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Understanding the origin, nature, and functional significance of
complex patterns of neural activity, as recorded by diverse elec-
trophysiological and neuroimaging techniques, is a central chal-
lenge in neuroscience. Such patterns include collective oscillations
emerging out of neural synchronization as well as highly hetero-
geneous outbursts of activity interspersed by periods of quies-
cence, called “neuronal avalanches.” Much debate has been gen-
erated about the possible scale invariance or criticality of such
avalanches and its relevance for brain function. Aimed at shed-
ding light onto this, here we analyze the large-scale collective
properties of the cortex by using a mesoscopic approach follow-
ing the principle of parsimony of Landau–Ginzburg. Our model is
similar to that of Wilson–Cowan for neural dynamics but crucially,
includes stochasticity and space; synaptic plasticity and inhibition
are considered as possible regulatory mechanisms. Detailed ana-
lyses uncover a phase diagram including down-state, syn-
chronous, asynchronous, and up-state phases and reveal that
empirical findings for neuronal avalanches are consistently repro-
duced by tuning our model to the edge of synchronization. This
reveals that the putative criticality of cortical dynamics does
not correspond to a quiescent-to-active phase transition as usu-
ally assumed in theoretical approaches but to a synchronization
phase transition, at which incipient oscillations and scale-free
avalanches coexist. Furthermore, our model also accounts for up
and down states as they occur (e.g., during deep sleep). This
approach constitutes a framework to rationalize the possible col-
lective phases and phase transitions of cortical networks in simple
terms, thus helping to shed light on basic aspects of brain func-
tioning from a very broad perspective.

cortical dynamics | neuronal avalanches | criticality | neural oscillations |
synchronization

The cerebral cortex exhibits spontaneous activity even in the
absence of any task or external stimuli (1–3). A salient aspect

of this, so-called resting-state dynamics as revealed by in vivo
and in vitro measurements, is that it exhibits outbursts of electro-
chemical activity characterized by brief episodes of coherence—
during which many neurons fire within a narrow time window—
interspaced by periods of relative quiescence, giving rise to
collective oscillatory rhythms (4, 5). Shedding light on the origin,
nature, and functional meaning of such an intricate dynamics is
a fundamental challenge in neuroscience (6).

On experimentally enhancing the spatiotemporal resolution
of activity recordings, Beggs and Plenz (7) made the remark-
able finding that, actually, synchronized outbursts of neural activ-
ity could be decomposed into complex spatiotemporal patterns,
thereon named “neuronal avalanches.” The sizes and durations
of such avalanches were reported to be distributed as power
laws [i.e., to be organized in a scale-free way, limited only by
network size (7)]. Furthermore, they obey finite-size scaling
(8), a trademark of scale invariance (9), and the corresponding

exponents are compatible with those of an unbiased branching
process (10).

Scale-free avalanches of neuronal activity have been consis-
tently reported to occur across neural tissues, preparation types,
experimental techniques, scales, and species (11–18). This has
been taken as empirical evidence backing the criticality hypoth-
esis (i.e., the conjecture that the awake brain might extract
essential functional advantages—including maximal sensitivity to
stimuli, large dynamical repertoires, optimal computational
capabilities, etc.—from operating close to a critical point, sep-
arating two different phases) (19–22).

To make further progress, it is of crucial importance to clarify
the nature of the phase transition marked by such an alleged crit-
ical point. It is usually assumed that it corresponds to the thresh-
old at which neural activity propagates marginally in the network
[i.e., to the critical point of a quiescent-to-active phase transition
(7)], justifying the emergence of branching process exponents
(23, 24). However, several experimental investigations found evi-
dence that scale-free avalanches emerge in concomitance with
collective oscillations, suggesting the presence of a synchroniza-
tion phase transition (25, 26).

From the theoretical side, on the one hand, very interesting
models accounting for the self-organization of neural networks
to the neighborhood of the critical point of a quiescent-to-active
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phase transition have been proposed (27–30). These approaches
rely on diverse regulatory mechanisms (31), such as synaptic plas-
ticity (32), spike time-dependent plasticity (33), excitability adap-
tation, etc., to achieve network self-organization to the vicinity
of a critical point. These models have in common that they rely
on an extremely large separation of dynamical timescales [as in
models of self-organized criticality⇤ (36, 37)], which might not
be a realistic assumption (27, 30, 38, 39). Some other models
are more realistic from a neurophysiological viewpoint (17, 29),
but they give rise to scale-free avalanches if and only if causal
information—which is available in computational models but not
accessible in experiments (40)—is considered. Thus, in our opin-
ion, a sound theoretical model justifying the empirical observa-
tion of putative criticality is still missing.

On the other hand, from the synchronization viewpoint, well-
known simple models of networks of excitatory and inhibitory
spiking neurons exhibit differentiated synchronous (oscillatory)
and asynchronous phases, with a synchronization phase transi-
tion in between (41–44). However, avalanches do not usually
appear (or are not searched for) in such modeling approaches
(18, 45, 46).

Concurrently, during deep sleep and also, under anesthesia,
the cortical state has long been known to exhibit so-called “up
and down” transitions between states of high and low neural
activity, respectively (47, 48), which clearly deviate from the pos-
sible criticality of the awake brain and have been modeled on
their own (29, 49, 50). Thus, it would be highly desirable to design
theoretical models describing within a common framework the
possibility of criticality, oscillations, and up–down transitions.

Our aim here is to clarify the nature of the phases and phase
transitions of dynamical network models of the cortex by con-
structing a general unifying theory based on minimal assump-
tions and allowing us, in particular, to elucidate what the nature
of the alleged criticality is.

