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The LCAO, or Bloch, or tight binding, approximation for solids is discussed as an interpolation method,
to be used in connection with more accurate calculations made by the cellular or orthogonalized plane-wave
methods. It is proposed that the various integrals be obtained as disposable constants, so that the tight
binding method will agree with accurate calculations at symmetry points in the Brillouin zone for which
these calculations have been made, and that the LCAO method then be used for making calculations
throughout the Brillouin zone. A general discussion of the method is given, including tables of matrix
components of energy for simple cubic, face-centered and body-centered cubic, and diamond structures.
Applications are given to the results of Fletcher and Wohlfarth on Ni, and Howarth on Cu, as illustrations
of the fcc case. In discussing the bec case, the splitting of the energy bands in chromium by an antiferro-
magnetic alternating potential is worked out, as well as a distribution of energy states for the case of no
antiferromagnetism. For diamond, comparisons are made with the calculations of Herman, using the
orthogonalized plane-wave method. The case of such crystals as InSb is discussed, and it is shown that

their properties fit in with the energy band picture.

I. THE LCAO METHOD FOR SOLIDS

NE of the standard methods for solving the

periodic potential problems met in the theory of
the electronic motions in solids is the LCAO (linear
combination of atomic orbitals) or Blech or tight
binding method. This was originally proposed by
Bloch,! and consists of making a linear combination of
atomic orbitals located on the various atoms of the
crystal, the coefficients being the values of the plane
wave exp (k- R) at the various positions R at which the
atoms are located. In the present paper, we shall
examine this method, noting that it becomes almost
impossibly difficult to carry out with full rigor, on
account of the enormous number of difficult integrals
which must be computed. On the other hand, it has
many attractive qualitative features, since it gives
solutions showing all the correct symmetry properties
of the energy bands, and it is rather easy to get solutions
for energy bands at an arbitrary point in the Brillouin
zone, whereas most other approximate methods become
too difficult to carry out except at certain symmetry
points of the Brillouin zone. With this in mind, we
shall suggest using the LCAO method, not as a primary
method of accurate calculation, but rather as an inter-
polation method. We shall arbitrarily discard many of
the terms which make trouble with the accurate calcu-
lation, but shall retain those which are necessary to
give qualitative correctness to the method. Instead of
computing the various integrals analytically, we shall
use them as disposable constants, to be chosen so that
we shall fit the results of more accurate calculation
made by other methods, such as the cellular method or
the method of orthogonalized plane waves, which are
capable of more accurate results, but only at restricted
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symmetry points of the Brillouin zone. We shall give
formulas useful in such applications of the LCAO
method, and shall describe its use in discussing certain
problems, including the face-centered and body-
centered cubic and diamond structures.

If we start with an atomic orbital ¢,(r— R,), located
on an atom at vector position R;, and with quantum
numbers symbolized by the subscript #, then we can
form the Bloch sum Y (R;) exp(tk- R;)¢.(r—R,), where
the sum is to be extended over the atoms in equivalent
positions in all the unit cells of the crystal. The sum
as it stands is not normalized, but we shall later take
up its normalization. We can set up such Bloch sums
corresponding to each atomic orbital of an atom, and
corresponding to each atom in the unit cell of the
crystal. We find that there are no nondiagonal matrix
components of the Hamiltonian operator, consisting of
the kinetic energy and the periodic potential function,
between two Bloch sums with different k’s. On the
other hand, in general there are nonvanishing matrix
components of the Hamiltonian between Bloch sums
of the same k value, corresponding either to different
atomic orbitals on the same atom, or to atomic orbitals
on different atoms in the unit cell. Some of these
nondiagonal matrix components vanish at special sym-
metry points of the Brillouin zone, or special values of
k, and it is this vanishing which leads to the special
properties of the energy bands at these symmetry
points.

We can then set up an approximate solution ofjthe
periodic potential problem in the following way. We
take a finite set of atomic orbitals on each of the atoms
of the unit cell, going up from the lowest atomic states
to those concerned in the highest levels occupied in
the crystal, or somewhat higher. From each of these
atomic orbitals, we construct a Bloch sum. For a given
k value, we can then set up a wave function consisting
of a linear combination of all these Bloch sums. In
general, except at special k values, there will be matrix
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components of energy between all these Bloch sums,
so that we shall have a secular problem whose order
equals that of the total number of atomic orbitals
concerned, though at special k values there will be
factoring of the secular equation, and resulting simplifi-
cation. With modern digital computers, such secular
equations can be solved, and the resulting wave func-
tions and energy levels form useful approximations to
the solution of the periodic potential problem. At a
general k value, all roots of the secular equation will be
distinct, and we group together the functions of different
k value having the lowest energy as the lowest-energy
band, those having the second lowest energy as the
second-energy band, and so on, though at special
symmetry points several energy bands can be degen-
erate with each other. This is, in principle, a quite good
method for approximating the periodic potential prob-
lem. Its practical difficulties arise only from the
enormous amount of numerical work involved in com-
puting rigorously the various matrix components of
energy, and as mentioned earlier, we shall later suggest
certain simplications which make it practical.

It is rather surprising that many writers who have
considered this method in the literature have not
understood certain rather fundamental points. Thus,
many writers have felt that in crystals of certain
symmetry there were sets of wave functions which did
not combine with each other, resulting in splitting of
energy bands, which in fact do not occur. Bloch, in
his original paper, only computed the diagonal matrix
component of energy for a single Bloch sum, and gave
no thought to setting up a secular problem relating to
the combination of several Bloch sums. The first writer
who specifically thought of anything but s atomic
orbitals seems to have been Wilson,? who computed
the diagonal energy of Bloch sums of p orbitals, but
erroneously concluded that there would be no non-
diagonal matrix components of energy between Bloch
sums formed from the p., p,, and p, atomic orbitals.
He made this error on account of a misinterpretation
of the results of Bethe® concerning the symmetry
properties of wave functions in crystals in which the
potential has various types of rotational and inversion
symmetry, as well as translational symmetry. Bethe
had shown that electronic wave functions in such
crystals can be chosen to transform under the symmetry
operations of the point group like the various irreducible
representations of this group, and by using such argu-
ments had been able to derive results on the splitting
of energy levels in the crystal, and on the vanishing of
certain nondiagonal matrix components of energy.
Some of the early writers on energy band theory failed
to note the fact, pointed out later by Bouckaert,
Smoluchowski, and Wigner,* that one cannot, in
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general, choose wave functions in this way and simul-

_taneously diagonalize the translational operations in

the crystal.

A wave function which diagonalizes the translational
operations is one which, like a Bloch sum, is multiplied
by the factor expi(k-R) when we make a translation
R which carries the lattice into itself; the factor
expi(k- R) is the eigenvalue connected with the trans-
lational operation. Bouckaert, Smoluchowski, and
Wigner pointed out that associated with one k vector
are several others, into which the first one transforms
by one of the symmetry operations of the point group
of the crystal. Thus, for instance, a general k vector in
a cubic crystal is one of 48 vectors derived from the
first one by interchanging «, v, and 2, or changing signs;
such vectors are said to form a star. It now proves
necessary to make linear combinations of Bloch-type
wave functions corresponding to all k vectors in this
star, in order to form a wave function transforming
according to Bethe’s prescription, according to an

irreducible representation of the point group of the

crystal. Conversely, in order to build up a function
connected with one k value, and hence diagonalizing
the translational operations, one must make a linear
combination of functions transforming according to
the various irreducible representations of the point
group. Put more simply, a wave function of a given k
value must be made up as a linear combination of
functions having the symmetry properties of s, ps, py,
ps -+ orbitals, and will not have the characteristics
of any one of these types of orbitals. The exceptions
come only for certain special k values, such as k=0.
We see, then, that Bethe’s rules do not apply to wave
functions of the Bloch type, corresponding to a definite
k, except at special values like k=0. But as we have
pointed out, this fact was not clear to various writers
at first. In the LCAO method, we make up suitable
wave functions at an arbitrary k value by making
linear combinations of the Bloch sums made up of
different atomic orbitals, in the way already described,
and in general we have contributions coming from all
the Bloch sums. The first paper in which it was realized
that a secular equation must be solved between the
various Bloch sums formed from different atomic
orbitals seems to have been that of Jones, Mott, and
Skinner® dealing with x-ray emission bands of metals,
in which wave functions were made up by solving a
secular problem between s, $., p,, and p, Bloch func-
tions. Oddly enough, however, in a later paper by Jones
and Mott® the error was made of thinking that a
threefold d band, formed from the functions of sym-
metry xy, yz, zx, was separated from a twofold band
formed from functions like x*—4? and 32*—7?; no non-
diagonal matrix components of energy between the
Bloch sums formed from these two types of atomic
5 Jones, Mott, and Skinner, Phys. Rev. 45, 379 (1934).

6 H. Jones and H. F. Mott, Proc. Roy. Soc. (London) A162,
49 (1937).
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orbitals were considered. Actually, here as in other
cases, there are nondiagonal matrix components of
energy between all these types of Bloch functions, at
an arbitrary k value, and the d band does not split
into two subbands. This unwarranted simplification
is also found in the first work of Fletcher and Wohl-
farth” on nickel, though it is removed in their second
paper,® which seems to be the first proper treatment of
the structure of the d band by the LCAO method.

