Acerca de Heinrich Blasius

Hoy en clase discutimos (solo) una contribucion importante que Blasius realizó en dinámica de fluidos. Para aquellos que deseen conocer un poco más acerca de la magnitud del aporte de Blasius en esta y otras tematicas, les dejo aquí un paper publicado en Experiments in Fluids en 2003, en ocasión del 120° aniversario de su nacimiento.

Espero que les sirva.

 

Anton Flettner y el efecto Magnus aplicado a la navegacion

Como les comenté hoy en claseAnton Flettner fue el primero en concebir y construir una embarcación capaz de propulsarse explotando el resultado que obtuvimos hoy para la fuerza sobre un obstáculo cuyo contorno tiene una circulación atrapada y que enfrenta un flujo uniforme (efecto Magnus).

La idea de Flettner fué construir una embarcación sin velas ni motores, en la cuál un cilindro vertical instalado sobre la cubierta se hiciese rotar a velocidad y dirección controladas de forma de obtener una fuerza sobre el navío en la dirección deseada. A dicho sistema se lo denominó rotor Flettner. Concretamente Flettner utilizó una embarcación preexistente (llamada Baden-Baden) la cuál hizo modificar y rebautizó como Buckau. Este sistema de propulsión demostró fehacientemente su potencialidad como medio de propulsión eólica para embarcaciones cuando el Buckau logró cruzar el océano Atlántico en 1926. Les dejo una foto del Buckau (ex Baden-Baden) junto a estas líneas.

En la actualidad este tipo de propulsión es utilizada como alternativa a turbinas diesel, buscando explotar los recursos naturales renovables (como el viento) para incluso generar la energía con la cuál se hacen rotar los cilindros. Les dejo como ejemplo un video en el cuál se muestra uno de estos barcos modernos de tipo Flettner.

La embarcación que se ve en el video es el denominado E-Ship que la sociedad de construcciones eólicas Enercon (alemana) encomendó construir en 2007 a los astilleros Lindenau Werft de Kiel; comenzó sus operaciones en agosto de 2010 y continúa siendo utilizado en la actualidad. Se trata de un carguero de 130 m de eslora (largo) y 22.5 de manga (ancho), con capacidad para transportar entre 80 y 120 toneladas. Está equipado de 4 rotores Flettner (4 cilindros rotantes) de 27 metros de altura y 4 metros de diámetro, montados en las esquinas de la cubierta.
Espero que les sea util.

Una demostracion del efecto Magnus

En este post les dejo un video que me parece una demostracion contundente y super divertida del efecto Magnus que vimos hoy en clase teorica. La demo involucra una pelota de basket y un dique; no les digo nada mas, esta todo en el video!

Espero que les sea util y divertido!

Aqui el video:

Resolucion de problemas de potencial complejo usando Mathematica

En este post les dejo un notebook de Mathematica, en el cual les muestro cómo explotar la potencia de esta herramienta de cálculo simbólico (y numérico!) para resolver problemas de flujos potenciales bidimensionales.

En particular, el notebook trata un problema que veremos hoy en teoricas: el flujo alrededor de un cilindro con una circulación atrapada que enfrenta un flujo uniforme al infinito.

La idea detrás de este post es que tengan una guía de cómo resolver y analizar este ejercicio en Mathematica, teniendo en cuenta que ustedes conocen ya la física del problema. El propósito subyacente es que, si así lo desean, puedan extrapolar lo que aprendan aquí a la resolución de cualquier otro problema de la guía de trabajos practicos.

Curvas de nivel de la función corriente (trazo continuo), de potencial (líneas punteadas) y campo de presiones (en color) para un caso particular de los parámetros del problema.

 

Sólo a modo de sumario, les cuento qué tipo de cálculos aprenderán a hacer en Mathematica usando este notebook. Entre otras cosas, verán cómo: (i) definir un potencial complejo, (ii) aplicar el teorema del círculo de Milne-Thomson, (iii) determinar las funciones potencial y de corriente, (iv) calcular los campos de velocidad, (v) obtener el campo de presiones en todo punto del espacio usando el teorema de Bernoulli y (vi) calcular la fuerza sobre el obstáculo mediante: (a) la integral de presión sobre el contorno sólido y (b) el teorema de Blasius via el cálculo de residuos. Asimismo, podran ver como se representan usualmente en forma grafica cada uno de estos resultados y como generar dichos graficos en Mathematica.

El archivo/notebook de Mathematica podrán descargarlo (tanto en formato Mathematica como en formato PDF, para quienes no disponen del software) haciendo click derecho aquí y descomprimiendo el archivo .zip que descargaran.

Espero que les sirva.

Fuente de caudal constante frente a un plano solido

En este post les comparto el link a una notebook de IPython que les prepare para mostrarles cuan sencillo es tratar problemas simbolicos empleando la libreria ‘sympy’ de Python. Para ilustrar su uso, elegi el problema de determinar el campo de velocidades asociado a una fuente puntual de caudal constante frente a un plano infinito.

El objetivo es que puedan ver qué sencillo es manipular simbolicamente expresiones complejas (no solo complicadas!) con ipython gracias a sympy; ilustrando simultaneamente un flujo de interes.

Espero que les sea util.

Flujos potenciales bidimensionales planos en el laboratorio

Me parece interesante comentarles brevemente en este post cómo es posible obtener y visualizar flujos potenciales bidimensionales (como los que les comenté durante la ultima clase de teoricas) en el laboratorio.

Un montaje experimental comúnmente utilizado para producir y estudiar flujos potenciales bidimensionales es la celda de Hele-Shaw, introducida hace más de 100 años por Henry Hele-Shaw. Una celda de Hele-Shaw consiste esencialmente en el flujo de un líquido viscoso entre dos placas plano-paralelas ligeramente separadas entre sí.