To construct such a theory, we follow the strategy pioneered
by Landau and Ginzburg. Landau proposed a simple approach
to the analysis of phases of matter and the phase transitions that
they experience. It consists of a parsimonious, coarse-grained,
and deterministic description of states of matter in which—
relying on the idea of universality—only relevant ingredients
(such as symmetries and conservation laws) need to be taken
into account and in which most microscopic details are safely
neglected (9, 51). Ginzburg went a step further by realizing that
fluctuations are an essential ingredient to be included in any
sound theory of phase transitions, especially in low-dimensional
systems. The resulting Landau–Ginzburg theory, including fluc-
tuations and spatial dependence, is regarded as a metamodel
of phase transitions and constitutes a firm ground on top of
which the standard theory of phases of matter rests (9). Similar
coarse-grained theories are nowadays used in interdisciplinary
contexts—such as collective motion (52), population dynam-
ics (53), and neuroscience (54–56)—where diverse collective
phases stem out of the interactions among many elementary
constituents.

In what follows, we propose and analyze a Landau–Ginzburg
theory for cortical neural networks—which can be seen as a vari-
ant of the well-known Wilson–Cowan model, including crucially,
stochasticity and spatial dependence—allowing us to shed light
from a very general perspective on the collective phases and
phase transitions that dynamical cortical networks can harbor.
Using analytical and mostly, computational techniques, we show

⇤
This theory, developed three decades ago, aims at explaining the seemingly ubiquitous
presence of criticality in natural systems as the result of autoorganization to the critical
point of a quiescent/active phase transition by means of diverse mechanisms, including
the presence of two dynamical processes occurring at infinitely separated timescales
(34, 35).

that our theory explains the emergence of scale-free avalanches
as episodes of marginal and transient synchronization in the pres-
ence of a background of ongoing irregular activity, reconciling
the oscillatory behavior of cortical networks with the presence
of scale-free avalanches. Last but not least, our approach also
allows for a unification of existing models describing diverse spe-
cific aspects of the cortical dynamics, such as up and down states
and up and down transitions, within a common mathematical
framework and is amenable to future theoretical (e.g., renormal-
ization group) analyses.

Model and Results
We construct a mesoscopic description of neuronal activity,
where the building blocks are not single neurons but local neural
populations. These latter can be interpreted as small sections of
neural tissue (57, 58) consisting of a few thousand cells (far away
from the large number limit) and susceptible to be described
by a few variables. Although this effective description is con-
structed here on phenomenological bases, more formal mathe-
matical derivations of similar equations from microscopic models
exist in the literature (59). In what follows, (i) we model the neu-
ral activity at a single mesoscopic “unit,” (ii) we analyze its deter-
ministic behavior as a function of parameter values, and later,
(iii) we study the collective dynamics of many coupled units.

Single-Unit Model. At each single unit, we consider a dynamical
model in which the excitatory activity, ⇢, obeys a Wilson–Cowan
equation (60) (that is, following the Landau approach, we trun-
cate to third order in a Taylor series expansion† ):

⇢̇(t)=
⇥
� a +R(t)

⇤
⇢(t)+ b⇢2(t)� ⇢3(t)+ h, [1]

where a > 0 controls the spontaneous decay of activity, which is
partially compensated for by the generation of additional activ-
ity at a rate proportional to the amount of available synaptic
resources, R(t). The quadratic term with b> 0 controls nonlin-
ear integration effects.‡ Finally, the cubic term imposes a satura-
tion level for the activity, preventing unbounded growth, and h is
an external driving field.

A second equation is used to describe the dynamics of the
available synaptic resources, R(t), through the combined effect
of synaptic depression and synaptic recovery as encoded in the
celebrated model of Tsodyks and Markram (61) for synaptic
plasticity (32):

Ṙ(t)=
1
⌧R

(⇠�R(t))� 1
⌧D

R(t)⇢(t), [2]

where ⌧R (⌧D ) is the characteristic recovery (depletion) time and
⇠ is the baseline level of nondepleted synaptic resources. Impor-
tantly, we have also considered variants of this model, avoid-
ing the truncation of the power series expansion or including an
inhibitory population as the chief regulatory mechanism: either
of these extensions leads to essentially the same phenomenology
and phases as described in what follows, supporting the robust-
ness of the forthcoming results (SI Appendix).

Mean Field Analysis. Here, we analyze, both analytically and com-
putationally, the dynamics of a single unit as given by Eqs. 1

†We keep up to third order to include the leading effects of the sigmoid response func-
tion; a nontruncated variant of the model has also been considered (SI Appendix).

‡Single neurons integrate many presynaptic spikes to go beyond threshold, and thus,
their response is nonlinear: the more activity, the more likely that it is self-sustained
(57). As a matter of fact, the Wilson–Cowan model includes a sigmoid response function
with a threshold, implying that activity has to be above some minimum value to be self-
sustained and entailing b > 0 in the series expansion (Materials and Methods).
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Fig. 1. Phase portraits and nullclines for the (deterministic) dynamics (Eqs.
1 and 2). Nullclines are colored in blue (⇢̇= 0) and red (Ṙ = 0), respec-
tively; fixed points (⇢⇤, R⇤)—at which nullclines intersect—are highlighted
by green (open) circles for stable (unstable) fixed points. Background color
code (shifting from blue to purple) represents the intensity of the vector
field (⇢̇, Ṙ), with local directions that are represented by small gray arrows.
A trajectory illustrating a limit cycle is showed in green in A. The system
exhibits either (A) an oscillatory regime or (B) a region of bistability in
between a down (Left) state and an up (Right) state. It is possible to shift
from case A to case B and vice versa by changing just one parameter [e.g.,
the timescale of resources depletion, ⌧�1

D (0.016 and 0.001 for cases A and B,
respectively)]. Other parameter values: h = 10�3, a = 0.6, b = 1.3, ⌧R = 103.
The control parameters in Left, Center, and Right are ⇠= 0.3, 1.6, 2.3,
respectively, in A and ⇠= 0.2, 0.4, 0.7, respectively, in B.

