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I. MANYBODY WAVE FUNCTION

A. One particle

Hamiltonian and Schrodinger equation for a single particle:

H(1) = T + V ; (1)

H(1)φα = εαφα. (2)

The index α can be a set of quantum numbers, e.g., α = (n, l, m). Whenever required, we

will label, from low energy to high energy, α = 1̄, 2̄, · · · .
Orthogonality:

〈φα|φβ〉 = δαβ. (3)

Completeness: ∑
α

|φα〉〈φα| = 1. (4)

The summation runs over all possible eigenstates, and 1 is the identity matrix in one-body

Hilbert space H(1).

B. N particles, non-interacting

Hamiltonian and Schrodinger equation for non-interacting N particles:

H =
N∑

i=1

H(1)(ri); (5)

HΨ(r1, r2, · · · ) = EΨ(r1, r2, · · · ). (6)

(Note: For simplicity, unless necessary, we often write r as r.) Since there is no interaction

between particles, the Schrodinger equation is separable. Assume

Ψ(r1, r2, · · · , rN) = φ(r1)φ(r2) · · ·φ(rN), (7)

then

H(1)φαi
(ri) = εαi

φαi
(ri), i = 1, 2, · · ·N. (8)

Manybody eigenstate is a product of 1-particle states,

Ψα1,α2,···(r1, r2, · · · , rN) = φα1(r1)φα2(r2) · · ·φαN
(rN) (9)

≡ (r1, r2, · · · , rN |Ψα1,α2,··· ,αN
),
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with eigenvalues

Eα1,α2,··· = εα1 + εα2 + · · ·+ εαN
. (10)

Notice that we have used a round bracket | · · · ) to represent a product state. The angular

bracket | · · · 〉 is reserved for later use. Orthogonality:

(
Ψα′1,α′2,··· ,α′N |Ψα1,α2,··· ,αN

)
= δα′1α1

δα′2α2
· · · δα′NαN

(11)

Completeness: ∑
α1α2···αN

|Ψα1α2···αN
)(Ψα1α2···αN

| = 1. (12)

The summation runs over all possible manybody eigenstates {α1α2 · · ·αN}, and 1 is the

identity matrix in manybody Hilbert space H(N) = H(1) ⊗H(1) ⊗ · · · ⊗ H(1)

︸ ︷︷ ︸
N times

.

C. Permutation symmetry for bosons and fermions

Definition of exchange operator:

PijΨ(r1 · · · ri · · · rj · · · ) ≡ Ψ(r1 · · · rj · · · ri · · · ). (13)

For any boson state and fermion state, we have

PijΨ(r1, r2, · · · ) = ±Ψ(r1, r2, · · · ). (14)

In order for the eigenstates to satisfy this permutation symmetry, we need to symmetrize

the state in Eq. (9).

For bosons,

ΨB
α1,α2,···(r1, r2, · · · ) =

1√
N !

∑

allP

Pφα1(r1)φα2(r2) · · · , (15)

where the summation runs over all possible permutations. Even though we have inserted a

factor 1/
√

N !, the state may still not be normalized (details later).

For fermions,

ΨF
α1,α2,···(r1, r2, · · · ) =

1√
N !

∑

allP

(−1)P Pφα1(r1)φα2(r2) · · · , (16)

where (−1)P ≡ ±1 for even/odd permutation.

3



Both summations in Eqs. (15) and (16) can be written in the following form,

ΨB/F
α1,α2,···(r1, r2, · · · ) =

1√
N !

∣∣∣∣∣∣∣∣∣

φα1(r1) φα1(r2) · · ·
φα2(r1) φα2(r2) · · ·

...
. . .

∣∣∣∣∣∣∣∣∣
±

. (17)

For fermions, Eq. (16) is equal to the usual determinant | · · · |−, in which half of the terms

have negative signs. For bosons, Eq. (15) is equal to the so-called permanent | · · · |+, in

which all of the terms have positive signs. For fermions, ΨF is equal to zero if αi = αj for

any two states. This is the Pauli exclusion principle.

D. Normalization

In a bracket notation, Eqs. (15) and (16) (now free from the coordinate representation)

are written as,

|α1, α2, · · · } ≡ 1√
N !

∑

allP

(±1)P P |α1〉|α2〉 · · · (18)

=
1√
N !

∑

allP

(±1)P |αP1〉|αP2〉 · · · ,

where (αP1 , αP2 , · · · ) is a permutation of (α1, α2, · · · ).
¥ Bosons

{α1, α2, · · · |α1, α2, · · · } =
1

N !

