed. Depending on the precise rules they discuss on the performance and the robustness of the system.

Due to its importance as an application in computer science, consensus problems are interesting by
themselves. But understanding its linear dynamics can be also of great importance in the behavior of
complex populations of units that evolve according to more complex non-linear dynamics, as it happens in
many synchronization problems.

5.2.4. Wireless communication networks

Another emerging line of research can be found in the field of synchronizing wireless sensor communication
networks. Wireless ad-hoc networks are telecommunication infrastructures formed by devices equipped with
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a short-range wireless technology, such as WiFi or Bluetooth. Unlike wired networks, these networks can
be created on the fly to perform a task, such as information routing, environmental sensing, etc. [235].
Furthermore, the topology of these networks can be changed dynamically to achieve a desired functionality.
From the perspective of fundamental research, these systems provide a clear-cut example of highly dynamic,
self-organizing complex systems.

One of the main technological problems in wireless networks is that of synchronize time activity in a
decentralized way. Wireless time synchronization is used for many different purposes including location,
proximity, energy efficiency, and mobility for example. We will revise in this section two approaches to
the problem that have been developed within the scope of the synchronization scenario reviewed so far.
Other approaches not clearly connected to synchronization in complex networks to solve this important
problem can be found in the specific literature [236]. The first approach concerns to the routing and
information flow algorithms which require synchronization of the clocks of the nodes of the wireless network
to establish a global coordinated time. The topology of these sensor networks is accurately represented by
random geometric graphs which are constructed by dropping n points randomly uniformly into the unit
square (or more generally according to some arbitrary specified density function on d-dimensional Euclidean
space) and adding edges to connect any two points distant at most r from each other. In a very recent
work [237], synchronization of Kuramoto oscillators in these networks is studied. They consider a wireless
system in which the connections vary at a time scale much shorter than the time scale associated to the
synchronization dynamics, and hence the network is static. Nodes correspond to devices that have a finite
transmission range, and are linked to those nodes that are located within the range. This procedure gives
rise to a two-dimensional random geometric graph, which is characterized by a high clustering coefficient
and a very large average shortest path length, as compared to ER graphs with the same number of nodes
and links. The remarkable result is that this type of network is very hard to synchronize, both in terms of
the stability of the synchronized state and in terms of the time needed to reach the completely synchronized
state. Although they are very homogeneous, the smallest non-zero eigenvalue of the Laplacian matrix is
very low, providing a clear limitation for synchronizability of Type II. This result points out the limitations
concerning synchronizability that raise from this topology, interestingly, just by rewiring a small fraction of
the links at random synchronizability is clearly improved, the distances are shortened and at the same time
the clustering is decreased, which show up as an increasing of the eigenvalue λ2 almost without affecting the
largest eigenvalue λN . An extended study about the convergence properties of a similar system where nodes
are represented as discrete-time oscillators, is studied through algebraic graph theory in [238]. The authors
main finding is that the distributed synchronization problem converges to a unique cluster of synchronized
nodes, if and only if the associated weighted directed graph G is strongly connected, i.e. if there is a path
from each vertex in the graph to every other vertex.

The second approach concerns the shared resources available in these systems. Communication channels
have a finite bandwidth so that the access times of different users should be desynchronized when their
number is large and non necessarily constant, this is basically the idea behind any Time Division Multiple
Access (TDMA) algorithm to be used over a multi-hop wireless network. In [239], the authors proposed
a biologically inspired algorithm for desynchronization in a single-hop network that is in the scope of the
review. They consider a set of N nodes (integrate-and-fire oscillators) that generate events with a common
period. The nodes rearrange their phases, just considering the times in which neighboring (in time) units
fire, in such a way that the events become spaced at intervals T/N . The final state then corresponds to what
is usually called a round-robin schedule. In this way, the use of the bandwidth without collisions between
messages is optimized. Inspired by this result, in [240] the authors considered the units to be Kuramoto
oscillators with a common frequency. Introducing some dephase angle in the sinus function and coupling
pairs of units along a closed chain, the authors find new stable configurations different from the completely
synchronized state. Some of these configurations correspond also to the round-robin schedule, which turns
out to be very robust under the addition or deletion of nodes from the system. This finding obtained in the
scope of a precise application, is general, and accounts for global synchronization of discrete-time dynamical
directed networks.