In addition to the misunderstanding which we have
just been describing, there is another widespread mis-
conception about the method. This is the supposition
that it is desirable for some reason to start by hybrid-
izing the atomic orbitals, for instance, to introduce
directed orbitals of some sort suggested by the sym-
metry of the crystal. This misconception occurs particu-
larly in the writings of those who, like for instance
Pauling® and Ganzhorn,'° do not make it clear whether
they are using an energy band calculation, or a modified
Heitler-London method. In the case of Lennard-Jones
and his associates,' using their equivalent orbitals;
one gathers that they feel that there is some virtue in
using hybridized orbitals of one type or another (that
is, linear combinations of several atomic orbitals, on
the same or adjacent atoms) for a straightforward
calculation of energy bands, or of molecular orbitals
in a molecular problem. This procedure is in fact of no
value in most cases.

One can start with atomic orbitals of the ordinary
sort, space quantized with respect to a particular
direction in space, or can use orbitals set up with
reference to cubic axes, such as the p., p,, p. combi-
nations of the p orbitals and the d orbitals varying as
xy, vz, 2%, 2*—9% and 3z2—r% or finally one can use
more complicated hybridized orbitals, such as the four
tetrahedral directed orbitals formed from the s and
the three p functions. With any one of these starting
points, one can set up the Bloch sums of the atomic
orbitals, and then can solve the secular problem be-
tween these Bloch sums. The final result will obviously
be the same no matter which set of atomic orbitals we
start with. In fact, if we were going to use » atomic
orbitals per unit cell, we could make any = linear
combinations of the original orbitals, form Bloch sums
of these modified orbitals, and solve a secular problem
using the modified Bloch sums, and in every case come
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out with the same answer in the end. The only ad-
vantage in one choice of atomic orbitals over another
is convenience in calculating the matrix components
or solving the secular equation. We shall be dealing in
the present paper with cubic crystals, and shall use
orbitals of the ps, p,, p., xy, ¥z, etc., type, since they
give about as much simplification as we can get. But
in addition, these are just as useful in discussing the
diamond structure as tetrahedral orbitals would be. At
an arbitrary point of k space, in any case the matrix
components will not simplify, no matter what form of
atomic orbitals we use. Along special symmetry lines
and planes, we can sometimes choose atomic orbitals
leading to a factoring of the secular equation, and this
is obviously useful; but the choice is different for
different symmetry lines and planes.

For solving the one-electron problem, in other words,
there is no advantage in using hydridized or directed
orbitals when dealing with crystals, or similarly in
using directed or equivalent orbitals in solving the
molecular orbital problem in a molecule. The advan-
tages of such orbitals, if there are any, seem to lie in
treating the many-electron problem, either by methods
of configuration interaction or by other methods. It
seems likely that by using directed or hybridized or
equivalent orbitals, one can set up approximate treat-
ments of electron correlation which express the prefer-
ence of two electrons of opposite spin to be found in
an orbital representing a covalent bond. But this use
of such orbitals lies entirely outside the scope of the
present paper, which deals with energy band theory,
or one-electron solutions of Schriodinger’s equation for
a periodic potential.

II. SIMPLIFICATION OF THE LCAO METHOD

We have seen in the preceding section the general
outlines of the LCAO method for solids. We shall now
examine it in more detail, show how complicated it is
when applied rigorously, but indicate the simplifications
which can be made if we treat it as an interpolation
method. There is one complication which we can
remove at the outset. If we start with the atomic
orbitals ¢,, located on the various atoms of a unit cell,
and make Bloch sums from them, then we shall find
that these Bloch sums are not orthogonal to each other.
The reason is that the ¢,’s connected with orbitals on
different atoms are not orthogonal to each other. We
can remove this difficulty by immediately setting up
new atomic orbitals, linear combinations of the original
ones, which are orthogonal to each other. This can be
done most symmetrically by the method of Léwdin.?
We shall assume that this is done, and shall call the
resulting orbitals ¢,. By this procedure we still have
not solved the periodic potential problem. We shall
still find nondiagonal matrix components of energy
between the Bloch sums formed from different Lowdin

12 P_-0. Lowdin, J. Chem. Phys. 18, 365 (1950).
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functions ¥,. But the technique of solving the secular
problem will be much simplified. These Lowdin func-
tions ¥, show symmetry properties like those of the
atomic orbitals ¢, from which they were derived. (See
the Appendix for a proof of this.) For instance, if we
start with a p. atomic orbital and construct orthogonal-
ized atomic orbitals according to Lowdin’s prescription,
in a cubic crystal, we shall find that the orthogonalized
orbital formed from p. and from contributions of other
orbitals on adjacent atoms, will still have the symmetry
of a p, function.

From these Lowdin functions, we can now construct
Bloch sums, and if we write them in the form
N33 (R,) expi(k- R)¢,(r—R;), where R, is the vector
position of the atom on which the orbital is located,
we shall find that these Bloch sums are normalized and
orthogonal. We are assuming periodic boundary condi-
tions, and the number of unit cells in the repeating
region is V; the normalization is over this repeating
region. The sum is over unit cells. That is, a Bloch
function is to be formed from just one atomic orbital
per unit cell. If we have several atoms per unit cell,
even if some are identical with each other, as the two
atoms per unit cell in the diamond structure, we are to
use different Bloch sums for each atom in the unit cell.
On the other hand, we are to choose our unit cells as
small as possible. For instance, in the face-centered or
body-centered cubic structures, we are to choose unit
cells containing only one atom in the unit cell, instead
of the conventional cube, which holds four atoms per
cube in the face-centered structure, two per cube in the
body-centered structure.

We must now find the matrix component of energy
between two such Bloch sums. If H is the Hamiltonian
operator, this matrix component is clearly

N1 Z (R“R,) expﬁk . (R]— Rl)
X f o (= R)HYn(r—R)dv. (1)

The sum is over the N unit cells. We must remember
that R, ranges over the positions of the atoms on which
orbitals ¥, are located, while R; ranges over the posi-
tions of orbitals ¥, These may well be different, for
these orbitals may be located on different atoms in the
unit cell. But now we notice that one of the summations
in the double sum of (1) can be eliminated, for it
merely amounts to multiplying the single summation
by N, which cancels the factor N1, In particular, let us
eliminate the summation over R, letting it be for
instance the position of the atom in the central unit
cell on which the orbital ¢, is located, and carrying
out a single sum over R;, which amounts to summing
over all neighbors of the original atom. Then in place
of (1) we have

S (R,) expik- (R;—R,) f Vo (= R Hym (1= R)dv. (2)
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In this formula, R;— R; is the vector displacement from
the atom on which the orbital ¢, is located, to one of
its neighbors on which an orbital ¥,, is located.

The convenient feature which we observe from (2) is
the very simple way in which each term depends on the
propagation constant k, and the fact that each term of
the summation can be identified with a pair of orbitals
on neighboring atoms. The actual calculation of the
integrals, however, can be extremely difficult. First
we must find the orthogonalized Lowdin functions,
from the atomic orbitals, and this is a very considerable
task. When this is done, each ¥, in (2) is a combination
of atomic orbitals on many nearby atoms. Thus the
integral in (2) can be made up as a linear combination
of many integrals of the form of [f¢,*(r—R,)
X Hpn(r— R;)dv. Now the Hamiltonian H, involving a
periodic potential, can be written as the sum of a
kinetic energy operator, and a potential, which is
approximately a sum of spherically symmetrical po-
tential wells located at all the atoms of the crystal.
Hence our integral is a linear combination of integrals
of a product of an atomic function ¢,*(r—R,) located
on the atom at position R;, another atomic function
¢xn(r—R;) on the atom at R;, and a spherical potential
function located on still a third atom. In other words,
we have three-center integrals, of the form which are
being worked on so extensively in the present study of
molecules, and whose calculation is very difficult. All
these complications add up to make the rigorous calcu-
lation of the matrix components of energy an almost
impossible task, not only because the individual terms
are difficult to work out, but also because there are so
many of them, combined in such complicated ways.
The possibility is not excluded that eventually ways
will be found to do this work by means of high-speed
computers, but it will certainly be quite out of the
question without such help. No calculations which
have yet been made by the LCAO method for crystals
approach real rigor, and Dr. R. H. Parmenter, in this
laboratory, who has tried to estimate the labor involved
in such a rigorous calculation, has concluded that by
present methods it would be quite out of the question.

We now come to the point where it is desirable to
introduce our simplifications, which convert the method
from a rigorous one to a rather simple interpolation
method. We merely use the form (2) for the matrix
components of energy, but replace the integrals by
disposable constants, which we choose to fit accurate
determination of energies at particular k values. We
must be more precise about the way this is done,
however. We wish only a finite number of arbitrary
constants, for we have to fit only a finite number of
accurate calculations of energy. To choose a finite
number, we proceed as follows. We note first that there
is every reason to think that the integrals in (2) will
get smaller numerically as the atoms in question get
farther apart. If the functions ¥, were atomic orbitals,
instead of Lowdin’s orthogonalized combinations, then
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such an integral would be zero unless the two atoms
were close enough so that their orbitals overlapped to
an appreciable extent. The orthogonalized Léwdin
functions contain contributions located on neighboring
atoms, and hence extend outward farther than atomic
orbitals, so that the actual integrals in (2) will be
appreciable for greater interatomic distances than if
they were formed from simple atomic orbitals. Still
our general statement almost certainly remains true,
that the integrals will decrease fairly rapidly as the
interatomic distance decreases. A first natural simplifi-
cation, then, is to assume arbitrarily that all integrals
are to be disregarded except those for neighbors lying
closer than a certain minimum distance. We can use
only nearest neighbors, or only nearest and second
nearest, or only nearest and second and third nearest,
according to how many disposable constants we wish
to use.