∑

P,P ′
〈αP ′1|αP1〉〈αP ′2|αP2〉 · · · , (19)

in which 〈αP ′1|αP1〉 = δP ′1P1
... etc. If all of the particles live in different states, then after

using

αP ′1 = αP1 (20)

αP ′2 = αP2

... ,

we would have N ! terms (all of them being one) in the summation. Therefore,

{α1, α2, · · · |α1, α2, · · · } = 1. (21)

However, if there are n1 particles live in state 1̄, n2 particles live in state 2̄, ... etc (recall

that 1̄, 2̄ are the label of one-particle eigenstate from low energy to high energy), then there
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are n1 of the αPi
states that are the same (= 1̄). Therefore, there are n1! different ways to

match (using αP ′i = αPi
) members in that n1-group, n2! different ways to match members

in the n2-group ... etc. As a result (pause and think),

{α1, α2, · · · |α1, α2, · · · } = n1!n2! · · · . (22)

That is, in general this ket state is not normalized. The normalized state should be defined

as

|α1, α2, · · · 〉 =
1√

n1!
√

n2! · · ·
|α1, α2, · · · }, (23)

〈α1, α2, · · · |α1, α2, · · · 〉 = 1.

¥ Fermions

Fermions do not have such a counting problem since no two particles can live in the same

state. We can identify the normalized state |α1, α2, · · · 〉 as |α1, α2, · · · } and

〈α1, α2, · · · |α1, α2, · · · 〉 (24)

=
1

N !

∑

P,P ′
(−1)P ′+P 〈αP ′1|αP1〉〈αP ′2|αP2〉 · · · ,

= 1.

The factor (−1)P ′+P must always be +1, since P ′ needs to be exactly the same as P , else

some of the bracket 〈αP ′i |αPi
〉 would be zero.

II. CREATION AND ANNIHILATION OPERATORS

In the formulation of second quantization, operators are written in creation and anni-

hilation operators.

A. Occupation number representation

After symmetrization (for bosons) or antisymmetrization (for fermions), a N -particle

state becomes,

|α1〉|α2〉 · · · |αN〉 → |α1, α2, · · · , αN}. (25)

Similarly, a (N + 1)-particle state becomes,

|α〉|α1〉|α2〉 · · · |αN〉 → |α, α1, α2, · · · , αN}. (26)
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The creation operator maps a N -particle state to a (N + 1)-particle state. It is defined

as follows,

a†α|α1, α2, · · · , αN} = |α, α1, α2, · · · , αN} (27)

= (±1)i−1|α1, α2, · · · , α,︸︷︷︸
i−th

· · · , αN}.

For annihilation operator aα, if α is the same as one of the αi, but not the same as

others, then

aαi
|α1, α2, · · · , αN} (28)

= (±1)i−1|α1, α2, · · · , (no αi), · · ·αN}.

For bosons, if there are multiple coincidence of αi’s with α, then

aα|α1, α2, · · · , αN} (29)

=
N∑

i=1

〈α|αi〉︸ ︷︷ ︸
δααi

|α1, α2, · · · , (no αi), · · ·αN}.

For fermions, |α1, α2, · · · , αN} with multiple coincidence is zero, of course.

¥ Bosons

In addition to the |α1, α2, · · · } notation, in which the slots are filled with quantum numbers

for particles at position r1, r2, · · · , we introduce the occupation number representation:

|n1, n2, · · · 〉, in which the slots are filled with occupation numbers for states 1̄, 2̄, · · · . If the

state of the added particle α = ¯̀, then n` → n` + 1 (see Eq. (23)),

| α︸︷︷︸
r

, α1︸︷︷︸
r1

, α2︸︷︷︸
r2

, · · · , αN︸︷︷︸
rN

} (30)

=
√

n1!
√

n2! · · ·
√

(n` + 1)! · · ·
× | n1︸︷︷︸

1̄

, n2︸︷︷︸
2̄

, · · · , n` + 1︸ ︷︷ ︸
¯̀

, · · · 〉.

Notice that the number of slots for | · · · 〉 could be infinite, if there are infinite numbers of

single-particle eigen-states. Comparing Eqs. (27) and (30), we have

a†`|n1, n2, · · · , n`, · · · 〉 =
√

n` + 1|n1, n2, · · · , n` + 1, · · · 〉. (31)

The square-root is the important amplification factor for lasers to work.
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Similarly, one can have the annihilation operator that maps a N -particle state to a

(N − 1)-particle state,

a`|n1, n2, · · · , n`, · · · 〉 → |n1, n2, · · · , n` − 1, · · · 〉. (32)

This follows naturally from Eq. (31):

a`|n1, n2, · · · , n`, · · · 〉 (33)

=
∑

{n′}
|{n′}〉〈a†`{n′}|n1, n2, · · · 〉

=
∑

{n′}

√
n′` + 1|{n′}〉〈n′1, · · · , n′` + 1, · · · |n1, · · · , n` · · · 〉

=
√

n`|n1, n2, · · · , n` − 1, · · · 〉.