To end this section we also to point out a different problem, also in the area of wireless mobile sensors,
that has been nicely solved by a description in terms of pulse coupled oscillators in complex networks. The
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problem is that of the decentralized detection of abrupt changes, that in wireless networks can represent
failures in communication, attacks to certain sensors or, generally speaking, any change in the sensed activity
of purpose. The authors of [241] proposed a very simple transmitter with no routing, no multiple access,
only a ”pulse position modulation” mechanism. In particular, they assume that the nodes can transmit
only through the emission of pulses with constant amplitude. The information of the sensor data and
the interaction among them can only be encoded in the timing of the pulse emission. This simplistic but
effective configuration leads the problem of decentralized detection of abrupt changes to that of observing
the synchronization of pulse coupled oscillators in a network, after a local perturbation of them. The work
did not included the specific topology of interactions as a fundamental parameter of the problem, and then
do not propose an optimum network scenario for the propagation of the signals, however it clearly points
out another technological problem in electrical and computer engineering, that can be solved in the scope
of synchronization in complex networks.

5.2.5. Decentralized logistics

Logistics is the management of the flow of goods, information and other resources. Sometimes, this
management is limited by the capability of maintaining global knowledge and/or global communication. In
this case, the necessity of decentralized coordination mechanisms are mandatory. In many material flow
systems coordination of tasks in a parallel way is essential for an optimal functioning but difficult to achieve.
Typical examples of this are cross-roads in road traffic [242] and supply chains in production processes [243].
Recent work on supply networks has shown how to treat them as physical transport problems governed by
balance equations and equations for the adaptation of production speeds. Although the nonlinear behavior
is different, the linearized set of coupled differential equations is formally related to those of mechanical or
electrical oscillator networks [244]. Whereas traditional optimization techniques can be used to setup single
nodes, the inherent topological complexity makes maintenance of coordination at network-wide level to be
practically unsolvable by these methods. Furthermore, robustness and flexibility, due to continuous changes
in demand and failures, are also required for an efficient transportation.

There is an analogy between material transportation in networks and the flow of chemical substances
and nutrients in biological organisms, where synchronization dynamics plays an important role. In [245] it
has been proposed a decentralized control model for material flow networks with transportation delays and
setup-times, based on phase-synchronization of oscillatory services at the network nodes.

A material transport network is a directed and weighted graph where the flow of material at nodes is
conserved. Subsets of links are active at different times, and this makes that the activity of the node is
periodic and one can map a continuous phase variable θ(t) to a discrete service state M : θ(t) → s(t). While
the phase angle θ of the oscillator modeling the intersection varies from 0 to 2π at a rate ω, all states s
are sequentially activated. To achieve a coordination of the switching states on a network-wide level, they
propose a suitable synchronization mechanism.

The authors apply this formalism to the control of traffic lights at intersections of road networks. A
single traffic light intersection is modeled by an oscillator where the continuous phase maps to a set of states
corresponding to green lights (see Fig. 35). The maximum frequency of the oscillator dynamics is calculated
in terms of the load at the different lanes and the setup-time. Global coordination of the network is achieved
by synchronizing the local phases and frequencies, requiring to reach a phase-locked state where the phase
difference between neighboring sites is fixed. They suggest a coupling on two different time scales:

• Adaptation of the phase θ a la Kuramoto:

θ̇i = min







ωmax
i , ωi(t) +

1

Tθ

∑

j∈Γi

sin (θj(t) − θi(t))







(119)

where ωi is the intrinsic frequency. As long as ωi < ωmax
i , θi tries to adjust to the neighboring phases.