There is one thing to be noticed about the integrals
in (2). Many of them must be related, through demands
of crystal symmetry. Thus, if symmetry operations of
rotation and inversion about the atom at position R,
where the orbital ¥, is located, will carry the atom at
R; into another similar atom, in the same or another
unit cell, then there will be relations between the
integrals between the orbital ¥, and orbitals of type
¥n on these various atoms, which clearly must all be
at the same distance from the first atom. As a very
simple example, in a simple cubic crystal the interaction
integrals between an s orbital on the atom at the origin
and s orbitals on atoms displaced by equal distances
along the +x, £y, and 4=z axes must all be equal.
Rules like this, which can be studied by inspection or
by the group theory, decrease greatly the number of
independent integrals. When we take account of such
rules, we find in some important practical cases, which
we shall mention later, that if we use the integrals
between nearest neighbors, or nearest and second-
nearest neighbors, we have about the right number of
disposable constants to fit the results of accurate calcu-
lation at the various symmetry points in the Brillouin
zone for which calculations have been made. This
results in rather simple formulas for matrix components
of energy, set up according to (2).

Another simplification which we can make is to
consider only atomic orbitals whose energy is somewhere
near that of the energy bands we are interested in.
Thus, if we are dealing with diamond, we can reasonably
disregard the 1s atomic orbitals, treating only the 2s
and 2p. Or, with an element in the 3d transition group,
we can consider 3d, 4s, and possibly 4p atomic orbitals,
but can disregard the rest, when we are concerned with
the valence and conduction bands. We could not make
such an approximation if we were making a rigorous
calculation; we remember that one hazard of such
calculations is that, if we use wave functions for outer
electrons which are not orthogonal to those of the
inner electrons and then apply the variation method,

SLATER AND G. F. KOSTER

we can arrive at entirely erroneous results. We are
saved from such difficulties in our present method. By
choosing our parameters so as to fit certain accurately
determined energies, we know that we cannot possibly
make a serious error. The use of relatively few atomic
orbitals then reduces the order of the secular problem
to a point where we can handle it without serious
difficulty. Thus, for instance, in diamond, we need
eight orbitals: 2s and the threefold degenerate 2p, on
each of the two atoms of the unit cell. Hence we have
an eighth-order secular equation, which is not difficult
to solve with a digital computer. For an element of
the iron group, the five d functions and the one 4s lead
to a sixth-order secular equation and give quite good
results; under some circumstances, we can simplify
even further, disregarding the 4s, and having a fifth-
order equation.

There is a still further simplification which is some-
times desirable, sometimes not, involving the neglect
of three-center integrals. This is complicated enough
so that we devote the next section to its discussion.
Then we shall go on to the application of our method
to several specific cases.

III. THE TWO-CENTER APPROXIMATION

Many writers on molecular problems have assumed
that three-center integrals were negligible compared to
two-center integrals. This is not really the case. Never-
theless they are certainly smaller than the two-center
integrals. And since we are neglecting many terms,
and trying to reduce our problem to a form where it
has just enough arbitrary constants to fit whatever
information we may have, there may be cases where it
is desirable to assume that we can disregard three-
center integrals, thereby simplifying the situation even
further. If we treat the potential energy in H as being
the sum of spherical potentials located on the various
atoms and disregard three-center integrals, then the
only part of the potential energy we retain in (2) is the
sum of spherical potentials located on the two atoms
on which the atomic orbitals are located. Thus the
integral becomes similar to the type which we should
have in a diatomic molecule. If we consider the vector
R,—R,, stretching from one atom to the other, to be
an axis like that of a diatomic molecule, we can express
each of the functions ¥ as a sum of functions space
quantized with respect to that axis. Thus if ¥ were an
atomic p orbital, we could express it as a linear combi-
nation of a po and a pry function with respect to the
axis, and if it is a d function it is a combination of do,
dry, and dé., where as usual o, 7, and & refer to the
component of angular momentum around the axis.
Actually, the ¥’s are not atomic orbitals, but rather the
Lowdin orthogonalized functions, but we have seen
that they still have the same symmetry properties
with respect to the crystal as the atomic orbitals, and
it is not a bad approximation to assume that they can
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be expanded in the same way. In the integral (2), we
shall get a nonvanishing contribution only if we are
dealing ‘with ¢ components of both ¢, and ¢, or my
components of both, or m_ components of both, etc.
Hence we:can reduce all the various integrals appearing
in (2) to a relatively small number.

It is a straightforward matter of rotating axes and
transforming spherical harmonics in terms of one set of
axes into spherical harmonics with respect to another
set, to find the nature of these integrals. Thus, let the
atomic orbitals be set up with respect to a set of
rectangular axes. We shall symbolize the p., p,, 2.
functions by #, y, z; the various d functions by xy, yz,
zx, x*—v?% and 32°—7% which stand for the various
functions whose dependence on angle is like that of the
polynomials we have written, multiplied by appropriate
functions of 7. Then to set up the integrals in (2), we
need contributions consisting of a product of an atomic
orbital of this type on the atom located at R;, another
atomic orbital on the atom at R;, and spherical po-
tentials centered on these two atoms. Let the direction
cosines of the direction of the vector R;—R;, pointing
from one atom to the other, be I, m, n. Then we can
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symbolize one of the integrals by such a symbol as
E,, -, (},m,n), meaning an integral in which the function
¥a is a pa-like function; ¥y, a d function with symmetry
properties like xy. This particular function can be
written approximately in terms of two integrals: that
between a po orbital on the first atom and a do orbital
on the second; and that between a p= on the first and
a dr on the second. Let the first of these be symbolized
by (pdo) and the second by (pdr); we shall assume
that the first index, such as p, refers to the first orbital,
the second, as d, to the second, and note that inter-
changing the order of the indices has no effect if the
sum of the parities of the two orbitals is even, but
changes the sign if the sum of the parities is odd. We
now find, by carrying out the analysis mentioned
earlier, that E,, ., (I,m,n) =V3Pm(pdo)+m(1—21%) (pdr).
Similar formulas can be worked out for each of the
combinations of functions, and are listed in Table I for
all combinations of s, p, and d functions. The entries
not given in the table can be found by cyclically
permuting the coordinates and direction cosines. It is
to be realized, of course, that the integrals like (pdo)
are functions of the distance between the atoms, so

Tasie I. Energy integrals for crystal in terms of two-center integrals.

3Pm?(ddo)+ (124 m2—412m?) (ddw) + (n2+12m?) (dds)

3lm*n (ddo)+In (1 —4m?) (dd=)+In(m2—1) (dds)

3Pmn (ddo)+mn(1—412) (ddx)+mn(l2—1) (dds)

Slm (2—m?) (ddo) -+ 2lm (m2—12) (ddw) + 3im (12— m?) (dds)

Imn(P—m?)(ddo) —mn[14-2 (I —m?) J(ddw) +mn[ 143 (12— m?) ] (dds)
$nl(P—m?) (ddo)+nl[1—2(2—m?) ](ddw) —nl[1—% (12— m?) ](dds)
V3im[n?—3 (P+m?) ](ddo) — 2V3lmn2 (ddn) + 3V3lm (1+4n?) (dds)

V3mn[n2— % (2+m?) 1(ddo) +V3mn (B4 m2—n?) (ddr) — 1V3mn (2+m?) (dds)

E, ;s (sso)

E,. I(spo)

E.. E(ppo)+ (1—1) (ppm)

Ez,y Im(ppo) ~Im(ppm)

E.,. In(ppa) —n(ppr)

Eg oy V3im (sda)

Eg 2y V3 (B—m?) (sdo)

Eg 522 [n2— 3 (+-m?) J(sdo)

Ez 2y V32m (pdo)+m(1—212) (pdw)

E.y. V3lmn (pde) —2lmn (pdm)

E;, o V3Pn(pdo)+n(1—212) (pdn)

Ep oty $V3L(B—m?) (pdo)+1(1~P+m?) (pdr)
Ey, o2y $V3m (P—m?) (pdo) —m (14-F—m?) (pdr)
E, 2y $V3n(B—m?) (pdo) —n(I*—m?) (pdr)
E; 32 0 I[n?— 3 (P+m?) 1(pdo) —V3ln?* (pdr)
Ey 32 m[n?—§ (P+m?)](pdo) —V3mn?*(pdr)
E, 32 n[n—§ (P+m?) J(pdo) +V3n (P*+m?) (pdr)
Ezyay

By, yz

Eey, 2z

By, 2?y?

Eyszty?

E,p 22y

Eyy 5222

Ey; 3.2 2

Ez3:% 12

Ezz_yz' 22y?
Ezz_yz. 322 _y?

