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Lagrangian Formulation
As mentioned, the Eulerian formulation provides a field description of a flow. The Lagrange formu-
lation provides a particle description. Suppose a fluid particle has the location 7= 7, at ¢ = #,. In the
Lagrangian approach the independent variables are 7, and t. Thus, the position 7 of the fluid particle
at time ¢ is given by

F=F(To,t) (1.19)

where 7, is the particle’s position at time 7,
To = 1o, t0)

and 7, is a fixed label on the particle as it moves. In this formulation, the velocity and acceleration
are

or
or’

~ = JORE
w= a= Fr (1.20)
where 7, is kept fixed in both derivatives.

The two formulations can be related by assuming we know w(F,?) in the Eulerian description. We
then integrate Equation (1.13) subject to the initial condition

F=i, a t=t (1.21)

The solution is then the Lagrangian description, Equation (1.19).

The Lagrangian approach is widely used in mechanics, e.g., consider a marble rolling down an
inclined curved plane under the influence of gravity. The problem is solved by first establishing a
differential equation for the motion of the marble. The solution of this equation provides the position
of the marble as a function of time and its initial position.

The Lagnnglan descnpnon is seldom used in fluid dynamics. One exception occurs in the unsteady,
one-di flow of an inviscid, compressible fluid. This type of flow occurs when a
normal shock or decel as it propagates into a nonuniform medium. Another exception
is in the modeling of flows d d by large vortices.

There are several reasons for not utilizing the Lagrangian description. First, we generally are
not interested in the actual location of a fluid particle wh we are i d in the p and
velocity, since these provide the pressure and shear stress forces on a body. Second, obtaining 7(75, £)
represents a greater effort than is required for obtaining p and w. Finally, the Lagrangian approach is
cumbersome for a viscous flow. We, therefore, follow a well blished tradition and hereafter focus
on the Eulerian description.

Before leaving this topic, recall that the substantial derivative follows a fluid particle. While the
concept is Lagrangian the derivative itself is Eulerian, since 7 and ¢, not 7, and ¢, are the independent
variables.

Pathlines and Streamlines

The trajectory of a fluid particle is called a pathline or particle path. These are found by integrating
Equation (1.13) subject to the initial condition, Equation (1.21). We shall not discuss a different
type of curve called streaklines. Much more important than either pathlines or streaklines are the
streamlines. Streamlines are curves, which at a given instant are tangent to the velocity field. In an
unsteady flow, pathlines, streaklines, and streamlines are all different. In a steady flow, however, they
all coincide.

Let dr be tangent to the velocity and therefore tangent to a streamline. Then dF satisfies

=0 (1.21a)

or with Cartesian coordinates
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On expanding this relation we obtain
(wadx, — Wzdn)fx — (wadx; — wldx:)fz +(wadv; — widn)3 =0

or, in scalar form,
& o (121b)
w1 w2 w3
The solution of these two ordinary differential equations provides the streamline curves, subject to a
given boundary or initial conditions. Recall that the streamlines are tangent to the velocity field at a
given instant of time. Thus, if the w; are time-dependent, the ¢ variable is treated as a fixed parameter
during the integration of Equations (1.21b).

ub/ lllustrative Example
3\/\/‘: / As an example, we first determine the streamline equation for steady, two-dimensional cross flow about

a circular cylinder of radius @, as sketched in Figure 1.1(a)." (Later, the unsteady flow pathlines are
found.) In addition, we assume a uniform freestream, with speed U, and an incompressible, inviscid
flow without circulation. Hence, the cylinder is not subjected to either a lift or drag force. From
elementary aerodynamic theory, we obtain the x and y velocity components as
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where X = (x/a) and Y = (y/a). Since the flow is two-dimensional, we only need to integrate one of
the equations in (1.21b), written as

dx _dy

W
to obtain the equation for the streamlines. The equations in (1.22) are substituted into this differential
equation with the result
X _ P-X+X+1Y

dy 2XY

!The author is indebted to C.-H. Hsu for Figures 1.1 and 1.2.
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To separate variables, cylindrical coordinates shown in Figure 1.1(b) ¢ .itroduced
X =R cos 6, Y =R sin 0

to obtain R+1
R—-DR+DR

The method of partial fractions is now used for the left side, with the result

R 2 2 'l
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where a point Y, on the Y axis is used for the lower limit and, at this point, 6 = w/2. ‘As a result of
the integration we obtain

dR = —cot 0 df

Yo RR—-1_ 1

Y2—1 R  sin
By returning to X, Y coordinates, the streamline equation simplifies to

2w
X' +Y =75 (1.232)
where Yo is the streamline ordinate at X = +oo [see Figure 1.2(a)], which shows a typical streamline
pattern. The two special Y values are related by

. YL (1.23b)
% o

where Y, > 1 for any streamline outside the cylinder. (There is a related streamline pattern inside the
cylinder.)

