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Various structural properties of graphitic materials are investigated in a transmission electron mi-
croscope. Using electron diffraction the hexagonal lattice and bond length of graphene are verified.
Also multiple views of multiwalled carbon nanotubes are used to create a tomographic reconstruc-
tion.

I. INTRODUCTION

Graphene was discovered in 2004 and has since sparked
much interest in the field of condensed matter physics.
Graphene is an atomically thin sheet of carbon arranged
in a two dimensional honeycomb crystal. The Mermin-
Wagner Theorem predicts that a perfect crystal can not
exist in two dimensional space, so it was surprising when
graphene was first observed[1]. The existence of graphene
has since been explained by the idea that graphene has
an intrinsic roughness. This rippling makes graphene a
nearly perfect two dimensional crystal in three dimen-
sional space[2, 3], which is not forbidden.

Graphene has been called the “mother of all graphitic
forms”[4] because it can be wrapped into buckyballs,
rolled into carbon nanotubes and stacked into graphite.
High resolution images of a sheet of graphene and a mul-
tiwalled carbon nanotube are shown in Fig. 1 and Fig.
2. These materials are not only important new test-
ing grounds for fundamental physics such as relativis-
tic quantum mechanics and low dimensional thermody-
namics, but also have potential applications to nanoscale
technology such as high speed transistors and lasers.

We can not investigate the structural properties of
these graphitic materials using conventional optical mi-
croscopes because it is not possible to resolve anything
smaller than a wavelength of the light used to illuminate
the sample. Light in the visible spectrum has a wave-
length λ ≈ 500 nm. Due to the sub-nanometer length
scales of the structures of graphene and carbon nanotubes
it is necessary to use an electron microscope to investigate
their structural properties. We operate using electrons at
80 kV because graphene and carbon nanotubes are un-
stable under higher energy electron beams and samples
are rapidly destroyed[5, 6]. An electron with this energy
is traveling at almost one half the speed of light and we
must take relativistic effects into account. The relativis-
tic wavelength of an electron is,

λ =
h

mc

√(
1 + eV

E0

)2
− 1

, (1)

where h is the Planck constant, m is the electron rest
mass, c is the speed of light, e is the magnitude of the
electron charge, V is the voltage the electron is acceler-
ated through and E0 is the electron rest energy. An 80
keV electron has a wavelength of ∼ 4.18 pm which allows

FIG. 1: High resolution TEM image of a suspended sheet of
graphene. The Fourier transform of the image is shown in
the top right. The darker portions are rememnants of the
Si02 and Si3N4 membrane that were not removed by the HF
etch.

us to resolve much smaller structures than we can using
light in the visible spectrum. The main factor limiting
resolution in the electron microscope is spherical aber-
ration which arises due to the inability to make perfect
lenses to focus the electron beam to a point. The smallest
object that can be resolved is given approximately by

δ ∼=
(
Csλ

3
) 1

4 , (2)

where Cs is the spherical aberration of the microscope
and λ is the wavelength of the electrons[7]. For our mi-
croscope, an FEI Titan 80-300, Cs ≈ 1.2 mm and δ ∼= .35
nm.

II. CRYSTAL THEORY

An ideal crystal is formed by an infinite repetition of
identical groups of atoms. Each group of atoms, called
the basis, is attached to a point on a periodic array called
the lattice. In the case of ideal graphene, a two atom
basis is attached to a hexagonal lattice and the result is
a two dimensional honeycomb crystal as shown in Fig. 3.
Any point on the crystal lattice can be represented as a
vector,
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FIG. 2: High resolution TEM image of a multiwall carbon
nanotube. Nanotube wall spacing is 0.34 nm. The hourglass
shape on the left is called a bamboo defect and the amorphous
material in the image is nanotube debris. At 80 kV it is
possible to resolve the walls and core of the nanotube but it is
not possible to resolve positions of atoms. At higher energies
atomic resolution is possible but nanotubes are unstable.

