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1. Introduction
The principal problem of physics is to determine how

bodies behave when they interact. Most basic courses of
classical and quantum mechanics treat the problem of one
or two particles or bodies. (An external potential can be
considered as one very heavy body.) The problem gets mo-
re difficult when the number of bodies involved is larger.
In particular, in condensed matter we are dealing with a
macroscopic number N ∼ 1023 of particles, and typically
hundreds of them directly interact with each other. This
problem is commonly known as the many-body problem.

There is no general solution to the many-body problem.
Instead there is an great number of approximations that
successfully explain various limiting cases. Here we discuss
one of them, the Fermi-liquid theory. This type of approxi-
mation for a fermion many-body problem was invented by
Landau (1957). It was originally proposed for liquid 3He
at very low temperatures. Soon it was realized that a simi-
lar approach could be used to other fermion systems, most
notably to the conduction electrons of metals. The Fermi-
liquid theory allows to understand very many properties
of metals. A generalization of the Fermi-liquid theory al-
so allows to understand the superconducting state, which
occurs in many metals at low temperatures. Even when
Landau’s theory is not valid, it forms the standard against
which to compare more sophisticated theories. Thus Fermi-
liquid theory is a paradigm of many-body theories, and it
is presented in detail in many books discussing the many-
body problem.

• L.D. Landau and E.M. Lifshitz, Statistical Physics,
Part 2 (Pergamon, Oxford, 1980).

• P. Nozieres, Theory of interacting Fermi systems (Be-
jamin, New York 1964).

• D. Pines and P. Nozieres, The theory of quantum
liquids, Vol. 1 Normal Fermi liquids (Bejamin, New
York 1966).

• G. Baym and C. Pethick, Landau Fermi-liquid theory
(Wiley, Ney York 1991).

In this lecture I present an introduction to the Landau
theory. I present the theory as if it could have logically
developed, but this not necessarily reflects historical facts.
(If you know historical facts that contradict or support this
view, please, let me know.) I will start with the calculation
of specific heat in an ideal gas, and compare the result with
the measurement in liquid 3He. This leads to the concept of
quasiparticles with an effective mass differing from the ato-
mic mass. It is then show that in order to make a consistent
theory, one has to allow an interaction between the qua-
siparticles. Several applications of the Fermi-liquid theory
are illustrated. The generalizations of the theory to metals
and to the superconducting state are discussed.

2. Preliminary topics

Many-body problem

The many-body problem for indentical particles can be
formulated as follows. Consider particles of mass m labeled
by index i = 1, 2, . . . , N . Their locations and momenta are
written as rk and pk. The Hamiltonian is

H =

N∑
k=1

p2
k

2m
+ V (r1, r2, . . .). (1)

Here V describes interactions between any particles, and
it could in many cases be written as a sum of pairwise
interactions V = V12 + V13 + . . .+ V23 + . . .. The classical
many-body problem is to solve the Newton’s equations.

In quantum mechanics the locations and momenta beco-
me operators. In the Schrödinger picture pk → −ih̄∇k,
where

∇k = x̂
∂

∂xk
+ ŷ

∂

∂yk
+ ẑ

∂

∂zk
. (2)

An additional feature is that generally particles have spin.
This is described by an additional index σ that takes values
−s,−s + 1, . . . , s − 1, s for a particle of spin s. Thus the
Hamiltonian operator is

H = −
N∑
k=1

h̄2

2m
∇2
k + V (r1, σ1, r2, σ2, . . .). (3)

and the state of the system is described by a wave func-
tion Ψ(r1, σ1, r2, σ2, . . . ; t). Particles having integral spin
are called bosons. Their wave function has to be symmet-
ric in the exchange of any pairs of arguments. For example

Ψ(r1, σ1, r2, σ2, r3, σ3, r4, σ4, . . .)

= +Ψ(r3, σ3, r2, σ2, r1, σ1, r4, σ4, . . .) (4)

where coordinates 1 and 3 have been exchanged. Particles
having half-integral spin are called fermions. Their wave
function has to be anti-symmetric in the exchange of any
pairs of arguments. For example

Ψ(r1, σ1, r2, σ2, r3, σ3, r4, σ4, . . .)

= −Ψ(r3, σ3, r2, σ2, r1, σ1, r4, σ4, . . .) (5)

The quantum many body problem is to solve time-
dependent Schrödinger equation

ih̄
∂Ψ

∂t
(r1, σ1, . . . , rN , σN , t) = HΨ(r1, σ1, . . . , rN , σN , t)

(6)
or to solve energy eigenvalues and eigenstates.