The constant Tθ corresponds to the typical time scale for this adaptation.
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Figure 35: (Color online) A single intersection adjusts the mapping of the phase-angle θ to the switching states s locally. Within
a complete cycle, each state s is sequentially activated for a period ∆θs, during which the corresponding non-conflicting traffic
lights are set to green. While switching from one state to another, all traffic lights are set to red for a period of ∆θsetup. The
phase-angle, at which a new cycle starts, is denoted by θ0. From [245].

• A second decentralized coupling can be used to increase the intrinsic frequencies to approach the
possible maximum within a slow time scale:

ω̇i =
1

Tω

(

min
j∈Γi

{ωj(t)} + ∆ω − ωi(t)

)

. (120)

Here the constant parameter ∆ω provides a linear drift towards higher frequencies.

Under these assumptions two dynamical regimes are possible (see Fig. 36). Starting with a random
initial condition (left), the system quickly settles into a state with growing common frequency and vanishing
phase-differences. As soon as the maximum common frequency is found, the system enters the other state
with a locked common frequency and phase-differences exponentially converging towards constant values
(right).

The extension of the analysis performed on such a simple setting to more realistic complex transportation
networks is very promising but challenging [246].

5.2.6. Power-grids

Power grids are physical networks of electrical power distribution lines of generators and consumers. In
the pioneering paper by Watts and Strogatz [9] it was already reported that the power-grid constitutes one
of the examples of a self-organized topology that has grown without a clear central controller. This topology
is indeed very sensitive to attacks and failures. From its topological point of view there are several analyses
on power-grids in different areas of the world [247, 248] and some models have been proposed to deal with
the cascading process of failures [249, 250, 251].

The principles of electricity generation and distribution are well known. Synchronization of the system
is understood as every station and every piece of equipment running on the same clock, which is crucial for
its proper operation. Cascading failures related to de-synchronization can lead to massive power blackouts
[252].

Then power production, dissipation, transmission, and consumption represents a dynamical problem and
the power grid can be seen as an example of a system of oscillators [176]. Along this line, in [253] it has
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Figure 36: A single intersection of roads is modelled by a phase angle θ. This continuous phase maps to a discrete set of states
{s}. Simulation results for a regular lattice road network, where the intersections are defined as oscillators with (a) a frequency
ωi and (b) a phaseθi, shows a phase transition towards a synchronized (frequency-locked) state. From [245].

beeb proposed a model where each element (generators and machines) is described in terms of a phase that
grows linearly in time with a frequency that is close to the standard frequency of the electric system (50 or
60 Hz).

Consider the power produced at a generator. It can then be dissipated, accumulated, or transmitted
along the electric line. The first two terms (dissipation and accumulation) depend on the frequency of the
generator whereas the last one (transmission) is proportional to the sinus of the phase difference between
the generator and the machine at the other extreme of the line. Then, a simple energy balance equation
relates the evolution of the phase (first and second time derivatives) with sinus of phase differences.

Applying this simplified approach to a networked system of generators and machines, they arrive to a
set of Kuramoto-like differential equations

θ̈i = −αθ̇i + ωi +K
∑

j∈Γ(i)

sin(θj − θi), (121)

where ωi is related to the power generated at the element and to the dissipated power, and K, representing
the stength of the coupling, is related to the maximum transmitted power.

Within this framework,they analyze, as an application, under which conditions the system is able to
restore to a stable operation after a perturbation in simple networks of machines and generators. To
the best of our knowledge this is a first approximation to the real applicability of the knowledge about
synchronization in complex networks to power grids, although the hypothesis along the work are still very
relevant here.

5.3. Social sciences and economy

In the last decades, social sciences and economy have become one of the favorite applications for physi-
cists. In particular, tools and models from statistical physics can be implemented on what some people has
called social atoms, [254] i.e. unanimated particles are replaced by agents that take decisions, trade stocks
or play games. Simple rules lead to interesting collective behaviors and synchronization is one of them,
because some of the activities that individual agents do can become correlated in time due to its interaction
pattern, which, in turn, is clearly another example of the complex topologies considered along the review.