La figura muestra un esquema simple de una celda de Hele-Shaw, ilustrando el flujo en torno de un obstáculo; un arreglo lineal para la inyección de colorante (como trazador) y algunas líneas de corriente a modo de visualización. El flujo dentro de la celda, laminar y paralelo, se conoce como flujo de Poiseuille plano y será objeto de estudio en la segunda mitad de la materia (en el marco de la guía de flujos viscosos).

Una propiedad paradójica de la celda de Hele-Shaw es que, a pesar de que el flujo es viscoso, las líneas de corriente bidimensionales que se observan tienen las propiedades de un flujo potencial. No se alarmen: más adelante en el curso veremos en detalle cómo probar esta afirmación.

Les dejo además un video que muestra el dispositivo experimental de Hele-Shaw y su operación. El obstáculo empleado (un cilindro en este caso) es ubicado en el pequeño espacio entre dos placas de vidrio dispuestas verticalmente. Un fluido viscoso y transparente se carga en un reservorio sobre la celda y se lo deja fluir a través de ella bajo la acción de la gravedad. El dispositivo cuenta además (como es usual) con un arreglo lineal de inyectores equiespaciados por donde se hace ingresar un fluido coloreado de iguales características (viscosidad, densidad, etc.). El reservorio se mantiene continuamente alimentado con fluido transparente y la visualización comienza haciendo ingresar el trazador al sistema. Para incrementar el contraste de las líneas observadas, se suele emplear un trazador fluorescente y trabajar a oscuras iluminando únicamente el flujo en la celda. Pueden visualizar el video haciendo click sobre la imagen asociada.

Finalmente, les dejo dos videos más: dos visualizaciones experimentales de las líneas de corriente de un flujo potencial bidimensional uniforme que enfrenta (a) un obstáculo cilíndrico y (b) un perfil alar; ambas obtenidas con la celda de Hele-Shaw mostrada en el primer video.

Espero que les sea util.

Hacer click sobre estas imágenes para ver los videos asociados.

Calculo del potencial complejo

Les dejo en este post el link a una notebook de IPython que les prepare en la que les describo cómo calcular la función corriente, así como el potencial complejo, en un caso con una fuente de caudal y un vortice. Encontrarán además dos adicionales: (a) la forma de las líneas de corriente para el caso general, y (b) un caso en el cuál se observa en la naturaleza este tipo de flujo.

Este caso es de interés por dos razones. Por un lado, el ejemplo sirve como ilustración del método general para el cálculo del potencial complejo de un flujo singular (i.e., que incluye singularidades). Por el otro, vemos que calculamos, como les comente en clase, el potencial complejo para los dos ‘ladrillos fundamentales’ de los que están constituidos todos los flujos que consideraremos en esta práctica: una fuente isótropa de caudal constante y un vórtice (dos casos límite que surgen de lo expuesto en este documento).

Cualquier flujo que resulte combinación de ellos (p.ej., dipolos) podrá calcularse fácilmente  (segun les describo en detalle en el documento que les adjunto) dado que las ecuaciones para la función potencial y la función corriente responden al principio de superposición.

Espero que les sirva.

Cuando Bernoulli conocio a Galileo

En este post les dejo una pregunta interesante que me gustaria que piensen en funcion de lo que venimos discutiendo en las ultimas dos clases teoricas. El planteo es el siguiente.

Supongan que un fumador maneja un auto a velocidad constante con su ventana ligeramente abierta. Desde el punto de vista del fumador, el aire en el exterior del auto se mueve a una velocidad mayor que el aire en el interior. De acuerdo al teorema de Bernoulli, la mayor velocidad del aire exterior implica que su presion es menor que la del aire interior. Luego, el humo del cigarrillo deberia fluir por la pequeña abertura de la ventana hacia el exterior. Pero, de acuerdo al principio de relatividad segun el cual todo marco inercial de referencia da lugar a la misma fisica, una persona quieta que observa pasar el auto dira que el aire en el interior se mueve mas rapido que el exterior. Usando la misma forma del teorema de Bernoulli, concluira que la presion en el interior es menor que en el exterior, lo que deberia mantener al humo del fumador dentro del auto.

Que sucede en realidad? El humo sale al exterior o queda atrapado en el habitaculo? Piensen la respuesta y, si quieren, la discutimos durante la clase de mañana.

Espero que les sea util.

 

PD: Por razones de seguridad no les recomiendo intentar realizar en la practica este experimento, es solo un gedankenexperiment!).

Acerca del teorema de Bernoulli

En este post les dejo el link a un capitulo del libro de M. Guillen, “Five equations that changed the world”, acerca del desarrollo historico de lo que hoy conocemos como la ley de Bernoulli para los fluidos, que obtuvimos la ultima clase teorica y que emplearemos en las próximas clases en el marco de flujos potenciales planos.

En el texto, Michael Guillen nos cuenta la atrapante historia de como Daniel Bernoulli (y no Johann, su padre) llego a derivar la ley que hoy -injusta y confusamente- solo lleva su apellido. Es sin duda una historia que mezcla la lucha de Daniel por triunfar como fisico-matemático, envidiando secretamente a Newton por sus avances en la mecánica y al mismo tiempo intercambiando correspondencia con Leibniz acerca del desarrollo del calculo diferencial; viendo morir a su hermano en Rusia y sufriendo la traicion de su padre.

Les dejo aquí el libro completo en formato PDF. El capitulo al que hago mención (aunque los recomiendo todos!) comienza en la pagina 43 del documento. Aunque sus contenidos no son imprescindibles para el curso, les recomiendo fuertemente su lectura.

Espero que les resulte útil.