The ket |{n′}〉 is an abbreviation of |n′1, n′2, · · · 〉. We have inserted a completeness relation,

and used a Hermitian conjugate operation to get the first equation.

By applying the creation operator repeatedly to the vacuum state |0, 0, · · · 〉 (abbreviated

as |0〉), one can reach any of the manybody state |n1, n2, · · · 〉 as follows,

|n1, n2, · · · 〉 =
1√
n1!

1√
n2!

· · ·
(
a†1

)n1
(
a†2

)n2 · · · |0〉. (34)

¥ Fermions

The rules are simpler for fermions since the occupation number ni (∀ i) can only be 0 or 1.

If the state ¯̀ is empty (n` = 0), then

a†`|n1, n2, · · · , 0, · · · 〉 = (−1)λ|n1, n2, · · · , 1, · · · 〉, (35)

where λ =
∑`−1

i=1 ni. If the state ¯̀ is occupied (n` = 1), then

a†`|n1, n2, · · · , 1, · · · 〉 = 0. (36)

One cannot add two fermions to the same state because of the exclusion principle.

On the other hand, for the annihilation operator, one has

a`|n1, n2, · · · , 1, · · · 〉 = (−1)λ|n1, n2, · · · , 0, · · · 〉, (37)

a`|n1, n2, · · · , 0, · · · 〉 = 0,

where λ =
∑`−1

i=1 ni.
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Also, a manybody state can be reached by applying the creation operator to the vacuum

state (compare with Eq. (34)),

|n1, n2, · · · 〉 =
(
a†1

)n1
(
a†2

)n2 · · · |0〉. (38)

Of course, the occupation numbers ni (∀ i) can only be 0 or 1.

For example, the electrons in an electron gas are labelled by quantum numbers (k, s).

The ground state of the electrons is a Fermi sphere in momentum space. The state of a

filled Fermi sphere with radius kF is

|FS〉 =
∏

k<kF

a†k↑a
†
k↓|0〉. (39)

B. Commutation relations

Recall that

a†α|α1, α2, · · · , αN} = |α, α1, α2, · · · , αN}.

Therefore,

a†βa†α|α1, α2, · · · , αN} = |β, α, α1, α2, · · · , αN}, (41)

a†αa†β|α1, α2, · · · , αN} = |α, β, α1, α2, · · · , αN}.

The two states on the RHS are identical for bosons, but differ by a sign for fermions. Since

such a connection applies to any manybody state |α1, α2, · · · , αN}, we can remove the ket

and simply write, for bosons,

a†αa†β = a†βa†α or [a†α, a†β] = 0 (42)

for any single-particle states α, β. Hermitian conjugate of this equation gives

[aα, aβ] = 0 (43)

For fermions, one has

a†αa†β = −a†βa†α or {a†α, a†β} = 0 (44)

for any single-particle states α, β. Hermitian conjugate of this equation gives

{aα, aβ} = 0 (45)
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Notice that fermion creation operators do not commute, but anti-commute with each other.

Also, if β = α, then one has
(
a†α

)2
= 0, ∀ α. (46)

This is again a reflection of the exclusion principle.

For combined operation of creation and annihilation operators, it is more convenient to

use the occupation-number representation (Cf. Eq. (41)). One starts from fermions : From

Eq. (35), we have,

a†`|n1, n2, · · · , 0, · · · 〉(−1)λ|n1, n2, · · · , 1, · · · 〉,

where λ =
∑`−1

i=1 ni Also, from Eq. (37),

a`|n1, n2, · · · , 1, · · · 〉 = (−1)λ|n1, n2, · · · , 0, · · · 〉.

Combined operation gives (α = ¯̀)

aαa†α|n1, n2, · · · , 0, · · · 〉 = |n1, n2, · · · , 0, · · · 〉, (48)

a†αaα|n1, n2, · · · , 0, · · · 〉 = 0.

One can also consider the possibility of n` = 1 and write down another two equations. Both

cases lead to aαa†α + a†αaα = 1, the identity operator. It’s not difficult to show that, if the

annihilation and creation operators act on different states, α and β, then aαa†β + a†βaα = 0.

