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Graphene research is currently one of the largest fields in condensed matter. Due to its unusual
electronic spectrum with Dirac-like quasiparticles, and the fact that it is a unique example of a
metallic membrane, graphene has properties that have no match in standard solid state textbooks.
In these lecture notes, I discuss some of these properties that are not covered in detail in recent
reviews1. We study the particular aspects of the physics/chemistry of carbon that influence the
properties of graphene; the basic features of graphene’s band structure including the π and σ bands;
the phonon spectra in free floating graphene; the effects of a substrate on the structural properties
of graphene; and the effect of deformations in the propagation of electrons. The objective of these
notes is not to provide an unabridged theoretical description of graphene but to point out some of
the peculiar aspects of this material.

PACS numbers: 81.05.ue, 63.22.Rc, 61.48.Gh, 73.22.Pr

I. INTRODUCTION

Graphene, a two-dimensional allotrope of carbon, has created a immense interest in the condensed matter commu-
nity and in the media since its isolation in 20042. On the one hand, graphene has unique properties that derive from
its honeycomb-like lattice structure such as the Dirac-like spectrum (that mimics effects of matter under extreme
conditions), its low dimensionality (that leads to enhanced quantum and thermal fluctuations), and its membrane-
like nature (that mixes aspects of soft and hard condensed matter). On the other hand, because of the strength
and specificity of its covalent bonds, graphene is one of the strongest materials in nature (albeit one of the softest),
with literally none extrinsic substitutional impurities, leading to the highest electronic mobilities among metals and
semiconductors3. Therefore, graphene is being considered for a plethora of applications that range from conducting
paints, and flexible displays, to high speed electronics. In fact, it can be said that perhaps, not since the invention
of the transistor out of germanium in the 1950’s, a material has had this kind of impact in the solid state litera-
ture. However, unlike ordinary semiconductors such as germanium, gallium-arsenide, and silicon, graphene’s unusual
properties have to be understood before it can really have an impact in technological applications.

Any material has a hierarchy of energy scales that range from the atomic physics (∼ 10 eV), to many-body effects
(∼ 10−3 eV). To understand the behavior of a material one needs to understand how these different energy scales
affect its macroscopic properties. While structural properties such as strength against strain, shear and bending may
depend on the covalent bonds formed by the atoms, magnetism and superconductivity are governed by the particular
way electrons interact with each other through Coulomb forces. Furthermore, while the properties of metals and
semiconductors depend on the physics close to the Fermi energy (a direct consequence of Pauli’s exclusion principle),
the nature of the vibrational spectrum depends on the particular way ions interact among themselves and how the
electrons screen these interactions.

One of the great accomplishments of the application of quantum mechanics to the theory of metals is the under-
standing that while different materials can be structurally very different from each other, its long wavelength and low
energy physics is essentially identical and depend on very few parameters. This so-called renormalization towards
the Fermi energy4 is one of the greatest theoretical accomplishments of the twentieth century and is the basis of
Landau’s theory of the Fermi liquid5. In systems where the low energy physics is described by a transformation of
coordinates with Galilean invariance the most significant parameter is the “effective” mass of the carriers that acts
as to generate a scale from which is possible to compute most of the important physical quantities such as specific
heat, magnetic susceptibility, electronic compressibility, and so on. The most basic difference between graphene and
other materials is that its low energy physics is not Galilean invariant, but instead Lorentz invariant, just like systems
in particle and high-energy physics with Dirac particles as elementary excitations6. In this case, the renormalization
towards the Fermi energy is different from other materials7 because, in the absence of a “mass” (which in graphene
means the absence of a gap in the electronic spectrum), all physical quantities depend on a characteristic “effective”
velocity that plays an analogous role as the speed of light plays in relativistic quantum mechanics8. However, unlike
true relativistic fermionic systems9, the Dirac quasiparticles in graphene still propagate with a velocity that is much
smaller than the speed of light, the speed that Coulomb interactions propagate. Therefore, the Coulomb field can be
considered instantaneous in first approximation, making of the electrodynamics of graphene electrons a mix between
a relativistic and a non-relativist problem. Clearly this unusual situation requires a re-evaluation of the Fermi liquid
theory for this material.
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In these notes, however, we are going to focus on the more basic aspects of graphene’s properties. In Section II
we are going to discuss the s − p hybridization theory and how it leads to the basic energy scales of the graphene
problem. We are going to show that the problem of hybridization is controlled by the angle between the s − p
hybridized orbitals. Using the Slater-Koster theory, we compute the main matrix elements of the problems in terms
of this angle. In Section III we move from molecular orbitals to the crystal and discuss the simplest tight binding
Hamiltonian that describes the full band structure, that is, that includes both π and σ bands. We show that even
this simple band-structure reproduces quite well the results of more sophisticated ab initio methods. This particular
description becomes particularly good close to the Fermi energy where the Dirac particles emerge naturally. Phonons
in free floating graphene are discussed in Section IV. We show how the flexural modes result from the bending energy
of a soft membrane and how those modes can be quantized. We show that as a result of the presence of flexural modes
the linear phonon theory predicts an instability of the graphene sheet towards crumpling. The effect of a substrate
on the flexural mode spectrum is discussed in Section V. We show that the presence of a substrate, that breaks
rotational and translational symmetry, allows for new terms in the phonon Hamiltonian that change considerably the
energy dispersion of the flexural modes. We also show that within the linear theory, graphene follows the substrate
in a smooth way with the characteristic length scales that are dependent on the details of the interaction with the
substrate. When graphene is deformed in some way, either by bending or strain, the electronic motion is affected
directly. In Section VI we show that at long wavelengths deformations lead to new terms in the Dirac equation that
couple to the electrons as vector and scalar potentials. There are cases, however, where graphene is not slightly
deformed but strongly deformed in which case the Dirac theory has to be completely reconsidered. In these notes
we discuss briefly the case of a graphene scroll which results from the competition between the bending energy (that
favors flat graphene) and the van der Waals interaction of graphene with itself (that wants it to have maximum area
overlap). This is only one example where structural deformations can have a strong effect on many of the electronic
properties of this material. Our conclusions are given in Section VII.