E 3:2—1'2, 32292

VBIn[n2—3 (- m?) ] (ddo) +V3ln (- m? — n?) (ddn) — Wl (P+-m2) (dds)
$(—m2)2(ddo)+ [Pt — (P— )] ddr) + Dot (B )] (dd0)

1B (=) 2 — (P 1 (ddr) B2 (m2 — ) (dlm)+ 1B (1-+2) (B —m?) (ddo)
D2 — 3 (P9 P(ddo)+ 32 (B4-m) (ddm) + & (B-+-m¥)(dd)
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that we shall have different values for nearest neighbors,
second-nearest neighbors, and so on; these can be
indicated by subscripts 1, 2, etc. Sometimes it is more
convenient to indicate the argument of E. ., and
similar quantities, not by /, m, n, but by the actual
coordinates of the second atom with respect to the
first, perhaps expressed as a multiple of the lattice
spacing. Such notations will be given later for the
various special cases we consider.

By the use of Table I, we can approximately express
the various E integrals concerned in the problem in
terms of a smaller number of integrals like (pdo), etc.
In some cases, we shall find that the number of integrals
like (pdo) is exactly equal to the number of E integrals
involved with neighbors of a particular interatomic
distance, and in such a case one method has no ad-
vantage over the other; we can compute one set of
integrals from the other. In other cases, however, there
are considerably more E integrals than integrals of the
two-center type. In such a case, we must be guided by
convenience as to which method to use. If we have to
fit a considerable number of points by means of our
disposable constants, we shall normally want to use
the E integrals, since we have more of them. When we
do this, we find in practice that they cannot be accu-
rately derived from the smaller number of two-center
integrals, showing that the two-center approximation
is not very good. However, if we have fewer points to
fit, it may happen that we cannot determine all the E
integrals from the information at hand. In such a case,
we may choose to assume that they can be expressed
according to Table I in terms of two-center integrals,
thereby having a smaller number of disposable con-
stants, which we may be able to determine from the
available information. Certainly the results will not be
as reliable as if we do not make the two-center approxi-
mation; but the two-center approximation may not be
very bad and such a procedure may be better than
nothing. Another use for Table I is that in some cases
there are existing calculations using the LCAO approxi-
mation, which almost invariably assume two-center
integrals; our table will make it convenient to compare
our method with these existing calculations.

IV. THE SIMPLE CUBIC STRUCTURE

Though real crystals do not ordinarily show the
simple cubic structure, nevertheless it is convenient to
begin with it, both on account of its simplicity, and
also because from the results of it we can immediately
derive the behavior of the face-centered and body-
centered cubic structures. Our task is to express the
matrix components of the Hamiltonian, which we have
written in (2), in a form convenient for use in the
simple cubic case. As before, we use s, p, and d atomic
orbitals, which we choose so as to form basis functions
for irreducible representations of the cubic point group.
These s, p, and d functions will have transformation
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properties like the sets s; x, ¥, z; xy, yz, 2x; x*—9y?
3z22—7r% We let the atoms be located at the vector
positions pai+-gaj+-rak, where p, ¢, r are integers, a is
the lattice spacing of the simple cubic crystal, and
i, j, k are unit vectors along the z, y, z axis. Let the
subscripts #, m refer to two out of the set of symbols
s, x, ¥, 2, xy, etc. Then we shall denote our integrals
by the expression

E, .(pyqr)= f’l’n* (1) HY,, (t— pai—gaj—rak)de.  (3)

That is, in this case, rather than using /, m, »n as the
arguments of the E symbols, it is more convenient to use
actual atomic coordinates, so that I=p(p>+¢*+7»)%,
etc. The integrals occurring in (3) are the ones to be
inserted in formula (2) for the matrix components of
energy.

We now wish to express our matrix components of
energy between the Bloch sums in terms of the smallest
set of integrals of this nature that is possible. We make
use of all relations between integrals which symmetry
permits to reduce the number of atomic integrals which
appear in the matrix elements of Bloch functions.
Making use of these relations, the matrix elements for
the simple cubic crystal are given in Table II. A
symbol like (n/m), such as (s/x), etc., denotes the
matrix component of the Hamiltonian between a Bloch
sum of atomic functions of symmetry type » and one
of symmetry type m. We have also used the abbrevi-
ation £=ak,, n=oak,, {=ak..

The various E symbols occurring in Table II are all
independent, so that in fitting known energy values,
we may treat them all as disposable constants. On the
other hand, in some cases we may wish to express these
symbols in terms of the smaller number of two-center
integrals, as discussed in the preceding section. In this
case, we may use Table I to write all of the E’s in
terms of these two-center integrals. In doing this, we
must remember that the direction cosines in Table I
are proportional to, but not equal to, the p, ¢, » of
Table II. It is not hard to introduce the expressions of
Table I into Table II, and we give in Table III the
results of this substitution. Comparison of these tables
allows us to see the considerable reduction in the number
of disposable parameters introduced by using the two-
center approximation. Thus, for instance, for inter-
actions of d electrons on second-nearest neighbors, we
have six independent integrals in Table II: E,,, ,,,(110),
E:cy. xy(()ll), E:cy, 12(011), Ez:y, 322—-7'2(110), E3z2—r2, 32%—r?
X (110), and E.»_,2 ,»_,:(110). In Table III, these are
all expressed in terms of three two-center integrals:
(ddo)s, (ddm)s, (ddd)s. In some cases the reduction in
number is less, or there is no reduction at all, as we
have mentioned earlier. Each case is different, and
must be separately examined by comparison of Tables
ITI and III.

There are obviously many different independent



"SIMPLIFIED LCAO METHOD

1505

TaBLE II. Matrix components of energy for simple cubic crystals.

E,, 4(000)+2E,, 5(100) (cost+cosnt-cosg) +4E,, 5(110) (cost cosp+cost cosg—cosy cost)+8E,, «(111) cost cosn cosi

(s/s)

(s/x) 2iE,,+(100) sing4-44E,, . (110) (sin£ cosn+sing cos¢)+8:E,, . (111) sing cosy cos¢

(s/xy) —4E, :,(110) sinf sing—8E;, 5, (111) sin£ siny cos¢

(s/x2—»?) , V3E,,3,2_+2(001) (cost —cosn) +2V3E,, 3.2_,2(110) (— cosg cos¢—+cosy cost)

(s/322—r) E,3,242(001) (—cosE—cosn+-2 cos{) —2E,, 3,2,2(110) (—2 cost cosn+cos cos¢—+cosn cosg)

(x/%) E.,(000)+2E;, »(100) cost+2Ey, ;(100) (cosn+cost) +4E;, - (110) (cost cosp+-cost cost) +4E;, (011) cosn cos¢
+8E,, . (111) cost cosy cos¢

(x/) —4E; ,(110) sing sing—8E,, ,(111) sing siny cos¢

(x/xy) 2Ez, +y(010) sinn+44E;, 2, (110) cosé sing+44E,, -, (011) siny cos¢—+8iE,, -, (111) cos sinn cos

(x/y2) —8tE,,4,(111) sinf siny sing

(x/x —»?) V3iE, 5.2+*(001) sing+2V3iE, 5,2_,2(011) (sin£ cosn+sing cosy)+24E,, »2_,2(011) (sing cosn—siné cos{)
+8iE,, .?—,2(111) sing cosn cosg

(2/322—1%) —1E,, 3,2 +2(001) sing—24E;, 3.2_,2(011) (sin£ cosp+sing cos¢)+2V3iE,, »2_,2(011) (sin£ cosn —sin cos{)
— (8/V3) E,, z2—,2(111) sin& cosy cosg

(2/322—17%) 2iE,,3.2_+2(001) sing+-44E,, 3,2 ,2(011) (cos¢ sing+cosy sing)+ (16/V3)iE,, »2_,2(111) cos cosn sing

(xy/xy) Ey,2y(000)+2Ezy, 2, (100) (cost+-cosn) +2E.y, 2, (001) cos¢=+4E.y, -, (110) cost cosy
F4E.y, 2,(011) (cost cost+cosy cosy) +8E.y, -y (111) cosE cosn cos¢

(xy/x3) —4E,y, +.(011) sing sing —8E,,, ,.(111) cos¢ siny sin¢

(xy/x2—9%) zero

(xy/322—1%) —4E,, 3.>,2(110) sin¢ sing—8E,,, 3.2 ,2(111) sin& siny cos¢

(xz/x2—92) 2V3E.y, 3.2»2(110) sin sing+4V3E,y, 5.2_,2(111) sing cosy sing

(x2/322—12%)
(&*—y*/4—»7)

2E.y, 3.2—+2(110) sing sing+4E,y, 3.2_,2(111) sing cosy sing
E322_¢2 3:2_+2(000) 4§ Es.2_,2 5.2-2(1001) (cosé+cosn) +2E,2_y2 ,2_,2(001) (3 cosé+} cosp+cosg)

+3E3,2_+ 3,2_2(110) (cost cos¢+cosn cost) +4E,2_2 »2_,,2(110) (cost cosp+1 cosé cos¢+1 cosn cos¢)

+8E3,2 2 3,2 ,2(111) cost cosn cos{
3z —7r /32 —1?)