Therefore, in general, for fermions,

{aα, a†β} = δαβ. (49)

It’s left as an exercise to show that, for bosons, similar argument leads to

[aα, a†β] = δαβ. (50)

Finally, for both bosons and fermions,

a†αaα|n1, n2, · · · , nα, · · · 〉 = nα|n1, n2, · · · , nα, · · · 〉. (51)

Therefore, n̂α ≡ a†αaα is also known as the occupation number operator.
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C. Change of basis

Under a unitary transformation, the one-particle state |α〉 changes to |α̃〉. They are

related by the following unitary transformation,

|α̃〉 =
∑

α

|α〉〈α|α̃〉. (52)

On such a new basis,

a†α̃|α̃1, α̃2, · · · , α̃N} = |α̃, α̃1, α̃2, · · · , α̃N} (53)

=
∑

α

〈α|α̃〉|α, α̃1, α̃2, · · · , α̃N}

=
∑

α

〈α|α̃〉a†α|α̃1, α̃2, · · · , α̃N}.

Therefore, after striping off the ket state, we have

a†α̃ =
∑

α

〈α|α̃〉a†α. (54)

That is, the creation operator transforms like |α〉. Also,

aα̃ =
∑

α

〈α̃|α〉aα. (55)

It can be shown that, if the new set {|α̃〉} is also an orthonormal set, then,

[aα̃, a†
β̃
] = δα̃β̃ for bosons (56)

{aα̃, a†
β̃
} = δα̃β̃ for fermions

That is, the canonical commutation relations remain invariant under a unitary transforma-

tion.

III. COORDINATE AND MOMENTUM REPRESENTATIONS

The ket states in previous Section are representation free. We will project such ket states

to specific basis, such as coordinate basis, or momentum basis. Recall that the single-particle

wave function is

φα(r) = 〈r|α〉. (57)
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We can change the α-basis to r-basis using the unitary transformation (Eq. (54)), then

ψ†(r) =
∑

α

〈α|r〉a†α =
∑

α

φ∗α(r)a†α.

We have rewritten a†r as ψ†(r). Such an operator that creates (or annihilates) a particle at

a particular point in space is called a field operator. The inverse transformation is

a†α =

∫
d3r〈r|α〉ψ†(r) =

∫
d3rφα(r)ψ†(r). (59)

For example, the quantum state |α〉 of a particle in an empty box with volume V0 can be

labelled by momentum k, and 〈r|k〉 = eik·r/
√

V0. Therefore,

ψ†(r) =
1√
V0

∑

k

e−ik·ra†k. (60)

This is nothing but the Fourier expansion. Its inverse transformation is,

ψ†(k) =

∫
d3r〈r|k〉ψ†(r) (61)

=
1√
V0

∫
d3reik·rψ†(r).

Solid state theorists prefer to move the 1/
√

V0 factor in Eq. (61) to Eq. (60). That is,

ψ†(r) =
1

V0

∑

k

e−ik·ra†k, (62)

ψ†(k) =

∫
d3reik·rψ†(r).

We have assumed the system is inside a box with a finite volume, so the momentum k is

quantized. If V0 approaches infinity, then one can replace the summation with an integral,

1

V0

∑

k

→
∫

d3k

(2π)3
. (63)

Consider another example: the hydrogen atom. The quantum numbers for a spinless

electron are α = (n, l, m), and the field operator is

ψ†(r) =
∑

nlm

φ∗nlm(r)a†nlm. (64)

According to Eq. (56), one has

{ψ(r), ψ†(r′)} = δ(r− r′). (65)
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With the help of Eq. (59), the particle-number operator in the coordinate representation

becomes

N =
∑

α

a†αaα (66)

=

∫
d3rd3r′

∑
α

〈r|α〉〈α|r′〉ψ†(r)ψ(r′)

=

∫
d3rψ†(r)ψ(r).

We have used a completeness relation to remove the α-summation, and used the orthogo-

nality relation 〈r|r′〉 = δ(r− r′). Naturally, one can define the particle-density operator

as

ρ(r) = ψ†(r)ψ(r). (67)

This looks like the usual particle density in quantum mechanics. But beware that this is an

operator relation, not a numerical relation.

IV. SECOND QUANTIZATION

A. One-body operator

To deal with manybody systems, we need an operator A that acts on N -body states

|α1〉|α2〉 · · · |αN〉. For example, if A
(1)
i is the operator for a particle at position ri, then A is

the operator for all of the particles. The latter operates in a much larger, N -particle Hilbert

space H(N) = H(1) ⊗H(1) ⊗ · · · ⊗ H(1).

