
PHYSICAL REVIEW B 88, 075409 (2013)

Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2
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In this paper we present a paradigmatic tight-binding model for single-layer as well as multilayered
semiconducting MoS2 and similar transition metal dichalcogenides. We show that the electronic properties of
multilayer systems can be reproduced in terms of a tight-binding modeling of the single-layer hopping terms by
simply adding the proper interlayer hoppings ruled by the chalcogenide atoms. We show that such a tight-binding
model makes it possible to understand and control in a natural way the transition between a direct-gap band
structure, in single-layer systems, and an indirect gap in multilayer compounds in terms of a momentum/orbital
selective interlayer splitting of the relevant valence and conduction bands. The model represents also a suitable
playground to investigate in an analytical way strain and finite-size effects.
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I. INTRODUCTION

The isolation of flakes of single-layer and few-layer
graphene1–3 has triggered a huge burst of interest in two-
dimensional layered materials because of their structural and
electronic properties. Due to its huge electronic mobility,
graphene has been in the last years the main focus of the
research in the field. However, a drawback in engineering
graphene-based electronic devices is the absence of a gap
in the monolayer samples and the difficulty in opening a
gap in multilayer systems without affecting the mobility. As
an alternative route, recent research is exploring the idea
of multilayered heterostructures built up from interfacing
different two-dimensional materials.4 Along this perspective,
semiconducting dichalcogenides such as MoS2, MoSe2, WS2,
etc., are promising compounds since they can be easily
exfoliated and present a suitable small gap in both single-layer
and few-layer samples. Quite interestingly, in few-layer MoS2

the size and the nature of the gap depends on the number
N of MoS2 layers, with a transition between a direct gap
in monolayer (N = 1) compounds to a smaller indirect gap
for N � 2.5–8 In addition, the electronic properties appear to
be highly sensitive to the external pressure and strain, which
affect the insulating gap and, under particular conditions,
can also induce an insulator/metal transition.9–20 Another
intriguing feature of these materials is the strong interplay
between the spin and the orbital/valley degrees of freedom,
which makes it possible, for instance, to manipulate spins by
means of circularly polarized light.21–28 Moreover, in MoSe2,
a transition between a direct and an indirect gap was observed
as a function of temperature.29

On the theoretical level, one of the reasons for the strong
popularity of graphene is the availability of a paradigmatic
Hamiltonian model for the single-layer in terms of few tight-
binding (TB) parameters30,31 (actually only one, the nearest-
neighbors carbon-carbon hopping γ0, in the simplest case).32

The well-known Dirac equation can thus be derived from that
as a low-energy expansion. Crucial to the development of the
theoretical analysis in graphene is also the fact that model
Hamiltonians for multilayer graphenes can be built using
the single-layer TB description as a fundamental block and

just adding additional interlayer hopping terms.33–48 Different
stacking orders can also be easily investigated. The advantage
of such a TB description with respect to first-principles
calculations is that it provides a simple starting point for
the further inclusion of many-body electron-electron effects
by means of quantum field theory (QFT) techniques, as well
as of the dynamical effects of the electron-lattice interaction.
Tight-binding approaches can be also more convenient than
first-principles methods such as density functional theory
(DFT) for investigating systems involving a very large number
of atoms. Although DFT methods are currently able to handle
systems with hundreds or even thousands of atoms,49,50 and
have been thoroughly applied to large-scale graphene-related
problems,51–54 they are still computationally challenging and
demanding. Therefore, TB has been the method of choice
for the study of disordered and inhomogeneous system42,55–67

materials nanostructured in large scales (nanoribbons,
ripples)68–76 or in twisted multilayer materials.77–88

While much of the theoretical work of graphenic mate-
rials has been based on TB-like approaches, the electronic
properties of single-layer and few-layer dichalcogenides
have been so far mainly investigated by means of DFT
calculations,5,6,8–19,89–95 despite early work in nonorthogonal
TB models for transition metal dichalcogenides.96 Few simpli-
fied low-energy Hamiltonian models have been presented for
these materials, whose validity is, however, restricted to the
specific case of single-layer systems. An effective low-energy
model was, for instance, introduced in Refs. 25 and 97 to
discuss the spin/orbital/valley coupling at the K and/or the
� point. Being limited to the vicinity of a specific high-
symmetry point, these models cannot be easily generalized to
the multilayer case where the gap is indirect with valence and
conduction edges located far from the K point. An effective
lattice TB Hamiltonian was, on the other hand, proposed in
Ref. 98, valid, in principle, in the whole Brillouin zone. This
model considers the spin-orbit coupling, and it includes the
effect of a quantizing magnetic field in the spectrum. However,
the band structure of the single layer lacks the characteristic
second minimum in the conduction band (see later discussion)
that will become the effective conduction edge in multilayer
systems, so that also in this case the generalization to the
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multilayer compounds is doubtful. In addition, the use of an
overlap matrix makes the proposed Hamiltonian unsuitable for
a straightforward use as a basis for QFT analyses. This is also
the case for a recent model proposed in Ref. 99, where the
large number of free fitting parameters and the presence of
overlap matrix make such model inappropriate for practical
use within the context of QFT.

In this paper we present a suitable TB model for the
dichalcogenides valid in both the single-layer case and the mul-
tilayer one. Using a Slater-Koster approach,100 and focusing on
MoS2 as a representative case, we analyze the orbital character
of the electronic states at the relevant high-symmetry points.
Within this context we show that the transition from a direct
gap to an indirect gap in MoS2 as a function of the number
of layers can be understood and reproduced in a natural way
as a consequence of a momentum/orbital selective interlayer
splitting of the main relevant energy levels. In particular, we
show that the pz orbital of the S atoms plays a pivotal role in
such transition and it cannot be neglected in reliable TB models
aimed to describe single-layer as well as multilayer systems.
The TB description here introduced can represent thus the
paradigmatic model for the analysis of the electronic properties
in multilayer systems in terms of intralayer ligands plus a
finite number of interlayer hopping terms. Such a TB model,
within the context of the Slater-Koster approach, provides
also a suitable tool to include in an analytical and intuitive
way effects of pressure/strain by means of the modulation
of the interatomic distances. The present analysis defines, in
addition, the minimum constraints that the model has to fulfill
to guarantee a correct description of the band structure of
multilayer compounds.

The paper is structured as follows. In Sec. II we present
DFT calculations for single-layer and multilayer (bulk) MoS2,
which is here used as a reference for the construction of a
TB model. In Sec. III we describe the minimum TB model
for the single-layer case needed to reproduce the fundamental
electronic properties and the necessary orbital content. The
decomposition of the Hamiltonian in blocks and the specific
orbital character at the high-symmetry points is discussed.
The extension of the TB model to the bulk case, taken
as representative of multilayer compounds, is addressed in
Sec. IV. We pay special attention to reveal the microscopic
origin of the change between a direct-gap to an indirect-gap
band structure. In Sec. V we summarize the implications of
our analysis in the building of a reliable TB model, and we
provide a possible set of TB parameters for the single-layer
and multilayer cases.

II. DFT CALCULATIONS AND ORBITAL CHARACTER

In the construction of a reliable TB model for semiconduct-
ing dichalcogenides we are guided by first-principles DFT cal-
culations that will provide the reference on which to calibrate
the TB model. We focus here on MoS2 as a representative
case, although we have performed first-principles calculations
for comparison also on WS2. The differences in the electronic
structure and in the orbital character of these two compounds
are, however, minimal and they do not involve any different
physics. The structure of single-layer and multilayer MoS2 is
depicted in Fig. 1.
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FIG. 1. (Color online) (a) Model of the atomic structure of
MoS2. The bulk compound has a 2H-MoS2 structure with two MoS2

layers per unit cell, each layer being built up from a trigonal prism
coordination unit. The small green rectangle represents the unit cell
of a monolayer of MoS2, which is doubled (red extension) in the
bulk crystal. (b) Detail of the trigonal prisms for the two layers in the
bulk compound, showing the lattice constants and the definition of
the structural angles used in the text.

The basic unit block is composed of an inner layer of
Mo atoms on a triangular lattice sandwiched between two
layers of S atoms lying on the triangular net of alternating
hollow sites. Following standard notations,96 we denote a as
the distance between nearest-neighbor in-plane Mo-Mo and
S-S distances, b as the nearest-neighbor Mo-S distance, and
u as the distance between the Mo and S planes. The MoS2

crystal forms an almost perfect trigonal prism structure with
b and u very close to the their ideal values b � √

7/12a

and u � a/2. In our DFT calculations, we use experimental
values for bulk MoS2,96 namely a = 3.16 Å, u = 1.586 Å,
and, in bulk systems, a distance between Mo planes as
c′ = 6.14 Å, with a lattice constant in the 2H-MoS2 structure
of c = 2c′. The in-plane Brillouin zone is thus characterized
by the high-symmetry points � = (0,0), K = 4π/3a(1,0), and
M = 4π/3a(0,

√
3/2). DFT calculations are done using the

SIESTA code.49,50 We use the exchange-correlation potential of
Ceperly-Alder101 as parametrized by Perdew and Zunger.102

We use also a split-valence double-ζ basis set including
polarization functions.103 The energy cutoff and the Brillouin
zone sampling were chosen to converge the total energy.

The electronic dispersion for the single-layer MoS2 is
nowadays well known. We focus only on the block of bands
containing the first four conduction bands and by the first
seven valence bands, in an energy window of from −7 to 5 eV
around the Fermi level. Our DFT calculations are shown in
Fig. 2, where we show the orbital character of each band.
We use here the shorthand notation d2 to denote Mo 4dx2−y2 ,
4dxyorbitals; d1 for the Mo 4dxz, 4dyz orbitals; d0 for the Mo
4d3z2−r2 orbital; pxy (or simply p) to denote the S 3px , 3py

orbitals; and pz (or simply z) for the S 3pzorbital. The four
conduction bands and the seven valence bands are mainly
constituted by the five 4d orbitals of Mo and the six (three for
each layer) 3p orbitals of S, which sum up to the 93% of the
total orbital weight of these bands.