and 2. We determine the fixed points (⇢⇤,R⇤) (i.e., the pos-
sible steady states at which the system can settle) as a func-
tion of the baseline level of synaptic resources, ⇠, which plays
the role of a control parameter (all other parameters are kept
fixed to standard nonspecific values as summarized in Fig. 1).
For small values of ⇠, the system falls into a quiescent or
down state with ⇢⇤ ⇡ 0 and R⇤ ⇡ ⇠.§ Instead, for large val-
ues of ⇠, there is an active or up state with self-sustained
spontaneous activity ⇢⇤ > 0 and depleted resources R⇤ < ⇠. In
between these two limiting phases, two alternative scenarios
(as illustrated in Fig. 1 and summarized in the phase diagram
in SI Appendix) can appear depending on the timescales ⌧D
and ⌧R.

i) Case A. A stable limit cycle (corresponding to an unstable
fixed point with complex eigenvalues) emerges for intermedi-
ate values of ⇠ (in between two Hopf bifurcations) as illus-
trated in Fig. 1A. This Hopf bifurcation scenario has been
extensively discussed in the literature (62), and it is at the
basis of the emergence of oscillations in neural circuits.

ii) Case B. An intermediate regime of bistability including three
fixed points is found for intermediate values of ⇠ (in between
two saddle node bifurcations): the up and the down ones as
well as an unstable fixed point in between (as illustrated in
Fig. 1B). This saddle node scenario is the relevant one in mod-
els describing transitions between up (active) and down (qui-
escent) states (29, 49, 63).

Two remarks are in order. The first is that one can shift
from one scenario to the other just by changing one parame-

§Deviations from ⇢⇤ = 0 stem from the small but nonvanishing external driving h 6= 0.

ter (e.g., the synaptic depletion timescale ⌧D ).¶ The second and
very important one is that none of these two scenarios exhibit
a continuous transition (transcritical bifurcation) separating the
up/active from the down/quiescent regimes. Thus, at this single-
unit/deterministic level, there is no precursor of a critical point
for marginal propagation of activity.

Stochastic Network Model. We now introduce stochastic and spa-
tial effects in the simplest possible way. For this, we consider a
network of N nodes coupled following a given connection pat-
tern as described below. Each network node represents a meso-
scopic region of neural tissue or unit as described above. On
top of this deterministic dynamics, we consider that each unit
(describing a finite population) is affected by intrinsic fluctua-
tions (55, 59, 64). More specifically, Eq. 1 is complemented with
an additional term +A(⇢)⌘(t), which includes a (zero mean, unit
variance) Gaussian noise ⌘(t) and a density-dependent ampli-
tude A(⇢) # [i.e., a multiplicative noise (65)].

At macroscopic scales, the cortex can be treated as a 2D sheet
consisting mostly of short-range connections (66).k Although
long-range connections are also known to exist and small world
effects have been identified in local cortical regions (68), here we
consider a 2D square lattice (size N =L2) of mesoscopic units as
the simplest way to embed our model into space. Afterward, we
shall explore how our main results are affected by the introduc-
tion of more realistic network architectures, including additional
layers of complexity, such as long-range connections and spatial
heterogeneity.

Following the parsimonious Landau–Ginzburg approach
adopted here, the coupling between neighboring units is des-
cribed up to leading order by a diffusion term. This type of diffu-
sive coupling between neighboring mesoscopic units stems from
electrical synapses (57, 69), has some experimental backing (70),
and has been analytically derived starting from models of spiking
neurons (54).⇤⇤ Thus, finally, the resulting set of coupled stochas-
tic equations is

(
⇢̇i(t)= (�a +Ri)⇢i + b⇢2i � ⇢3i + h +Dr2⇢i +�

p
⇢i⌘i

Ṙi(t)= 1
⌧R

(⇠�Ri)� 1
⌧D

Ri⇢i
, [3]

where for simplicity, some time dependences have been omit-
ted; ⇢i(t) and Ri(t) are the activity and resources at a given
node i (with i =1, 2, ...N ) and time t , respectively. Dr2⇢i ⌘
D

P
j2n.n.i(⇢j � ⇢i) describes the diffusive coupling of unit i

with its nearest neighbors j with (diffusion) constant D . The
physical scales of the system are controlled by the values of the
parameters D and �; however, given that, as illustrated in SI

Appendix, results do not change qualitatively on varying parame-
ter values (as long as they are finite and nonvanishing), here we
take D =�=1 for the sake of simplicity.

¶Note that the slope of the nullclines deriving from Eq. 2 (red in Fig. 1) is proportional to
⌧D: if it is small enough, there exists only one unstable fixed point, giving rise to a Hopf
bifurcation; otherwise, the nullclines intersect at three points, generating the bistable
regime. These two possibilities correspond to cases A and B above, respectively.

#
In the limit of slow external driving and up to leading order in an expansion in powers
of ⇢, this can be written as A(⇢) =�

p
⇢(t), where � is a noise amplitude; this stems

from the fact that the spiking of each single neuron is a stochastic process, and the
overall fluctuation of the density of a collection of them scales with its square root
as dictated by the central limit theorem (65) (ref. 59 has a detailed derivation of the
square root dependence).

kThis type of approach is at the bases of so-called neural field models, with a long tra-
dition in neuroscience (67).

⇤⇤
More elaborated approaches, including coupling kernels between different regions,
as well as asymmetric ones are also often considered in the literature (e.g., ref. 56),
but here, we stick to the simplest possible coupling.
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Eq. 3 constitutes the basis of our theory. In principle, this set
of equations is amenable to theoretical analyses, possibly includ-
ing renormalization ones (9). However, here we restrict ourselves
to computational studies aimed at scrutinizing what is the basic
phenomenology, leaving more formal analyses for the future. In
particular, we resort to numerical integration of the stochastic
equations (Eq. 3), which is feasible thanks to the efficient scheme
developed in ref. 71 to deal with multiplicative noise. We con-
sider �t =0.01 as an integration time step and keep, as above,
all parameters fixed, except for the baseline level of synaptic
resources, ⇠, which works as a control parameter.