The solution, Equation (1.23a), also can be obtained, with negligible effort, from the stream
function (defined in Chapter 5) equation

I's
rol1-35)

where Yoo = 9(300,Y)/(aU) and from the fact that a stream function is constant along streamlines
in a steady flow. Only in special cases, however, is a stream function available, whereas our purpose

e t0 illustrate how Equations (1.21b) are generally utilized.

UNSTEADY

The determination of the pathlines in an unsteady flow is more difficult. Moreover, the physical
interpretation of a pathline solution is far from trivial. As indicated in Figure 1.1(c), the same problem
as above is considered, but now the cylinder is moving to the left, with a speed —U, into a fluid that
is quiescent far from the cylinder. A prime is used to denote unsteady variables, and our goal is to
determine the trajectory of a fluid particle. It is analytically convenient to fix the initial condition for
the particle directly over the center of the cylinder with ¢ =0 and y' = y,, as shown in Figure 1.1(c).
Consequently, a full trajectory requires the particle’s position for both positive and negative time. The
“initial condition” phrase therefore does not refer to the particle’s position when 1’ — —oo.

This flow is essentially the same as the steady flow, only our viewpoint is different. In the steady
flow case we move with the cylinder, whereas in the unsteady case we have a fixed (laboratory)
coordinate system. It is convenient to again introduce nondimensional variables

yo¥  pY plUg
a a a

and use a Galilean transformation

X =x-Ut, Y=y f=t, u=u-U, Vi=y

(v)
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to convert the steady flow velocity field into the unsteady one. Equations (1.22) thus become

W Yo X +T)

Vo X +TYY
U~ [(X+TR2+Y22 U (X +T)P+Y7P

The center of the cylinder is at x=y =0, or
X'+T'=0, Y'=0
Hence, the initial condition for a fluid particle is
X'=0, Y =Y, whenT' =0

with Y, > 1. The X', Y' coordinate system is therefore shifted to the left or right until the position of
the particle of interest is located at X' = 0 when T" = 0. When T" is negative, the particle is upstream
of the center of the cylinder, which is at a positive X value. Remember that when the particle is
above the cylinder’s center, T’ =X’ = 0. Similarly, when T" is positive, X" is negative. This behavior
is illustrated in Figure 1.2(b), where point a is the location of a particle when T’ = —co, while point
e is the location when T’ = +co. In this figure, the center of the cylinder moves from X' = oo,
T'= -0 to X' = —o0, T' = 00, whereas the lateral motion of a particle is finite. The one exception
is a particle with Yo = O; this particle wets the cylinder.
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At its initial location, when T’ = 0, the velocity components of the particle are
u' 1 v
=) =i 2| =)
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Thus the particle, at this time, is moving in the positive X’ direction. For a particle far upstream of
the cylinder we have .

X! 30, T' <0, Y ¥ Yo, “El<o, %>o
When the particle is far downstream of the cylinder, we have
' ' ' u v
X <0; T 50, Y ¥ Y, U<0’ U<Q

and the cylinder is to the left of the particle. Far from the cylinder, in either X" direction, the particle
moves in the negative X' direction. The sign change in «’, which occurs when the particle is near the
cylinder, is discussed shortly. Note that Y, and Y, are still related by Equation (1.23b).