A special role in the electronic properties of these materials
is played by the electronic states labeled as (A)–(D) and
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FIG. 2. (Color online) Band structure and orbital character of
single-layer MoS2. The top left panel shows the full band structure
while, in the other panels, the thickness of the bands represents the
orbital weight, where the d character (d2 = dx2−y2 , dxy , d1 = dxz, dyz,
d0 = d3z2−r2 ) refers to the Mo atom 4d orbitals, while the p character
(pxy = px , py) refers to 2p orbitals of sulfur.

marked with black bullets in Fig. 2. A detailed analysis
of the orbital character of each energy level at the main
high-symmetry points of the Brillouin zone, as calculated by
DFT, is provided in Table I. We can notice that an accurate
description of the conduction and valence band edges (A)-(B)
at the K point involves at least the Mo orbitals d3z2−r2 , dx2−y2 ,
dxy , and the S orbitals px , py . Along this perspective, a
five-band TB model, restricted to the subset of these orbitals,
was presented in Ref. 98, whereas even the S 3p orbitals were
furthermore omitted in Ref. 25.

The failure of this latter orbital restriction for a more
comprehensive description is, however, pointed out when
analyzing other relevant high-symmetry Brillouin points. In
particular, concerning the valence band, we can notice a second
maximum at the � point, labeled as (C) in Fig. 2, just 42 meV
below the real band edge at the K point and with main d0-pz

orbital character. The relevance of this secondary band extreme
is evident in the multilayer compounds (N � 2), where such
maximum at � increases its energy to become the effective
band edge.5,8

The band structure with the orbital character for the bulk
(N = ∞) case, representative of the multilayer case, is shown
in Fig. 3. A similar change of the topology of the band edge
occurs in the conduction band. Here a secondary minimum,
labeled as D in Fig. 2, at Q = 4π/3a(1/2,0), midway along
the �-K cut, is present in the single-layer compounds. Such
minimum, however, moves down in energy in multilayer
systems to become the effective conduction band edge.5,8

TABLE I. Energy levels and orbital content of single-layer MoS2 evaluated by DFT calculations. We report here the first two main orbital
characters belonging to the blocks Mo-4d and S-3p, while the following column shows the remaining character not belonging to these
orbital group. Also show is the association of each level with the corresponding eigenvalue of the TB model and the symmetry with respect
to the z → −z inversion (E = even, O = odd). The label Eαβ,± in the last column denotes the orbital character of the TB eigenstate, with
α,β = p,z,d2,d1,d0, where p = px,py , z = pz, d2 = dx2−y2 ,dxy , d1 = dxz,dyz, d0 = d3z2−r2 . The index ± denotes the higher energy [(+) =
antibonding] and the lower energy [(−) = bonding].

Energy Main Second Other TB
DFT (eV) orbital orbital orbitals Symmetry label

� point
2.0860a 68% px/y 29% d2 3% E Epd2,+(�)
1.9432a 58% px/y 36% d1 6% O Epd1,+(�)
−1.0341 66% d0 28% pz 6% E Ezd0,+(�)
−2.3300 54% d1 42% px/y 4% O Epd1,−(�)
−2.6801 100% pz 0% O Ez(�)
−3.4869a 65% d2 32% px/y 3% E Epd2,−(�)
−6.5967 57% pz 23% d0 20% E Ezd0,−(�)

K point
4.0127 60% d1 36% pz 4% O Ezd1,+(K)
2.5269 65% d2 29% pz 6% E Ezd2,+(K)
1.9891 50% d1 31% px/y 19% O Epd1,+(K)
0.8162 82% d0 12% px/y 6% E Epd0,+(K)
−0.9919 76% d2 20% px/y 4% E Epd2,+(K)
−3.1975 67% pz 27% d1 6% O Ezd1,−(K)
−3.9056 85% px/y 15% O Ep(K)
−4.5021 65% pz 25% d2 10% E Ezd2,−(K)
−5.0782 71% px/y 12% d2 17% E Epd2,−(K)
−5.5986 66% px/y 14% d0 20% E Epd0,−(K)
−6.4158 60% px/y 37% d1 3% O Epd1,−(K)

aDouble-degenerate level.
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FIG. 3. (Color online) Band structure and orbital character for
bulk 2H-MoS2. Labels similar as in Fig. 2.

Even in this case, a relevant pz component is involved in
the orbital character of this electronic state. The topological
changes of the location of the band edges in the Brillouin zone
are responsible for the observed switch from a direct to an
indirect gap in multilayer samples. As we will see, thus, the
inclusion of the pz orbitals in the full TB Hamiltonian is not
only desirable for a more complete description, but it is also
unavoidable to understand the evolution of the band structure
as a function of the number of layers.

III. TIGHT-BINDING DESCRIPTION
OF THE SINGLE LAYER

The aim of this section is to define a TB model for the single
layer which will be straightforwardly generalizable to the
multilayer case by adding the appropriate interlayer hopping.
We show that, to this purpose, all the 4d Mo orbitals and the
3p S orbitals are needed to be taken into account. Considering
that the unit cell contains two S atoms, we define the Hilbert
space by means of the 11-fold vector,

φ
†
i = (p†

i,x,t ,p
†
i,y,t ,p

†
i,z,t ,d

†
i,3z2−r2 ,d

†
i,x2−y2 ,

d
†
i,xy,d

†
i,xz,d

†
i,yz,p

†
i,x,b,p

†
i,y,b,p

†
i,z,b), (1)

where di,α creates an electron in the orbital α of the Mo atom
in the i-unit cell, pi,α,t creates an electron in the orbital α of
the top (t) layer atom S in the i-unit cell, and pi,α,b creates an
electron in the orbital α of the bottom (b) layer atom S in the
i-unit cell.

Once the Hilbert space has been introduced, the TB model is
defined by the hopping integrals between the different orbitals,
described, in the framework of a Slater-Koster description, in
terms of σ , π , and δ ligands.100 In order to provide a TB
model as a suitable basis for the inclusion of many-body
effects by means of diagrammatic techniques, we assume

that the basis orbitals are orthonormal, so that the overlap
matrix is the unit matrix. A preliminary analysis based on
the interatomic distance can be useful to identify the most
relevant hopping processes. In particular, these are expected
to be the ones between nearest-neighbor Mo-S (interatomic
distances b = 2.41 Å), between the nearest-neighbor in-plane
Mo-Mo, and between the nearest-neighbor in-plane and
out-of-plane S-S atoms (interatomic distance a = 3.16 Å).
Further distant atomic bonds, in single-layer systems, start
from hopping between second-nearest-neighbor Mo-S atoms,
with interatomic distance 3.98 Å, and they will be here
discarded.

All the hopping processes of the relevant pair of neigh-
bors are described in terms of the Slater-Koster parameters,
respectively, Vpdσ , Vpdπ (Mo-S bonds), Vddσ , Vddπ , Vddδ

(Mo-Mo bonds), and Vppσ , Vppπ (S-S bonds). Additional
relevant parameters are the crystal fields �0, �1, �2, �p, �z,
describing, respectively, the atomic level l = 0 (d3z2−r2 ), l = 1
(dxz, dyz), and l = 2 (dx2−y2 , dxy) Mo orbitals, the in-plane (px ,
py) S orbitals, and of the out-of-plane pz S orbitals. We end
up with a total of 12 TB parameters to be determined, namely,
�0, �1, �2, �p, �z, Vddσ , Vddπ , Vddδ , Vppσ , Vppπ , Vpdσ , and
Vpdπ .

In the orbital basis of Eq. (1), we can write thus the TB
Hamiltonian in the form

H =
∑

k

φ
†
kĤkφk, (2)

where φk is the Fourier transform of φi in momentum space.
The Hamiltonian matrix can be written (we drop for simplicity
from now on the index k) as

Ĥ =

⎛
⎜⎝

Ĥpt,pt Ĥ
†
d,pt Ĥpt,pb

Ĥd,pt Ĥd,d Ĥd,pb

Ĥ ∗
pb,pb Ĥ

†
d,pb Ĥpb,pb

⎞
⎟⎠ , (3)

where Ĥpb,pb = Ĥpt,pt describes the in-plane hopping in the
top and bottom S layer, namely,

Ĥpb,pb = Ĥpt,pt =

⎛
⎜⎝

Hx/x Hx/y 0

H ∗
x/y Hy/y 0

0 0 Hz/z

⎞
⎟⎠ , (4)

Ĥd,d describes the in-plane hopping in the middle Mo layer,
namely,

Ĥd,d =

⎛
⎜⎜⎜⎜⎜⎝

Hz2/z2 Hz2/x2 Hz2/xy 0 0

H ∗
z2/x2 Hx2/x2 Hx2/xy 0 0

H ∗
z2/xy

H ∗
x2/xy

Hxy/xy 0 0

0 0 0 Hxz/xz Hxz/yz

0 0 0 H ∗
xz/yz Hyz/yz

⎞
⎟⎟⎟⎟⎟⎠ , (5)

Ĥpt,pb describes the vertical hopping between S orbitals in the
top and bottom layer,

Ĥpt,pb =

⎛
⎜⎝

Vppπ 0 0

0 Vppπ 0

0 0 Vppσ

⎞
⎟⎠ , (6)
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and Ĥd,pt , Ĥd,pb describes the hopping between Mo and S
atoms in the top and bottom planes, respectively,

Ĥd,pt =

⎛
⎜⎜⎜⎜⎜⎝

Hz2/x Hz2/y Hz2/z

Hx2/x Hx2/y Hx2/z

Hxy/x Hxy/y Hxy/z

Hxz/x Hxz/y Hxz/z

Hyz/x Hyz/y Hyz/x

⎞
⎟⎟⎟⎟⎟⎠ , (7)

Ĥd,pt =

⎛
⎜⎜⎜⎜⎜⎝

Hz2/x Hz2/y −Hz2/z

Hx2/x Hx2/y −Hx2/z

Hxy/x Hxy/y −Hxy/z

−Hxz/x −Hxz/y Hxz/z

−Hyz/x −Hyz/y Hyz/x

⎞
⎟⎟⎟⎟⎟⎠ . (8)

Here and in the following, for the sake of compactness, we
use the shorthand notation 3z2 − r2 ⇒ z2 and x2 − y2 ⇒ x2.
An explicit expression for the different Hamiltonian matrix
elements in terms of the Slater-Koster TB parameters can be
provided following the seminal work by Doran et al.104 and it
is reported for completeness in Appendix A.