B3 23,2 2(000)+2Es5,2_2, 3.2 ,2(001) (§ cosé+-% cosn+-cost) + 3E,2 2 22,2(001) (cost+cosn)

+4E;.2 42 3,2_,2(110) (cost cosn+1 cosE cosi+1 cosn cosy) +3E,2_y2 ,2_,2(110) (cost cos¢—+cosn cosg)

+8Es,2 2 3,2 ,2(111) cost cosn cos¢
(¥2—3?2/322—1?)

$V3Es3.2_12 3.2_,2(001) (— cosE+-cosn) — 3V3E-2_y2 »2_,,2(001) (—cosé+-cosn)

+V3Es.2_2 3,2,2(110) (cosg cosi—cosn cost) —VIE2_,2 .2_,2(110) (cost cos¢ — cosn cos¢)

integrals and types of atomic functions in Tables II
and III, and we should not try in any case to set up a
problem so complicated as to include all types. In
special cases, the problem will simplify greatly by the
omission of many types of orbitals. In such cases, it
may well be that the secular equation set up from these
matrix components will be simple enough along certain
special directions or in certain special planes so that it
can be solved by elementary means; this arises mostly
because many of the nondiagonal matrix components
have factors sing, etc., which vanish in special cases.
However, since real crystals do not show the simple
cubic structure,"we shall not try to set up special cases
and discuss them here, but shall rather go on to the
structures which actually occur in nature, starting
with the face-centered cubic structure.

V. THE FACE-CENTERED CUBIC STRUCTURE

The face-centered cubic structure is that in which
the atoms are located at points pai+-gaj-+rak, where
p+q+r is an even integer. The nearest neighbors of a
given atom are located at the twelve points whose
p, q, r are like (110). The second-nearest neighbors

are at the six points like (200), and the third nearest
at the 24 points like (211). We see that as far as the
nearest and second-nearest neighbors are concerned,
the problem is very similar to what we have already
met with the simple cubic structure. That is, the

‘nearest neighbors with the face-centered structure are

precisely the same as the second-nearest neighbors
with the simple cubic structure, and the second-nearest
neighbors with the face-centered structure are like the
nearest neighbors with the simple cubic structure, only
twice as far away. Thus, if we are interested only in
nearest and second-nearest neighbors, we can deduce
the matrix components of energy immediately from
the results of Tables IT and III. For the diagonal matrix
component of an s state, for instance, the quantity
(s/s) of Tables II and III, the corresponding formulas
are

(s/s)=E,, ,(000)+4E,, ,(110) (cost cosn—+cosé cos¢
~+cosy cos{) +2E;, ,(200) (cos2¢-+cos2y~+cos2{)
= E,, ;(000)+4(sso)1(cos¢ cosn-+cost cos¢
~+cosy cos¢)+2(sso)2(cos2E+cos2y+cos2y). (4)
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In a similar way, we can find-all -the other matrix
components of energy.

From the matrix components of energy, we can
easily demonstrate all the various cases of symmetry
found at various points of the Brillouin zone with a
crystal of this type. For instance, at the center of the
Brillouin zone, where £=75={=0, we see by inspection
that all nondiagonal matrix components of energy
vanish, so that our original Bloch functions are the cor-
rect wave functions to form solutions of Schrodinger’s
equation. We find, of course, that the diagonal energies
of the three p states are all equal, so that they are
degenerate at the origin. The d states, however, split
into a threefold degenerate and a twofold degenerate
set, as we should expect from Bethe’s rules. The reason
why Bethe’s rules apply is that at this symmetry point,
the star of k vectors contains only one member, and as
a result we can diagonalize the symmetry operations of
the point group and the translation operation at the
same time. The energies of the two d states at k=0
are found to be

(xy/xy) = (y2/yz) = (a2/ )
= E:cy, zy (OOO) +4Ez‘y» zy (1 10) +8Ezy, zy (01 1)
+4Ezy, 2,(200)+2E., -,(002),
(=3, =97 = (3 —1*, 357—7%) ©)
= E3s212,352-,2(000) + 6 Ega2 2, 3.2,2(110)
+6Es 2 22,2 (110)+3Es.2 2 3,2,2(002)
+3E2_,2 22,2(002).

As we depart from k=0, however, nondiagonal matrix
components of energy between the various functions
appear, proportional to k for small k values, and the
degeneracy is removed. If we expand the matrix compo-
nents in power series in £ %, {, and retain only the
lowest terms, we can find the behavior of the energy
bands in the neighborhood of k=0, and are led to
secular equations of the type discussed by Shockley.'®
Our method, however, is not limited to small & values,
and we can solve for the behavior of the energy bands
throughout the Brillouin zone.

The Brillouin zone for the face-centered cubic struc-
ture if of course identical with the Wigner-Seitz cell for
the body-centered structure. We can easily demonstrate
this fact from our matrix components of energy. By
examining the reciprocal lattice, we find that the origin
of the Brillouin zone, and the points =7, ==,
¢{==m, lying at the corners of the cube, must be
equivalent points. The first Brillouin zone includes the
region closer to the origin than to these points. To
demonstrate the body-centered nature of the reciprocal
lattice, we must show that when we increase £, 7, ¢, by
= each, the energy is unchanged. When we examine
the matrix components of energy, like those given in
(4), we find that in fact each of them is unchanged when
we make this change. Each of the components relating

13 W. Shockley, Phys. Rev. 78, 173 (1950).
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to a second-nearest neighbor in the simple cubic case,
or a nearest neighbor in the face-centered structure,
has a product of two sines or cosines in the expression
in Table IT or III, whereas each component relating to
a nearest neighbor for the simple cubic case, or a second-
nearest neighbor for the face-centered structure, has a
single cosine, or the product of three, ahd these relations
are just such as to assure the periodicity in the mo-
mentum space. The same thing would hold, of course,
if more distant neighbors were included. Such simple
considerations allow us to study all the symmetry
properties of the wave functions and energy levels, and
show that the LCAO method is particularly well suited
for pedagogical purposes, in discussing the degeneracy
properties of wave functions. Since such deductions
are very elementary in nature, we shall not carry them
further.

Many important crystals have the face-centered
cubic structure, and the type of treatment we have
sketched can be very useful for discussing their energy
bands. A beginning in this direction is furnished by the
discussion of Fletcher and Wohlfarth,”-8 of the energy
bands of nickel. They have considered the five d
electrons of nickel, omitting discussion of the 4s band
which really overlaps the  bands. They have considered
only nearest neighbors, and have computed the integrals
(ddo), (ddx), (ddd), using a two-center approximation,
and suitable atomic orbitals and spherical potentials.
They do not state their result in terms of these two-
center integrals, but rather in terms of six quantities,
which they call 44, 4,, ---As, which are very closely

-related to our quantities Ey .,(110), etc. We have

already stated that for the interaction of d electrons on
second-nearest neighbors in the simple cubic structure,
there are six such integrals, and these are simply related
to Fletcher and Wohlfarth’s 4’s. However, since they
were determined from a two-center approximation, we
should be able to work back from these 4’s to find
(ddo), etc. When we examine the numerical values of
Fletcher and Wohlfarth’s A’s, we find that in fact they
satisfy the relations necessary to be derived from two-
center integrals, and working backward from them, we
find that they must be given by (ddo)= —0.2504E,,
(ddm)=0.1348E,, (dds)= —0.0204E,, where E;=1.349
ev. It is interesting to see the rapid decrease in the
numerical values of these integrals, as we go from the ¢
orbital, which of course will overlap the most, through
the = to the § orbital, which overlaps the least. The
alternation of sign of the integrals is demanded by the
symmetry of the orbitals.

If we use these values of the integrals and the matrix
components of energy from Table IIT for the nearest
neighbors in a face-centered cubic structure (that is,
the second-nearest neighbors in a simple cubic struc-
ture), and consider the five d states, we then find
precisely the matrix components of energy considered
by Fletcher and Wohlfarth. They have solved the
five-by-five secular equation at many points throughout
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TasLE III. Matrix components of energy for simple cubic crystals, two-center approximation.