The operator A
(1)
i can be expanded using an explicit basis,

A
(1)
i =

∑

αβ

|α〉〈α|A(1)(ri)|β〉〈β| (68)

=
∑

αβ

A
(1)
αβ |α〉〈β|,

where A
(1)
αβ ≡ 〈α|A(1)|β〉.

Before defining the operator A, it is convenient to rewrite, following Feynman’s notation

(the × below is not the usual direct product ⊗),

|α1, α2, · · · , αN} ≡ |α1〉 × |α2〉 · · · |αN〉. (69)
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Operator A for a manybody system is connected with A
(1)
i in the following way,

A =
N∑

i=1

A
(1)
i . (70)

More precisely, it is

A|α1〉 × |α2〉 · · · |αN〉 =
(
A(1)|α1〉

)× |α2〉 · · · |αN〉 (71)

+ |α1〉 ×
(
A(1)|α2〉

) · · · |αN〉
+ · · ·
+ |α1〉| × |α2〉 · · ·

(
A(1)|αN〉

)
.

Let’s first assume A
(1)
i = |α〉〈β|, then (see Eq. (29))

A|α1〉 × |α2〉 · · · |αN〉 (72)

=
N∑

i=1

〈β|αi〉︸ ︷︷ ︸
δβαi

|α1〉 × · · · × |α〉 × · · · |αN〉

= a†α

N∑
i=1

(±1)i−1δβαi
|α1〉 × · · · × (no |αi〉)× · · · |αN〉

= a†αaβ|α1〉 × |α2〉 · · · |αN〉.

Notice that the summation here should be interpreted like the series in Eq. (72). The

sign (±1) is for bosons/fermions. In general, when A =
∑

αβ A
(1)
αβ |α〉〈β|, each term in the

summation can be identified as a†αaβ using the procedure above. As a result,

A =
∑

αβ

A
(1)
αβa†αaβ. (73)

It looks as simple as the operator for a single particle (Eq. 68).

1. Example: Density operator

Firstly, we need to know the first quantized form of density. For a single particle, it is

ρ(1)(r) = δ(r̂− r). (74)

Notice that r̂ is an operator, while r is just an ordinary vector. One can easily verify that

〈φ|ρ(1)(r)|φ〉 = φ∗(r)φ(r). The Fourier transform of the density operator is

ρ(1)(q) =

∫
dve−iq·rρ(1)(r) (75)

= e−iq·r̂.
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We have used a simpler notation dv for d3r. For many particles (but still in first quantized

form),

ρ(r) =
N∑

i=1

δ(r̂i − r). (76)

Its Fourier transform is

ρ(q) =
∑

i

e−iq·r̂i . (77)

To get the second quantized form, we need (see Eq. (73)),

ρ =
∑

αβ

ρ
(1)
αβa†αaβ. (78)

a. Coordinate representation

In the coordinate representation, the matrix element in Eq. (78) is

ρ
(1)
r′r′′ = 〈r′|ρ(1)(r)|r′′〉 (79)

= δ(r′ − r)δ(r′ − r′′).

Replace the α-summation in Eq. (78) by a r-integral, and rewrite a†r as ψ†(r), then (following

Eq. (78))

ρ(r) =

∫
dv′

∫
dv′′δ(r′ − r)δ(r′ − r′′)ψ†(r′)ψ(r′′) (80)

= ψ†(r)ψ(r)

This is the same as Eq. (67), and is similar to the usual expression ρ(r) = φ∗(r)φ(r). The

difference is that φ(r) is a one-particle wave function, while ψ(r) is a field operator.

b. Momentum representation

In momentum representation, the matrix element is

ρ
(1)
k′k′′ = 〈k′|ρ(1)(q)|k′′〉 (81)

=

∫
dv′

∫
dv′′〈k′|r′〉〈r′|e−iq·r̂|r′′〉〈r′′|k′′〉.

The matrix element 〈r′|e−iq·r̂|r′′〉 = e−iq·r′′δ(r′ − r′′). Also, 〈r|k〉 = eik·r/
√

V0, so we get

ρ
(1)
k′k′′ = δ(k′′ − k′ − q). (82)
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Therefore,

ρ(q) =
∑

k′k′′
ρ

(1)
k′k′′a

†
k′ak′′ (83)

=
∑

k′
a†k′ak′+q.

2. Example: Hamiltonian for non-interacting particles

Consider the following Hamiltonian for a single particle,

H(1) =
p2

2m
+ V (1)(r). (84)

For a non-interacting manybody system, it becomes

H =
N∑

i=1

[
p2

i

2m
+ V (1)(ri)

]
. (85)

Inter-particle interaction V (ri − rj) will be discussed in the next Section.

a. Energy-eigenstate representation

Recall Eq. (1),

H(1)φα = εαφα.