R = n1a1 + n2a2, (3)

where n1 and n2 are integers and a1 and a2 are known
as the primitive vectors of the crystal. A unit cell and
primitive vectors are shown for graphene in Fig. 4.

We must also construct the reciprocal lattice of
graphene in order to interpret its diffraction pattern.
Each primitive vector of the reciprocal lattice is orthog-
onal to two primitive vectors of the crystal lattice. The
reciprocal lattice vectors b1, b2 and b3 have the property,

bi · aj = 2πδij , (4)

where δij = 1 if i = j and δij = 0 if i 6= j. The construc-
tion of the reciprocal lattice vectors follow from (4),

b1 = 2π
a2 × a3

a1 · a2 × a3
, (5)

b2 = 2π
a3 × a1

a1 · a2 × a3
, (6)

b3 = 2π
a1 × a2

a1 · a2 × a3
, (7)

where a1 and a2 are the primitive vectors of the crystal
and a3 is the ẑ unit vector. Any point on graphene’s
reciprocal lattice can be represented as a vector

G = m1b1 +m2b2, (8)

Where m1 and m2 are integers. The reciprocal lattice of
graphene and its primitive vectors are shown in Fig. 5.

FIG. 3: A 2D honeycomb crystal is formed by placing a two
atom basis to each point on a hexagonal lattice.

FIG. 4: Graphene consists of a two atom basis superimposed
onto a hexagonal lattice. Each unit cell contains one lat-
tice point and a two atom basis. Any lattice point can be
reached by adding an integral number of primitive vectors.
The vectors dA and dB point from a lattice point to an atom
in the basis and are used in calculating the structure factor.
|a1| = |a2| =

√
3l, |dA| = |dB | = l

2
, φ = 120o

The analog of adding a basis to a crystal lattice is adding
a structure factor to a reciprocal lattice. A lattice and
a basis determine a crystal whereas a structure factor,
denoted SG, and a reciprocal lattice describe a diffraction
pattern. This will be discussed further in sec. IV
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FIG. 5: Primitive vectors of graphene’s reciprocal lattice. The
1st Brillouin zone is a unit cell of the reciprocal lattice. Near
the points k and k′ the energy of the electrons in graphene
depend linearly on their wavenumber. This is similar to the
behavior of a relativistic particle whose behavior is described
by the Dirac equation.
|b1| = |b2| = 4π

3l
, φ = 60o

III. DIFFRACTION THEORY

One way to confirm the geometry of the crystal lattice
of graphene is to take diffraction images of a sample. In
our microscope diffraction is needed because the resolu-
tion at 80 kV is not sufficient to image atomic positions.
Consider a beam of electrons of wave vector k elastically
scattered from a sample. The scattered electrons will
have a new wave vector k′ with the same magnitude as
k. Fourier analysis shows that the set of reciprocal lat-
tice vectors G determines the possible scattering vectors
∆k = k′ − k [9, 10]. The Bragg condition for diffraction
is given by the equation,

G = ∆k. (9)

From (9) and Fig. (6) using geometric arguments and
the small angle approximation we find that

G = kθ =
2πθ

λ
. (10)

We can use this condition to relate the position of the
observed intensity peaks where elastically scattered elec-
trons constructively interfere to the set of reciprocal lat-
tice vectors G. This allows us to determine the C-C
bond length in real space by measuring the position of
the diffraction peaks in reciprocal space.

IV. DIFFRACTION ANALYSIS

In order to analyze the diffraction pattern of graphene
we first need to break the primitive vectors into compo-
nents. The primitive vectors of graphene are

FIG. 6: The Bragg condition for diffraction for an incident
beam of wave vector k elastically scattered through an angle
θ and the resultant wave vector k′ gives the allowed diffraction
peaks.

a1 =
3l

2

(
x̂−
√

3

3
ŷ

)
, (11)

a2 =
√

3lŷ, (12)

a3 = ẑ, (13)

where l is the C-C bond length. Next using (5), (6) and
(7) we find the primitive reciprocal lattice vectors which
are

b1 =
4π

3l
x̂ (14)

b2 =
4π

3l

(
1

2
x̂ +

√
3

2
ŷ

)
(15)

b3 = 2πẑ (16)

