Resolucion de problemas de potencial complejo usando Mathematica

En este post les dejo un notebook de Mathematica, en el cual les muestro cómo explotar la potencia de esta herramienta de cálculo simbólico (y numérico!) para resolver problemas de flujos potenciales bidimensionales.

En particular, el notebook trata un problema ya conocido por ustedes: el flujo alrededor de un cilindro con una circulación atrapada que enfrenta un flujo uniforme al infinito.

La idea detrás de este post es que tengan una guía de cómo resolver y analizar este ejercicio en Mathematica, teniendo en cuenta que ustedes conocen ya la física del problema, cuyo detalle discutimos en clase practica. El propósito subyacente es que, si así lo desean, puedan extrapolar lo que aprendan aquí a la resolución de cualquier otro problema de la guía.

 

 

Curvas de nivel de la función corriente (trazo continuo), de potencial (líneas punteadas) y campo de presiones (en color) para un caso particular de los parámetros del problema.

 

Sólo a modo de sumario, les cuento qué tipo de cálculos aprenderán a hacer en Mathematica usando este notebook. Entre otras cosas, verán cómo: (i) definir un potencial complejo, (ii) aplicar el teorema del círculo de Milne-Thomson, (iii) determinar las funciones potencial y de corriente, (iv) calcular los campos de velocidad, (v) obtener el campo de presiones en todo punto del espacio usando el teorema de Bernoulli y (vi) calcular la fuerza sobre el obstáculo mediante: (a) la integral de presión sobre el contorno sólido y (b) el teorema de Blasius via el cálculo de residuos. Asimismo, podran ver como se representan usualmente en forma grafica cada uno de estos resultados y como generar dichos graficos en Mathematica.

El archivo/notebook de Mathematica podrán descargarlo (tanto en formato Mathematica como en formato PDF, para quienes no disponen del software) haciendo click derecho aquí y descomprimiendo el archivo .zip que descargaran.

Espero que les sirva.

Calculo del potencial complejo

Les dejo en este post el link a una notebook de IPython que les prepare en la que les describo cómo calcular la función corriente, así como el potencial complejo, en un caso con una fuente de caudal y un vortice, complementando lo que vimos en la clase practica de ayer. Encontrarán además dos cosas adicionales respecto de lo visto en clase: (a) la forma de las líneas de corriente para el caso general, y (b) un caso en el cuál se observa en la naturaleza este tipo de flujo.

Este caso es de interés por dos razones. Por un lado, el ejemplo sirve como ilustración del método general para el cálculo del potencial complejo de un flujo singular (i.e., que incluye singularidades). Por el otro, vemos que calculamos, como les comente en clase, el potencial complejo para los dos ‘ladrillos fundamentales’ de los que están constituidos todos los flujos que consideraremos en esta práctica: una fuente isótropa de caudal constante y un vórtice (dos casos límite que surgen de lo visto en clase y de lo expuesto en este documento).

Cualquier flujo que resulte combinación de ellos (p.ej., dipolos) podrá calcularse fácilmente a partir del resultado que vimos en clase (y que les describo en detalle en el documento que les adjunto) dado que las ecuaciones para la función potencial y la función corriente responden al principio de superposición.

Espero que les sirva.