Equations (2)–(8) define our TB model in terms of an
11 × 11 Hamiltonian Ĥ which can be now explicitly solved
to get eigenvalues and eigenvectors in the whole Brillouin
zone or along the main axes of high symmetry. It is now
an appealing task to associate each DFT energy level with
the Hamiltonian eigenvalues, whose eigenvectors will shed
light on the properties of the electronic states. Along this
line, we are facilitated by symmetry arguments which make
it possible, in the monolayer compounds, to decouple the
11 × 11 Hamiltonian in Eq. (3) in two main blocks, with
different symmetry with respect to the mirror inversion z →
−z.104 This task is accomplished by introducing a symmetric
and antisymmetric linear combination of the p orbital of the
S atoms on the top/bottom layers. More explicitly, we use the
basis vector

φ̃
†
k = (d†

k,3z2−r2 ,d
†
k,x2−y2 ,d

†
k,xy,p

†
k,x,S,p

†
k,y,S,p

†
k,z,A,

d
†
k,xz,d

†
k,yz,p

†
k,x,A,p

†
k,y,A,p

†
k,z,S), (9)

where p
†
k,α,S = (p†

k,α,t + p
†
k,α,b)/

√
2, p

†
k,α,A = (p†

k,α,t −
p
†
k,α,b)/

√
2. Note that our basis differs slightly with respect

to the one employed in Ref. 104 because we have introduced
explicitly the proper normalization factors to make it unitary.
In this basis we can write thus

Ĥ =
(

ĤE 0

0 ĤO

)
, (10)

where ĤE is a 6 × 6 block with even (E) symmetry with respect
to the mirror inversion z → −z, and ĤO is a 5 × 5 block with
odd (O) symmetry. We should remark, however, that such
decoupling holds true only in the single-layer case and only
in the absence of a z-axis electric field, as can be induced by
substrates or under gating conditions. In the construction of
a TB model that could permit a direct generalization to the
multilayer case, the interaction between the band blocks with
even and odd symmetry should be thus explicitly retained.

The association between DFT energy levels and TB eigen-
states is now further simplified on specific high-symmetry

points of the Brillouin zone. Most important are the K and
the � points, which are strictly associated with the direct and
indirect gap in monolayer and multilayered compounds.

A. � point

We present here a detailed analysis of the eigenstates and
their orbital character at the � point. For the sake of simplicity,
we discuss separately the blocks with even and odd symmetry
with respect to the inversion z → −z. The identification of
the DFT levels with the TB eigenstates is facilitated by the
possibility of decomposing the full Hamiltonian in smaller
blocks, with typical size 2 × 2 (dimers) or 1 × 1 (monomers).
In particular, the 6 × 6 block with even symmetry can be
decomposed (see Appendix B for details) as

ĤE(�) =

⎛
⎜⎝

Ĥzd0 (�) 0 0

0 Ĥpd2 (�) 0

0 0 Ĥpd2 (�)

⎞
⎟⎠ . (11)

Here each matrix Ĥpd2 , Ĥzd0 represents a 2 × 2 block where the
indices describe the orbital character of the dimer. In particular,
Ĥpd2 involves only d2 = dx2−y2 ,dxy Mo orbitals and px,py

S orbitals, whereas Ĥzd0 involves only the d0 = d3z2−r2 Mo
orbital and the pz S orbital. As it is evident in (11), the block
Ĥpd2 appears twice and it is thus doubly degenerate. Similarly,
we have

ĤO(�) =

⎛
⎜⎝

Ĥpd1 (�) 0 0

0 Ĥpd1 (�) 0

0 0 �O
z

⎞
⎟⎠ , (12)

where the doubly degenerate block Ĥpd1 involves only d1 =
dxz,dyz Mo orbitals and px,py S orbitals, while �O

z is a 1 × 1
block (monomer) with pure character pz.

It is also interesting to give a closer look at the inner
structure of a generic Hamiltonian sub-block. Considering,
for instance, Ĥzd0 as an example, we can write

Ĥzd0 (�) =
(

�0

√
2�zd0√

2�zd0 �E
z

)
, (13)

where �0 is an energy level with pure Mo d0 orbital character
and �E

z is an energy level with pure S pz orbital character. Thus,
the off-diagonal term

√
2�zd0 acts here as a “hybridization,”

mixing the pure orbital characters of �0 and �E
z . The suffix “E”

here reminds that the level �E
z belongs to the even symmetry

block, and it is useful to distinguish this state from a similar
one with odd symmetry (and different energy). Keeping Ĥzd0

as an example, the eigenvalues of a generic 2 × 2 block can be
obtained analytically:

Ezd0,±(�) = �0 + �E
z

2
±

√(
�0 − �E

z

2

)2

+ 2�2
zd0

. (14)

The explicit expressions of �α and �αβ in terms of the
Slater-Koster TB parameters are reported in Appendix A.

It is interesting to note that the diagonal terms �α (α =
d0,d1,d2,p,z) are purely determined by the crystal fields �α

and by the TB parameters Vddσ , Vddπ , Vddδ , Vppσ , Vppπ ,
connecting Mo-Mo and S-S atoms, whereas the hybridization
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off-diagonal terms �αβ depend exclusively on the Mo-S
nearest-neighbor hopping Vpdσ , Vpdπ .

A careful comparison between the orbital character of each
eigenvector with the DFT results makes it possible now to
identify in an unambiguous way each DFT energy level with
its analytical TB counterpart. Such an association is reported
in Table I, where also the even/odd symmetry inversion is
considered.

The use of the present analysis to characterize the properties
of the multilayer MoS2 is discussed in Sec. IV.

B. K point

A crucial role in the properties of semiconducting dichalco-
genides is played by the K point in the Brillouin zone,
where the direct semiconducting gap occurs in the single-layer
systems. The detailed analysis of the electronic spectrum is
also favored here by the possibility of reducing the full 11 × 11
Hamiltonian in smaller sub-blocks. This feature is, however,
less evident than at the � point. The even and odd components
of the Hamiltonian take the form

ĤE(K) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0 0 0 −i
√

2Kpd0

√
2Kpd0 0

0 K2 0 i
√

2Kpd2

√
2Kpd2

√
2Kzd2

0 0 K2 −√
2Kpd2 i

√
2Kpd2 −i

√
2Kzd2

i
√

2Kpd0 −i
√

2Kpd2 −√
2Kpd2 KE

p 0 0√
2Kpd0

√
2Kpd2 −i

√
2Kpd2 0 KE

p 0

0
√

2Kzd2 i
√

2Kzd2 0 0 KE
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

ĤO(K) =

⎛
⎜⎜⎜⎜⎜⎜⎝

K1 0
√

2Kpd1 −i
√

2Kpd1 −i
√

2Kzd1

0 K1 −i
√

2Kpd1 −√
2Kpd1

√
2Kzd1√

2Kpd1 i
√

2Kpd1 KO
p 0 0

i
√

2Kpd1 −√
2Kpd1 0 KO

p 0

i
√

2Kzd1

√
2Kzd1 0 0 KO

z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

As for the � point, also here the upper labels (μ = E, O) in Kμ
α (μ = E, O) express the symmetry of the state corresponding to

the energy level Kμ
α with respect to the z → −z inversion. The electronic properties of the Hamiltonian at the K point look more

transparent by introducing a different “chiral” basis,

ψ̄
†
k = (d†

k,3z2−r2 ,d
†
k,L2,d

†
k,R2,p

†
k,L,S,p

†
k,R,S,p

†
k,z,A,d

†
k,L1,d

†
k,R1,p

†
k,L,A,p

†
k,R,A,p

†
k,z,S), (17)

where dk,L2 = (dk,x2−y2 − idk,xy)/
√

2, dk,R2 = (dk,x2−y2 +
idk,xy)/

√
2, dk,L1 = (dk,xz − idk,yz)/

√
2, dk,R1 = (dk,xz +

idk,yz)/
√

2, pk,L,S = (pk,x,S − ipk,y,S)/
√

2, pk,R,S =
(pk,x,S + ipk,y,S)/

√
2, pk,L,A = (pk,x,A − ipk,y,A)/

√
2,

pk,R,A = (pk,x,A + ipk,y,A)/
√

2.
In this basis, the Hamiltonian matrix can be also divided in

smaller sub-blocks (see Appendix B) as

ĤE(K) =

⎛
⎜⎝

Ĥpd0 (K) 0 0

0 Ĥzd2 (K) 0

0 0 Ĥpd2 (K)

⎞
⎟⎠ (18)

and

ĤO =

⎛
⎜⎝

Ĥpd1 (K) 0 0

0 Ĥzd1 (K) 0

0 0 KO
p

⎞
⎟⎠ . (19)

As is evident from the labels, each sub-block is also here
a 2 × 2 dimer, apart from the term KO

p which is a 1 × 1
block (monomer) with pure px,py character. The association

between the DFT energy levels and the TB eigenstates is
reported also for the K point in Table I.

C. Q point

As discussed above, another special point determining the
electronic properties of MoS2 is the Q point, halfway between
the � and K points in the Brillouin zone, where the conduction
band, in the single-layer system, has a secondary minimum in
addition to the absolute one at the K point. Unfortunately, not
being a point of high symmetry, the TB Hamiltonian cannot
be decomposed in this case in simpler smaller blocks. Each
energy eigenvalue will contain thus a finite component of all
the Mo and S orbitals. In particular, focusing on the secondary
minimum in Q, DFT calculations give 46% d2, 24% px/y ,
11% pz, and 9% d0. The orbital content of this level will play
a crucial role in determining the band structure of multilayer
compounds.