II. THE CHEMISTRY

The electronic configuration of atomic carbon is 1s2 2s2 2p2. In a solid, however, carbon forms s − p hybridized
orbitals. The 1s electrons form a deep valence band and essentially all properties of carbon-based materials can be
described in terms of the 2s and 2px, 2py and 2pz orbitals that can be written as10:

〈r|s〉 = Rs(r)× 1 ,

〈r|px〉 = Rp(r)×
√

3 sin θ cosφ ,

〈r|py〉 = Rp(r)×
√

3 sin θ sinφ ,

〈r|pz〉 = Rp(r)×
√

3 cos θ , (1)

where Rs(r) = (2− r/a0)e−r/(2a0), and Rp(r) = (r/a0)e−r/(2a0) are the radial wave-functions. One particular way to
parametrize a hybridized s− p state is given by Pauling11:

|0〉 = A|s〉+
√

1−A2|pz〉 , (2)

where A is a parameter that describes the degree of hybridization between s and p states. This basic orbital is shown
in Fig.1. The energy associated with this orbital can be obtained from the hydrogen atom spectrum:

E0 = επ = 〈0|H0|0〉 = A2Es + (1−A2)Ep (3)

where H0 is the hydrogen atom Hamiltonian where Es ≈ −19.38 eV is the energy of the 2s-state and Ep ≈ −11.07
eV is the energy of the 2p-state.

All the other 3 orthogonal orbitals can be constructed starting from (2). A particularly simple parametrization is
the following12:

|1〉 =
√

(1−A2)/3|s〉+
√

2/3|px〉 − (A/
√

3)|pz〉 ,
|2〉 =

√
(1−A2)/3|s〉 −

√
1/6|px〉 −

√
1/2|py〉 − (A/

√
3)|pz〉 ,

|3〉 =
√

(1−A2)/3|s〉 −
√

1/6|px〉+
√

1/2|py〉 − (A/
√

3)|pz〉 . (4)

Notice that A controls the angle between the z axis and these states. We can clearly see that the direction of largest
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FIG. 1: Absolute value of the wave-function for a hybridized s− p state, Eq.(2), for A = 0.5.

amplitude for one of these orbitals (say, 〈r|1〉) is given by:

∂

∂θ
〈r|1〉(φ = 0) =

√
2 cos θm +A sin θm = 0 ,

θm = − arctan(
√

2/A) . (5)

Hence, for A = 0 the hybridized state |1〉 is perpendicular to the other orbitals that remain in the x− y plane. This
is the so-called sp2 hybridization (see Fig.2). For A = 1/2 the orbitals have tetragonal structure making an angle of
109.47 degrees with the z axis. This is the sp3 hybridization (see Fig.2).

FIG. 2: sp2 (left) and sp3 (right) hybridized orbitals.

In free space, the states |1〉, |2〉 and |3〉 are clearly degenerate and their energy is given by:

E1 = E2 = E3 = 〈1|H0|1〉 = εσ =
1−A2

3
Es +

2 +A2

3
Ep. (6)

The energy of these states is shown in Fig. 3. Notice that in the sp3 case (A = 1/2) all orbitals are degenerated while
in the sp2 case the orbitals are separated by an energy of approximately 2.77 eV.

The presence of another carbon atom induces a hybridization between the different orbitals. This hybridization
depends on the distance ` between the atoms and also on the orientation of the orbitals relative to each other. The
distance dependence is usually well described by an exponential behavior:

Vα(`) ≈ V 0
α e
−κα` , (7)

where κα = d ln(Vα)/d` where α labels the different orientations of the orbitals. In terms of orientation, there are four
different types of elementary hybridization between different orbitals (shown in Fig.4): Vssσ (≈ −5 eV for ` = 1.42
Å); Vspσ (≈ +5.4 eV for ` = 1.42 Å); Vppσ (≈ +8.4 eV for ` = 1.42 Å); Vppπ (≈ −2.4 eV for ` = 1.42 Å)13.
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FIG. 3: Energy of the hybridize s − p states, given by (3) and (6) as a function of the hybridization parameter A. A = 0
corresponds to the sp2 and A = 1/2 corresponds to the sp3 configuration.
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FIG. 4: Basic hybridization energies for s− p bonds: (a) Vssσ; (b) Vspσ; (c) Vppσ; (d) Vppπ.