Phases and Phase Transitions: Case A. We start analyzing sets of
parameters within case A above. We study the possible phases
that emerge as ⇠ is varied. These are illustrated in Fig. 2, where
characteristic snapshots and overall activity time series as well as
raster plots are plotted. For a more vivid visualization, we have
also generated videos of the activity dynamics in the different
phases (Movie S1).
Down-state phase (A1). If the baseline level ⇠ is sufficiently
small (⇠. 0.75), resources R are always scarce, and the sys-
tem is unable to produce self-sustained activity (i.e., it is hardly
excitable), giving rise to a down-state phase characterized by
very small values of the network time-averaged activity ⇢̄⌘
1
T

R T

0
dt 1

N

PN
i=1 ⇢i(t) for large times T (Fig. 2, first row). The

quiescent state is disrupted only locally by the effect of the driv-
ing field h , which creates local activity, barely propagating to
neighboring units.
Synchronous irregular phase (A2). Above a certain value of
resource baseline (⇠& 0.75), there exists a wide region in param-
eter space in which activity generated at a seed point is able
to propagate to neighboring units, triggering a wave of activity
that transiently propagates through the network until resources
are exhausted, activity ceases, and the recovery process restarts
(Fig. 2, second row). Such waves or “network spikes” appear in
an oscillatory, although not perfectly periodic, fashion, with an
average separation time that decreases with ⇠. In the terminol-
ogy of Brunel (43), this corresponds to a synchronous irregular
state/phase, since the collective activity is time-dependent (oscil-
latory) and single-unit spiking is irregular (as discussed below).
This wax and wane dynamics resembles that of anomalous (e.g.,
epileptic) tissues (72).
Asynchronous irregular phase (A3). For even larger values of
resource baseline (⇠& 2.15), the level of synaptic recovery
is sufficiently high as to allow for resource-depleted regions
to recover before the previous wave has come to an end.
Thereby, diverse traveling waves can coexist and interfere, giv-
ing rise to complex collective oscillatory patterns [Fig. 2, fourth
row, which is strikingly similar to, for example, EEG data of
↵-rhythms (73)]. The amplitude of these oscillations, however,

Fig. 2. Illustration of the diverse phases emerging in the model (case A). The baseline of synaptic resources, ⇠, increases from top to bottom: ⇠= 0.4 (down
state), ⇠= 1.2 (synchronous regime), ⇠= 2.47 (critical point for the considered size N = 1282), ⇠= 2.7 (asynchronous phase), and ⇠= 5 (active phase). The
first column shows snapshots of typical configurations; the color code represents the level of activity at each unit as shown in the scale. The network spiking
or synchronous irregular phase is characterized by waves of activity growing and transiently invading the whole system before extinguishing the resources
and coming to an end. However, in the nested oscillation or asynchronous irregular (AI) regime, multiple traveling waves coexist, interfering with each other.
In the up state, waves are no longer observed, and a homogeneous state of self-sustained activity is observed (Movie S1). The second column shows the time
series of the overall activity averaged over the whole network. In the down state, activity is almost vanishing. In the synchronous phase, macroscopic activity
appears in the form of almost synchronous bursts interspersed by almost silent intervals. At the critical point, network spikes begin to superimpose, giving rise
to complex oscillatory patterns (nested oscillations) and marginally self-sustained global activity all across the asynchronous regime; finally, in the up state,
the global activity converges to steady state with small fluctuations. The third column shows steady-state probability distribution P(⇢) for the global activity:
in the down state and the network spiking regime, the distributions are shown in a double-logarithmic scale; observe the approximate power law for very
small values of ⇢ stemming from the presence of multiplicative noise (10). The fourth column shows an illustration of the different levels of synchronization
across phases: a sample of 200 randomly chosen units is mapped into oscillators using their analytic signal representation (Materials and Methods); the plot
shows the time evolution of their corresponding phases �A

k . Observe the almost periodic behavior in the synchronous phase, which starts blurring at the
critical point and progressively vanishes as the control parameter is further increased. Parameter values: a = 1, b = 1.5, ⌧R = 103, ⌧D = 102, h = 10�7.
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decreases on increasing network size (which occurs as many dif-
ferent local waves are averaged and deviations from the mean
tend to be washed away). This regime can be assimilated to an
asynchronous irregular (AI) phase of the work by Brunel (43)
(see below).
Up-state phase (A4). For even larger values of ⇠, plenty of synap-
tic resources are available at all times, giving rise to a state of
perpetual activity with small fluctuations around the mean value
(Fig. 2, fifth row) (i.e., an up state). Let us finally remark that,
as explicitly shown in SI Appendix, the AI phase and the up state
cannot be distinguished in the infinite network size limit, in which
there are so many waves to be averaged that a homogeneous
steady state emerges on average in both cases.

Phase Transitions. Having analyzed the possible phases, we now
discuss the phase transitions separating them. For all of the
considered network sizes, the time-averaged overall activity, ⇢̄,
starts taking a distinctively nonzero value above ⇠⇡ 0.75 (Fig.
3), reflecting the upper bound of the down or quiescent state
(transition between A1 and A2). This phase transition is rather
trivial and corresponds to the onset on network spikes [i.e., oscil-
lations; with characteristic time that depends on various factors,
such as the synaptic recovery time (74) and the baseline level of
synaptic resources].