D. Orbital constraints for a tight-binding model

After having investigated in detail the orbital contents
of each eigenstate at the high-symmetry points and having
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identified them with the corresponding DFT energy levels, we
can now employ such analysis to assess the basic conditions
that a TB model must fulfill and to elucidate the physical
consequences.

A first interesting issue is about the minimum number
of orbitals needed to be taken into account in a TB model
for a robust description of the electronic properties of these
materials. A proper answer to such an issue is, of course,
different if referred to single-layer or multilayer compounds.
For the moment we focus only on the single-layer case but we
emphasize the way the relevant features that will be needed to
take into account in multilayer systems.

In a single-layer case, focusing only on the band edges
determined by the states (A) and (B) at the K point, we
can identify them with the eigenstates Epd0,+(K), Epd2,+(K),
respectively, with a dominant Mo 4d character and a marginal
S px/y component, as we show below. It is thus tempting
to define a reduced three-band TB model, keeping only the
Mo 4d3z2−r2 , 4dx2−y2 , 4dxy orbitals with dominant character
and disregarding the S px , py orbitals, with a small marginal
weight. A similar phenomenological model was proposed
in Ref. 25. However, the full microscopic description here
exposed makes it possible to point out the inconsistency of
such a model. This can be shown by looking at Eq. (18). The
band gap at K in the full TB model including S px , py orbitals
is determined by the upper eigenstate of Ĥpd0 ,

Epd0,+(K) = K0 + KE
p

2
+

√(
K0 − KE

p

2

)2

+ 4K2
pd0

, (20)

and the upper eigenstate of Ĥpd2 ,

Epd2,+(K) = K2 + KE
p

2
+

√(
K2 − KE

p

2

)2

+ 8K2
pd2

, (21)

both with main Mo 4d character, while the eigenstate

Ezd2,+(K) = K2 + KE
z

2
+

√(
K2 − KE

z

2

)2

+ 4K2
zd2

, (22)

also with dominant Mo 4d character, but belonging to the block
Ĥzd2 , lies at higher energy (see Table I). The three-band model
retaining only the d0, d2 orbitals is equivalent to switching
off the hybridization terms Kpd0 , Kpd2 , Kzd2 , ruled by Vpdσ ,
Vpdπ , so that Epd0,+(K) = K0, Epd2,+(K) = Ezd2,+(K) = K2.
In this context the level Ezd2,+(K) becomes degenerate with
Epd2,+(K). This degeneracy is not accidental but it reflects
the fact that the elementary excitations of the d2 states, in
this simplified model, are described by a Dirac spectrum, as
sketched in Fig. 4. As a consequence, no direct gap can be
possibly established in this framework. It is worth mentioning
that a spin-orbit coupling can certainly split the Dirac cone to
produce a direct gap at the K point, but it would not explain
in any case the direct gap observed in the DFT calculations
without spin-orbit coupling.

We should also mention that, in the same reduced three-
band model keeping only the d0 and d2 Mo orbitals, the
secondary maximum (C) of the valence band would have a pure
d0 orbital character. As we see in the discussion concerning the
multilayer samples, this would have important consequences
on the construction of a proper TB model.

K

pd2,+

Epd0,+

Ezd2,+

K2

K0

(a) (b)

K

E

FIG. 4. Schematic band structure close to the K point for the
valence and conduction bands: (a) including S px , py orbitals;
(b) omitting S px , py orbitals.

A final consideration concerns the orbital character of the
valence band edge, Epd2,+(K). This state is associated with
the third 2 × 2 block of (18) and it results from the hy-
bridization of the chiral state dk,R2 = (dk,x2−y2 + idk,xy)/

√
2

of the Mo d orbitals with the chiral state pk,R,S = (pk,x,S +
ipk,y,S)/

√
2 of the S p orbitals. The role of the chirality

associated with the d orbitals, in the presence of a finite
spin-orbit coupling, has been discussed in detail in relation
with spin/valley selective probes.21–27 What results from a
careful TB description is that such d-orbital chirality is
indeed strongly associated with a corresponding chirality
associated with the S p orbitals. The possibility of such
a correlation, dictated by group theory, was pointed out in
Ref. 28.

A similar feature is found for the conduction band edge,
Epd0,+(K). So far, this state has been assumed to be mainly
characterized by the d3z2−r2 and hence without an orbital
moment. However, as we can see, this is true only for the
Mo d part, whereas the S p component does contain a finite
chiral moment. On the other hand, the spin-orbit associated
with the S atoms as well as with other chalcogenides (e.g., Se)
is quite small, and taking into account also the small orbital S
weight, the possibility of a direct probe of such orbital moment
is still to be explored.

IV. BULK SYSTEM

In the previous section we examined in detail the content
of the orbital character in the main high-symmetry points
of the Brillouin zone of the single-layer MoS2, to provide
theoretical constraints on the construction of a suitable TB
model. Focusing on the low-energy excitations close to the
direct gap at the K point, we have seen that a proper model
must take into account at least the three Mo orbitals d3z2−r2 ,
dx2−y2 , dxy and the two S orbitals px , py . On the other hand,
our wider aim is to introduce a TB model for the single layer
that would be the basic ingredient for a TB model in multilayer
systems, simply adding the interlayer coupling.

For the sake of simplicity we focus here on the bulk 2H-
MoS2 structure as a representative case that contains already
all the ingredients of the physics of multilayer compounds.
The band structure for the bulk compound is shown in Fig. 3.
As it is known, the secondary maximum (C) of valence band
at the � point is shifted to higher energies in multilayer
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systems with respect to the single-layer case, becoming the
valence band maximum. At the same time also the secondary
minimum (D) of the conduction band, roughly at the Q point,
is lowered in energy, becoming the conduction band minimum.
All these changes result in a transition between a direct gap
material in single-layer compounds and indirect gap systems
in the multilayer case. Although such an intriguing feature
has been discussed extensively and experimentally observed,
the underlying mechanism has not been so far elucidated.
We show here that such topological transition of the band
edges can be naturally explained within the context of a
TB model as a result of an orbital selective (and hence
momentum dependent) band splitting induced by the interlayer
hopping.

The orbital content of the bulk band structure along the
same high-symmetry lines as in the single-layer case is shown
in Fig. 3. We focus first on the K point, where the single-layer
system has a direct gap. We note that the direct gap at K
is hardly affected. The interlayer coupling produces just a
very tiny splitting of the valence band edge Epd2,+(K), while
the conduction band edge Epd0,+(K) at K becomes doubly
degenerate.

Things are radically different at the � point. The analysis
of the orbital weight d3z2−r2 in Fig. 3 shows indeed that
there is a sizable splitting of the Ezd0,+(�) level, of the
order of 1 eV. A bit more difficult to discern, because of
the multiorbital component, but still visible, is the splitting
of the secondary minimum (D) of the conduction band in Q.
This is detected most clearly in Fig. 3 by looking at the d2 and
d0 characters, which belong uniquely to the E block. One can
thus estimate from DFT a splitting of this level at the Q point of
∼1.36 eV.

We are now going to see that all these features are consistent
with a TB construction where the interlayer hopping acts as
an additional parameter with respect to the single-layer TB
model. From the TB point of view, it is clear that the main
processes to be included are the interlayer hoppings between
the external S planes of each MoS2 block. This shows once
more the importance of including the S p orbital in a reliable
TB model. Moreover, for geometric reasons, one could expect
that the interlayer hopping between the pz orbitals, pointing
directly out of plane, would be dominant with respect to
the interlayer hopping between px and py . This qualitative
argument is supported by the DFT results, which indeed
report a big splitting of the Ezd0,+(�) level at the � point,
with 27% of the pz component, but almost no splitting of the
degenerate Epd2,+(�) at ∼2 eV, with 68% of the component of
px , py .

We can quantify this situation within the TB description
by including explicitly the interlayer hopping between the
p orbitals of the S atoms in the outer planes of each MoS2

layer, with interatomic distance d = 3.49 Å (see Fig. 1).
These processes will be parametrized in terms of the interlayer
Slater-Koster ligands Uppσ , Uppπ . The Hilbert space is now
determined by a 22-fold vector, defined as

̃
†
k = (φ̃†

k,1,φ̃
†
k,2), (23)

where φ̃
†
k,1 represents the basis (9) for the layer 1, and φ̃

†
k,2 is

the same quantity for layer 2. The corresponding Hamiltonian,

in the absence of interlayer hopping, would read

Ĥbulk =
(

Ĥ1 0̂

0̂ Ĥ2

)
, (24)

where Ĥ1, Ĥ2 refer to the intralayer Hamiltonian for the layers
1 and 2, respectively.

Note that the Hamiltonian of layer 2 in the 2H-MoS2

structure is different with respect to the one of layer 1. From
a direct inspection we can see that the elements H2,α,β (ξ,η) of
layer 2 are related to the corresponding elements of layer 1 as

H2,α,β (ξ,η) = PαPβH1,α,β (ξ, − η), (25)

where ξ = kxa/2, η = √
3kya/2, and Pα = 1 if the orbital α

has even symmetry for y → −y, and Pα = −1 if it has odd
symmetry. We note that both effects can be readsorbed in a
different redefinition of the orbital basis so that the eigenvalues
of Ĥ2 are, of course, the same as the eigenvalues of Ĥ1.