Any hybridization energy can be obtained from those basic hybridizations shown in Fig. 4 as linear combinations.
For instance, let us consider the intra-atomic hybridization between between |2〉 and |3〉. This is given by the matrix
element:

Vintra = 〈2|H0|3〉 = 〈2|

(√
1−A2

3
Es|s〉 −

Ep√
6
|px〉+

Ep√
2
|py〉 −

A√
3
Ep|pz〉

)

=
1−A2

3
(Es − Ep) . (8)

We can also compute inter-atomic hybridization energies such as the hybridization between two |2〉 states oriented as
in Fig. 5:

Vσ = −2

3
Vppσ +

1−A2

3
Vssσ −

2

3

√
2(1−A2)Vspσ . (9)

III. THE CRYSTAL AND BAND STRUCTURE

In this section we focus on the flat graphene (sp2 only) lattice. The geometry of the lattice is shown in Fig.7 (a)
and it can be easily seen that the honeycomb lattice can be considered a crystal lattice with two atoms per unit cell.
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FIG. 5: Calculation of the hybridization of two s− p orbitals in terms of the basic hybridization energies shown in Fig.4.
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FIG. 6: Honeycomb lattice and electronic orbitals

These two sublattices, A and B, form two interpenetrating triangular lattices. The lattice vectors are:

a1 =
a

2
(3,
√

3) ,

a2 =
a

2
(3,−

√
3) , (10)

and the nearest neigh boor vectors are:

~δ1 = a(1, 0) ,

~δ2 =
a

2
(−1,

√
3) ,

~δ3 =
a

2
(−1,−

√
3) , (11)

where a = 1.42 Å is the carbon-carbon distance. The first Brillouin zone is shown in Fig. 7(b) and the reciprocal
lattice is spanned by the vectors:

b1 =
2π

3a
(1,
√

3) ,

b2 =
2π

3
(1,−

√
3) . (12)



6

(a)                    (b)

1
a2

!1
!2

!3

A B "

#

$

K’

a

FIG. 7: (a) Lattice structure; (b) First Brillouin zone

The K point, located at

K =
2π

3a

(
1,

1√
3

)
(13)

is of particular importance here.
Let us label the state at each carbon atom as: |n, a, i〉 where n = 1, ..., N labels the unit cell, a = A,B labels the

sub-lattice (see Fig.7(a)), and i = 0, 1, 2, 3 labels the states defined in (2) and (4). In the simplest approximation we
can consider a tight binding description where the electrons hop between different orbitals (intraband) in the same
atom with characteristic energy Vintra, between the two different sublattices (interband) along the planar orbitals with
energy Vσ, and between two different sublattices with orbitals perpendicular to the plane with energy Vppπ. In this
case the Hamiltonian can be written as:

H = επ
∑
n,a

c†n,a,0cn,a,0 + εσ
∑

n,a,i 6=0

c†n,a,icn,a,i + Vintra

∑
n,a,i 6=j 6=0

(c†n,a,icn,a,j + h.c.)

+ Vppπ
∑
〈n,m〉

(c†n,A,0cm,B,0 + h.c.) + Vσ
∑

〈n,m〉,i6=0

(c†n,A,icm,B,i + h.c.) . (14)

The first step for the solution of this problem is to use the fact that the system is invariant under discrete translations
and to Fourier transform the operators:

cn,a,i =
1√
N

∑
k

eik·Rnck,a,i , (15)

which leads to:

H =
∑
k

επ∑
a

c†k,a,0ck,a,0 + εσ
∑
a,i6=0

c†k,a,ick,a,i + Vintra

∑
a,i6=j 6=0

(c†k,a,ick,a,j + h.c.)

+ Vppπγk(c†k,A,0ck,B,0 + h.c.) + Vσ

[
eik·

~δ1c†k,A,1ck,B,1 + eik·
~δ2c†k,A,2ck,B,2 + eik·

~δ3c†k,A,3ck,B,3 + h.c.
]}

(16)

where

γk =
∑

i=1,2,3

eik·
~δi ,

|γk| =

√
3 + 2 cos(k · (~δ1 − ~δ2)) + 2 cos(k · (~δ1 − ~δ3)) + 2 cos(k · (~δ2 − ~δ3)) . (17)

In this case the Hamiltonian can be written as:

H =
∑
k

Ψ†k · [H] ·Ψk , (18)
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where Ψ†k = (c†k,A,0, c
†
k,B,0, c

†
k,A,1, c

†
k,B,1, c

†
k,A,2, c

†
k,B,2, c

†
k,A,3, c

†
k,B,3) and

[H] =



επ Vppπγk 0 0 0 0 0 0
Vppπγ

∗
k επ 0 0 0 0 0 0

0 0 εσ Vσe
ik·~δ1 Vintra 0 Vintra 0

0 0 Vσe
−ik·~δ1 εσ 0 Vintra 0 Vintra

0 0 Vintra 0 εσ Vσe
ik·~δ2 Vintra 0

0 0 0 Vintra Vσe
−ik·~δ2 εσ 0 Vintra

0 0 Vintra 0 Vintra 0 εσ Vσe
ik·~δ3

0 0 0 Vintra 0 Vintra Vσe
−ik·~δ3 εσ


. (19)

It is immediately obvious that the Hamiltonian for the π band completely decouples from the σ band and can be
treated separately.

(a)
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2
ky

!30

!20
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0

FIG. 8: Band structure of graphene (energy in ev). (a) π-bands; (b) σ-bands.

Although (19) is a 8× 8 matrix (a 2× 2 block plus a 6× 6 block), it can be diagonalized analytically to produce 8
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energy bands that read:

Eπ,±(k) = επ ± |Vppπ||γk| ,
Eσ,1,±(k) = εσ − Vintra ± Vσ ,

Eσ,2,±(k) = εσ +
Vintra

2
+

√(
3Vintra

2

)2

+ V 2
σ ± |VintraVσ||γk| ,

Eσ,3,±(k) = εσ +
Vintra

2
−

√(
3Vintra

2

)2

+ V 2
σ ± |VintraVσ||γk| , (20)

which represent two π bands and six σ bands, respectively. The π-bands are shown in Fig.8(a) and the σ-bands are
shown in Fig. 8(b). In Fig.9 we compare the results of this simple tight-binding with more sophisticated calculations14.
One can clearly see that the tight binding approach produces a fairly good description of the band structure, especially
the π bands, although more hopping parameters have to be introduced in order to reproduce the details of the σ
bands. The fact that this full band structure can be obtained analytically makes this particular parametrization of
the bands rather attractive as a first step towards the electronic description of the graphene electrons.