To verify the bond length we measure the distance from
the center of the pattern to the intensity peak. The dis-
tance measured in reciprocal space is defined as

q ≡ θ

λ
(17)

We then substitute this into (10), find the magnitude of
G from (8) and simplify for the following equation that
relates measurements made on the diffraction pattern to
the bond length

q =
2

3l

√
m2

1 +m1m2 +m2
2 (18)

We count the number of b1 and b2 vectors that comprise
each G and index the diffraction pattern (Fig. 9) for
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easy identification of m1 and m2. We then measure q on
the diffraction image and comparing the result to what
is predicted by (18) using the currently accepted bond
length of l = .142 nm[8]. This not only verifies the bond
length but also confirms that our theory is sound.

The intensity of the diffraction peak depends on a
quantity called the structure factor denoted by SG. The
structure factor is defined as

SG =
∑
basis

fj exp [iG · dj ] . (19)

where fj is known as the atomic form factor of the jth
atom of the basis.

dA =
l

2
x̂ (20)

dB = − l
2
x̂ (21)

Because graphene has a two atom basis (19) becomes

SG = fA exp [iG · dA] + fB exp [iG · dB ] . (22)

Graphene is composed entirely carbon so fA = fB = f .
Also dA = −dB = d.

SG = 2f
exp [iG · d] + exp [−iG · d]

2
(23)

Simplifying this gives

SG = 2f cos (G · d) . (24)

Solving G · d from (14), (15) and (20) gives

SG = 2f cos
[π

3
(2n1 + n2)

]
. (25)

The structure factor can only take values of, ±f and±2f .

V. DIFFRACTION RESULTS

From the geometry of the observed diffraction pattern
we can conclude that graphene does indeed have a hexag-
onal lattice. Also the measurements made on the diffrac-
tion pattern agree with theory to within one percent. Re-
sults of the diffraction analysis are summarized in Table
I.

FIG. 7: The diffraction pattern of graphene is a hexagonal
lattice. The large black shape in the middle is a beam blocker
which protects the camera from being damaged. The small
bright spots are diffraction peaks from the graphene. The
large rings are caused by scattering from amorphous material
that was not removed with the membrane of SiO2 and Si3N4

the sample was originally deposited on. This image uses a log
scale for intensity so more peaks can be easily seen

FIG. 8: The vector q connecting opposite peaks in the same
order must be made by an integer number of reciprocal lattice
primitive vectors.
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FIG. 9: The diffraction pattern is indexed for easier identifi-
cation of m1 and m2. The image is brightened and a log scale
is used so more peaks can be easily identified

qraw (1/nm) qscaled (1/nm) m1 m2 |M | qtheo (1/nm) SG

4.55± .04 4.65± .05 1 0 1 4.69 f

7.88± .10 8.06± .10 1 1 1.73 8.13 2f

9.11± .09 9.32± .10 2 0 2 9.39 f

12.09± .11 12.36± .12 2 1 2.65 12.42 f

13.78± .16 14.09± .13 3 0 3 14.08 f

15.96± .15 16.31± .17 2 2 3.46 16.26 2f

16.64± .15 16.99± .17 3 1 3.61 16.93 f

18.58± .15 18.99± .17 0 4 4 18.78 2f

TABLE I: Sample of diffraction pattern analysis. |M | de-

notes the value
√
m2

1 +m1m2 +m2
2. The currently accepted

bond length of b = .142 nm is used to calculate qtheo and is
compared to the scaled measurement of the diffraction pat-
tern qscaled. qscaled is computed by a statistical analysis of
the points qraw. All values of qscaled are within two standard
deviations of qtheo.