(s/s) so+2(sso)1(costE+cosn+cosy) +4 (sso) 2 (cosE cosp+cosE cosg+-cosy cost)+8(ssa)s cost cosn cos
(s/x) 2i(spa)1 sing+2V2i(spa)2(sing cosn+sing cosy)+ (8/V3)i(spa)s sink cosy cosy
(s/xy) —2V3(spo)e sing sinn— (8/V3) (sdo)s sin siny cos¢
(s/x*—y) V3 (sdo)1(cost—cosn)+V3 (sda)s(cost cost —cosy cosf)
(s/322—1%) (sdo)1(—cost—cosn+2 cosy)+ (sdo)2(—2 cosE cosn—+cosg cosy-cosy cost)
(a/x) pot2(ppo)1 cost+2(ppm)1(cosnt-cosy)+2(ppo)2(cosk cosn+-cost cost)
+2(ppm)2(cost cosnt-cost cosi+2 cosn cost)+[(8/3) (ppo) s+ (16/3) (pp)s] cost cosn cosy
(x/y) —2[(ppo)2— (ppm)2] sin sing— (8/3)[(ppo)s— (ppm)s] sing siny cost
(x/xy) 2i(pdw)1 sing+ (\/6)i(pde) . cost sing+2V2i(pd) e sing cost—+ [ (8/3) (pda)s+ (8/3V3) (pdw)sJi cosk siny cosg
(x/y2) [— (8/3) (pdo) s+ (16/3V3) (pdm)s i sing sing sing
(x/x2—»?) V3(pdo), sing— (3/2)¥(pdo) i sing cos{+2V2 (pdr) ;i[sing cosn+3 sing cosy 14 (8/V3) (pdr)si sing cosn cosy
(x/382—1?) — (pdo) 1 sing+V2 (pdo) £ sing cosn— % sin cosi]— (1/6) (pdm) 2 sing cos¢ — (8/3) (pdr)si sing cosy cos
(3/322—1r2) 2i(pdo)s sing+[(1/V2) (pde) s+ (v/6) (pd)sJilcost sing+-cosy sing 4+ (16/3) (pdr)si cosk cosy sing
(xy/xy) do+2(ddm) 1 (cost+-cosn)+2(ddd) 1 cos¢+3(dda), cost cosn+-2(ddm)s(cosé cosg+cosy cosg)
+ (dds)2(cosé cosn+2 cosé cosy+2 cosy cost)+[(8/3) (dda) s+ (16/9) (dd) s+ (32/9) (dds)s] cost cosn cosg
(xy/x2) 2[— (ddr) 2+ (dds)2] sinm sing+[ — (8/3) (ddo) s+ (8/9) (ddm) s+ (16/9) (dds)s] cost sing sing
(xy/a2—9y?) Zero
(xy/322—12) . V3[ (ddo)2— (dds)] sin£ sing+ (16/3V3) [ (ddw)s— (ddd)s] sing sing cost
(xz/22—9?) —3[(ddo)y— (dds),] sing sing — (8/3)[(ddw)s— (dd8)s] sink cosy sing

(xz/322—1%)
(a2 —y?2/x2—y?)

IV3[ — (ddo) 2+ (dds)+] sink sing — (8/3V3) [ (ddw)s— (dds)s] sin& cosn sing
do+2(ddo)1(cost+-cosn)+ (dds)1(3 cost+ 3 cosn+2 cost)+4(ddw) s cost cosn

+[(ddo) 2+ (ddm) o+ (9/4) (dds) 2] (cost cosi+cosn cosy)+[(16/3) (ddm)s+ (8/3) (dds)s] cosk cosy cosy

(322—72/352—12)

do+ (ddo) 1 (3 cost+3% cosn+2 cosg)+ 3 (dds) 1 (cost+cosn)+ (dda) (cost cosp+1 cosE cosg+% cosy cosg)

+3(ddm)2(cost cos¢+cosn cosy)+3(dds)2(cost cosn+-L cost cosg+1 cosn cosy)

+[(16/3) (ddm)s+ (8/3) (dd5)s] cost cosn cosy
3V3[— (dda) 1+ (dds)1](cost—cosn)+[3V3 (ddo) ,— V3 (ddw) 4+ $V3 (dd5) 2 ] (cost cosy —cosn cost)

(a2—y*/322—1r%)

the unit cell of reciprocal space, obtaining the distri-
bution of energy levels in energy in this way. They also
show that the secular equation can be factored, leading
to no factor worse than a quadratic equation, in the
100, 110, and 111 directions. This of course is to be
expected. We can consider the symmetry of the wave
functions for k vectors in these directions and can see
that if we combine the various d functions to give
combinations belonging to the appropriate irreducible
representations for these directions, we shall get the
factoring of the secular equation which they have found.

The results of this calculation of Fletcher and Wohl-
farth are very interesting, but the reader will see that
they are not carried out exactly according to the spirit
of the present discussion. Our present view would be
that more accurate values of the energies at certain
symmetry points could probably be found by other
methods, such as the method of orthogonalized plane
waves, and that it would be better to use the present
method as an interpolation, determining the integrals
as disposable constants. Fortunately, we have such a
calculation of a crystal having the face-centered struc-
ture. Recent results of Howarth!* on copper, by the
cellular method, provide us with some of the necessary
information. Howarth’s calculations are very accurate

14 D. J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).

but unfortunately are carried out only at k=0 and at
the edge of the Brillouin zone in the 001 direction or at
the point {=m, £=7%=0. We shall examine these
calculations and see what information they can give us,
using this as an illustration of the application of the
method.

If we let ¢ be arbitrary but assume £{=79=0, the
matrix components of energy for the face-centered
structure take on the following form:

(s/s)=E,, ;(000)+4E, ,(110)+8E,, ,(110) cos,
(xy/2y) = Ezy, 2,(000)+4E.,, »,(110)
+8E,,, ,,(011) cos{,
(x3/42) = (y3/y2) = Ezy, 2,(000)+4E.,, ., (011)
+4E,,, .,(110)+4E.,,, ,,(011) cost,
(2 g/ —5?) ©)
= ESz’—r’, 322__12(000) +4E:c2—u2, x"—y’(l 10)
+6E;,2 2 5,2 ,2(110)+2E,2_y2 2 ,2(110) cosg,
(322_ . 2/322__ 2)
= E3,2 42 3,2 ,2(000) +4Es,2_,2 5,2,2(110)
+6E;2 2 222 (110)+2E;5,2_,2 5.2 ,2(110) cosg,
(s/322—71%)=4E; 3,>_ 2(110)—4E, 3,»_,2(110) cos¢.

All other nondiagonal matrix components vanish. We
see that at k=0, where cos{=1, all nondiagonal matrix
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components vanish, so that we are left with three
energy levels: the nondegenerate s level; the threefold
degenerate state formed from the functions xy, yz, 2x;
and the twofold degenerate state formed from x?—y?
and 322—7%. A twofold degeneracy between the states
x3, yz persists for all ¢ values, but otherwise the de-
generacy is all removed when { departs from zero, so
that at {== we have five distinct energies. Howarth
has determined the three energy values we have just
described at {=0, and the five at {=. Let us see what
information this gives us about the E integrals.

When we count up in Eq. (6), we find that there are
nine independent E integrals concerned in the formulas.
Hence it is clear that we can determine all but one of
these from Howarth’s calculations. When we examine
the numbers, we see that we can proceed as follows.
The nondiagonal matrix component (s/3z°—7%) serves
only to push apart the diagonal energies (s/s) and
(322—17%/322—7?) at {=m. But the numerical values
indicate that these two states are already far apart at
this point in the Brillouin zone, so that a small non-
diagonal matrix component would have almost no effect
in pushing them further apart. We can then assume
with very slight error that this nondiagonal matrix
component is negligible at {==. We then use Eq. (6)
to determine the eight integrals aside from E; 3,2_,2(110),
which we neglect. This integral would become important
only over the relatively small range of { where the s
function was having an energy close to that of the
322—7? function; it would determine the details of the
interaction of s and d functions where their energies
cross. We cannot get information about this from
calculations at the center and edges of the Brillouin
zone.
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Fig. 1. Variation of energy with wave vector in the 001 direction
for Cu calculated using Howarth’s energy values at the center
and boundary of the zone. (Symmetry symbols are taken from
reference 4.)
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Proceeding in this way, from Howarth’s numerical
values, we can compute the values of the remaining
eight integrals. These are tabulated in Table IV in
rydbergs. The reader can find Howarth’s values, if he
wishes, by substituting these integrals in Eq. (6). We
plot the functions of ¢, given from Eq. (6), in Fig. 1.
We see the way in which the s function cuts across the
d band steeply ; we recall that if the matrix component
(s/322—r?) were known, we should be able to show that
the s function does not cut the & function 3z2—72, but
that their energies are pushed apart in the immediate
neighborhood of the crossover point as schematically
indicated by the dotted line in Fig. 1. Since, however,
the energy of the s state varies so rapidly with k, we
expect that this effect will not be felt far from this
crossover point. It is this fact which makes it a rather
good approximation to treat the problem of the five d
electrons in a transition metal as independent of the s
electron, merely superposing their final energy bands,
as Fletcher and Wohlfarth have done.

Comparison of Fig. 1 with Fig. 1 of Fletcher and
Wohlfarth’s paper (reference 8) shows that the energies,
as a function of k, in the 100 direction, show a surprising
similarity though one energy level, that arising from
the 3z2—7? state, behaves quite differently, rising with
increasing ¢ in Howarth’s case, falling in Fletcher and
Wohlfarth’s. But nevertheless the similarities are close.
This is shown from Table IV, where we have given not
only Howarth’s values of the integrals, but also those
computed from Fletcher and Wohlfarth’s integrals
(ddo), etc., which we have already mentioned, expressed
in rydberg units so that they are comparable with
Howarth’s integrals. The agreement of the integrals
E,, .,(110) and E., .,(011) is surprisingly good. The
disagreement of the other two integrals computed by
both methods is, of course, a result of the discrepancy
between the behavior of the 322—7? state, showing that
the behavior of this state cannot be described in terms
of two-center integrals. Fletcher and Wohlfarth’s calcu-
lations, of course, assume identical values for the
quantities E.y, 5,(000) and Ej,2_,2 3,2 ,2(000), since these
must be equal in the two-center approximation. Since
this quantity merely appears as an additive constant in
Fletcher and Wohlfarth’s calculation, we cannot deter-
mine it in their case. It is interesting to see that the
difference between the two integrals as determined by
Howarth’s calculations, though appreciable, is by no
means large. Fletcher and Wohlfarth’s calculations of
course give no information about the s state, and
neither theirs nor Howarth’s give information about
the interaction between s and d states, as we have
pointed out.