FIG. 9: Band structure of graphene (energy is given in Hartrees - 1 Hartree = 27.21 eV): left, result of the model discussed in
the text; right, result of ref. [14].

As we said in Section II, the carbon 1s states are completely filled, leaving 4 electrons per carbon atom (8 per unit
cell) to fill these 8 bands. Hence, the first 4 bands are fully occupied meaning that the Fermi energy crosses exactly
at the “conical” points of the dispersion at the K and K’ point of the Brillouin zone in Fig.9. Notice that there are 6
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of these points in the Brillouin zone with vectors given by:

Q1 = 4π/(3
√

3a)(0, 1) , (21)

Q2 = 4π/(3
√

3a)(
√

3/2, 1/2) ,

Q3 = 4π/(3
√

3a)(
√

3/2,−1/2) ,

and also at −Qi with i = 1, 2, 3. Close to these particular points, that is, close to the Fermi energy, we can find a
simple expression for the electronic dispersion by expanding γk as:

γQ1+k ≈
3a

2
(kx + iky) , (22)

for k � Q. From (20) we see that the spectrum becomes:

E±(kx, ky) = ±vF k = ±vF
√
k2
x + k2

y , (23)

where

vF = 3|Vppπ|a/2 , (24)

is the Fermi velocity. Thus the electronic spectrum close to the Fermi energy has a conical form, mimicking the
dispersion of a relativistic, massless, Dirac particle. Notice that in the first Brillouin zone each corner of the zone
contains 1/3 of a Dirac cone but we do not need all the vectors in (21) to describe the problem. We can use reciprocal
lattice vectors (12) in order to translate each piece of the cone to two corners located at ±Q1 making 2 Dirac cones
in the extended zone scheme. Hence, close to Q1 we can rewrite the Hamiltonian as:

H0 ≈ vF
∑
k

(ψ†A,k, ψ
†
B,k) ·

[
0 kx + iky

kx − iky 0

]
·
(
ψA,k
ψB,k

)
, (25)

where ψA,k = aQ1+k and similarly for the B sublattice. By Fourier transforming the Hamiltonian back to real space
we obtain the 2D Dirac Hamiltonian:

H0 =

∫
d2rΨ†(r)(ivF~σ · ∇ − µ)Ψ(r) , (26)

where µ is the chemical potential measured away from the Dirac point, ~σ = (σx, σy) are Pauli matrices, and

Ψ†(r) = (ψ†A(r), ψ†B(r)) . (27)

IV. PHONONS IN FREE FLOATING GRAPHENE

Since graphene is two-dimensional and has 2 atoms per unit cell there are 4 in-plane degrees of freedom that give rise
to 2 acoustic, longitudinal (LA) and transverse (TA), and 2 optical, longitudinal (LO) and transverse (TO), phonon
modes. However, graphene is embedded in a three-dimensional space and hence there are two extra degrees of freedom
associated with out-of-plane motion: flexural acoustical (ZA) and optical (ZO) phonon modes. The displacements
associated with these modes at long wavelengths is shown in Fig.10. In leading order in the displacements the in-plane
and out-of-plane modes decouple and we can study them separately. Here we focus in the out-of-plane modes since
those dominate the low energy physics of graphene.

We use the Monge representation where the a point R in the graphene lattice is described by the vector R = (r, h(r))
where r = (x, y) is the 2D coordinate vector and h(r) is the height variable . The unit vector normal to the surface
is given by:

N = (−∇h+ z)/
√

1 + (∇h)2, (28)

where ∇ = (∂x, ∂y) is the 2D gradient operator, and z is the unit vector in the third direction. Distortions from the
flat configuration cost energy because they rotate the sigma orbitals that want to be aligned in order to get maximum
overlap of the wavefunctions that bind the atoms together. Let us consider the triangular lattice centered at sublattice
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SIDE VIEW

Transverse Optical (TO)                      Longitudinal Optical (LO)

Flexural Acoustical (ZA)                        Flexural Optical (ZO)

TOP VIEW

FIG. 10: Lattice displacements associated with some of the long-wavelength phonon modes in graphene.

A, say at Ri, that covers the entire graphene lattice. The normal at this point is Ni. The energy cost for the bending
of graphene can then be written as:

UB = −κL
2

∑
〈i,j〉

Ni ·Nj , (29)

where κL is the lattice bending rigidity of graphene. Notice that (29) has the form of the energy of a classical
ferromagnet where the normal vectors play the role of spins. Define Rj = Ri + u where u is the next-to-nearest
neighbor vector that connects two triangles and let us consider only length scales much larger than the lattice spacing,
|u| ≈

√
3a. In this, assuming that N is a smooth function over the lattice scale, we can write:

Nj ≈ Ni + (u · ∇)Ni +
1

2
(u · ∇)2Ni (30)

and hence:

Ni ·Nj ≈ 1 + Ni · [(u · ∇)Ni] +
1

2
Ni · [(u · ∇)2Ni] (31)

where we used N2
i = 1. Again, assuming the distortions to be small and smooth, we can rewrite (28) as:

N ≈ z−∇h− z

2
(∇h)2 , (32)

and hence,

∂aN ≈ −∂a∇h− z∇h · (∂a∇h) , (33)

where a = x, y. Therefore, using (32) and (33) and the fact that z · ∇h = 0, we find:

N · [∂aN] ≈ 0 . (34)

Once again:

∂2
a,bN ≈ −∂2

a,b∇h− z(∂n∇h) · (∂a∇h)− z∇h · (∂2
a,b∇h) , (35)

and finally:

N · [∂2
a,bN] ≈ −(∂b∇h) · (∂a∇h) . (36)

Replacing (34) and (36) into (31) we find:

Ni ·Nj ≈ 1− 1

2
[(u · ∇)∇h]

2
. (37)
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Replacing (37) in (29) we find:

δUB ≈
κL
4

∑
i,u

[(u · ∇)∇h(Ri)]
2

≈ κ

2

∫
d2r

[
∇2h(r)

]2
, (38)

where κ (∝ κL) is the bending rigidity. Notice that the energy (38) is invariant under translations along the z direction

and rotations around any axis (the energy is invariant under h → h + C1a + C2r × ~θ where C1 and C2 are contains

and ~θ is the anti-clockwise oriented angle of rotation along a given axis). In momentum space we can rewrite (38) as:

δUB =
κ

2

∫
d2qq4|h(q)|2 , (39)

showing the elastic cost in energy for bending the graphene sheet behaves as q4 when q → 0.
The quantum mechanics of bending can be easily obtained by quantization of the field h(r). Introducing a momen-

tum operator P (q) that is canonically conjugated to h(q):

[h(q), P (q′)] = iδ2(q− q′) , (40)

we can write the Hamiltonian for the bending modes as:

H =

∫
d2q

{
P (−q)P (q)

2σ
+
κq4

2
h(−q)h(q)

}
, (41)

where σ is graphene’s 2D mass density. From the Heisenberg equations of motion for the operators it is trivial to find
that h(q) oscillates harmonically with a frequency given by:

ωflex(q) =
(κ
σ

)1/2

q2 , (42)

which is the dispersion of the acoustical flexural mode.
Notice that the existence of a mode dispersing like q2 in two dimensions has some strong consequences. Consider,

for instance, the mean square displacement of the height (ωn = 2πn/β with β = 1/T is the Matsubara frequency at
temperature T ):

〈h2〉 =
1

β

∑
n

∫
d2q

(2π)2

1

(ωn)2 + κq4

=

∫
d2q

(2π)2

coth
(
β
√
κq2

2π

)
2
√
κq2

=
1

8π
√
κ

∫ β
√
κΛ2/(2π)

β
√
κ/(2πL2)

du
coth(u)

u
(43)

where we had to introduce a ultraviolet cut-off (Λ ∼ 1/a) and a infrared cut-off (1/L where L is the system size)
because the integral is formally divergent in both limits. The ultraviolet divergence is not of concern since there is a
physical cut-off which is the lattice spacing, the problem is the infrared divergence since it indicates an instability in
the system. Let us consider two different limits. At low temperatures (T → 0) we can approximate coth(u) ≈ 1 and
we get:

〈h2(T → 0)〉 ≈ 1

4π
√
κ

ln(ΛL) (44)

indicating that even at zero temperature the quantum fluctuations are logarithmically divergent. However, at high T
we can approximate coth(u) ≈ 1/u, the ultraviolet cut-off becomes irrelevant, and we find

〈h2(T →∞)〉 ≈ L2

4κβ
(45)



12

and one finds a severe infrared divergence of the thermal fluctuations. Similar arguments can be made about the
fluctuations of the normal N, namely,

〈(δN)2〉 ≈ 〈(∇h)2〉 ≈ 1

4κβ
ln

[
sinh(β

√
κΛ2/(2π))

sinh(β
√
κ/(2πL2))

]
, (46)

and hence at low temperatures we find 〈(δN)2(T → 0)〉 ≈ Λ2/(16π
√
κ) and the problem is free of infrared divergences.

At high temperatures we have 〈(δN)2(T →∞)〉 ≈ ln[ΛL]/(2βκ) and the fluctuations of the normal are logarithmically
divergent. The interpretation of these results are straightforward: at zero temperature the graphene sheet should
be rough but mostly flat, as one increases the temperature the thermal fluctuations become large and the graphene
crumples (divergence of the normal indicates the formation of folds and creases). These results are modified by
non-linear effects that we do not consider here15. More important than those, is the fact that in most graphene
experiments, where the measurement of electric properties depends of physically constraining the samples, the basic
symmetries of free floating graphene are explicitly broken. This is what we consider in the next Section.

V. CONSTRAINED GRAPHENE

Since graphene is not floating in free space and since there can be impurities that hybridize with the carbon atoms
changing the structural properties, it is important to consider symmetry breaking process that change the picture
presented in the last Section. Consider, for instance, if graphene is under tension. In this case, the rotational symmetry
along the x and y axis is broken and a new term is allowed in the energy, that reads:

UT =
γ

2

∫
d2r (∇h(r))

2
, (47)

where γ plays the role of the surface tension. It is easy to see that the dispersion is modified to:

ω(q) = q

√
κ

σ
q2 +

γ

σ
, (48)

indicating that the dispersion of the flexural modes becomes linear in q, as q → 0, under tension. Notice that this is
the case of a 3D solid, that is, the flexural mode becomes an ordinary acoustic phonon mode. This is what happens in
graphite where the interaction between layers breaks the rotational symmetry of the graphene layers. It is easy to see
that in this case the graphene fluctuations become suppressed: at low temperatures we find 〈h2(T → 0)〉 is constant
while 〈h2(T →∞)〉 ≈ T ln(ΛL) is log divergent. Also, 〈(δN)2(T )〉 is well behaved at all temperatures.