VI. ERROR ANALYSIS

The raw data needed to be corrected due to error
caused by the image calibration. Using statistical analy-
sis the data is scaled in order to correct for this [11]. The
best data offset δ is found by minimizing the value of χ2

as given by

χ2 =

n∑
i=1

χ2
i =

n∑
i=1

(
(qexpδ)i − (qtheo)i

σi

)2

. (26)

FIG. 10: In order to properly scale the data χ2 was plotted
for trial values of δ. The choice of δ that minimizes χ2 is
used to scale the raw data. For the data set presented δ =
1.022± 0.004.

where the summation is carried out over each data point
and σi is the error of the associated data point.

VII. TOMOGRAPHY

Another method for examining the structure of
graphene and carbon nanotubes is tomographic recon-
struction. Tomography uses sectional views to recon-
struct a 3D map of an object. This method allows one to
create a map of an entire object as opposed to being lim-
ited to surface information using methods such as atomic
force microscopy. Using electron tomography one can ob-
tain a real 3D view of an object with nanometer-scale
resolution. Electron tomography is typically used in the
biomedical field in probing the structures of viruses and
cells but has also been successfully applied to materials
science. The tomography process consists of three main
steps: acquiring a tilt series, aligning successive images,
and reconstructing a volume.

A. Tilt Series

The raw data of a tomographic reconstruction con-
sists of a series of TEM images taken at different angles
called a tilt series. Each TEM image is a 2D projection
of the sample. Tomography depends on the fact that
the Fourier transform of a 2D projection of a 3D object
is the same as the Fourier transform of the correspond-
ing central slice of the 3D object [12]. Using this fact it
is possible to build up the 3D Fourier transform of the
object one plane at a time and take the inverse Fourier
transform in order to reconstruct the original object.
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B. Alignment

In order for the reconstruction to be accurate the tilt
series must be properly aligned. The most common
method of alignment first uses the cross-correlation al-
gorithm to get a coarse alignment. The cross-correlation
of two images is defined as

C (x, y) = F−1 [F [I1 (x, y)] ∗ F [I2 (x, y)]] (27)

where F [I1 (x, y)] and F [I2 (x, y)] are the Fourier trans-
forms of the images to be aligned. F−1 denotes the in-
verse Fourier transform and ∗ denotes the convolution
operation. The cross-correlation will have a sharp peak
at the coordinate (x0, y0) where the two images have the
best alignment. The location of this peak is then used
to shift each image in order for the alignment to be op-
timized [13]. Also each image must be stretched by a
factor of 1

cosψ , where ψ is the tilt angle of the image, to

correct for changes due to tilt geometry[14]. This pro-
cess is carried out on each successive image in order to
align the entire series. A fine alignment is then achieved
by tracking small fiducial markers, usually gold, through
the series. Alignment steps are carried out and reiterated
until there is no noticeable change in successive image
alignments.

C. Reconstruction

Once the tilt series is properly aligned the object is
reconstructed plane by plane. Several algorithms are
used, the most common being Weighted Back Projec-
tion (WBP) and Simultaneous Iterative Reconstruction
Technique (SIRT) methods. These algorithms take the
3D Fourier transform of the object in reciprocal space
and turn it into a reconstructed object in real space[15].

VIII. LIMITS OF TOMOGRAPHY

The resolution of a tomographic reconstruction is lim-
ited by three main factors assuming the image series is
perfectly aligned: the number of views in the data, the
object size, and the maximum angle the sample is tilted
through [16].

The resolution in the direction parallel to the tilt axis
dx is the same as the resolution in the original projection
image. The resolution in the directions perpendicular to
the tilt axis of an object of diameter D, reconstructed
using N views is given by

dy = dz =
πD

N
(28)

However this assumes that the reconstruction uses views
that go from ±90o. In practice the maximum angle the
sample is tilted through is not 90o due to restrictions

of the TEM. In this case the resolution in the direction
parallel to the optical axis dz of a sample tilted through
a maximum angle of α experiences an elongation given
by

ez =

√
2α+ sin (2α)

2α− sin (2α)
, (29)

and the resolution is

dz = dyez. (30)

For the carbon nanotube reconstruction presented D ≈
40 nm, N = 65 and α = 58o. Assuming perfect alignment
the resolution of the reconstruction is approximately

dy ∼= 1.9 nm (31)

ez ∼= 1.6 (32)

dz ∼= 3.1 nm (33)

Due to the elongation factor, dz is not good enough to
resolve the walls of the nanotubes in this sample.