Taking into account the interlayer S-S hopping terms, we
can write

Ĥbulk =
(

Ĥ1 Ĥ⊥
Ĥ

†
⊥ Ĥ2

)
, (26)

where Ĥ⊥ is here the interlayer hopping Hamiltonian, namely,

Ĥ⊥ =
(

ÎE cos ζ ÎEO sin ζ

−ÎT
EO sin ζ ÎO cos ζ

)
, (27)

where ζ = kzc/2 and

ÎE =
(

0̂3×3 0̂3×3

0̂3×3 Î

)
, (28)

ÎO =
(

0̂2×2 0̂2×3

0̂3×2 Î

)
, (29)

ÎEO =
(

0̂3×2 0̂3×3

0̂3×2 iÎ

)
, (30)

Î =

⎛
⎜⎝

Ix/x Ix/y Ix/z

Ix/y Iy/y Iy/z

Ix/z Iy/z Iz/z

⎞
⎟⎠ . (31)

The analytical expression of the elements Iα/β as functions
of the Slater-Koster interlayer parameters Uppσ , Uppπ is
provided in Appendix A. Note that, in the presence of interlayer
hopping in the bulk MoS2, we cannot divide anymore, for
generic momentum k, the 22 × 22 Hamiltonian in smaller
blocks with even and odd symmetry with respect to the change
z → −z. The analysis is, however, simplified at specific
high-symmetry points of the Brillouin zone. In particular,
for kz = 0 (ζ = 0), we can easily see from (27) that the
block 12 × 12 (6 × 6 + 6 × 6) with even symmetry and the
block 10 × 10 (5 × 5 + 5 × 5) with odd symmetry are still
decoupled.

Exploiting this feature, we can now give a closer look at
the high-symmetry points.

A. � point

In Sec. III we have seen that at the � point the Hamiltonian
can be decomposed in 2 × 2 blocks. Particularly important
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here is the block Hzd0 whose upper eigenvalue Ezd0,+(�),
with main orbital character d3z2−r2 and a small pz component,
represents the secondary maximum (C) of the valence band. A
first important property to be stressed in bulk systems is that,
within this (Mo 4d) + (S 3p) TB model, the interlayer coupling
at the � point does not mix any additional orbital character.
This can be seen by noticing that the interlayer matrix Î is
diagonal at the � point. Focusing on the Ezd0 (�) levels, we
can write thus a 4 × 4 reduced Hamiltonian (see Appendix B),

Ĥzd0 =

⎛
⎜⎜⎜⎜⎝

�0

√
2�zd0 0 0√

2�zd0 �E
z 0 �zz

0 0 �0

√
2�zd0

0 �zz

√
2�zd0 �E

z

⎞
⎟⎟⎟⎟⎠ , (32)

where �zz represents the interlayer hopping mediated by Uppσ ,
Uppπ between pz orbitals belonging to the outer S planes on
different layers. Equation (32) is important since it shows the
correctness of the qualitative idea that each level in the bulk
system is just split by the interlayer hopping. In particular,
under the reasonable hypothesis that the interlayer hopping is
much smaller than intralayer processes, denoting Ezd0,+a(�),
Ezd0,+b(�) the two eigenvalues with primary d0 components,
we get

�Ezd0,+(�) = Ezd0,+a(�) − Ezd0,+b(�)

≈ �zz

⎡
⎣ �0 − �E

z

2
√(�0−�E

z

2

)2 + 2�zd0

− 1

⎤
⎦

= �zz

[
�0 − �E

z

Ezd0,+(�) − Ezd0,−(�)
− 1

]
. (33)

A similar situation is found for the other 2 × 2 blocks,
Ĥpd2 (�), Ĥpd1 (�), and the 1 × 1 block Ĥz(�). Most important,
tracking the DFT levels by means of their orbital content, we
can note that both levels Ezd0,+(�) and Ezd0,−(�) undergo a
quite large splitting ≈1.2 eV, and the level Ez(�) a splitting
≈2.6 eV, whereas the levels Ĥpd2 (�), Ĥpd1 (�) are almost
unsplit. This observation strongly suggests that, as expected,
the interlayer hopping between px and py orbitals is much less
effective than the interlayer hopping between pz orbitals.

A similar conclusion can be drawn from the investigation
of the energy levels at the K point, although the analysis is a
bit more involved.

B. K point

The properties of the bulk system at the K point are dictated
by the structure of the interlayer matrix Î which, in the basis
defined in Eq. (23), at the K point reads

Î66(K) =

⎛
⎜⎝

Kpp iKpp iKpz

iKpp −Kpp Kpz

iKpz Kpz 0

⎞
⎟⎠ . (34)

As discussed in detail in Appendix B, the electronic
structure is made more transparent by using an appropriate
chiral basis, which is a direct generalization of the one for the
single layer. We can thus write the even and odd parts of the

resulting Hamiltonian in the form

ĤE(K) =

⎛
⎜⎝

Ĥpzd02 (K) 0 0

0 Ĥpzd02 (K) 0

0 0 Ĥpd2,E(K)

⎞
⎟⎠ , (35)

ĤO(K) =

⎛
⎜⎝

Ĥpzd1 (K) 0 0

0 Ĥpzd1 (K) 0

0 0 Ĥpd1,O(K)

⎞
⎟⎠ , (36)

where

Ĥpzd02 (K) =

⎛
⎜⎜⎜⎝

K0 −2iKpd0 0 0

2iKpd0 KE
p 0 i

√
2Kpz

0 0 K2 2Kzd2

0 −i
√

2Kpz 2Kzd2 KE
z

⎞
⎟⎟⎟⎠ ,

(37)

Ĥpd2,E(K)

=

⎛
⎜⎜⎜⎜⎝

K2 i
√

8Kpd2 0 0

−i
√

8Kpd2 KE
p 0 2Kpp

0 0 K2 i
√

8Kpd2

0 2Kpp −i
√

8Kpd2 KE
p

⎞
⎟⎟⎟⎟⎠ ,

(38)

Ĥpzd1 (K) =
⎛
⎝ K1 −2iKzd1 0

2iKzd1 KO
z 0

0 0 KO
p

⎞
⎠ , (39)

Ĥpd1,O(K) =

⎛
⎜⎜⎜⎝

K1

√
8Kpd1 0 0√

8Kpd1 KO
p 0 2Kpp

0 0 K1

√
8Kpd1

0 2Kpp

√
8Kpd1 KO

p

⎞
⎟⎟⎟⎠ .

(40)

We can notice that Eq. (38) has the same structure
as (32), with two 2 × 2 degenerate sub-blocks
hybridized by a nondiagonal element (Kpp in this
case). This results in a splitting of the single-layer
levels Epd2,+(K) → Epd2,+a(K),Epd2,+b(K), Epd2,−(K) →
Epd2,−a(K),Epd2,−b(K). The two levels Epd2,+a(K),
Epd2,+b(K), by looking at their orbital character, can be
identified in DFT results in the small splitting of the (B)
Epd2,+(K) level, confirming once more the smallness of the
interlayer px/y-px/y hopping.

Less straightforward is the case of the 4 × 4 block
Ĥpzd02 (K), where the hybridization term

√
2Kpz mixes two

different 2 × 2 sub-blocks, Ĥpd0 and Ĥzd2 . In this case, a
mixing of the orbital character will result. We note, however,
that the block Ĥpzd02 (K) appears twice in (35), so that each
energy level will be doubly degenerate, in particular the
minimum (A) of the conduction band at K. Note, however, that
the negligible shift of such energy level in the DFT calculations
with respect to the single-layer case is an indication that also
the interlayer hopping element Kpz, between pz on one layer
and px , py on the other one, is negligible.

075409-9



E. CAPPELLUTI et al. PHYSICAL REVIEW B 88, 075409 (2013)

C. Q point

An analytical insight into the electronic structure at the Q
point was not available in single-layer systems and it would be
thus even more complicated in the bulk case. A few important
considerations, concerning the minimum (D), can, however, be
drawn from the DFT results. In particular, we note that in the
single-layer case this energy level had a nonvanishing pz com-
ponent. As we have seen above, the interlayer hopping between
pz orbitals appears to be dominant with respect to the interlayer
hopping between px/y and px/y and with respect to the mixed
interlayer hopping pz-px/y . We can thus expect a finite sizable
splitting of the (D) level, containing a finite pz component,
with respect to the negligible energy shift of Epd0,+ (A), which
depends on the mixed interlayer process Kpz.

V. MOMENTUM/ORBITAL SELECTIVE SPLITTING
AND COMPARISON WITH DFT DATA

In the previous section we elucidated, using a TB model,
the orbital character of the band structure of MoS2 on the main
high-symmetry points of the Brillouin zone. We have shown
how a reliable minimal model for the single-layer case needs
to take into account at least the px , py orbitals of the S atoms
in addition to the 4d orbitals of Mo. A careful inspection of
the electronic structure shows also that the band edges at the K
point defining the direct band gap in the single-layer case are
characterized not only by a chiral order of the d Mo orbitals,
as experimentally observed, but also by a chiral order of the
minor component of the px/y S orbitals.

An important role is also played by the pz orbitals of the
S atoms. In single-layer systems, the pz orbital character is
particularly relevant in the (C) state, characterizing a secondary
maximum in the valence band at the � point, and in the (D)
state, which instead provides a secondary minimum in the
conduction band at the Q point.

The pz component becomes crucial in multilayer com-
pounds where a comparison with DFT results shows that the
interlayer coupling is mainly driven by the pz-pz hopping,
whereas px/y-px/y, pz-px/y are negligible. This results in an
orbital-selective and momentum-dependent interlayer splitting
of the energy levels, being larger for the (C) and (D) states
and negligible for (A) and (B). This splitting is thus the
fundamental mechanism responsible for the transition from
a direct (A)-(B) gap in single-layer compounds to an indirect
(C)-(D) gap in multilayer systems. Controlling these processes
is therefore of the highest importance for electronic applica-
tions. Note that such direct/indirect gap switch is discussed
here in terms of the number of layers. On the other hand, the
microscopical identification of such a mechanism, which is
essentially driven by the interlayer coupling, makes it possible
to understand on the physical ground the high sensitivity to
pressure/strain effects, as well as to the temperature, via the
lattice expansion.