In the presence of a substrate, the translational symmetry along the z direction is broken and a new term is allowed:

US =
v

2

∫
d2r(h(r)− s(r))2 , (49)

where v is the interaction strength with the substrate and s(r) is a reference height. Notice that in this case the
flexural mode becomes gapped (by means of the h2 term) and hence all fluctuations (quantum and thermal) are
quenched. Therefore, the most generic energy for small and smooth height distortions of graphene is:

U =
1

2

∫
d2r

{
κ
[
∇2h(r)

]2
+ γ [∇h(r)]

2
+ v(h(r)− s(r))2

}
. (50)

Let us consider the case of (50) in the presence of a substrate16. Minimization of the free energy with respect to h
leads to the equation:

κ∇4h− γ∇2h+ vh = vs . (51)

A particular solution of the non-homogeneous equation can be obtained by Fourier transform:

h(q) =
s(q)

1 + `2t q
2 + `4cq

4
, (52)

where

`t =
(γ
v

)1/2

,

`c =
(κ
v

)1/4

, (53)
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are the length scales associated and curvature, respectively. Notice that (52) implies that the surface height more or
less follows the substrate landscape, as expected.

Let us consider the case of a random substrate where the probability of a substrate height between s and s+ ds is
given by:

P (s) =
1

N
exp

{
−
∫
d2r

s2

2s4
0

}
, (54)

where N is a normalization factor:

N =

∫ +∞

−∞
dsP (s) =

(√
2πs2

0

a

)N
, (55)

where N is the number of surface cells, a is their lattice spacing, and s0 is the average height variation. In this case,
the height correlation function can be shown to be:

s(r)s(r′) = s4
0δ(r− r′) . (56)

In momentum space (56) is written as:

s(q)s(q′) = (2π)2s4
0δ(q + q′) . (57)

Using (57) we can immediately compute the height-height correlation function as a function of the in-plane distance:

h(r)h(0) =

∫
d2q

(2π)2

∫
d2q′

(2π)2

eiq·r

(1 + `2t q
2 + `4cq

4)(1 + `2t (q
′)2 + `4c(q

′)4)
s(q)s(q′)

=
s4

0

2π

∫ ∞
0

dq
qJ0(qr)

(1 + `2t q
2 + `4cq

4)2
=

s4
0

2π`8t

∫ ∞
0

dq
qJ0(qr)

(q2 + P 2
+)2(q2 + P 2

−)2
, (58)

where we have defined:

P 2
± =

1

2`2

(
1±

√
1− ζ2

)
,

` =
`2c
`t

=

√
κ

γ
,

ζ = 2

(
`c
`t

)2

= 2

√
κv

γ2
, (59)

and the behavior of the integral depends on whether ζ is smaller or bigger than 1. For r � λ = 1/Min(Re(P±)) one
finds:

h(r)h(0) ∼ s4
0

2πλ2
e−r/λ , (60)

showing that the height fluctuations are short ranged and decay with a characteristic length scale given by λ. The
local height variations are given by:

h2(0) =
s4

0

2π`2t
w±(ζ) , (61)

where for ζ > 1 we have:

w+(ζ) =
1

(ζ2 − 1)3/2

[
π

2
− arctan

(
1√
ζ2 − 1

)
−
√
ζ2 − 1

ζ2

]
, (62)

and for ζ < 1:

w−(ζ) =
1

(1− ζ2)3/2

[√
1− ζ2

ζ2
− 1

2
ln

(
1 +

√
1− ζ2

1−
√

1− ζ2

)]
, (63)

the function w(ζ) is shown in Fig. 11. Notice as ζ � 1, that is, when `c � `t, the height variations are strongly
suppressed and the system is essentially flat. This happens because in this limit the interaction with the substrate is
strong, and the bending rigidity is large, compared with the tension.
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FIG. 11: Amplitude of the local height variations in graphene supported in a random substrate, w(ζ).

VI. DEFORMED GRAPHENE

Graphene is a one atom thick and hence very soft. Just as any soft material, graphene can be easy deformed,
especially in the out of the plane direction where the restitution forces vanish. These deformations couple directly to
the electrons, making of graphene a unique example of a metallic membrane17. Let us consider what happens to the
electrons when the graphene is deformed either by bending or strain. One effect is the change in the distance between
the atoms, the other is the change in the overlap between the different orbitals. In both cases, the hopping energy
between different carbon atoms is affected. Consider the case that of the nearest neighbor hopping that changes from

t0 to t0 + δti(~δ) at site Ri in the direction of ~δ. In this case we have to add a new term to Hamiltonian (16):

δH0 = −
∑
k,k′

a†kbk′

∑
i,~δ

δti(~δ)e
i(k−k′)·Ri−i~δ·k′

≈ −
∑
q,q′

ψ†A,qψB,q′

∑
i,~δ

δti(~δ)e
i(q−q′)·Rie−i

~δ·Q1

≈
∫
d2r ψ†A(r)ψB(r)A(r) , (64)

where

A(r) = Ax(r) + iAy(r) = −
∑
~δ

δti(~δ)e
−i~δ·Q1 . (65)

Notice that if we replace (64) into (26) the full Hamiltonian becomes:

H =

∫
d2rΨ†(r)

[
~σ ·
(
ivF∇+ ~A

)
− µ

]
Ψ(r) , (66)

where ~A = (Ax,Ay) and hence the changes in the nearest neighbor hopping couple like a gauge field. One should
not worry about a possible broken time reversal symmetry here because there is another nonequivalent point in the
Brillouin zone, at K’, which is related to the K point by inversion symmetry. Hence, in the K’ point the “magnetic
field” is reversed and therefore there is no net time reversal symmetry breaking.