Ideal Fermi gas

As stated in the introduction, there is no general solution
of the many-body problem. What one can do is to study
some limiting cases. One particularly simple case is ideal
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gas, where we assume no interactions, V ≡ 0. Below we
concentrate on ideal spin-half (s = 1/2) Fermi gas.

In the absence of interactions we can assume a facto-
rizable form

Ψ0(r1, σ1, r2, σ2, . . . ; t) = φa(r1, σ1)φb(r2, σ2) . . . . (7)

consisting of a product of single-particle wave functions
φα(r, σ). This does not yet satisfy the antisymmetry requi-
rement (5) but permuting the arguments in Ψ0 and sum-
ming them all together multiplied by (−1)nP , where nP is
the number of pairwise permutations in a permutation P ,
one can generate a proper wave function

Ψ(r1, σ1, r2, σ2, . . .) =
1√
N

∑
P

(−1)nP

×φa(rP (1), σP (1))φb(rP (2), σP (2))) . . . . (8)

This is known as Slater determinant since it can also be
presented as a determinant

Ψ =
1√
N

∣∣∣∣∣∣∣
φa(r1, σ1) φb(r1, σ1) . . .
φa(r2, σ2) φb(r2, σ2) . . .

...
...

. . .

∣∣∣∣∣∣∣ . (9)

We can now see if any two of the single-particle wave
functions φa, φb, . . . are identical, the resulting wave func-
tion vanishes identically. (Verify this in the case of two fer-
mions.) This is the Pauli exclusion principle, which states
that a single state can be occupied by one fermion only.

The natural choice for wave functions of a single free
particle are plane wave states. In order to incorporate the
spin, we have “spin-up states”

φp↑(r, σ) =

{
1√
V
eip·r/h̄ if σ = 1

2

0 if σ = − 1
2

. (10)

and “spin-down states”

φp↓(r, σ) =

{
0 if σ = 1

2
1√
V
eip·r/h̄ if σ = − 1

2

. (11)

Here the wave vector k or the momentum p = h̄k appears
as a parameter. In order to count the states, it is most
simple to require that the wave functions are periodic in a
cube of volume V = L3, which allows the momenta p (nx,
ny and nz integers)

px =
2πh̄nx
L

, py =
2πh̄ny
L

, pz =
2πh̄nz
L

. (12)

We suppose that the volume V is very large. Then we can
take the limit V →∞ in quantities that do not essentially
depend on V .

The energy of a single-particle states is εp = p2/2m. The
total energy is this summed over all occupied states

E(npσ) =
∑
σ

∑
p

p2

2m
npσ (13)

where npσ = 1 for an occupied state and is zero othewise.

The ground state of a system with N particles has N
lowest energy single-particle states occupied and others
empty. Here the maximal kinetic energy of an occupied
state is called Fermi energy εF . We also define the Fermi
wave vector kF and Fermi momentum pF = h̄kF so that

εF =
p2
F

2m
=
h̄2k2

F

2m
. (14)

In momentum space this defines the Fermi surface (p =
pF ). All states inside the Fermi surface (p < pF ) are occu-
pied, and the ones outside are empty.

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

px

-

pF

2πh
L

py

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×

× × × × × × × × × × × × × ×

The number of particles can be calculated as

N = 2
∑
p<pF

1 = 2
4
3πp

3
F

(2πh̄/L)3
, (15)

where the factor 2 comes from spin. From this we get a
relation between the Fermi wave vector and the particle
density,

N

V
=

p3
F

3π2h̄3 . (16)

The excited states of the system consist of states where
one or more fermions is excited to higher energy states. The
average occupations of the states at a given temperature
T is given by the Fermi-Dirac distribution

f(ε) =
1

eβ(ε−µ) + 1
. (17)

Here β = 1/kBT and kB = 1.38×10−23 J/K is Boltzmann’s
constant, which is needed to express the temperature T in
Kelvins, and µ is the chemical potential. At T = 0 the
system is in its ground state,

f(ε) =

{
1 for ε < µ
0 for ε > µ.

(18)

with µ = εF . When T > 0, the occupation f(ε) gets roun-
ded so that the change from f ≈ 1 to f ≈ 0 takes place in
the energy interval ≈ kBT .