In social systems, however, it is not an easy task to identify the relationship between agents (being
humans or collectives in social interactions, stock prices in finances, or countries in the World Trade Web).
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We alert the reader, that in some cases the quasi-periodic correlated activity is interpreted as synchronization
in this scenario. For example, dynamical similarity along economic cycles is understood as synchronization
in economic terms. Keeping this in mind, some of the applications presented in this section are weak
formulations of synchronization in complex networks, however we think they are interesting because they
open the door to stronger formulations in this context.

5.3.1. Opinion formation

One of such problems is the study of opinion formation in society. The underlying idea is that individuals
(or agents) have opinions that change under the influence of other individuals giving rise to a sort of collective
behavior, grouping together a macroscopic part of the whole population with similar social features [15].
Therefore, the main goal is to figure out whether and when a complete or partial consensus can emerge out
of initially different opinions, no matter how long it takes for the consensus to be reached.

In general, the formation of a collective opinion about a certain matter is not equivalent to a transition
to some kind of synchrony, but rather to a transition to an absorbing state. However, a recently proposed
model [255] makes explicit use of a modified KM (see Sect. III) and thus in this case the formation of
groups of opinions can be thought of a synchronization process. Agreement models deal with N individuals
characterized by an opinion xi (either an integer or real number) and a network of contacts that drives
the dynamics of opinion formation through deterministic rules [15]. In [255] it has been considered the
case in which opinions are neither bounded nor periodic, but that two initially different opinions can also
diverge when time goes on. Moreover, they also take into account that two quite different individuals tend
to interact less by assuming that the coupling between these two individuals is a decreasing function of their
opinion differences. Finally, in [255] the main source of heterogeneity is not given by the initial positions,
but by different rates of changing individuals’ opinions.

Taking all the previous statements into account, it has been proposed the following governing equations
for the dynamics of the rate of change of opinions [255]

ẋi = ωi +
σ

N

N
∑

j=1

α sin(xj − xi)e
−α|xj−xi| , (122)

where xi(t) ∈ (−∞,+∞) is the opinion of the ith individual at time t and the ωi’s are the natural or intrinsic
opinion changing rates. Note that the interactions are assumed to be all-to-all, though the model can be
directly generalized to any other topology. Moreover, the ω’s are drawn from a distribution g(ω) centered
at ω0 with the same properties as in the KM case (Sect. III). In other words, in [255] the authors approach
the problem of opinion formation from a radically different point of view in which individuals do not only
change their opinions, but also the rate at which these changes take place. It is plausible then to assume
a dynamics described by oscillators coupled together. As opinion changing rates depend on the actual
interaction between the members of the population, the dynamical model fits quite naively a Kuramoto-like
model with the additional constraint that individuals having too far opinions will not likely interact. On
the other hand, as opposite to the KM, opinions are not periodic anymore, so that a new order parameter
is introduced as

R(t) = 1 −

√

√

√

√

1

N

N
∑

1

(ẋj(t) − Ẋ(t))2 , (123)

with Ẋ(t) being the average of ẋj(t) over all individuals. From Eq. (123), it follows that R = 1 if complete
synchronization is achieved and R < 1 when only partial synchronization occurs. Note that synchronization
in this context means that the population has reached a unique state of opinion, i.e., it is uniquely polarized
and that further changes take places at the same rate. Moreover, when complete synchronization is not
achieved, different opinions are present in the system and the population can be regarded as multipolar.
The issue is then to investigate under what conditions different emergent behaviors are observed.

Numerical simulations of the model show that there is a phase transition from incoherence to synchrony
at a well defined critical coupling σc. It is argued that when σ < σc, the society can be thought of as
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being formed by isolated, non-interacting cultures or groups of opinions, since mixture or agreement is not
achievable. On the contrary, when σ ≫ σc, the system fully synchronizes, giving rise in a social context
to a polarized or globalized society where social and cultural differences are constrained into a single way
of thinking, notwithstanding the different tendencies to changes of the individuals. Finally, the authors
reported that bipolarity is only possible if σ ∼ σc, although in this case the model shows a rich behavior
depending on the way initial opinions are assigned [255]. It would be extremely useful to investigate in the
future what is the influence of the underlying topology and if the overall picture described above still remains
valid. Furthermore, as changes in opinions in a population also implies reshaping of the social structure,
the question of how rewiring mechanisms that take into account the actual opinion states of individuals is
worth studying in the future.