Let us consider the problem of the hopping between next nearest neighbor sites. The Hamiltonian in this case is:

H1 = −t
′

0

∑
〈i,j〉

(
a†iaj + b†i bj + h.c.

)
(67)

which describes essentially hopping on a triangular lattice with lattice spacing
√

3a with nearest neighbor vectors:

~v1 =
√

3a(0, 1) ,

~v2 =
√

3a(
√

3/2,−1/2) ,

~v3 =
√

3a(−
√

3/2,−1/2) . (68)

By Fourier transforming (67) we find:

H1 =
∑
k

ε(k)
(
a†kak + b†kbk

)
, (69)
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where

ε(k) = −t
′

0

∑
~v

eik·~v

= 2t
′

0

[
cos(
√

3aky) + 4 cos(3akx/2) cos(
√

3aky/2)
]
. (70)

For k = Q1 + q we find:

ε(Q1 + q) ≈ −3t
′

0 +
9t

′

0a
2

2
q2 (71)

for q � Q1. Notice that the first term (71) leads to a shift in the chemical potential and the second term introduces

a quadratic term in the dispersion. For q � t0/(3at
′

0) we can disregard this term and consider only the chemical

potential shift. Ab initio calculations estimate that t
′

0 ≈ 0.1t0 providing a good range where this approximation is
valid1.

Consider again the deformations of the graphene surface. In this case t
′

0 in (71) has to be replaced by t′ = t
′

0 + δt′

and, in complete analogy with (64), we find:

δH1 ≈
∫
d2r Φ(r)

(
ψ†A(r)ψA(r) + ψ†B(r)ψB(r)

)
, (72)

where

Φ(r) = −3
∑
~v

δt
′

i(~v)e−i~v·Q1 (73)

where we have used (11), (21), and (68). In this case, changes in the next-to-nearest neighbor hopping couple to the
Dirac fermions as a scalar potential. The final Dirac Hamiltonian has the form:

H =

∫
d2rΨ†(r)

{
~σ ·
(
ivF∇+ ~A

)
− µ+ Φ(r)

}
Ψ(r) . (74)

Given the local changes in the hopping energies the scalar and vector potentials can be readily computed through
(65) and (73), respectively.

This changes in hopping energies can be connected to changes in the structure of the lattice. Let us consider the
case of in-plane distortions. In this case, the only change in the hopping energy is due to the change in the distance
between the pz orbitals. Consider the case where the distance between sublattices changes by a distance δ` in the

direction of ~δ, in first order we have:

δt ≈ (∂t/∂a)δ` , (75)

δ` ≈ (~δ · ∇)u , (76)

where u(r) is the lattice displacement. Replacing the above expression in (65) we get:

A(u)
x (r) ≈ αa (uxx − uyy) ,

A(u)
y (r) ≈ αauxy , (77)

where α is a constant with dimensions of energy and we have used the standard definition of the strain tensor:

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (78)

An analogous calculation for the change in the next-to-nearest neighbor hopping energy leads to:

Φ(u)(r) ≈ g(uxx + uyy) . (79)

Equations (77) and (79) relate the strain tensor to potentials that couple directly to the Dirac particles.
Less trivial is the coupling to the out-of-plane modes since those involve rotations of the orbitals. In Fig.12 we

show a rotation of two orbitals by an angle θ. The rotation mixes π and σ states and for small angles the change in
the hybridization energy is given by:

t ≈ t0 + δV θ2 , (80)
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where δV is the energy mixing between π and σ states. Notice that θ = 2π/R where R is the curvature radius. In
terms of the height variable we can write, in analogy with (37), that the change in the hopping amplitude due to
bending in the direction u is given by:

δt ≈ δV [(u · ∇)∇h]
2
. (81)

On the one hand, if u is a nearest neighbor vector ~δ we get from (65):

A(h)
x (r) = −3Eaba

2

8

[
(∂2
xh)2 − (∂2

yh)2
]
,

A(h)
y (r) =

3Eaba
2

4

(
∂2
xh+ ∂2

yh
)
∂xh∂yh , (82)

where the coupling constant Eab depends on microscopic details. On the other hand, if u is the next-to-nearest
neighbor vector we find, in accordance with (73):

Φ(h)(r) ≈ −Eaaa2
[
∇2h(r)

]2
, (83)

where Eaa is an energy scale associated with the mixing between orbitals. The main conclusion is therefore that
for smooth distortions of graphene due to strain or bending the Dirac particles are subject to scalar and vector
potentials leading to an “electrodynamics” that is purely geometrical (there is no electric charge associated with the
“electric” and “magnetic” fields created by structural deformations). This structural “electrodynamics” has strong
consequences for the electronic motion in graphene leading to many unusual effects that cannot be found in ordinary
materials. In particular, one can manipulate the electrons by “constructing” appropriate deformations of the lattice
that mimic electric and magnetic fields. This is the so-called strain engineering and is a field of research that is still
in its infancy18,19.
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FIG. 12: Rotation of pz orbitals.

A. A non-trivial example: The Scroll20

So far we have discussed small distortions of the graphene sheet, but as a soft material graphene can be bent by
large angles making completely new structures. The scroll is an example of the softness of graphene that shows up as
an interplay between the van der Waals energy, EvdW , that makes graphene stick to itself and the bending energy, EB ,
the energy cost to introduce curvature in the graphene sheet. Let us show first that the scroll is a stable configuration
of a free standing graphene sheet.