This discussion of the resemblances and differences
between the calculations of Fletcher and Wohlfarth on
nickel, and of Howarth on copper, carried out by quite
different methods, suggests that in the future, when
more accurate calculations are made for more metals
showing the face-centered structure, comparisons of
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this type may prove quite valuable in discussing the
variation of the energy bands from one element to the
next. Further calculations now being carried out in this
laboratory by Howarth on copper, if successful, should
provide more complete information about this sub-
stance, perhaps filling in some of the gaps in Table IV.

VI. THE BODY-CENTERED CUBIC STRUCTURE

The body-centered cubic structure can be handled by
methods similar to those we have just used for the
face-centered structure. It has atoms at points pai
+gaj+rak, where p, ¢, r are all even, or all odd,
integers. The nearest neighbors of a given atom are the
eight of type (111), the second nearest are the six of
type (200), and the third nearest are the twelve of
type (220). We see that all three of these types are
similar to those met in the simple cubic structure, the
first being equivalent to the third-nearest neighbors in
the simple cubic structure, the second to the nearest
neighbors in the simple cubic structure, but twice as
far away, and the third being equivalent to the second-
nearest neighbors in the simple cubic structure, but
twice as far away. Thus we can read the matrix compo-
nents of the energy for all these types of neighbors
directly from the results of Tables II and III. For the
s state, for instance, we have

(s/s)=E,, ;(000)+8E,, ,(111) cos cosy cos{
+4E, (200) (cos2¢ cos2n+cos2£ cos2¢
~+cos2y cos2t)+2E,, ,(220) (cos2g
+cos2yp+-cos2¢). (7)

As with the face-centered structure, it is interesting
to check the relationship between these energy expres-
sions and the periodicity in the reciprocal lattice and
the structure of the Brillouin zone. The reciprocal
space must show a face-centered cubic type of sym-
metry, the points such as £=0, 9= ¢ = being equivalent
to the origin. If we make this transformation, we see
that the expression (7) is unchanged, and examination
‘of Tables IT and III shows that the same thing will be
true of each matrix component. We can also easily
check the special symmetry properties at the center
and other symmetry points of the Brillouin zone.

There are a number of important metals which show
the body-centered structure: the alkalies, on the one
hand, and some of the transition metals, on the other.
The alkalies have of course been the subject of much
study, and the indications from both the cellular
method and the method of orthogonalized plane waves
are that the conduction band is rather closely like that
characteristic of free electrons, explaining the success
of the free-electron model in treating these simple
metals. The fact that the alkali metal energy band is
so nearly free-electron-like throws some interesting
light on our approximation method. The fact appearing
from the free-electron nature is that the curvature of
the energy surface at k=0 is much less than that at
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TaBLE IV. Energy integrals (in rydbergs) for face-centered cubic
structure of Ni (Fletcher and Wohlfarth) and Cu (Howarth).

Integral Fletcher and Wohlfarth (Ni) Howarth (Cu)

E, +(000) ' +0.0366
E, 5(110) —0.0683
Ey,z4(000) —0.6388
Eg.2 2 3,2 ,2(000) —0.5925
Ey, 2y(110) —0.01928 —0.0253
E.y, 2y (011) +0.00574 +0.00683
E32_23.2,2(110) —0.00786 —0.00375
E.2_y2 2 ,2(110) +0.01353 —0.00500
E.y,22(011) —0.03116

Ey,3:2-42(110) —0.03917

the boundaries of the Brillouin zone. We see from Eq.
(7) that in the 100 direction, for n=¢=0, the energy is
given by 8E, ,(111) cost+[8E; ;(200)+2E,, ,(220)]
X cos2&+constant. Now if the quantities E,, ,(200) and
E, ,(220) were determined as real energy integrals from
atomic orbitals, they would have to be negative, just as
E, (111) is. We then see at once that these terms
would increase the curvature already present from the
first term at £=0 but would decrease it at £=x. In
other words, if we had this sign for E, (200) and
E, ,(220), we should have a curvature of the energy
surface which (numerically) would be greater at k=0
than at the boundary of the zone, which is contrary to
our other information. It must be, then, that to fit the
known properties of the energy surface, we must choose
the quantities E,, ;(200) and E, .(220) of opposite sign
to what we should find if we regarded them as energy
integrals between atomic orbitals, and we may by no
means neglect them. This emphasizes the importance
of our principle that these quantities are really to be
regarded as disposable parameters rather than atomic
integrals ; we may be led seriously astray if we disregard
this fact. On the other hand, if we computed the
integrals properly from Lowdin functions, we might
well get this opposite sign for the integrals for more
distant neighbors; for the characteristic of the orthogo-
nalized functions is that they must have contributions
on rather distant atoms, of opposite sign to those on
the central atom where the orbital is located, which
might change the sign of the integral.

The greatest interest of the body-centered structure
comes not from the alkali metals, however, but from
the tight bound transition metals showing this structure,
vanadium, chromium, one of the forms of iron, mo-
lybdenum, tantalum, and tungsten. These metals, on
account of their tight binding, and on account of the
slight antiferromagnetic properties of chromium and
the ferromagnetic behavior of body-centered iron, have
a very great interest and practical importance. Unfortu-
nately, we do not have any really reliable determination
of the structure of their energy bands, by any method.
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Lacking such information, it is tempting to ask how
much our simplified LCAO method can tell us. Accord-
ingly, we shall give here a treatment of the behavior of
the 3d band in such a metal, though, since we have no
correct calculation to start with, we must arbitrarily
assume values for the various integrals. Even in this
way we can derive interesting results, and our present
work can form a framework for more accurate treat-
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Fic. 2. Variation of energy with wave vector along various
lines in reciprocal space calculated for body-centered structure
using Fletcher and Wohlfarth’s values for the nearest-neighbor
d interactions. (a) 001 direction; (b) 011 direction; (c) 111
direction; (d) parallel to 001 direction with £=0, n=u/6; (e)
parallel to 001 direction with £=x/18, n==/6. (Symmetry
symbols are taken from reference 4.)

ments of this structure, when calculations by better
methods become available in the future.

Since we have no better information, we shall use the
two-center approximation, and since we have no values
for the integrals (ddos), (ddm), (ddd), we shall use the
same ones determined by Fletcher and Wohlfarth for
nickel. The absolute values of these integrals would
certainly be different for the elements having the body-
centered structure, but very likely the ratios of the
three integrals would not be very different. Hence it
seems likely that our treatment can give some idea of
the general form of the energy bands, though not of
the absolute width. We assume, of course, only nearest-
neighbor interactions, as Fletcher and Wohlfarth did
for nickel. Then the matrix components of energy are
found from Table III, using the values appropriate for
third-nearest neighbors in the simple cubic case.

We have taken the secular equation and values of the
integrals which we have just described, and have solved
the five-by-five secular equation at many points through
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the Brillouin zone. This calculation was made on the
Whirlwind digital computer, and we wish to thank the
authorities in charge of that computer, and in particular
to thank Dr. Alvin Meckler, who assisted in the
programming, for their help in making the calculations.
Energy levels were computed on a network of points
10 degrees apart along the axes (that is, for intervals
of w/18) for £, #, and {. Calculations had to be made
at 220 independent points in the Brillouin zone:'® for
£<n<t<w/2. The limitation that £, », ¢ be less than
/2 will be discussed in a later paragraph; it proves to
be the case that the roots for larger values of these
quantities can be obtained at once from values when
they are less than /2.

Calculations at these points did not all have to be
made by solving the secular equation, since it proves to
to be possible to get an analytical solution at all points
in the xy plane, or for {=0. If we take the matrix
components, and insert this value of ¢, we find that
the only nondiagonal matrix components of energy
which do not vanish are (xz/yz) and (xy/32*—7%). Thus
the secular equation factors into a quadratic equation,
involving the functions xz and yz; another quadratic,
involving xy and 322—7?; and the function #*—4?, which
is a solution as it stands.

In Fig. 2,'% we show the energy levels as computed in
this way, along a number of lines in the reciprocal
lattice. In Fig. 2a, 2b, and 2c we show the energy
along the 001, 011, and 111 directions. By comparison
with Fig. 1, or with the figures in Fletcher and Wohl-
farth’s papers, we see that the arrangement of energy
bands is quite different in the body-centered structure
from what it is in the face-centered structure: at the
origin, the energy levels are near the top and bottom
of the band rather than near the center, as in the face-
centered structure. This would lead us to expect a
large density of levels near the top and bottom of the
band, with a dip in the middle, which as we shall show
in a moment really occurs. We also show two curves
indicating the way in which the degeneracy is removed
as we move away from symmetry positions in the
Brillouin zone. In Fig. 2d, we show curves for the

15 A complete table of the eigenvalues of the 220 secular equa-
tions, in hectographed form, may be obtained by writing the
authors. This table has also been deposited as Document No. 4225
with the ADI Auxiliary Publications Project, Photoduplication
Service, Library of Congress, Washington 25, D. C. A copy
may be secured by citing the Document number and by remitting
$1.25 for photoprints or $1.25 for 35-mm microfilm. Advance
payment is required. Make checks or money orders payable to:
Chief, Photoduplication Service, Library of Congress.