5.3.2. Finance

When reading the economic news, it is not difficult to identify the existence of economic cycles in which
Gross Domestic Products (GDP’s), economic sectors, or stock options raise and fall. Most of the time this
does not happen for isolated countries, sectors or options but it occurs in quite a synchronized way, although
some delays are noticeable.

Within the framework of the current review, we are focusing on synchronization in complex networks, and
this is what we can identify in many economical sectors: there exists a complicated pattern of interactions
among companies or countries and the dynamics of each one is quite complex. But, in contrast to many
networks with a physical background, here we neither know in detail the node dynamics nor its connectivity
pattern. In this situation it is useful to look at the problem from a different angle. By analyzing some
macroscopic outcomes, we get some insight into the agents’ interactions.

In the economic literature, synchronization is measured by a correlation coefficient (see, for instance,
[256]), based on the idea that correlated (synchronized) business cycles should generate correlated returns.
The point is to identify what types of interactions lie behind market comovements. Synchronization is
the result from two different effects. On the one hand, there are different types of common disturbances
(world interest rates, oil price, or political uncertainty). On the other hand, there exist strong interactions
between the agents (financial relationships, sector dependencies, co-participation in director boards, etc.).
It is precisely, these interactions that play a crucial role in the synchronized behavior along economic cycles
of tightly connected agents and the analysis of the correlations can help in shedding light on the strength
of the different factors.

The application of networks concepts, mainly that of trees, to economical systems dates back to the
pioneering work by Mantegna [257], who found a hierarchical arrangement of stocks through the study of
the correlation returns.

Recently, the authors in [258] have taken a similar approach to analyze the dynamics of markets. They
look at the daily closure prices for a total of N = 477 stocks traded by the New York Stock Exchange over
a period of 20 years, from Jan 02, 1980 to Dec 31, 1999. The data is smoothed by looking at time windows
of given width. As is usually done in the analysis of financial data, the measured quantity is the logarithmic
return of the stocks, defined as

ri(t) = lnPi(t) − lnPi(t− 1), (124)

where Pi(t) is the closure price of stock i at time t. To quantify the degree of synchronization of the data,
they use the equal time correlation between assets

ρij(t) =
〈ri(t)rj(t)〉 − 〈ri(t)〉〈rj(t)〉

√

[〈r2i (t)〉 − 〈ri(t)〉2]
[

〈r2j (t)〉 − 〈rj(t)〉2
]

(125)

where 〈. . .〉 stands for a time average over the consecutive trading days.
From these correlations the asset tree is constructed. The distance between assets is defined as

dij(t) =
√

2(1 − ρij(t)). (126)
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The minimum spanning tree is a simply connected graph with N − 1 edges, such that the sum of all the
distances between connected nodes in the graph

∑

dij(t) is minimum.
This procedure generates a time sequence of asset trees that can be interpreted as a sequence of evolu-

tionary steps of a single dynamics asset tree. For instance, one can identify the leading asset, that, in most
instances, corresponds to General Electric.

Such a reduction of the whole set of data retains most of the salient features of the stock market. It is a
remarkable fact that during crisis periods the markets are very strongly correlated. In terms of the tree its
average length is reduced and the tree is very tightly packed. By reducing the time window, the location of
the smallest tree converges to the Black Monday (October 19, 1987).

It is clear that a hidden pattern of interactions between the assets is responsible for such a synchronized
behavior and that during crashes the interactions are strengthened. The message here is that the degree
of synchronization, quantitatively described in terms of the asset correlation, is an indirect measure of the
existence of strongly connected agents in financial markets.