We assume here that when graphene forms a scroll the equilibrium distance between folded regions is the same
that one would find between the planes in graphite, that is, d = 0.34 nm. In this case, the scroll is described by the
so-called Archemedian spiral:

r(θ) = aθ , (84)

where a = d/(2π). We assume that the scroll has length L along the scroll axis and consider the two main energy
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FIG. 13: Graphene scroll in the form of an Archemedian spiral.

scales in this problem:

EvdW
L

= −γ
∫ θ1

θ0+2π

ds(θ) , (85)

EB
L

=
κ

2

∫ θ1

θ0

ds(θ)
1

R2(θ)
, (86)

where γ ≈ 2.5 ev/nm is the van der Waals coupling21, κ ≈ 1 eV is the bending energy1. The radius of curvature of
the Archemedian spiral is given by:

R(θ) =
a(1 + θ2)3/2

2 + θ2
, (87)

and

ds = a
√

1 + θ2dθ , (88)

is the infinitesimal arc-length of the spiral. The evaluation of the integrals is straightforward:

EvdW
L

= −γa
2

[
ln

(
θ1 +

√
1 + θ2

1

(θ0 + 2π) +
√

1 + (2π + θ0)2

)
+
θ1(9 + 8θ2

1)

(1 + θ2
1)3/2

− (θ0 + 2π)(9 + 8(θ0 + 2π)2)

(1 + (θ0 + 2π)2)3/2

]
, (89)

EB
L

=
κa

2

[
ln

(
θ1 +

√
1 + θ2

1

θ0 +
√

1 + θ2
0

)
+ θ1(1 + θ2

1)1/2 − θ0(1 + θ2
0)1/2

]
. (90)

The angle θ0 is determined by the condition that the force on the graphene sheet vanishes at the edge of the scroll:

F = − 1

L

∂E

∂θ0
= − κ

2a

(2 + θ2
0)2

(1 + θ2
0)5/2

+ γa
√

1 + (θ0 + 2π)2 = 0 , (91)

and using the values of the parameters we find θ0 ≈ 5.85. The total energy as a function of θ1 is given by (89) and
(90) and shown in Fig.14. Notice that the scroll becomes stable for angles of rotation bigger than ≈ 17.23 which is
equivalent to approximately 3 turns of the scroll. This result is in agreement with more involved calculations22.

Consider what happens when a uniform magnetic field is applied perpendicular to the graphene plane. Notice that
in the region of the scroll the component of the field perpendicular to the graphene surface is changing periodically.
In fact, the normal component to graphene sheet at the scroll can be written as:

N(θ) =
1√

1 + θ2
(− sin(θ)− θ cos(θ), cos(θ)− θ sin(θ)) , (92)

and hence the component of the field perpendicular to the graphene is:

B⊥(θ) = B ·N(θ) =
B√

1 + θ2
(cos(θ)− θ sin(θ)) , (93)
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FIG. 14: Energy of a scroll as a function of angle of rotation.

which is shown in Fig. 15. Notice that from the point of view of the electrons, which are constrained to live in a
two dimensional universe, a uniform magnetic field in three dimensions, becomes an oscillating magnetic field in the
presence of the scroll. An oscillating magnetic field has unusual effects on the electronic motion because the Lorentz
force changes sign in the region where the field changes sign producing a “snake-like” motion around the regions of
zero field. These snake states are chiral one-dimensional correlated systems with rather unusual properties23. While
it is very hard to produce a magnetic field that oscillates in a short length scale, it is very hard to roll graphene on a
short length scale. Therefore, snake states should be easy to observe in rolled graphene sheets.
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FIG. 15: Magnetic field perpendicular to the graphene close to the scroll.

VII. CONCLUSIONS

Graphene is a unusual system that shares properties of soft and hard matter and mimics problems in particle
physics. These properties have their origin on the nature of its chemical bonds, the s− p hybridization, and the low
dimensionality. All these ingredients create a new framework for theoretical exploration which is still very much in
its beginning. The possibility of studying electronics of deformed surfaces is quite intriguing because of its exotic
“electrodynamics”. The field of electronic membranes was born out of the discovery of graphene in 2004 and much
has still to be understood.

In these notes I covered some very basic aspects of graphene chemistry and physics. We have studied the basic
Hamiltonian that describes the overall band structure of graphene. We have seen that flexural modes, nonexistent
in three dimensional solids, are fundamental for the understanding of the structural stability of the material. We
have seen that substrates can change considerably the flexural modes and hence control the height fluctuations in
supported samples. Finally, we have studied the various ways that graphene deformations, either by strain or bending,
can modify the electron propagation in this material. In particular, new structures that can be created out of flat
graphene, such as the graphene scroll, can have exotic properties, such as snake states, in the presence of applied
uniform magnetic fields. In some way, the present notes complete some of the material already published in ref. 1.
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Nevertheless, the whole subject of graphene electronics and structure is much bigger than that and there is so much
more to be understood.

It is quite obvious that a material that is structurally robust, still flexible, and extremely clean, has enormous
potential for technological applications. By understanding these unusual properties one can harvest new functionalities
that did not exist before. Progress in material science unavoidably leads to progress. Graphene is considered today
one of the most promising candidates for a new era of a carbon-based technology, possibly supplanting the current
silicon-based one. However, only progress in the understanding the basic properties of these systems can actually
drive the technological progress.
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