However it is possible to achieve atomic resolution us-
ing tomography. Using a different experimental setup in
the TEM it is possible to tilt the sample through a max-
imum angle of α = 70o. If the object to be reconstructed
is smaller such as a 2 nm gold particle it is entirely pos-
sible to resolve individual atoms. From (28) and (29)
the minimum number of views needed to achieve atomic
resolution of dz = a0 = 0.134 nm is 48.

In contrast, if one were trying to reconstruct a nan-
otube of diameter D = 15 nm with a maximum tilt angle
α = 58o it would be a daunting task to resolve the tube
walls. This would require a resolution dz = 0.34 nm
which would in turn require using N = 223 views. This
task is not currently feasible due to limitations of the
TEM.

IX. CARBON NANOTUBE TOMOGRAPHY

A section of the carbon nanotube tilt series is shown in
Fig. 11. In this image the two nanotubes are projected
through one another and the vertical orientation of the
tubes is unclear. After reconstruction the relative posi-
tion of the tubes becomes apparent as illustrated in Fig.
12.
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X. EXPERIMENTAL METHODS

Graphene samples were prepared using chemical vapor
deposition (CVD) on a SiO2 and Si3N4 membrane fol-
lowed by an HF etch. Carbon nanotubes were prepared
using arc discharge and were deposited on membrane and
etched in the same manner as the graphene samples. 5
nm gold particles were deposited on the nanotubes to use
as fiducial markers in aligning the image tilt series.

Diffraction images and carbon nanotube tilt series were
acquired at UCLA by Matt Mecklenburg using a Titan
80-300 TEM at 80 kV. To verify the bond length the
intensity maxima of opposite peaks in the same order
were located in the diffraction pattern and the distance
between them was measured. Diffraction pattern mea-
surements were made using Digital Micrograph and Im-
ageJ software. Tilt series were coarsely aligned using the
cross-correlation method and finely aligned using gold
bead tracking in the IMOD eTomo program. Volume was
reconstructed using the SIRT method in Inspect3d. Vol-
ume was manipulated, filtered and imaged using Chimera
and Amira software.

XI. CONCLUSION

From the diffraction pattern of the suspended graphene
sheet the hexagonal lattice and bond length of graphene
was verified. Preliminary reconstructions are promising
and tomography has been verified as a useful method for
investigating the structure of carbon nanotube devices.

FIG. 11: In this TEM image two carbon nanotubes are pro-
jected through one another. The small spheres are 5 nm gold
particles used to align successive images in the series. From
this image alone it is not possible to determine the separation
between the nanotubes

FIG. 12: Several views of a tomographic reconstruction im-
aged using Chimera reveal 3D details of two carbon nan-
otubes. The top image is the same view as seen in Fig. 11
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XII. SUGGESTIONS FOR FURTHER
RESEARCH

I was unable to obtain fully suspended graphene sam-
ples of a sufficient size to do tomography this summer.
Further research will involve doing tomography on a sus-
pended sheet of graphene in order to observe it’s char-
acteristic ripples. We will then look at how the ripples
are distributed on the sheet. The various amplitudes and
wave lengths will be put on a histogram and we will at-
tempt to fit the distribution to a Gaussian or Lorentzian
function. Also we will tomographically reconstruct car-
bon nanotube light bulbs to gain insight on the structural
changes that occur when they radiate.

Given the current limit of tomography it is theoret-
ically possible to reconstruct a small carbon nanotube
and resolve individual walls. A resolution of dz = .33
nm is possible in reconstructing an object of diameter

D = 15nm using N = 141 views. This corresponds to
a tilt increment of θ = 1o and a maximum tilt angle of
α = 70o. This resolution is right at the edge of what is
currently possible given the limitations of our equipment
and is the subject of ongoing investigation.
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