The goal of measuring correlations in time series of financial data is to identify synchronized behavior of
stocks. Stocks are synchronized if they are strongly connected by means of some of the interactions we listed
above (sharing directors, capital flow, sector dependency, etc.). But clustering these stocks according to
their correlations is usually a hard task and not very accurate. In a recent paper [259], it has been proposed
a new method based on synchronization of chaotic maps to get a more precise clustering of the data. They
look at correlations between stocks in the usual way (cij =< ρij(t) >t, is the time average of the correlation
matrix) but they use these values to construct, through a nonlinear function, a new matrix Jij that is used
as the interaction matrix between units. The units evolve according to chaotic map dynamics

xi(τ + 1) =
1

∑

i6=j Jij

∑

i6=j

Jijf(xj(τ) (127)

and f(x) = 1 − 2x2 is the logistic map. The next step is to convert, after some equilibration time, the
continuous variable xi into a spin-like one and compute the mutual information between stocks, Iij . Then
stocks are clustered by using Iij as the similarity index, and the most stable partition is that with the highest
cluster entropy. The dendrogram obtained in this way shows, for a particular set of data, a clear partition
between different classes of stocks. However, the analog procedure applied to the original correlations, cij ,
shows a ”chaining effect” that tends to yield elongated clusters. In this case, synchronization of chaotic
dynamics turns out to be a powerful tool for the analysis of financial data subjected to similar business
cycles.

5.3.3. World Trade Web

The World Trade Web (WTW) is another example of economic system that has been widely analyzed
from the network perspective. Different sources provide data about the trade between countries. Networks
are constructed such that countries are the nodes and trade corresponds to the interaction strengths between
the nodes. There are several studies that have focused on the static complex nature of the links between
countries [260] and also the evolution of the statistical properties of the network [261]. But, from a dynamical
point of view, the trade volume between countries is related to the internal state of the nodes, measured, in
this case, by the Gross Domestic Product (GDP).

Hence a clear relationship between node dynamics (which can have a cyclical component) and trade
strength appears. In particular, in [262] the interplay between the topology of the WTW and the dynamics
of the GDP’s was analyzed.

In none of the previous studies any reference is made to the precise dynamics of the countries economies.
As we have stated before, we find what are usually called economic cycles. Economies rise and fall, although
they mainly raise, but without a constant rate, following rather unpredictable evolutions in time. Due to
globalization effects, all economies are strongly correlated and they will tend to follow a common trend. In
our framework, we can say that following a similar time evolution, economies are synchronized. This cycle
synchronization of economies is a topic of current interest in the economic literature; in [263] a comparative
analysis between developing and industrial countries is performed, finding that the correlations within the
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Figure 37: Twenty-two developed countries’ economic cycles synchronization phenomena. The positive real GDP correlation
means synchronous economic cycles with the US. From [264].

first group are positive but smaller than within the second group. Another example is found in [264] where
correlations between countries are measured in a similar way as the financial series reported above. By
taking into account that the US is the largest economy, and also the biggest node in the WTW, they look
at the degree of synchronization between 22 developed countries and the USA (see Fig. 37).

Another clear effect is that particular economies are tightly connected because of economical agreements
or dependence on particular sectors. In the language of communities this stronger relation can be understood
as the existence of communities in the overall structure of the world economy.

Along these lines we have observed that there is a tight relationship between synchronization of economic
cycles in terms of the GDP and the topological structure of the WTW. The important question raised here
is if the structure of the network that can be constructed from the empirical data on the cycles correlations,
as is done with the finance data, can be mapped into the WTW also empirically constructed from the world
trade transactions.

6. Perspectives

As we have seen, the MSF provides a powerful framework to study the relation between the network
architecture and various types of synchronizability. However, the analysis is mainly limited to the linear
stability of the complete synchronization states. In most realistic systems where synchronization is relevant,
complete synchronization of fully identical oscillators is too ideal, and very strong degrees of synchronization
could relate to pathological activities, such as epileptic seizure in neural systems or social catastrophes. Most
likely, various levels of synchronization are desirable to enable the system to have flexibility and robustness
for the emergency of coordination at different scales.