ε

f T = 0

T > 0

0 εF

kBT
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Next we calculate the specific heat of the ideal Fermi gas
at low temperatures. The average energy is given by

E =
∑
σ

∑
p

εpf(εp) =
2

(2πh̄/L)3

∫
εpf(εp)d

3p

=
8π

(2πh̄/L)3

∫ ∞
0

p2εpf(εp)dp (19)

Changing ε = p2/2m as the integration variable we get

E

V
=

√
2m3

π2h̄3

∫ ∞
0

ε3/2f(ε)dε

=

∫ ∞
0

g(ε)εf(ε)dε (20)

In the second line we have expressed the same result by
defining a density of states g(ε) = m

√
2mε/π2h̄3.

The specific heat is now obtained as the derivative of
energy

C =
∂E(T, V,N)

∂T
(21)

In order eliminate µ appearing in the distribution function
(17) one has to simultaneously satisfy

N

V
=

∫ ∞
0

g(ε)f(ε)dε (22)

The result calculated with Mathematica is shown below

0.0 0.5 1.0 1.5 2.0
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3 N kB

At high temperatures T � TF the Fermi gas behaves
like classical gas, where the average energy per particle is
3kBT/2, known as the equipartition theorem, and this gi-
ves the specific heat 3kB/2 per particle. We see that at
lower temperatures T < TF the specific heat is reduced.
This can be understood that only the particles with ener-
gies close to the Fermi surface can be excited. Those further
than energy kBT from the Fermi surface cannot be excited,
and thus do not contribute to specific heat. At temperatu-
res T � TF the specific heat is linear in T :

C =
π2

3
g(εF )k2

BT +O(T 2). (23)

We see that the linear term is determined by the density
of states at the Fermi surface

g(εF ) =
mpF

π2h̄3 . (24)

(For detailed derivation see Ashcroft-Mermin, Solid state
physics.)

Liquid 3He

Helium has two stable isotopes, 4He and 3He. The former
is by far more common in naturally occurring helium. It is
a boson since in the ground state both the two electrons
have total spin zero, and also the nuclear spin is zero. It has
a lot of interesting properties that could be discussed, but
here we concentrate on the other isotope. 3He is a fermion
because the nuclear spin is one half, s = 1/2. Studies of 3He
were started as it became available in larger quantities in
the nuclear age after world war II as the decay product of
tritium. The two isotopes of helium are the only substances
that remain liquid even at the absolute zero of temperature.

Figure: the specific hear of liquid 3He at two different
densities (Greywall 1983).

We see that at low temperatures, the specific heat is li-
near in temperature. This resembles the ideal gas discus-
sed above, but is quite puzzling since the atoms in a liquid
are more like hard balls continuously touching each other!
Also, quantitative comparison of the slope with the ideal
Fermi gas gives that the measured slope is by factor 2.7
larger.
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3. Construction of the theory

Landau’s idea

The experiment above raises the following idea. Could it
be possible that low temperature liquid 3He would effec-
tively be like an ideal gas? This was the problem Landau
started thinking. He had to answer the following questions

• How could dense helium atoms behave like an ideal
gas?

• If there is explanation to the first question, how one
can understand the difference by 2.7 in the density of
states?

• If previous questions have positive answers, are any
other modifications needed compared to the ideal gas?

An obvious problem with the ideal gas wave function (8)
is that there is too little correlation between the locations
rk of the particles. The Pauli principle prohibits for two
particles with the same spin to occupy the same location,
but there is no such restriction for particles with opposite
spins. Thus it is equally likely to find two opposite-spin
particles just at the same place than at any other places in
the ideal gas wave function (8).

Weak interactions

As a first attempt to answer the questions, consi-
der point-like particles (instead of real 3He atoms). In
an ideal gas the particles fly straight trajectories wit-
hout ever colliding. If we now allow some small size
for the particles, they will collide with each other.

r0
0

U(r)
ac

d
b

Figure: illustration of various particle-particle potentials
U(r): (a) the potential between two 3He atoms, (b) ideal
gas potential U ≡ 0, (c) potential used in scattering ap-
proach, (d) potential used in perturbation theory.