More interestingly, Fig. 3 also reveals that ⇢̄ exhibits an abrupt
increase at (size-dependent) values of ⇠ between two and three,
signaling the transition from A2 to A3. However, the jump ampli-
tude decreases as N increases, suggesting a smoother transi-
tion in the large-N limit. Thus, it is not clear a priori, using
⇢̄ as an order parameter, whether there is a true sharp phase
transition or whether there is just a cross-over between the
synchronous (A2) and asynchronous (A3) regimes. To eluci-
date the existence of a true critical point, we measured the
standard deviation of the network-averaged global activity ⇢̄,
�⇢. Direct application of the central limit theorem (65) would
imply that such a quantity should decrease as 1/

p
N for large

N , and thus, �⌘
p
N�⇢ should converge to a constant. How-

ever, Fig. 3B shows that � exhibits a very pronounced peak
located at the (N -dependent) transition point between the A2
and A3 phases; furthermore, its height grows with N (i.e., it
diverges in the thermodynamic limit), revealing strong correla-
tions and anomalous scaling as occurs at critical points. Also,
a finite-size scaling analysis of the value of ⇠ at the peak [for
each N ; i.e., ⇠c(N )] reveals the existence of finite-size scal-
ing as it corresponds to a bona fide continuous phase transi-
tion at ⇠1c ' 2.15(5) in the infinite-size limit (Fig. 3C). More-
over, a detrended fluctuation analysis (75, 76) of the time
series reveals the emergence of long-range temporal correla-
tions right at ⇠c (SI Appendix) as expected at a continuous phase
transition.

To shed further light on the nature of such a transition, it
is convenient to use a more adequate (synchronization) order
parameter. In particular, we consider the Kuramoto index K—
customarily used to detect synchronization transitions (77)—
defined as K ⌘ 1

N

D���
PN

k=1 e
i�k (t)

���
E

, where i is the imaginary
unit, | · | is the modulus of a complex number, h·i here indicates
averages over time and independent realizations, and k runs over
units, each of which is characterized by a phase, �k (t)2 [0, 2⇡],
that can be defined in different ways. For instance, an effec-
tive phase �A

k (t) can be assigned to the time series at unit
k , ⇢k (t), by computing its analytic signal representation, which
maps any given real-valued time series into an oscillator with
time-dependent phase and amplitude (Materials and Methods).
Using the resulting phases, �A

k (t), the Kuramoto index KA can
be calculated. As illustrated in Fig. 4A, it reveals the presence
of a synchronization transition: the value of KA clearly drops
at the previously determined critical point ⇠c(N ). An alternative
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Fig. 3. Overall network activity state (case A) as determined by the network
time-averaged value ⇢̄ (h = 10�7). (A) Order parameter ⇢̄ as a function of
the control parameter ⇠ for various system sizes N = 642, 1282, 2562, 5122

[from bottom (blue) to top (orange)]; observe that ⇢̄ grows monotonically
with ⇠ and that an intermediate regime, in which ⇢̄ grows with system size,
emerges between the up and down states. (B) SD of the averaged overall
activity in the system multiplied by

p
N; �=�⇢

p
N (in the text). The point

of maximal variability coincides with the point of maximal slope in A for all
network sizes N. (C) Finite-size scaling analysis of the peaks in B. The distance
of the size-dependent peak locations ⇠c(N) from their asymptotic value for
N !1, ⇠1c , scales as a power law of the system size, taking ⇠1c ⇡ 2.15 and
revealing the existence of true scaling at criticality.

method to define a time-dependent phase for each unit (details
are discussed in Materials and Methods) reveals even more vividly
the existence of a synchronization transition at ⇠c(N ) as shown
in Fig. 4B. Finally, we have also estimated the coefficient of

A

c(N)

,

B

C
V

Fig. 4. Synchronization transition elucidated by measuring the Kuramoto
parameter as estimated using (A) the analytic signal representation Ak(t)
of activity time series ⇢k(t) at different units k and for various system sizes
[N = 1282 (red), 2562 (orange), and 5122 (green)]. For illustrative purposes,
A, Right Inset shows the analytical representation (including both a real
part and an imaginary part) of five sample units as a function of time; A,
Left Inset shows the time evolution of one node (gray) together with the
amplitude of its analytic representation (blue). Both vividly illustrate the
oscillatory nature of the unit dynamics. (B) Results similar to those in A but
using a different method to compute time-dependent phases of effective
oscillators (Materials and Methods). This alternative method captures more
clearly the emergence of a transition; the point of maximum slope of the
curves corresponds to the value of the transition points ⇠c(N) in A. B, Inset
shows the CV (ratio of the SD to the mean) of the times between two con-
secutive crossings of the value 2⇡; it exhibits a peak of variability at the
critical point ⇠c(N).
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variation (CV) of the distance between the times at which
each of these effective phases crosses the value 2⇡; this anal-
ysis reveals the presence of a sharp peak of variability, con-
verging for large network sizes to the critical point ⇠1c ⇡ 2.15
(Fig. 4B, Inset).

Thus, recapitulating, the phase transition separating the down
state from the synchronous irregular regime (A1–A2 transi-
tion) is trivial and corresponds to the onset of network spikes,
with no sign of critical features. In between the asynchronous
and up states (A3–A4), there is no true phase transition, as
both phases are indistinguishable in the infinitely large size
limit (SI Appendix). However, different measurements clearly
reveal the existence of a bona fide synchronization phase transi-
tion (A2–A3), at which nontrivial features characteristic of criti-
cality emerge.

Avalanches. For ease of comparison with empirical results, we
define a protocol to analyze avalanches that closely resembles
the experimental one as introduced by Beggs and Plenz (7). Each
activity time series of an individual unit can be mapped into a
series of discrete time “spikes” or events as follows. As illustrated
in Fig. 5A, a spike corresponds to a period in which the activity at
a given unit is above a given small threshold in between two win-
dows of quiescence (activity below threshold).†† Hence, as illus-
trated in Fig. 5B, the network activity can be represented as a
raster plot of spiking units. Following the standard experimental
protocol, a discrete time binning �t is chosen, and each individ-
ual spike is assigned to one such bin. An avalanche is defined
as a consecutive sequence of temporally contiguous occupied
bins preceded and ended by empty bins (Fig. 5 B and C). Quite
remarkably, using this protocol, several well-known experimental
key features of neuronal avalanches can be faithfully reproduced
by tuning ⇠ to a value close to the synchronization transition.

i) The sizes and durations of avalanches of activity are found
to be broadly (power law) distributed at the critical point;
these scale-invariant avalanches coexist with anomalously
large events or “waves” of synchronization as revealed by the
heaps in the tails of the curves in Fig. 5 D and E.