In this sense, the investigation of synchronization in complex networks is still emerging. We would like
to list a few future research directions which we think are the main challenges in this field that need to
be acomplished to achieve a complete comprehension of the structure-synchronization relations in complex
networks.

• Spectral properties and synchronization processes
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In the MSF formulation, we mainly considered the minimal and maximal eigenvalues that are asso-
ciated to the stability of the synchronization states. The detailed spectral properties, including the
eigenvectors, of the Laplacian/Adjaceny matrix are important when we are interested in the processes
leading to synchronization, or interested in the dynamical patterns emerging after a perturbation oc-
curs. So far studies on detailed spectral properties are still mainly restricted to random networks
[123, 265, 266, 145, 267, 112] and only a few deal on the relation between synchronization patterns
and spectral properties, out of the complete synchronization, see e.g., [268, 117, 56].

• Directed networks and synchronization

There is growing interest in characterizing directed and weighted networks[269, 160, 137, 161, 162, 270].
The analysis of the spectra of directed and weighed networks[271, 272], which in general are complex,
and the study of the impact of the directed characterizations of the networks on synchronization
process[96, 158, 44], will be key to understanding dynamical organization in more realistic complex
systems.

• Co-evolution of structure and synchronization

Most of the work has considered the impact of network architectures on the synchronization dynamics.
In many realistic systems, the feedback of dynamics can reshape the network structures, e.g., in neural
systems through synaptic plasticity [273]. As a result, adaptation, co-evolution and self-organization
occur crossing a broad range of scales (see [274] for a recent review on adaptive networks). Adaptation
due to synchronization has received increasing interest [275, 276, 116, 277], and this line of research
will lead to an integrated understanding of the structure and dynamics of many complex network
systems.

7. Conclusions

Through the current review we have outlined the state of the art towards a theory of synchronization
in complex networks. We emphasize the word theory, because, up to now, physicists have made an effort
of characterization that certainly deepened our understanding of the complex connectivity of natural and
manmade networks, however, we cannot yet state that we have a theory of complex networks. The topological
characterization may not be useful to make actual predictions which can be contrasted with experiments.
To this specific end, the complex network substrate must be enriched and entangled to the functioning of
the system, i.e., to the dynamics run on top of it.

The phenomenon of synchronization is one of the paradigmatic observations in different dynamical sys-
tems. It is at the heart of some biological processes, and according to the wide variety of applications
presented here, it is a plausible abstraction for many other processes in different contexts. The natural
approximation to synchronization, from the simplicity of the Kuramoto model, has been explored, and even
in this case an intricate set of questions concerning the uniformity of the equations proposed, or the nature
of the critical behavior at the onset of synchronization still have to be definitely settled. The main results,
however, have helped to understand the nature of the relationship between the topology of interactions and
the synchronization of phase oscillators. We foresee the importance of these results in the basis of a theory of
neural dynamics of the brain. Although neural dynamics is far more complex than the phase representation
reviewed, main features that describe the path towards synchrony in complex networks have been already
stated and can thus be considered as a good starting point. However, regarding the subjects revised here,
one easily realizes that the work is far from complete and many questions are in the air, e.g. the evolution
of synchronization in evolving topologies, the effect on the phenomenon of several kind of disorder, time
delays, the presence of noise, etc.

The other main contribution to the problem comes from the MSF formalism. The elegant structure of
the formalism, designed for linear systems or nonlinear systems close to the synchronization state, allows
us to make theoretical predictions independent of the specificities of the dynamics. This general framework
has been deeply studied recently, and provides one of the few mechanisms that allow to make predictions
about the evolution of synchronized systems as a function of its specific topology.
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We think that the exploration of new mathematical objects, able to merge the information provided by
specific dynamics (as for example the Kuramoto model) along to the whole process towards synchronization,
together with the fine description of the dynamics near the synchronization manifold, should be the focus
of intense research if we aim to provide a general theory of synchronization processes in complex networks.
On the other hand, the myriad of applications that can be cast into mathematical models equivalent to
those presented along the review, indicates an explosion of activity in different disciplines that will use the
conceptual framework of synchronization processes in networked systems as a fundamental playground for
understanding its dynamical behavior.
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[89] S.-H. Yook, H. Meyer-Ortmanns, Synchronization of rössler oscillators on scale-free topolgies, Physica A 371 (2006)