Finally, in order to show at a quantitative level how the
orbital content determines the evolution of the electronic
structure from single-layer to multilayer compounds, we have
performed a fitting procedure to determine the TB parameters
that best reproduce the DFT bands within the model defined
here. The task was divided into two steps: (i) We first focus on

the single-layer case to determine the relevant Slater-Koster
intralayer parameters in this case; (ii) afterwards, keeping
fixed the intralayer parameters, we determine the interlayer
parameters. To this purpose we employ a simplex method105

to minimize a weighted mean square error fwMSE between the
TB and DFT band energies, defined as

fwMSE =
∑
k,i

wi(k)
[
εTB
i (k) − εDFT

i (k)
]2

, (41)

where εDFT
i (k) is the dispersion on the ith band of the 11-band

block under consideration, εTB
i (k) is the corresponding TB

description, and wi(k) is a band/momentum resolved weight
which can be used to improve fitting over particular k regions
or over selected bands. In spite of many efforts, we could not
find a reliable fit for the whole electronic structure including
the seven valence bands and the four lowest conduction
bands.106 As our analysis and our main objective concerns the
description of the valence and conduction bands that define
the band gap of these systems, we focus on finding a set
of parameters that describe properly these bands. Since both
the lowest conduction and highest valence band belong to
the electronic states with even z → −z symmetry, the fit was
performed in the 6 × 6 orbital space defined by this symmetry.
In addition, due to the degeneracy at the � point and to the
band crossing along the �-M direction, the two conduction
bands with even symmetry for z → −z were considered in
the fit. Additionally, we give a larger weight to the (A)–(D)
band edges in order to obtain a better description of the most
important features of the band structure.

Our best fit for the single-layer case is shown in the top
panel of Fig. 5 (where only the TB bands with even symmetry
z → −z are shown), compared with the DFT bands, and the

Γ M K Γ
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1
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2

3
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K Γ
0.8

0.9

1.0

1 layer

bulk
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D

FIG. 5. (Color online) Comparison between the DFT band struc-
ture (black dots) and the best fit TB model (red solid lines) for
single-layer (top panel) and bulk MoS2 (bottom panel). (Inset in
the top panel) Magnification of the conduction bands along the K-�
direction in the single-layer case.
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TABLE II. Tight-binding parameters for single-layer MoS2 (�α ,
Vα) as obtained by fitting the low-energy conduction and valence
bands. Also shown are the interlayer hopping parameters Uα relevant
for bulk MoS2. All hopping terms Vα , Uα and crystal fields �α are in
units of eV.

Crystal fields �0 −1.512
�1

�2 −3.025
�p −1.276
�z −8.236

Intralayer Mo-S Vpdσ −2.619
Vpdπ −1.396

Intralayer Mo-Mo Vddσ −0.933
Vddπ −0.478
Vddδ −0.442

Intralayer S-S Vppσ 0.696
Vppπ 0.278

Interlayer S-S Uppσ −0.774
Uppπ 0.123

corresponding TB parameters are listed in Table II. Note that,
due to the restriction of our fitting procedure to only some
bands belonging to the block with even symmetry, the atomic
crystal field �1 for the Mo orbitals dxz, dyz (not involved in
the fitting procedure) results undetermined. The fit reported
in Fig. 5 agrees in a qualitative way with the DFT results,
showing, in particular, a direct gap at the K point [(A) and
(B) band edges] and secondary band edges for the valence
and conduction bands lying at the � (C) and the Q points
(D), respectively. A magnification of the valence band along
the K-� direction is shown in the inset of the top panel of
Fig. 5. The presence of such secondary minimum at the Q
point in the TB modeling, although less deep than in DFT
calculations, is here very important because it represents a
trademark of the correct orbital character.

Turning now to the bulk system, the further step of
determining the interlayer hopping parameters Uppσ , Uppπ is
facilitated by the strong indication, from the DFT analysis, of a
dominant role of the interlayer hopping between the pz orbitals
and a negligible role of the interlayer hopping between the px/y

orbitals. Focusing on the � point, these two different hopping
processes are parametrized in terms of the corresponding
interlayer parameters �zz and �pp, as discussed in Appendix B.
We can thus approximate �pp = 0, providing a constraint
between Uppσ and Uppπ and leaving thus only one effective
independent fitting parameter: �zz. We determine it, and hence
Uppσ and Uppπ , by fixing the effective splitting of the Ezd0,+(�)
level as in the DFT data. The values of Uppσ and Uppπ found
in this way are also reported in Table II, and the resulting band
structure is shown in the bottom panel of Fig. 5, where only the
TB bands with even symmetry z → −z are shown. We stress
that the intralayer hoppings are here taken from the fitting of the
single-layer case. The agreement between the DFT and the TB
bands is also qualitatively good in this case. In particular, we
would like to stress the momentum/orbital selective interlayer
splitting of the bands, which is mainly concentrated at the �

point for the valence band and at the Q point for the conduction
band. This yields to the crucial transition between a direct gap

in single-layer MoS2, located at the K point, to an indirect gap
�-Q in multilayer systems.

On more quantitative grounds, we can see that, while the
interlayer splitting of the conduction level Ezd0,+(�) is easily
reproduced, the corresponding splitting of the conduction band
at the Q point is somewhat underestimated in the TB model
(0.20 eV) as compared to the DFT data (1.36 eV).107 This
discrepancy is probably due to the underestimation, in the TB
model, of the pz character of the conduction band at the Q
point. As a matter of fact, the set of TB parameters reported
in Table II gives at the Q point of the conduction band, for
the single-layer case, only a 3.8% of pz orbital character, in
comparison with the 11% found by the DFT calculations. It
should be kept in mind, however, that the optimization of
the TB fitting parameters in such a large phase space (12
free parameters) is a quite complex and not unambiguous
procedure, and other solutions are possible. A more refined
numerical search in the optimization of the TB parameters,
using global minimization techniques, might result in better
comparison with the DFT results and further work along this
line should be of great interest.

VI. CONCLUSIONS

In this paper we have provided an analytic and reliable
description of the electronic properties of single-layer and
multilayer semiconducting transition-metal dichalcogenides
in terms of a suitable TB model. We have shown that the
band structure of the multilayer compounds can be generated
from the TB model for the single-layer system by adding
the few relevant interlayer hopping terms. The microscopic
mechanism for the transition between a direct-gap to an
indirect-gap from single-layer to multilayer compounds is thus
explained in terms of a momentum/orbital selective interlayer
band splitting, where the orbital pz component of the S atoms
plays a central role. The present work provides a suitable basis
for the inclusion of many-body effects within the context of
QFT and for the analysis of local strain effects related to the
modulation of the Mo-S, Mo-Mo, and S-S ligands.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN
ELEMENTS

In this appendix we provide an analytical expression,
in terms of the Slater-Koster parameters, for the several
intralayer and interlayer matrix elements that appear in the
Hamiltonian of the TB model. Following Ref. 104, it is
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convenient to introduce few quantities that account for the
moment dispersion within the Brillouin zone, as functions of
the reduced momentum variables ξ = kxa/2, η = √

3kya/2.
We define thus

C1(ξ,η) = 2 cos(ξ ) cos(η/3) + cos(2η/3)

+ i[2 cos(ξ ) sin(η/3) − sin(2η/3)], (A1)

C2(ξ,η) = cos(ξ ) cos(η/3) − cos(2η/3)

+ i[cos(ξ ) sin(η/3) + sin(2η/3)], (A2)

C3(ξ,η) = cos(ξ ) cos(η/3) + 2 cos(2η/3)

+ i[cos(ξ ) sin(η/3) − 2 sin(2η/3)], (A3)

d1(ξ,η) = sin(η/3) − i cos(η/3), (A4)

l1(ξ,η) = cos(2ξ ) + 2 cos(ξ ) cos(η), (A5)

l2(ξ,η) = cos(2ξ ) − cos(ξ ) cos(η), (A6)

l3(ξ,η) = 2 cos(2ξ ) + cos(ξ ) cos(η). (A7)

1. Intralayer hopping terms

Following Ref. 104, the intralayer hopping terms Hα,β

appearing in Eqs. (4)–(8) can be written as

Hx/x(ξ,η) = �p + E15l3(ξ,η) + 3E16 cos(ξ ) cos(η),

Hy/y(ξ,η) = �p + E16l3(ξ,η) + 3E15 cos(ξ ) cos(η),

Hz/z(ξ,η) = �z + 2E16l1(ξ,η),

Hz2/z2 (ξ,η) = �0 + 2E9l1(ξ,η),

Hx2/x2 (ξ,η) = �2 + E11l3(ξ,η) + 3E12 cos(ξ ) cos(η),

Hxy/xy(ξ,η) = �2 + E12l3(ξ,η) + 3E11 cos(ξ ) cos(η),

Hxz/xz(ξ,η) = �1 + E13l3(ξ,η) + 3E14 cos(ξ ) cos(η),

Hyz/yz(ξ,η) = �1 + E14l3(ξ,η) + 3E13 cos(ξ ) cos(η),

Hx/y(ξ,η) = −
√

3(E15 − E16) sin(ξ ) sin(η),

Hz2/x2 (ξ,η) = 2E10l2(ξ,η),

Hz2/xy(ξ,η) = −2
√

3E10 sin(ξ ) sin(η),

Hx2/xy(ξ,η) =
√

3(E11 − E12) sin(ξ ) sin(η),

Hxz/yz(ξ,η) =
√

3(E14 − E13) sin(ξ ) sin(η),

Hz2/x(ξ,η) = −2
√

3E1 sin(ξ )d1(ξ,η),

Hz2/y(ξ,η) = 2E1C2(ξ,η),

Hz2/z(ξ,η) = E2C1(ξ,η),

Hx2/x(ξ,η) = −2
√

3

(
1

3
E5 − E3

)
sin(ξ )d1(ξ,η),

Hx2/y(ξ,η) = −2E3C3(ξ,η) − 2iE5 cos(ξ )d1(ξ,η),

Hx2/z(ξ,η) = −2E4C2(ξ,η),

Hxy/x(ξ,η) = −2

3
E5C3(ξ,η) − 6iE3 cos(ξ )d1(ξ,η),

Hxy/y(ξ,η) = Hx2/x(ξ,η),

Hxy/z(ξ,η) = 2
√

3E4 sin(ξ )d1(ξ,η),

Hxz/x(ξ,η) = 2

3
E6C3(ξ,η) + 6iE7 cos(ξ )d1(ξ,η),

Hxz/y(ξ,η) = 2
√

3

(
1

3
E6 − E7

)
sin(ξ )d1(ξ,η),

Hxz/z(ξ,η) = −2
√

3E8 sin(ξ )d1(ξ,η),

Hyz/x(ξ,η) = Hxz/y(ξ,η),

Hyz/y(ξ,η) = 2E7C3(ξ,η) + 2iE6 cos(ξ )d1(ξ,η),

Hyz/z(ξ,η) = 2E8C2(ξ,η),

where

E1 = 1

2

[
−Vpdσ

(
sin2 φ − 1

2
cos2 φ

)
+

√
3Vpdπ sin2 φ

]
× cos φ, (A8)