ii) Changing �t , power law distributions with varying exponents
are obtained at criticality (the larger the time bin, the smaller
the exponent) as originally observed experimentally by Beggs
and Plenz (7) (Fig. 5E).

iii) In particular, when �t is chosen to be equal to the inter-
spike interval (ISI; i.e., the time interval between any two
consecutive spikes), avalanche sizes and durations obey—at
criticality—finite-size scaling with exponent values compati-
ble with the standard ones (i.e., those of an unbiased branch-
ing process) (Fig. 5 B and C and SI Appendix).

iv) Reshuffling the times of occurrence of unit’s spikes, the
statistics of avalanches is dramatically changed, giving rise
to exponential distributions (as expected for an uncorrelated
Poisson point process) and thus revealing the existence of a
nontrivial temporal organization in the dynamics (Fig. 5E).

v) Away from the critical point, both in the subcritical regime
and in the supercritical regime, deviations from this behavior
are observed. In the subcritical or synchronous regime, the
peak of periodic large avalanches becomes much more pro-
nounced; in the asynchronous phase, such a peak is lost, and
distribution functions become exponential ones with a char-
acteristic scale (Fig. 5D).

Summing up, our model tuned to the edge of a synchro-
nization/desynchronization phase transition reproduces all chief
empirical findings for neural avalanches. These findings strongly

††Results are quite robust to the specific way in which this procedure is implemented
(Materials and Methods, Fig. 5, and SI Appendix).

suggest that the critical point alluded to by the criticality hypothe-
sis of cortical dynamics does not correspond to a quiescent/active
phase transition—as modeling approaches usually assume—but
to a synchronization phase transition, at the edge of which oscil-
lations and avalanches coexist.

It is important to underline that our results regarding the
emergence of scale-free avalanches are purely computational. To
date, we do not have a theoretical understanding of why results
are compatible with branching process exponents. In particular,
it is not clear to us if a branching process could possibly emerge
as an effective description of the actual (synchronization) dynam-
ics in the vicinity of the phase transition or whether the exponent
values appear as a generic consequence of the way that tempo-
rally defined avalanches are measured (46). These issues deserve
to be carefully scrutinized in future work.

The Role of Heterogeneity. Thus far, we have described homoge-
neous networks with local coupling. However, long-range con-
nections among local regions also exist in the cortex, and meso-
scopic units are not necessarily homogeneous across space (68,
78). These empirical facts motivated us to perform additional
analysis of our theory, in which slightly modified substrates are
used. We considered small world networks and verified that our
main results (i.e., the existing phases and phase transitions) are
insensitive to the introduction of a small percentage of long-
range connections (SI Appendix). However, details, such as the
boundaries of the phase diagram, the shape of propagation
waves, and the amplitude of nested oscillations, do change.

More remarkably, as described in detail in SI Appendix, a sim-
ple extension of our theory, in which parameters are not taken to
be homogeneous but position-dependent (i.e., heterogeneous in
space), is able to reproduce remarkably well empirical in vitro
results for neural cultures with different levels of mesoscopic
structural heterogeneity (79).

To further explore the influence of network architecture onto
dynamical phases, in future work, we will extend our model using
empirically obtained large-scale networks of the human brain,
as their heterogeneous and hierarchical–modular architecture
is known to influence dynamical processes operating on them
(68, 80).

Phases and Phase Transitions: Case B. Here, we discuss the much
simpler scenario for which the deterministic/mean field dynam-
ics predicts bistability (i.e., case B above), which is obtained,
for example, considering slower dynamics for synaptic resource
depletion. In this case, the introduction of noise and space does
not significantly alter the deterministic picture. Indeed, computa-
tional analyses reveal that there are only two phases: a down state
and an up one for small and large values of ⇠, respectively. These
two phases have the very same features as their corresponding
counterparts in case A. However, the phase transition between
them is discontinuous (much as in Fig. 1B), and thus, for finite
networks, fluctuations induce spontaneous transitions between
the up and down states when ⇠ takes intermediate values in the
regime of phase coexistence. Thus, in case B, our theory consti-
tutes a sound Landau–Ginzburg description of existing models,
such as those in refs. 29, 49, and 50, describing up and down states
and up and down transitions.

Conclusions and Discussion
The brain of mammalians is in a state of perennial activity, even
in the absence of any apparent stimuli or task. Understanding the
origin, meaning, and functional significance of such an energet-
ically costly dynamical state is the fundamental problem in neu-
roscience. The so-called criticality hypothesis conjectures that
the underlying dynamics of cortical networks is such that it is
posed at the edge of a continuous phase transition, separating
qualitatively different phases or regimes, with different degrees
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Fig. 5. Avalanches measured from activity time series. (A) Illustration of the activity time series ⇢i(t) (gray color) at a given unit i. By establishing a threshold
value ✓ (dashed blue line close to the origin), a single “event” or “unit spike” is defined at the time of the maximal activity in between two threshold
crossings (note that the forthcoming results are robust to changes in this criterion) (SI Appendix); a weight equal to the area covered in between the two
crossings is assigned to each event (note the color code). This allows us to map a continuous time series into a discrete series of weighted events. The time
distance between two consecutive events is called ISI. (B) Raster plot for a system with 642 units obtained using the procedure above for each unit. Observe
that large events coexist with smaller ones and that these last ones occur in a rather synchronous fashion. The overall time-dependent activity is marked
with a black curve. (C) Zoomed-in view of a part of B illustrating the time-resolved structure and using a time binning �t equal to the network-averaged ISI.
Shaded columns correspond to empty time bins (i.e., with no spike). Avalanches are defined as sequences of events occurring in between two consecutive
empty time bins, and they are represented by the black bars above the plot. (D) Avalanche size distribution (the size of the avalanche is the sum of the
weighted spikes that it comprises) for diverse values of ⇠ (from 1.85 to 2.05 in shades of blue, from 2.7 to 2.9 in shades of green, and from 3.3 to 3.45 in
shades of orange) measured from the raster plot �t = ISI. The (red) triangle, with slope 3/2, is plotted as a reference, illustrating that, near criticality, a
power law with an exponent similar to the experimentally measured one is recovered. Away from the critical point, either in the synchronous phase (shades
of blue) or in the asynchronous one (shades of orange), clear deviations from power law behavior are observed. Observe the presence of “heaps” in the
tails of the distributions, especially in the synchronous regime; these correspond to periodic waves of synchronized activity (SI Appendix). They also appear
at criticality but at progressively larger values for larger system sizes. (E) Avalanche duration distribution determined with different choices of the time
bin. The experimentally measured exponent ⇡ 2 is reproduced using �t = ISI, whereas deviations from such a value are measured for smaller (larger) time
bins in agreement with experimentally reported results. After reshuffling times, the distributions become exponential ones, with characteristic timescales
depending on �t (dashed lines).