The Hamiltonian matrix is diagonalized in the eigenstate basis,

H
(1)
αβ = εαδαβ. (87)

Therefore, the second quantized form is quite simple,

H =
∑

αβ

H
(1)
αβ a†αaβ =

∑
α

εαa†αaα. (88)

b. Coordinate representation

The Hamiltonian matrix in the coordinate basis is

〈r|H(1)|r′〉 = − ~
2

2m
∇2δ(r− r′) + V (1)(r)δ(r− r′). (89)
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Therefore, the second quantized Hamiltonian is

H =

∫
dvdv′〈r|H(1)|r′〉ψ†(r)ψ(r′) (90)

=

∫
dvψ†(r)

[
− ~

2

2m
∇2 + V (1)(r)

]
ψ(r).

Recall that the first quantized version is written as Eq. (85).

The Heisenberg equation for field operator is

[ψ,H] = i~
∂ψ

∂t
, (91)

which leads to [
− ~

2

2m
∇2 + V (1)(r)

]
ψ(r, t) = i~

∂ψ

∂t
. (92)

Even though this looks exactly the same as the Schrodinger for a single particle, it is actually

an equation for the field operator. It is as if we have promoted the single-particle wave

function to a field operator. That is why the present formulation is called the second

quantization.

c. Momentum representation

The Hamiltonian matrix in the momentum basis is (recall that 〈r|k〉 = eik·r/
√

V0)

〈k|H(1)|k′〉 =
~2k2

2m
〈k|k′〉+

∫
dv〈k|r〉V (1)(r)〈r|k′〉 (93)

=
~2k2

2m
δkk′ +

1

V0

∫
dvV (1)(r)e−i(k−k′)·r.

The second integral is actually the Fourier transform of V (1)(r): V (1)(k − k′). The second

quantized Hamiltonian is

H =
∑

k

∑

k′
〈k|H(1)|k′〉a†kak′ (94)

=
∑

k

~2k2

2m
a†kak +

1

V0

∑

k

∑

k′
V (1)(k− k′)a†kak′ .

The potential term can also be written as (see Eq. (83))

1

V0

∑

k

∑
q

V (1)(q)a†kak−q =
1

V0

∑
q

V (1)(q)ρ(−q). (95)

Some useful operators in first and second quantized form are summarized in Table 1.

16



TABLE I One-body operator

1st quantization 2nd quantization

particle density ρ(r)
∑

i δ(r̂i − r) ψ†(r)ψ(r)

ρ(q)
∑

i e
−iq·r̂i

∑
k a†kak+q

current density j(r) 1
2m

∑
i [p̂iδ(r̂i − r) + δ(r̂i − r)p̂i] ~

2mi

[
ψ†(r)∇ψ(r)− (∇ψ†(r)

)
ψ(r)

]

j(q) 1
2m

∑
i

(
p̂ie

−iq·r̂i + e−iq·r̂ip̂i

) ~
2m

∑
k (2k + q) a†kak+q

one-body potential V (r)
∑

i V
(1)(r̂i − r)

∫
dv ψ†(r)V (1)(r)ψ(r).

V (q) V (1)(q)
∑

i e
iq·r̂i

∑
k V (1)(q)a†k+qak

magnetic moment density m(r)
∑

i σiδ(r̂i − r) ψ†(r)σψ(r) [ψ is a spinor]

m(q)
∑

i σie
−iq·r̂i

∑
k ψ†

kσψk+q

B. Two-body operator

Two-body operators act on two particles at a time. A typical example is the interaction

potential V (ri − rj). In general, the operator for the whole system can be written as

A =
1

2

∑

i 6=j

A
(2)
ij . (96)

One term in the summation,

A
(2)
ij =

∑

αα′ββ′
|α〉|α′〉〈α|〈α′|A(2)

ij |β〉|β′〉〈β|〈β′| (97)

=
∑

αα′ββ′
A

(2)
αα′β′β|α〉|α′〉〈β|〈β′|,

in which α and β label quantum states of particle i; α′ and β′ label quantum states of

particle j. Notice that we have switched the subscripts β, β′ of A(2). Some textbooks prefer

not to switch them.
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Let’s first assume A
(2)
ij = |α〉|α′〉〈β|〈β′|, then (for i < j)

A
(2)
ij |α1〉 × · · · |αN〉 (98)

=
∑
i<j

〈β|αi〉〈β′|αj〉|α1〉 × · · · |α〉 · · · |α′〉 · · · |αN〉

= a†αa†α′
∑

i6=j

(±1)i−1(±1)j−2δβαi
δβ′αj

|α1〉 × · · · (no |αi〉) · · · (no |αj〉) · · · |αN〉
= a†αa†α′aβ′aβ|α1〉 × |α2〉 · · · |αN〉.