E2 =
[
−Vpdσ

(
sin2 φ − 1

2
cos2 φ

)
−

√
3Vpdπ cos2 φ

]
× sin φ, (A9)

E3 = 1

4

[√
3

2
Vpdσ cos3 φ + Vpdπ cos φ sin2 φ

]
, (A10)

E4 = 1

2

[√
3

2
Vpdσ sin φ cos2 φ − Vpdπ sin φ cos2 φ

]
,

(A11)

E5 = −3

4
Vpdπ cos φ, (A12)

E6 = −3

4
Vpdπ sin φ, (A13)

E7 = 1

4
[−

√
3Vpdσ cos2 φ − Vpdπ (1 − 2 cos2 φ)] sin φ,

(A14)

E8 = 1

2
[−

√
3Vpdσ sin2 φ − Vpdπ (1 − 2 sin2 φ)] cos φ,

(A15)

E9 = 1

4
Vddσ + 3

4
Vddδ, (A16)

E10 = −
√

3

4
[Vddσ − Vddδ], (A17)

E11 = 3

4
Vddσ + 1

4
Vddδ, (A18)

E12 = Vddπ , (A19)

E13 = Vddπ , (A20)

E14 = Vddδ, (A21)

E15 = Vppσ , (A22)

E16 = Vppπ . (A23)
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Here the angle φ characterizes the structure of the unit cell
of the compound and it is determined by purely geometric
reasons (see Fig. 1). For the ideal trigonal prism structure,
neglecting the marginal deviations from it in real systems, we
have φ = arccos[

√
4/7], so that cos φ = √

4/7 and sin φ =√
3/7.
With these expressions, taking into account also the further

changes of basis, the Hamiltonian at the � point can be divided
in sub-blocks as

ĤE(�) =

⎛
⎜⎝

Ĥzd0 (�) 0 0

0 Ĥpd2 (�) 0

0 0 Ĥpd2 (�)

⎞
⎟⎠ , (A24)

ĤO(�) =

⎛
⎜⎝

Ĥpd1 (�) 0 0

0 Ĥpd1 (�) 0

0 0 �z

⎞
⎟⎠ , (A25)

where

Ĥzd0 (�) =
(

�0

√
2�zd0√

2�zd0 �E
z

)
, (A26)

Ĥpd2 (�) =
(

�2

√
2�pd2√

2�pd2 �E
p

)
, (A27)

Ĥpd1 (�) =
(

�1

√
2�pd2√

2�pd2 �O
p

)
. (A28)

The parameters �α can be viewed as “molecular” energy
levels, and the quantities �α,β can be viewed as hybridization
parameters. Their explicit expressions read

�0 = Hz2/z2 (�) = �0 + 6E9, (A29)

�1 = Hxz/xz(�) = Hyz/yz(�) = �1 + 3[E13 + E14],

(A30)

�2 = Hxy/xy(�) = Hx2/x2 (�) = �2 + 3[E11 + E12], (A31)

�E
p = �p + Vppπ , (A32)

�O
p = �p − Vppπ , (A33)

�E
z = �z − Vppσ , (A34)

�O
z = �z + Vppσ , (A35)

�p = Hx/x(�) = Hy/y(�) = �p + 3[E15 + E16], (A36)

�z = Hz/z(�) = �z + 6E16, (A37)

�zd0 = H3z2−r2/z(�) = 3E2, (A38)

�pd2 = Hx2−y2/y(�) = Hxy/x(�) = −2[3E3 + E5], (A39)

�pd1 = Hxz/x(�) = Hyz/y(�) = 2[3E7 + E6]. (A40)

At the K point, in the proper basis described in the
main text, we can write the even and odd blocks of the

Hamiltonian as

ĤE(K) =

⎛
⎜⎝Ĥpd0 (K) 0 0

0 Ĥzd2 (K) 0
0 0 Ĥpd2 (K)

⎞
⎟⎠ , (A41)

ĤO =

⎛
⎜⎝Ĥpd1 (K) 0 0

0 Ĥzd1 (K) 0
0 0 KO

p

⎞
⎟⎠ , (A42)

where

Ĥpd0 (K) =
(

K0 −2iKpd0

2iKpd0 KE
p

)
, (A43)

Ĥzd2 (K) =
(

K2 2Kzd2

2Kzd2 KE
z

)
, (A44)

Ĥpd2 (K) =
(

K2 i
√

8Kpd2

−i
√

8Kpd2 KE
p

)
, (A45)

Ĥpd1 (K) =
(

K1

√
8Kpd1√

8Kpd1 KO
p

)
, (A46)

Ĥzd1 (K) =
(

K1 −2iKzd1

2iKzd1 KO
z

)
. (A47)

The parameters Kα , Kα,β read here

K0 = Hz2/z2 (K) = �0 − 3E9, (A48)

K1 = Hxz/xz(K) = Hyz/yz(K) = �1 − 3
2 [E13 + E14],

(A49)

K2 = Hxy/xy(K) = Hx2/x2 (K) = �2 − 3
2 [E11 + E12],

(A50)

KE
p = Kp + Vppπ , (A51)

KO
p = Kp − Vppπ , (A52)

KE
z = Kz − Vppσ , (A53)

KO
z = Kz + Vppσ , (A54)

Kp = Hx/x(K) = Hy/y(K) = �p − 3
2 [E15 + E16], (A55)

Kz = Hz/z(K) = �z − 3E16, (A56)

Kpd0 = H3z2−r2/y(K) = iH3z2−r2/x(K) = −3E1, (A57)

Kzd2 = Hx2−y2/z(K) = iHxy/z(K) = 3E4, (A58)

Kpd2 = Hx2−y2/y(K) = −Hxy/x(K) = −iHx2−y2/x(K)

= −iHxy/y(K) = [E5 − 3E3], (A59)

Kpd1 = Hxz/x(K) = −Hyz/y(K) = iHxz/y(K)

= iHyz/x(K) = [E6 − 3E7], (A60)

Kzd1 = Hyz/z(K) = iHxz/z(K) = −3E8. (A61)
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2. Interlayer hopping terms

Interlayer hopping is ruled by the Slater-Koster parameters
Uppσ , Uppπ describing hopping between S-3p orbitals belong-
ing to different layers.

In terms of the reduced momentum variables ξ = kxa/2,
η = √

3kya/2, we have thus

Ix/x(ξ,η) = 1

2
[E19C3(ξ, − η) + i3E17 cos ξd1(ξ, − η)],

(A62)

Iy/y(ξ,η) = 1

2
[E17C3(ξ, − η) + i3E19 cos ξd1(ξ, − η)],

(A63)

Iz/z(ξ,η) = E18C1(ξ, − η), (A64)

Ix/y(ξ,η) =
√

3

2
[E17 − E19] sin ξd1(ξ, − η), (A65)

Ix/z(ξ,η) = −
√

3E20 sin ξd1(ξ,η), (A66)

Iy/z(ξ,η) = −E20C2(ξ, − η), (A67)

Iz/z(ξ,η) = E18C1(ξ, − η), (A68)

where

E17 = Uppσ cos2 β + Uppπ sin2 β, (A69)

E18 = Uppσ sin2 β + Uppπ cos2 β, (A70)

E19 = Uppπ , (A71)

E20 = [Uppσ − Uppπ ] cos β sin β. (A72)

Here β is the angle between the line connecting the two S
atoms with respect to the S planes (see Fig. 1). Denoting w the

distance between the two S planes, we have

cos β = a√
a2 + 3w2

, (A73)

sin β =
√

3w√
a2 + 3w2

. (A74)

Using typical values for bulk MoS2, a = 3.16 Å, and w =
2.975 Å, we get cos β = 0.523 and sin β = 0.852. At the high-
symmetry points �, K, we have thus

�pp = Ix/x(�) = Iy/y(�) = 3
2 [E19 + E17] , (A75)

�zz = Iz/z(�) = 3E18, (A76)

Kpp = Ix/x(K) = −Iy/y(K) = −iIx/y(K) = −iIy/x(K)

= 3
4 [E19 − E17], (A77)

Kpz = Iy/z(K) = Iz/y(K)

= −iIx/z(K) = −iIz/x(K) = 3
2E20. (A78)

APPENDIX B: DECOMPOSITION OF THE HAMILTONIAN
IN SUB-BLOCKS AT HIGH-SYMMETRY POINTS

In this appendix we summarize the different unitary
transformations that make it possible to decompose at special
high-symmetry points the higher rank Hamiltonian matrix into
smaller sub-blocks. In all the cases we treat in a separate
way the “even” and “odd” blocks, namely electronics states
with even and odd symmetry with respect to the z → −z

inversion.