of order. Experience from statistical physics and the theory of
phase transitions teaches that critical points are rather singular
locations in phase diagrams, with very remarkable and peculiar
features, such as scale invariance (i.e., the fact that fluctuations of
wildly diverse spatiotemporal scales can emerge spontaneously,
allowing the system dynamics to generate complex patterns of
activity in a simple and natural way). A number of features of
criticality, including scale invariance, have been conjectured to
be functionally convenient and susceptible to be exploited by bio-
logical (as well as artificial) computing devices. Thus, the hypoth-
esis that the brain actually works at the borderline of a phase

transition has gained momentum in recent years (20–22), even if
some skepticism remains (46). However, what these phases are
and what the nature of the putative critical point is are questions
that still remain to be fully settled.

Aimed at shedding light on these issues, here we followed
a classic statistical physics approach. Following the parsimony
principle of Landau and Ginzburg in the study of phases of the
matter and the phase transitions that they experience, we pro-
posed a simple stochastic mesoscopic theory of cortical dynamics
that allowed us to classify the possible emerging phases of corti-
cal networks under very general conditions. For the sake of speci-

di Santo et al. PNAS Latest Articles | 7 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712989115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712989115/-/DCSupplemental


ficity and concreteness, we focused on regulatory dynamics—
preventing the level of activity to explode—controlled by synap-
tic plasticity (depletion and recovery of synaptic resources), but
analogous results have been obtained considering, for example,
inhibition as the chief regulatory mechanism. As a matter of fact,
our main conclusions are quite robust and general and do not
essentially depend on specific details of the implementation, the
nature of the regulatory mechanism.

The mesoscopic approach on which our theory rests is cer-
tainly not radically novel, as quite a few related models exist in
the literature. For instance, neural mass (81–83) and neural field
models (66, 67) and rate or population activity equations (58, 84)
are similar in spirit and have been successfully used to analyze
activity of populations of neurons and synapses and their emerg-
ing collective regimes at mesoscopic and macroscopic scales.

Taking advantage of experience from the theory of phase
transitions, we introduce two important key ingredients: intrin-
sic stochasticity stemming from the noninfinite size of meso-
scopic regions and spatial dependence. In this way, our theory
consists of a set of stochastic (truncated) Wilson–Cowan equa-
tions and can be formulated as a field theory using standard
techniques (85). A rather similar (field theoretic) approach to
analyze fluctuation effects in extended neural networks has been
proposed (54).

Such a theory turns out to include a continuous phase tran-
sition from a quiescent phase to an active phase, with a critical
point in between, which is in contrast with our findings here.
Note, however, that the authors of ref. 54 themselves open the
door to more complex scenarios if refractoriness and thresholds
are included. In any case, such a continuous phase transition pic-
ture can be easily recovered in our framework just by chang-
ing the sign of a parameter (i.e., taking b< 0 in Eq. 1); with
such a parameter choice, our theory constitutes a sound Landau–
Ginzburg description of microscopic models of neural dynam-
ics exhibiting criticality and a continuous phase transition from
a quiescent phase to an active phase (27, 39). We believe, how-
ever, that this scenario does not properly capture the essence of
cortical dynamics, as in actual networks of spiking neurons, there
are spike integration mechanisms, meaning that many inputs are
required to trigger further activity.

Using our Landau–Ginzburg approach, we have shown that
the stochastic and spatially extended neural networks can harbor
two different scenarios depending on parameter values: case A
including a limit cycle at the deterministic level and the possibil-
ity of oscillations and case B leading to bistability (Fig. 1).

In the simpler case B, our complete theory generates either a
down-state or a homogeneous up-state phase, with a discontin-
uous transition separating them, and the possibility of up–down
transitions when the system operates in the bistability region. In
this case, our theory constitutes a sound mesoscopic description
of existing microscopic models for up and down transitions (29,
49, 63, 86).

However, in case A, we find diverse phases, including oscil-
latory and bursting phenomena: down, synchronous irregular,
asynchronous irregular, and active states.

As a side remark, let us emphasize that we constructed a
coarse-grained model for activity propagation, but our analy-
ses readily revealed the emergence of oscillations and synchro-
nization phenomena. Hence, our results justify the use of mod-
els of effective coupled oscillators to scrutinize the large-scale
dynamics of brain networks. As a matter of fact, such models
have been reported to achieve the best performance [e.g., repro-
ducing empirically observed resting-state networks (68)] when
operating close to the synchronization phase transition point (64,
87, 88).

Within our framework, it is possible to define a protocol to
analyze avalanches resembling very closely the experimental one
(7, 8, 11, 16, 17). Thus, in contrast with other computational

models, causal information is not explicitly needed/used here
to determine avalanches—they are determined from raw data—
and results can be straightforwardly compared with experimental
ones for neuronal avalanches without conceptual gaps (40).