781–1789.
[90] I. V. Belykh, V. N. Belykh, M. Hasler, Blinking model and synchronization in small-world networks with a time-varying

coupling, Physica D 195 (2004) 188–206.
[91] M. Barahona, L. M. Pecora, Synchronization in Small-World Systems, Phys. Rev. Lett. 89 (2002) 054101.
[92] L. M. Pecora, T. L. Carroll, Master Stability Functions for Synchronized Coupled Systems, Phys. Rev. Lett. 80 (1998)

2109–2112.
[93] K. S. Fink, G. Johnson, T. Carroll, D. Mar, L. Pecora, Three coupled oscillators as a universal probe of synchronization

stability in coupled oscillator arrays, Phys. Rev. E 61 (2000) 5080–5090.
[94] T. S. Parker, L. O. Chua, Practical numerical algorithms for chaotic systems, Springer-Verlag New York, Inc., New York,

NY, USA, 1989.
[95] A. E. Motter, C. S. Zhou, J. Kurths, Enhancing complex-network synchronization, Europhys. Lett. 69 (2005) 334–340.
[96] T. Nishikawa, A. E. Motter, Maximum performance at minimum cost in network synchronization, Physica D 224 (2006)

77–89.
[97] D.-U. Hwang, M. Chavez, A. Amann, S. Boccaletti, Synchronization in Complex Networks with Age Ordering, Phys.

Rev. Lett. 94 (2005) 138701.
[98] R. Monasson, Diffusion, localization and dispersion relations on “small-world” lattices, Eur. Phys. J. B 12 (1999) 555–567.
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[173] J. Garćıa-Ojalvo, M. Elowitz, S. Strogatz, Modeling a synthetic multicellular clock: Repressilators coupled by quorum

sensing, Proc. Natl. Acad. Sci. USA 101 (2004) 10955–10960.
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[201] G. Buzsáki, J. J. Chrobak, Temporal structure in spatially organized neuronal ensembles: a role for interneuronal

networks., Curr. Opin. Neurobiol. 5 (1995) 504–510.
[202] D. S. Bassett, E. Bullmore, Small-World Brain Networks, The Neuroscientist 12 (2006) 512–523.
[203] J. C. Reijneveld, S. C. Ponten, H. W. Berende, C. J. Stam, The application of graph theoretical analysis to complex

networks in the brain, Clinical Neurophysiology 118 (2007) 2317–2331.
[204] O. Sporns, D. R. Chialvo, M. Kaiser, C. C. Hilgetag, Organization, development and function of complex brain networks.,

Trends Cogn. Sci. 8 (2004) 418–425.
[205] O. Sporns, J. D. Zwi, The small world of the cerebral cortex., Neuroinformatics 2 (2004) 145–162.
[206] C. Hilgetag, G. Burns, M. ONeill, J. Scannell, M. Young, Anatomicalconnectivity defines the organization of clusters of

cortical areas in macaque monkey and cat, Philos. Trans. R. Soc. London, Ser. B. 355 (2000) 91–110.
[207] C. Hilgetag, M. Kaiser, Clustered organization of cortical connectivity, Neuroinformatics 2 (2004) 353–360.
[208] C. Stam, Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network?,

Neurosci. Lett. 355 (2004) 25–28.
[209] V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, V. V. Apkarian, Scale-free brain functional networks, Phys Rev

Lett. 94 (2005) 018102.
[210] R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, E. Bullmore, Neurophysiological architecture of

functional magnetic resonance images of human brain., Cereb. Cortex 15 (2005) 1332–1342.
[211] D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, E. Bullmore, From the cover: Adaptive reconfiguration of

fractal small-world human brain functional networks, Proc. Natl. Acad. Sci. USA 103 (2006) 19518–19523.
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