1. Single layer

a. � point

In the Hilbert space defined by the vector basis φ̃
†
k in Eq. (9),

the even and odd blocks of the Hamiltonian can be written,
respectively, as

ĤE(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0 0 0 0 0
√

2�zd0

0 �2 0 0
√

2�pd2 0

0 0 �2

√
2�pd2 0 0

0 0
√

2�pd2 �E
p 0 0

0
√

2�pd2 0 0 �E
p 0√

2�zd0 0 0 0 0 �E
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

and

ĤO(�) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�1 0
√

2�pd1 0 0

0 �1 0
√

2�pd1 0√
2�pd1 0 �O

p 0 0

0
√

2�pd1 0 �O
p 0

0 0 0 0 �O
z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B2)
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The division in sub-blocks is already evident in Eqs. (B1)
and (B2). They can be further ordered using the basis

φ̄
†
k = (

φ̄
†
k,zd0

,φ̄
†
k,pd2,y

,φ̄
†
k,pd2,x

,φ̄
†
k,pd1,x

,φ̄
†
k,pd1,y

,φ̄
†
k,z

)
, (B3)

where

φ̄
†
k,zd0

= (d†
k,3z2−r2 ,p

†
k,z,A), (B4)

φ̄
†
k,pd2,y

= (d†
k,x2−y2 ,p

†
k,y,S), (B5)

φ̄
†
k,pd2,x

= (d†
k,xy,p

†
k,x,S), (B6)

φ̄
†
k,pd1,x

= (d†
k,xz,p

†
k,x,A), (B7)

φ̄
†
k,pd1,y

= (d†
k,yz,p

†
k,y,A), (B8)

φ̄
†
k,z = (p†

k,z,S). (B9)

In this basis we get Eqs. (11) and (12), where

Ĥzd0 (�) =
(

�0

√
2�zd0√

2�zd0 �E
z

)
, (B10)

Ĥpd2 (�) =
(

�2

√
2�pd2√

2�pd2 �E
p

)
, (B11)

Ĥpd1 (�) =
(

�1

√
2�pd1√

2�pd1 �O
p

)
. (B12)

b. K point

In the basis defined by the Hilbert vector φ̃
†
k , the Hamil-

tonian at the K point reads, for the even and odd blocks,
respectively,

ĤE(K) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0 0 0 −i
√

2Kpd0

√
2Kpd0 0

0 K2 0 i
√

2Kpd2

√
2Kpd2

√
2Kzd2

0 0 K2 −√
2Kpd2 i

√
2Kpd2 −i

√
2Kzd2

i
√

2Kpd0 −i
√

2Kpd2 −√
2Kpd2 KE

p 0 0√
2Kpd0

√
2Kpd2 −i

√
2Kpd2 0 KE

p 0

0
√

2Kzd2 i
√

2Kzd2 0 0 KE
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B13)

ĤO(K) =

⎛
⎜⎜⎜⎜⎜⎜⎝

K1 0
√

2Kpd1 −i
√

2Kpd1 −i
√

2Kzd1

0 K1 −i
√

2Kpd1 −√
2Kpd1

√
2Kzd1√

2Kpd1 i
√

2Kpd1 KO
p 0 0

i
√

2Kpd1 −√
2Kpd1 0 KO

p 0

i
√

2Kzd1

√
2Kzd1 0 0 KO

z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B14)

In order to decouple the Hamiltonian, it is convenient to
introduce the chiral basis defined by the vector ψ̄

†
k in (17). In

this Hilbert space we have thus

ĤE(K) =

⎛
⎜⎝

Ĥpd0 (K) 0 0

0 Ĥzd2 (K) 0

0 0 Ĥpd2 (K)

⎞
⎟⎠ , (B15)

ĤO =

⎛
⎜⎝

Ĥpd1 (K) 0 0

0 Ĥzd1 (K) 0

0 0 KO
p

⎞
⎟⎠ , (B16)

where

Ĥpd0 (K) =
(

K0 −i2Kpd0

i2Kpd0 KE
p

)
, (B17)

Ĥzd2 (K) =
(

K2 2Kpd2

2Kpd2 KE
z

)
, (B18)

Ĥpd2 (K) =
(

K2 i
√

8Kpd2

−i
√

8Kpd2 KE
p

)
, (B19)

Ĥpd1 (K) =
(

K1

√
8Kpd1√

8Kpd1 KO
p

)
, (B20)

Ĥzd1 (K) =
(

K1 −i2Kpd1

i2Kpd1 KO
z

)
. (B21)

2. Bulk system

The general structure of the TB Hamiltonian Hbulk for the
bulk system, using the basis defined in (23), is provided in
Eqs. (26)–(31). We also remind here the symmetry property
(25) that relates the matrix elements of H2 to H1.

As mentioned in the main text, for kz = 0 the band structure
can still be divided in two independent blocks with even and
odd symmetry with respect to the transformation z → −z.104

Further simplifications are encountered at the high-symmetry
points � and K.

a. � point

We first notice that at the � point the relation (25) does not
play any role, i.e., Ĥ2(�) = Ĥ1(�), where Ĥ1(�) is defined by
Eqs. (10)–(12) in the main text.
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The Hamiltonian is thus completely determined by the
interlayer hopping matrix Î that at the � point reads

Î (�) =
⎛
⎝�pp 0 0

0 �pp 0
0 0 �zz

⎞
⎠ . (B22)

A convenient basis to decouple the Hamiltonian into smaller
sub-blocks is thus

̄
†
k = (

̄
†
k,zd0

,̄
†
k,pd2,y

,̄
†
k,pd2,x

,̄
†
k,pd1,x

,̄
†
k,pd1,y

,̄
†
k,z

)
,

(B23)

where

̄
†
k,zd0

= (d†
k,3z2−r2,1,p

†
k,z,A,1,d

†
k,3z2−r2,2,p

†
k,z,A,2), (B24)

̄
†
k,pd2,y

= (d†
k,x2−y2,1,p

†
k,y,S,1,d

†
k,x2−y2,2,p

†
k,y,S,2), (B25)

̄
†
k,pd2,x

= (d†
k,xy,1,p

†
k,x,S,1,d

†
k,xy,2,p

†
k,x,S,2), (B26)

̄
†
k,pd1,x

= (d†
k,xz,1,p

†
k,x,A,1,d

†
k,xz,2,p

†
k,x,A,2), (B27)

̄
†
k,pd1,y

= (d†
k,yz,1,p

†
k,y,A,1,d

†
k,yz,2,p

†
k,y,A,2), (B28)

̄
†
k,z = (p†

k,z,S,1,p
†
k,z,S,1). (B29)

The resulting total Hamiltonian can be written as

Ĥbulk(�) =
(

ĤE,bulk(�) 0

0 ĤO,bulk(�)

)
, (B30)

where

ĤE,bulk(�) =

⎛
⎜⎝

Ĥzd0,bulk(�) 0 0

0 Ĥpd2,bulk(�) 0

0 0 Ĥpd2,bulk(�)

⎞
⎟⎠ ,

(B31)

ĤO,bulk(�) =

⎛
⎜⎝

Ĥpd1,bulk(�) 0 0

0 Ĥpd1,bulk(�) 0

0 0 Ĥz,bulk(�)

⎞
⎟⎠ ,

(B32)

and where

Ĥzd0,bulk =

⎛
⎜⎜⎜⎜⎝

�0

√
2�zd0 0 0√

2�zd0 �E
z 0 �zz

0 0 �0

√
2�zd0

0 �zz

√
2�zd0 �E

z

⎞
⎟⎟⎟⎟⎠ ,

(B33)

Ĥpd2,bulk =

⎛
⎜⎜⎜⎜⎝

�2

√
2�pd2 0 0√

2�pd2 �E
p 0 �pp

0 0 �2

√
2�pd2

0 �pp

√
2�pd2 �E

p

⎞
⎟⎟⎟⎟⎠ ,

(B34)

Ĥpd1,bulk =

⎛
⎜⎜⎜⎜⎝

�1

√
2�pd1 0 0√

2�pd1 �O
p 0 �pp

0 0 �1

√
2�pd1

0 �pp

√
2�pd1 �O

p

⎞
⎟⎟⎟⎟⎠ ,

(B35)

Ĥz,bulk =
(

�O
z �zz

�zz �O
z

)
. (B36)

b. K point

The treatment of the bulk Hamiltonian at the K point, in
order to get a matrix clearly divided into blocks, is a bit less
straightforward than at the � point.

We first notice that the interlayer matrix, in the basis ̃
†
k ,

reads

Î (K) =

⎛
⎜⎝

Kpp iKpp iKpz

iKpp −Kpp Kpz

iKpz Kpz 0

⎞
⎟⎠ . (B37)

We then redefine the orbitals d
†
k,yz,2 → d̄

†
k,yz,2 = −d

†
k,yz,2,

p
†
k,y,α,2 → p̄

†
k,y,α,2 = −p

†
k,y,α,2 (α = A,S), in order to get,

according with (25), Ĥ2(�) = Ĥ1(�).
Following what was done for the single layer, we can also

introduce here a chiral basis. After a further rearrangement
of the vector elements, we define thus the convenient Hilbert
space as

�̄
†
k = (

�̄
†
k,pzd02,L,�̄

†
k,pzd02,R,�̄

†
k,pd2,E

,

�̄
†
k,pzd1,R

,�̄
†
k,pzd1,L

,�̄
†
k,pd1,O

)
, (B38)

where

�̄
†
k,pzd02,L = (d†

k,3z2−r2,1,p
†
k,L,S,1,d

†
k,R,2,p

†
k,z,A,2), (B39)

�̄
†
k,pzd02,R = (d†

k,3z2−r2,2,p
†
k,R,S,2,d

†
k,L,1,p

†
k,z,A,1), (B40)

�̄
†
k,pd2,E

= (d†
k,R,1,p

†
k,R,S,1,d

†
k,L,1,p

†
k,L,S,1), (B41)

�̄
†
k,pzd1,R

= (d†
k,R,1,p

†
k,z,S,1,p

†
k,R,A,2), (B42)

�̄
†
k,pzd1,R

= (d†
k,L,2,p

†
k,z,S,2,p

†
k,L,A,1), (B43)

�̄
†
k,pd1,O

= (d†
k,L,1,p

†
k,R,A,1,d

†
k,R,2,p

†
k,L,A,2). (B44)

On this basis, the Hamiltonian can be once more written as

Ĥbulk(K) =
(

ĤE(K) 0

0 ĤO(K)

)
, (B45)

where ĤE(K), ĤO(K) are defined in Eqs. (35)–(40) of the main
text.
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