The model reproduces all of the main features observed exper-
imentally. (i) Avalanche sizes and durations distributed in a
scale-free way emerge at the critical point of the synchronization
transition. (ii) The corresponding exponent values depend on the
time bin �t required to define avalanches, but (iii) fixing �t to
coincide with the ISI, the same statistics as in empirical networks
[i.e., the critical exponents compatible with those of an unbiased
branching process (10)] are obtained. Finally, (iv) scale-free dis-
tributions disappear if events are reshuffled in time, revealing a
nontrivial temporal organization.

Thus, the main outcome of our analyses is that the underlying
phase transition at which scale-free avalanches emerge does not
separate a quiescent state from a fully active one; instead, it is a
synchronization phase transition. This is a crucial observation, as
most of the existing modeling approaches for critical avalanches
in neural dynamics to date rely on a continuous quiescent/active
phase transition.

Consistent with our findings, the amazingly detailed model put
together by the Human Brain Project Consortium suggests that
the model best reproduces experimental features when tuned
near to its synchronization critical point (89). In such a study,
the concentration of calcium ions, Ca2+, needs to be carefully
tuned to its actual nominal value to set the network state. Sim-
ilarly, in our approach, the role of the calcium concentration is
played by the parameter ⇠, regulating the maximum level reach-
able by synaptic resources. Interestingly, the calcium concentra-
tion is well-known to modulate the level of available synaptic
resources (i.e., neurotransmitter release from neurons) (32, 58,
61); hence, both quantities play a similar role.

Let us emphasize that we have not explored how potentially
the network could self-organize to operate in the vicinity of the
synchronization critical point, without having to resort to param-
eter fine tuning. Adaptive, homeostatic, and self-regulatory
mechanisms accounting for this will be analyzed in future work.
Also, here we have not looked for the recently uncovered neutral
neural avalanches (40), as these require causality information to
be considered, and such detailed causal relationships are blurred
away in mesoscopic coarse-grained descriptions.

Summing up, our Landau–Ginzburg theory with parameters
in case B constitutes a sound description of the cortex during
deep sleep or during anesthesia, when up and down transitions
are observed. However, case A, when tuned close to the synchro-
nization phase transition, can be a sound theory for the awaked
cortex in a state of alertness. A detailed analysis of how the
transition between deep sleep (described by case B) and awake
(or rapid eye movement sleep described by case A) states may
actually occur in these general terms is beyond our scope here,
but observe that, just by modifying the speed at which synaptic
resources recover, it is possible to shift between the two cases,
making it possible to investigate how such transitions could be
induced.

A simple extension of our theory, including spatial hetero-
geneity, has been shown to be able to reproduce remarkably
well experimental measurements of activity in neural cultures
with structural heterogeneity, opening the way for more stringent
empirical validations of the general theory proposed here.

Although additional experimental, computational, and analyt-
ical studies would certainly be required to definitely settle the
controversy about the possible existence, origin, and functional
meaning of the possible phases and phase transitions in corti-
cal networks, we hope that the general framework introduced
here—based on very general and robust principles—helps in
clarifying the picture and in paving the way to future develop-
ments in this fascinating field.
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Materials and Methods
Model Details. In the Wilson–Cowan model, in its simplest form, the dynam-
ics of the average firing rate or global activity, ⇢, is governed by the
equation

⇢̇(t) =�a⇢ (t)+ (1 � ⇢(t))S (W⇢ (t)�⇥),

where W is the synaptic strength, ⇥ is a threshold value that can be fixed
to unity, and S(x) is a sigmoid (transduction) function [e.g., S(x) = tanh(x)]
(59, 60). We adopt this well-established model and for simplicity, keep only
the leading terms in a power series expansion; we rename the constants,
yielding the deterministic part of Eq. 1. To this, we add noise

p
⇢(t)⌘(t),

which is a delta-correlated Gaussian white noise of zero mean and unit
variance accounting for stochastic/demographic effects in finite local pop-
ulations as dictated by the central limit theorem; a formal derivation of
such an intrinsic or demographic noise starting from a discrete microscopic
model can be found in ref. 59. A noise term could also be added to the
equation for synaptic resources (50), but it does not significantly affect the
results. Considering N mesoscopic units and coupling them diffusively within
some networked structure (e.g., a 2D lattice), we finally obtained the set
of Eq. 3.

Analytic Signal Representation. The Hilbert transform H(·) is a bounded lin-
ear operator largely used in signal analysis, as it provides a tool to trans-
form a given real-valued function u(t) into a complex analytic function,
called the analytic signal representation. This is defined as Au(t) = u(t) +
iH[u(t)], where the Hilbert transform of u(t) is given by H[u(t)] = h ⇥ u =
1
⇡ lim✏!0

R 1
✏

u(t+⌧ )�u(t�⌧ )
⌧ d⌧ . Expressing the analytic signal in terms of its

time-dependent amplitude and phase (polar coordinates) makes it possible
to represent any signal as an oscillator. In particular, the associated phase is
defined by �A

k = arctan Im(Ak)/Re(Ak).

From Continuous Time Series to Discrete Events. Local time series at each
single unit, ⇢k(t), can be mapped into time sequences of point-like (“unit
spiking”) events. For this, a local threshold ✓⌧ 1 is defined, allowing us
to assign a state on/off to each single unit/node (depending on whether
it is above/below such a threshold) at any given time. If the threshold is
low enough, the procedure is independent of its specific choice. A single
(discrete) event or spike can be assigned to each node i (e.g., at the time
of the maximal ⇢i within the on state); a weight proportional to the inte-
gral of the activity time series spanned between two consecutive threshold
crossings is assigned to each single event (Fig. 5A). Other conventions to
define an event are possible, but results are not sensitive to it as illustrated in
SI Appendix.

Phases from Spiking Patterns. An alternative method to define a phase
at each unit can be constructed after a continuous time series has been
mapped into a spiking series. In particular, using a linear interpolation,
�(B)

k (t) = 2⇡(t � tk
n)/(tk

n+1 � tk
n), where t 2 [tk

n, tk
n+1) and tk

n is the time of the
nth spike of node/unit k.
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