We have to consider two particles with momenta p1 and
p2 colliding and leaving with momenta p′1 and p′2. In such
a process the momentum and energy has to be conserved,

p1 + p2 = p′1 + p′2 (25)

ε1 + ε2 = ε′1 + ε′2 (26)

At least qualitatively the collision rate can be calculated
using the golden rule

Γ =
2π

h̄

∑
f

|〈f |Hint|i〉|2δ(Ef − Ei) (27)

We see that the rate is proportional to the number of avai-
lable final states f . Consider specifically the case of filled

Fermi sphere plus one particle at energy ε1 > εF . We wish
to estimate the allowed final states when particle 1 collides
with any particle inside the Fermi sphere, ε2 < εF . The
final state has to have two particles outside the Fermi sp-
here (ε′1 > εF , ε′2 > εF ) since the Pauli principle forbids all
states inside. We see that the number final states gets very
small when the initial particle is close to the Fermi energy,
namely both ε2 and ε′1 have to be chosen in an energy shell
of thickness ∝ ε1− εF . This means that the final states are
limited by factor ∝ (ε1 − εF )2. Thus the scattering of low
energy particles is indeed suppressed and thus resembles
the one in ideal gas.

But 3He atoms are not point particles, rather they touch
each other continuously. Thus for one particle to move,
the others must give the way. This is one of the hardest
problems in many body theory even today, but one can
get some idea of what happens with a model: instead of
true 3He-3He interaction potential, one assumes a weak
potential, whose effect can be calculated using quantum-
mechanical perturbation theory. We will skip this calcula-
tion here (see Landau-Lifshitz). The result is that the exci-
tation spectrum remains qualitatively similar as in free Fer-
mi gas but there is a shift in energies. Consider specifically
the case, already mentioned above, of a filled Fermi sphe-
re plus one particle at momentum p, with p > pF . This
excited state of the ideal gas corresponds to the excitation
energy

εp − εF =
p2

2m
− εF ≈

pF
m

(p− pF ) (28)

where the approximation is good if p is nof far from the
Fermi surface (p− pF � pF ). The effect of the weak inte-
ractions is now that the excitation energy still is linear in
p−pF , but the coefficient is no more pF /m. It is customary
to write the new excitation energy in the form

εp − εF =
pF
m∗

(p− pF ) (29)

where we have defined the effective mass m∗. Note that
the Fermi momentum pF is not changed, equation (16)
still remains valid. With the new dispersion relation (29)
we get a new density of states

g(εF ) =
m∗pF

π2h̄3 . (30)

This is determined by the effective mass m∗, not the ba-
re particle mass m as for ideal gas (24). We now see that
weak interactions can explain that the specific heat coef-
ficient (23) differs form its ideal gas value. However, the
theory is valid for small perturbations, say 10%, and thus
is insufficient to explain the factor 2.7.

Quasiparticles

Landau now made the following assumptions. i) Even for
strong interactions, the excitation spectrum remains as in
(29). Such excitations are called quasiparticles: they deve-
lop continuously from single-particle excitations when the
interactions are ”turned on”, but they consist of correlated
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motion of the whole liquid. ii) The quasiparticles have long
life time at low energy, like in the scattering approximation
above.

It should be noticed that Landau’s theory is phenome-
nological. At this state it has one parameter, m∗, whose
value is unknown theoretically, but can be obtained from
experiments.

Although the detailed structure of the quasiparticle re-
mained undetermined, we can develop a qualitative pic-
ture with a model. Consider a spherical object moving in
otherwise stationary liquid. The details of this model are
discussed in the appendix. The main result is that associa-
ted with the moving object, there is momentum in the fluid
in the same direction. In the literature this is sometimes
called ”back flow”, but I find this name misleading. Rat-
her it should be called ”forward flow”or that the moving
object drags with itself part of the surrounding fluid. Thin-
king now that the total momentum of the quasiparticle is
fixed, this means that switching on the interactions slows
the original fermion down, since part of the momentum
goes into the surrounding fluid and less is left for the ori-
ginal fermion.

The same picture is obtained by quantum mechanical
analysis. In order to get the velocity of the quasiparticle,
we have to form a localized wave packet. This travels with
the group velocity. Based on the dispersion relation (29)
the group velocity is

vgroup =
dEp
dp

=
pF
m∗

. (31)

This means that the momentum of the original fermion in
the interacting system is mvgroupp̂ = (m/m∗)p, i.e. the
original fermion carries fraction m/m∗ of the momentum
p and the fraction 1 −m/m∗ is carried by other fermions
surrounding the original one.

Quasiparticle interactions

Thus far we have arrived at the picture that the low
energy properties of a Fermi liquid can be understood as
an ideal gas with the difference that the effective mass m∗

appears instead of the particle mass m. In the following
we show that this cannot be the whole story, and one more
ingredient has to be added in order to arrive at a consistent
theory.