That is, |α〉|α′〉〈β|〈β′| can be identified with a†αa†α′aβ′aβ. The same is true if i > j. In

general, when A
(2)
ij is a superposition of many terms, one has

A =
1

2

∑

αα′ββ′
A

(2)
αα′β′βa†αa†α′aβ′aβ. (99)

1. Example: Inter-particle interaction

a. Coordinate representation

The matrix elements of V (2)(ri − rj) is

V
(2)
rr′r′′r′′′ = 〈rr′|V (2)(ri − rj)|r′′′r′′〉 (100)

= V (2)(r− r′)δ(r− r′′′)δ(r′ − r′′).

Replace the summations in Eq. (100) by integrals over coordinates and write ar as ψ(r), we

will get

V =
1

2

∫
dvdv′ψ†(r)ψ†(r′)V (2)(r− r′)ψ(r′)ψ(r). (101)

The quartic operator can be written in terms of the density operator,

ψ†(r)ψ†(r′)ψ(r′)ψ(r) (102)

= ψ†(r)ψ(r)ψ†(r′)ψ(r′)− ψ†(r)ψ(r)δ(r− r′)

= ρ(r)ρ(r′)− ρ(r)δ(r− r′).

The second term contributes to a self-interaction energy in Eq. (101). Therefore, the sub-

straction helps removing the self-interaction in the first term.
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b. Momentum representation

Expanding the field operator using plane waves,

ψ(r) =
1√
V0

∑

k

ake
ik·r, (103)

then the inter-particle interaction becomes

V =
1

2V 2
0

∑

k1,k2,k3,k4

a†k4
a†k3

ak2ak1 (104)

×
∫

dvdv′V (2)(r− r′)ei(k1−k4)·rei(k2−k3)·r′ .

Write the interaction potential as

V (2)(r− r′) =
1

V0

∑
q

V (2)(q)e−iq·(r−r′), (105)

then the space integral gives V0δk4,k1+qδk3,k2−q. Finally,

V =
1

2V0

∑

k1,k2,q

V (2)(q)a†k1+qa
†
k2−qak2ak1 . (106)

One can visualize the item in the summation as follows: two incoming particles with mo-

menta k1 and k2 are scattered by the potential and become outgoing particles with momenta

k1 + q and k2 − q. The total momentum is conserved (elastic scattering), but there is a

transfer of momentum q from particle 2 to particle 1.

V. GENERAL DISCUSSION

A. Spin degree of freedom

From now on, we will focus only on systems of electrons (or fermions). Non-interacting

(or weakly interacting) electrons are referred to as electron gas. When interaction plays an

important role, we will call them as electron liquid. For spinful electrons in an empty box,

the Hamiltonian in coordinate representation is

H =
∑

s

∫
dv ψ†s(r)

[
− ~

2

2m
∇2 + V (1)

s (r)

]
ψs(r) (107)

+
1

2

∑

s,s′

∫
dvdv′ψ†s(r)ψ

†
s′(r

′)V (2)
ss′ (r− r′)ψs′(r

′)ψs(r),
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in which we have allowed for spin-dependent external potential V
(1)
s (r) and electron inter-

action V
(2)
ss′ (r− r′). The Hamiltonian in momentum representation is

H =
∑

ks

~2k2

2m
a†ksaks +

1

V0

∑

kqs

V (1)
s (q)a†k+q,saks (108)

+
1

2V0

∑

ks,k′s′,q

V
(2)
ss′ (q)a†k+q,sa

†
k′−q,s′ak′s′aks.

The subscripts (k, s) are good quantum numbers for (non-interacting) electrons in an empty

box, which has free-particle energy ε0
k = ~2k2/2m. For electrons in a lattice without spin-

orbit coupling, the proper label for quantum states is (n,k, s), where n is the band index,

and k is the quasi-momentum for Bloch electron. Also, the free-particle energy ε0
k has to be

replaced by Bloch energy εnk.