We are now ready to utilize Equation (1.13), written as

ax’ ’ d}" )

- =u, — =y

dr dr

for the particle paths. In contrast to the streamline situation, we have one additional differential
equation to solve. In terms of nondimensional variables these equations become

& Y- +TY Y 2 +THY 124)
ar’ T (X +TR+Y2R dT' (X' +TP+Y°P ’
After Equation (1.23a) is transformed, it also represents a particle path. In other words,
' \2 2 Y’
X'+TY +Y" = ve (1.25)

is a first integral of Equations (1.24). This can be demonstrated by differentiating this equation with
respect to T’ and eliminating dX’/dT’ and dY'/dT’' with the aid of Equations (1.24) to obtain an
identity. We next utilize Equation (1.25) to eliminate X’ + T’ from the dY’/dT" equation, with the
result

' _ 21+ Yol — YDA — Yeo)/?

ar’ - Y/
where a % sign is introduced when the square root of (X' +7”)* is taken. The plus sign holds when
T’ < 0, while the minus sign holds when T’ > 0.

The above differential equation is integrated from the initial condition, Y =Y, when T' =0, to

obtain
gty Y, Y 12 iy’
T2 e \ Lk ¥ ¥ X2 O —Yoo)?

14YY — Y= (Yo —Y" (Y’+ i)
Yo
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the integral can be written as

Y, , 1/2
G / 4 : dr’
2 )y | o =YY" = Yeo* (Y' + §-)
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This quadrature can be evaluated in terms of elliptic integrals of the first, F, and second, E, kinds,
defined as

& 9
RNy /0 (1 —sin® & sin? )2

¢
E(@\a) = / (1 —sin’ a sin®0)"%dg
0

where § is a dummy integration variable. With the aid of a table of elliptic integrals, one can show
that the final form for 7" then is

1 7 1/2
- YoY'(Yo — Y')
T' =47, {F(qs\a) — B\ + [ T yay')] }

where ¢ and « are given by

1/2
N _ =l 3/2 Y,-Y
HY') =sin |:Y,, (1+Y0Y’

et
a=sin Y2
This relation, in conjunction with Equation (1.25), represents the pathlines in an implicit form. In
other words, given Y, (or Yoo) and Y”, these two equations determine X’ and T".

Figure 1.2 shows, to scale, the expected streamline pattern in (a) and the pathline pattern in (b) and
(c), where all patterns are symmetric about the two axis. The arrows on the streamlines and pathlines
indi i ing time or the di of the velocity.

Along a-b— in Figure 1.2(b) T' is negative, and the center of the cylinder is at the origin only
when the fluid particle is at point ¢, where 7" is zero. At point a, T’ equals —oo, while at point e, T’
is +00. (The value of X} is the subject of Problem 1.7.) For any other point on @ — b — c, the center
of the cylinder is on the positive X’ axis and is to the right of the fluid particle. In this regard, it is
useful to note that a particle is upstream of the cylinder’s center when X’ + T’ < 0 and downstream
otherwise. This result stems from the Galilean transformation, X = X’ +T". At points b and d, u' is
zero, while at point ¢, v/ is zero. One exception to some of this discussion is a particle with Yoo =0
and X' > 0, which ultimately wets the cylinder’s surface. Otherwise, all other fluid particles have
similar trajectories, including the loop.

Along c—d—e, T' > 0 and the particle is downstream of the cylinder’s center. Consequently, along
a-b the particle is being pushed by the cylinder and u’ < 0, while along d—e the particle is being
pulled by the cylinder, and again &’ < 0. When the particle is close to the cylinder along b—c—d,
there is a transition region between the pushing and pulling where ' > 0. In this region, v' changes
sign. As evident in Figure 1.2(c), the size of the loop depends on Yo, (or Yo). Particles with a small
Yoo value, which initially are close to the X' axis, have a relatively large loop. This is caused by the
cylinder imparting a large transverse velocity component to the particle as it is shoved aside.

A particle experiences a horizontal displacement as a result of the cylinder’s motion, given by

A=X,—X.=2X,

As shown in Problem 1.7, A becomes infinite when Yo, — O and goes to zero as Yoo — 00. This
displacement also occurs in the steady flow case, since the particles that pass close to the cylinder are
retarded more than those that pass at a distance. As shown in Problem 5.22, along a given pathline
the change in kinetic energy balances the work done in moving a fluid particle. Because viscosity
is not present, the work done on adjacent pathlines or streamlines is not related. Consequently, the
change in displacement A with Yo, does not involve any work.

As you might imagine, the streamlines and pathlines for flow about a sphere are similar to that of
a cylinder. Both types of pattems are also considered in Problems 5.23 and 5.24.