A general requirement of any physical theory is that the
predictions of the theory should be independent of the coor-
dinate system chosen. In the present case, one has to pay
attention to Galilean invariance. That means that the phy-
sics should be the same in two coordinate frames that mo-
ve at constant velocity with respect to each other. To be
specific consider a coordinate system O, and a second coor-
dinate system O’ that moves with velocity u as seen in the
frame O. We assume to study a system of N particles (in-
teracting or not) of mass m. If the total momentum of this
system in O’ is P ′, then the momentum seen in frame O
has to be P = P ′ + Nmu. Now the Galilean invariance
requires that if one determines the state of the system in

O’ at fixed total momentum P ′, it is the same as one would
do in O with momentum P .

The ideal gas obviously has to satisfy Galilean inva-
riance. However, when replace the particle mass m by m∗

in (29), the Galilean invariance is broken. The cure for this
problem is that we have to allow interactions between the
quasiparticles. Thus we rewrite (29) into the form

εp−εF =
pF
m∗

(p−pF )+
1

V

∑
σ

∑
p

f(p,p′)(np−n(0)
p ). (32)

Here np is the distribution of the quasiparticles, n
(0)
p =

Θ(pF − p) is the distribution function in the ground sta-
te, where Θ(x) is the step function (Θ(x) = 0 for x < 0
and Θ(x) = 1 for x > 0). The function f(p,p′) describes
the interaction energy between two quasiparticles having
momenta p and p′.

The first thing to notice is that when only one or a few
quasiparticles are excited, the interaction term in (32) is

negligible since np − n(0)
p ≈ 0. In this case the excitation

energy εp (32) reduces to its the previous expression (29).

Consider next an uniformly displaced Fermi sphere, np =

n
(0)
p−mu = Θ(pF − |p−mu|). This is the stationary ground

state in the O’ frame. In order to the theory to be Galilean
invariant, the excitation energy in the must be changed
from (29) to the ideal gas value (28) at the displaced Fermi
surface. As a formula

pF
m
mp̂ ·u =

pF
m∗

mp̂ ·u+
1

V

∑
σ

∑
p

f(p,p′)(n
(0)
p−mu−n(0)

p ).

(33)
We see that this could not be satisfied without the interac-
tion term. In order to work (33) further, we need to study
f(p,p′). Because of spherical symmetry, it can depend on-
ly on the relative directions of p and p′, i.e. f(p̂ · p̂′, p, p′).
Futher since we are interested only in quasiparticles clo-
se to the Fermi surface, we approximate f(p̂ · p̂′, p, p′) ≈
f(p̂ · p̂′, pF , pF ). This means that f depends only on the
angle between p and p′, i.e. f(p̂ · p̂′). In addition, it is
conventional to define F (p̂ · p̂′) = g(εF )f(p̂ · p̂′). Such a
function can be expanded in Legendre polynomials

F (p̂ · p̂′) =

∞∑
l=0

F sl Pl(p̂ · p̂′) (34)

where P0(x) = 1, P1(x) = 1, P2(x) = (3x2 − 1)/2, etc.
Using these we can now reduce the requirement (33) to

m∗

m
= 1 +

F s1
3
. (35)

We have arrived at the result that in order to have
m∗ 6= m, we also should include an interaction between
the quasiparticles of the form of the F s1 term in (34). The
other interaction term wiht coefficients F sl are not requi-
red for internal consistency of the theory but some of them
appear as a result of perturbation theory. In order to make
general phenomenology, they all should be retained.
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Until now we have not considered the fermion spin except
that they produced factors of two. In magnetic field the sys-
tem becomes spin polarized, and this is no more sufficient.
All the previous analysis can be generalized to include spin
dependence. This means that the quasiparticle energy ε(p)
becomes a 2 × 2 spin matrix. Equation (32) has to be ge-
neralized to

εην(p)− εF δην =
pF
m∗

(p− pF )δην

+
1

V

∑
p

fηα,νβ(p,p′)[nαβ(p)− n(0)(p)δαβ ]. (36)

where

fηα,νβ(p,p′)

g(εF )
=

∞∑
l=0

(F sl δηαδνβ+F al σηα·σνβ)Pl(p̂·p̂′) (37)

We see that including the spin dependence the theory has
two sets of parameters, F sl and F al with l = 0, 1, . . .. (Here
s denotes symmetric and a antisymmetric.) One of these
parameters, F s1 is related to m∗ by (35).