B. Tight-binding model

In the tight-binding model, the electrons hop from one atom to another. The operator

anks for a Bloch state has to be replaced by al, where l contains information such as band

index n, lattice site R, and spin s. The Wannier function (sometimes atomic orbitals are

used instead) is

〈r|l〉 = 〈r|n,R, s〉 = wn(r−R)χs, (109)

where χs is a spinor,

χ+ =


 1

0


 , χ− =


 0

1


 . (110)

They have the following orthogonality and completeness relations:

χ†sχs′ = δss′ ,
∑

s

χsχ
†
s = 12×2. (111)

The Hamiltonian for non-interacting electrons is

H0 =
∑

l̃m̃s

H
(1)

l̃m̃
a†

l̃s
am̃s, (112)

where l̃ = (n,R), and H
(1)

l̃m̃
= 〈l̃| p2

2m
+ V (1)(r)|m̃〉, assuming V (1) is a spin-independent

potential. We have contracted the spin degree of freedom in the matrix elements.
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If the interaction is also spin-independent, then

Vee =
1

2

∑

lmm′l′
V

(2)

l̃m̃m̃′ l̃′
a†l a

†
mam′al′ , (113)

where

V
(2)

l̃m̃m̃′ l̃′
(114)

=

∫
dv1dv2w

∗
nl

(r1 −Rl)w
∗
nm

(r2 −Rm)V (2)(r1 − r2)

× wnm′ (r2 −Rm′)wnl′ (r1 −Rl′).

In reality, one may keep only the nearest-neighbor and the next-nearest-neighbor cou-

plings. Furthermore, one might be able to use the one-band approximation, assuming

that the electrons only reside on one band n, then (n is omitted for simplicity), then

H = H0 + Vee (115)

=
∑

RR′s

H
(1)
RR′a

†
RsaR′s

+
1

2

∑

R1R2R′2R′1
ss′

V
(2)

R1R2R′2R′1
a†R1sa

†
R2s′aR′2s′aR′1s,

in which we have assumed that the one-body and two-body potentials are spin-independent.

The simplest possible model (with interaction) is to keep only the nearest-neighbor hop-

ping in the first term, and only the on-site energy in the second term. That is,

H = t
∑

<RR′>s

a†RsaR′s + U
∑

R

a†R↑a
†
R↓aR↓aR↑ (116)

= t
∑

<RR′>s

a†RsaR′s + U
∑

R

nR↑nR↓,

where nRs is the occupation-number operator. Notice that there are only two parameters:

the hopping amplitude t and the on-site energy U . This is the famous Hubbard model

proposed by Hubbard more than 50 years ago to study narrow-band materials, such as

transition metal oxides. It is also considered as the underlying model for high temperature

superconductors. Despite enormous effort from numerous researchers, the phase diagrams

for the Hubbard model in dimension two and higher remain inconclusive. (see the article by

J. Quintanilla and C. Hooley in Phys. World, June, 2009)
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C. What do we calculate

Most of the time we are interested in obtaining some of the following properties:

. Ground state energy

. Phase diagram (comparing lowest energies of different phases)

. Other ground state properties, such as charge order or spin order (correlation function),

density of states ... etc.

. Low-lying excitations (quasi-particles, collective excitations)

. Linear response function (conductivity, susceptibility ... etc)

. Other quantities of experimental interest.

Of course, whether the result is satisfactory or not depends on whether, at the first place,

the simplified model captures the essential ingredients of the phenomena we intend to study.

D. How do we calculate

The Hilbert space H(N) of a manybody system is mind bogglingly big. In classical

mechanics, if the solution space of a particle has dimension d, then the solution space of the

whole system is Nd. However, in quantum mechanics, the latter is dN . This causes major

problem for analytical and numerical calculations, and many different methods have been

proposed:

. Mean field approximation (MFA)

. Equation of motion (EOM) method

. Perturbation expansion using Green’s function (diagram expansion)

. Variational method

. Density functional theory (DFT)

. Quantum Monte Carlo (QMC) method

. Density matrix renormalization group (DMRG)
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. Tensor network renormalization group

. · · ·

The first 3 are perturbative calculations in essence. The last 4 are numerical methods.

Variation method first requires guess work, and then numerical computation.

Homework:

1. Under an unitary transformation, an ortho-normalized set {|α〉} is transformed to an-

other ortho-normalized set {|α̃〉}. Show that the anti-commutation relation (for fermions)

is invariant under the unitary transformation.

{aα, a†β} = δαβ → {aα̃, a†
β̃
} = δα̃β̃.

2. Show that, if

H =

∫
dvψ†(r)

[
− ~

2

2m
∇2 + V (1)(r)

]
ψ(r),

then the field operator satisfies the following equation of motion,

[
− ~

2

2m
∇2 + V (1)(r)

]
ψ(r, t) = i~

∂ψ

∂t
.

3. Start from

j(1)(r) =
1

2m
[p̂δ(r̂− r) + δ(r̂− r)p̂] ,

first find out its Fourier transform j(1)(q), then show that (see Table 1)

j(q) =
~

2m

∑

k

(2k + q) a†kak+q.
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