4. Applications
In normal fermi liquid:

Specific heat (see above)

C =
π2

3
g(εF )k2

BT +O(T 2). (38)

Magnetic susceptibility

χ = µ0µ
2
m

g(εF )

1 + F a0
, (39)

where µm is the magnetic moment of a particle.

Sound velocity

c = vF

√
1

3
(1 + F s0 )(1 +

1

3
F s1 ). (40)

Zero sound

Spin waves

Acoustic impedance

Generalizations to superfluid state: almost all quantities
affected by Fermi-liquid interactions.

4.1 Vibrating wire

The figure shows the frequency (horizontal) and damping
(vertical) of a vibrating parametrically as the mean free
path gets bigger with lowering temperature (from small to
large damping). The experiment is done in mixtures of 3He
and 4He at three different 3He concentrations x3. Source:
Martikainen et al 2002.

One particular problem is to explain why the frequency
at in the ballistic limit (lowest temperatures) gets larger
than in the high temperature limit. This has to do with
quasiparticle interactions.

quasiparticle trajectory

quasiparticle            beam

pb

p
s

6



In order to understand what happened for the propaga-
ting quasiparticle, let us consider an arbitrary quasiparticle
trajectory crossing a quasiparticle beam. In a Fermi gas,
a quasiparticle on the trajectory would not react to the
beam at all. In a Fermi liquid it experiences the potential
change δε caused by the beam. In the simple case that F0

is the only relevant Fermi-liquid parameter, the potential
δε = [F0/2N(0)]n′ is determined by the particle density in
the beam.

sp

ε

p

ε

εF

µ

p

ε

δε

pF

The basic assumption of the Fermi-liquid theory is that
the potential is small compared to the Fermi energy εF , i.e.
δε � εF . This means that a quasiparticle is slightly dece-
lerated when it enters the beam and it is accelerated back
when it leaves the crossing region. In the energy point of
view (figure above), the quasiparticle flies at constant ener-
gy ε ≈ µ and the potential is effectively compensated by
depletion of fermions with the same momentum direction
in the crossing region. If there were a second quasiparticle
beam along the trajectory, there appears to be no interac-
tion between the two stationary beams.

Let us now consider the case that the intensity of the
(original) quasiparticle beam is varying in time. This means
that the potential seen on the crossing trajectory changes.
This changes the number of particles stored in the crossing
region, and thus leads to emission of particle or hole like
quasiparticles from the crossing region. This takes place on
all crossing trajectories. In the case of a vibrating wire, the
motion of the wire generates a beam of quasiparticles. This
beam interacts with the quasiparticles that are coming to
the wire. In case of negative F0 this increases the restoring
force of the wire and thus also the frequency.

In order to determine this quantitatively, one has to solve
the Landau-Boltzmann equation.

∂n(x,p, t)

∂t
+
∂n(x,p, t)

∂x
· ∂ε(x,p, t)

∂p

−∂n(x,p, t)

∂p
· ∂ε(x,p, t)

∂x
= I(n(x,p, t)) (41)

The linearized kinetic equation simplifies to

∂nl
∂t

+ vFp̂ ·∇(nl + δ(ε(0)
p − µ)δε) = I, (42)

∂φ

∂t
+ vFp̂ ·∇(φ+ δε) = I. (43)

Appendix: hydrodynamic model of a quasipar-
ticle

The starting point is Euler’s equation and the equation
of continuity

∂v

∂t
+ v ·∇v = −1

ρ
∇p

∂ρ

∂t
+ ∇ · (ρv) = 0, (44)

where p is now the pressure. We assume a small veloci-
ty so that the nonlinear term can be dropped and assume
incompressible fluid, ρ = constant. The boundary condi-
tion on the surface of a sphere of radius a is n · v = n · u,
where u is the velocity of the sphere and n the surface
normal. We assume that far from the sphere v → 0. The
velocity can be represented using the potential v = ∇χ
where χ = −a3u · r/2r3. By the Euler equation the pres-
sure p = −ρχ̇, and the force exerted by the sphere on the
fluid

F =

∫
da p =

2πa3ρ

3
u̇ (45)

is proportional to the acceleration u̇. Therefore, associated
with a moving sphere, there is momentum in the fluid

p =
2πa3ρ

3
u (46)

corresponding to half of the fluid displaced by the sphere
and moving in the same direction and at the same velocity
as the sphere. Note that this may differ from the total
momentum of the fluid, which is not essential here, and is
undetermined in the present limit of unlimited fluid.
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