15a In the ordinates of Figs. 2 and in the abscissa of Fig. 3, the
unit of energy is incorrectly indicated. Instead of the rydberg
the unit of energy should be Eo=1.349 ev. (The unit of energy
in terms of which Fletcher and Wohlfarth express their nearest-
neighbor interactions between d functions for the face-centered
structure.) In any case, the scale of energy in these diagrams
should not be taken seriously. There is little reason to believe
anything but the ratios of the nearest-neighbor d interactions is
correct as we have used them. We expect that the broad features
of the curves are correct but do not believe that the actual numer-
ical values of the energies are significant.
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energy levels for £=0, n=7/6, { arbitrary. By com-
parison with Fig. 2a, we see that the double and triple
degeneracies found in the 001 direction are split, but
that an accidental degeneracy is still permitted, since
we are still in a symmetry plane. In Fig. 2e, we have
¢=m/18,7=m/6, ¢ arbitrary. The accidental degeneracy
present in Fig. 2d is now removed, the energy levels
being modified so that they cannot cross at all. This is
a sample of what happens in other general directions
in the Brillouin zone. ’

From these calculations, we have found values of
N(E), the number of states in a given energy range.
We have done this in-the following way. We have
set up curves, like Figs. 2a, 2d, and 2e, for all the
calculated values of ¢ and 7. In each of these curves,
we have subdivided the energy range into small intervals
(0.05 unit) and have measured the relative extent of
the ¢ axis for which the curve lay within each of these
intervals. This results in a step curve for N(E) deter-
mined from each of these energy curves. We have
finally added these step curves for all the various energy
curves, weighting each one properly. Since we have
used a finite net, and a finite energy interval, this of
course does not give a smooth curve, and one could
get better results by more elaborate methods of calcu-
lation; but since our problem is only illustrative any-
way, it did not seem worth while to take greater pains
in calculating the energy distribution. The results of
this calculation are shown in Fig. 3. We see, as we
suspected, that there is a decided dip in the density of
states curve in the center. There is a good deal of
experimental evidence, based on electronic specific heat
and other evidence, for such a dip, though we shall
not go into the details here. The curve of Fig. 3 is
symmetrical about its midpoint, for reasons which we
shall now discuss.

The reason for this symmetry is the existence of a
type of reflection symmetry of the whole problem

7

N(E)
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F1c. 3. Density of states curve for body-centered structure
calculated using Fletcher and Wohlfarth’s parameters for the
nearest-neighbor d interactions. The total area under the N (E)
curve is five corresponding to five states.
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Fic. 4. First Brillouin
zone for the body-centered
cubic structure showing the
inscribed cube bounded by
the planes &==+n/2, 9=
+7/2, ¢==x7/2.

about the planes {=-+w/2, or n==4w/2, etc. These
planes enclose a cubic volume half the volume of the
Brillouin zone. This is made clear from Fig. 4 in which
we show the whole Brillouin zone and the cube under
discussion. The Brillouin zone consists of the cube and
of pyramids extending outward from each face of the
cube. If these pyramids were reflected in the faces of
the cube, so that they extended inside rather than
outside the cube, they would just fill the cube. The
symmetry property to which we have referred can
then be stated as follows: the energies of the five states
at a point in one of the pyramids, outside the cube, and
at the mirror image of this point reflected in the face
of the cube, therefore located in the corresponding
pyramid inside the cube, are the negatives of each
other. (In this statement, we are assuming that the
additive term in the energy, Eqy, ,(000), is zero.) Thus
all the energies inside the cube occur with the opposite
sign at corresponding points outside the cube, proving
the symmetry of the N(E) curve to which we have
just referred.

To prove this theorem, we wish to show that the
roots of the secular equation are unchanged if, for
instance, we change ¢ to w—¢, and leave £ and 7
unchanged. That is, we change the sign of cos{ but
leave all other sines and cosines unchanged in our
matrix components. We can now examine the matrix
components in detail. Let us change the sign of cos{;
change the sign of the energy E in the secular equation;;
and furthermore, change the functions xz and yz to
—uaz and —yz, thereby changing the sign of all matrix
components containing one of these functions, but
leaving  those components unchanged which contain
neither or two of the functions. When we do this, we
discover that the sign of every term in the secular
equation has changed, so that its roots are the same as
before. Since these roots now give the negative of the
energy, on account of changing the sign of E, we have
proved our theorem. One very useful result of this
theorem is that it reduces by half the volume of the
Brillouin zone in which we must compute the energies,
in order to find N (E).

One account of the reflection property just proved,
we see that on the faces of the cube equal positive and
negative energy levels must occur in pairs. That is,
since there are five levels, one must be zero, and the
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others must be plus and minus two values. This suggests
that the secular equation should factor into quadratics
along these faces, and this is in fact the case. It does
not follow from the vanishing of matrix components,
but if we multiply out the whole secular equation, we
find that it has a factor E, and the remaining fourth-
order equation becomes a quadratic for E? leading to
the properties described. We shall not write down this
quadratic equation, but it is not hard to derive and it
obviously leads to additional points in the Brillouin
zone where we can solve the secular equation analyti-
cally, rather than having to use the digital computer.

The cube which we have introduced in Fig. 4 has a
special significance. Suppose we considered the problem
in which the atom at the center of our body-centered
cubic structure was of one type, but its eight nearest
neighbors were of another sert. We should then have
a simple cubic structure with two atoms in the unit
cell, the cube having a side of 24, in our present nota-
tion, and one atom being at the corner, the other at
the center, of the unit cell. The cube in the Brillouin
zone which we have been discussing is then just the
Brillouin zone for this simple cubic structure. It is
now easy to modify our discussion so as to take up
this case of two unlike atoms. This case is of consider-
able importance. It is met in some alloys; for instance,
in the ordered form of CuZn, though in that case we
should be more interested in the 4s and 4p levels than
in the 3d. But in particular, it is probably met in
chromium, on account of the antiferromagnetic nature
of that element. It has been suggested by one of the
writers!® that electrons of one spin, in an antiferro-
magnetic substance, may see an alternating potential,
having one value in atoms whose spin is preponderately
in the same direction as the spin of the electron in
question, but having a higher value in atoms of opposite
spin. We know from the work of Shull and Wilkinson!”
that chromium appears to show a small antiferro-
magnetism, corresponding to about 0.4 Bohr magneton
per atom. Thus we must conclude that the electrons
feel such an alternating potential, and that as far as
they are concerned the crystal is made of two unlike
centers of force, forming the simple cubic structure
with two unlike atoms per unit cell, of the type which
we have just described. This situation is somewhat
similar to that suggested by Ganzhorn (reference 10),
though his discussion is so confused, as between energy
band and Heitler-London approaches, that it is hard
to understand the details of his argument.

Let us now ask how our problem is to be formulated
in terms of the simple cubic structure containing two
atoms per unit cell. We must set up ten Bloch functions,
the first five corresponding to the five d orbitals on the
atoms at the corners of the cubic unit cells, the second

16 J. C. Slater, Phys. Rev. 82, 538 (1951).

17.C, G. Shull and M. F. Wilkinson, Revs. Modern. Phys. 25,
100 (1953).
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five corresponding to the five d orbitals on the atoms
at the centers. The nearest neighbor of an atom of one
type is now an atom of the other type. Hence since we
are considering only interactions between nearest
neighbors, the only nonvanishing matrix components
of energy will be nondiagonal components between an
atom of one type and an atom of the other type. Thus,
for instance, the nondiagonal matrix component be-
tween an xy orbital on the atom of one type, and the
xy on the atom of the other type, will be the expression
(xy/xy) which we have already considered; and so on.
For convenience in writing, let us label these matrix
components Hyy, Hys, +++His, Hory - Hss. There will
be no nondiagonal matrix components between Bloch
functions formed from two types of orbital on the
same type of atom, for such nondiagonal matrix
components would involve interactions between second-

H,—E 0 0 0 0
0 H,—E 0 0 0
0 0 H,—E 0 0
0 0 0 H,—E 0
0 0 0 0 H,—E
Hy Hy, Hys Hy His
Hy Hy, Hs Hy Hs
H; Hj, Hs; Hj, Hj;
Hy Hy Hys Hy Hys
Hy, Hs, Hjs Hy, Hy;s

Let the eigenvalues be E;, E, - - - E5. Let us now apply
this linear transformation to the five d functions on
atom a, and the same transformation to the five on
atom b. This will diagonalize the upper right corner
and lower left corner of the matrix in (8). It will not
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We can now immediately solve Eq. (9). Let us
rearrange the rows and columns so that first we have
the first row and column, then the sixth, then the
second, then the seventh, and so on. Then we see that
it factors into a set of two-by-two secular equations,
the first one being

H,—E E
=0. (10)
E, H,—E
The solution of this is
E=3(HotHy)£[El+5(Ho— Hp)* M. (11)
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nearest neighbors, which we are disregarding. The
diagonal matrix component of energy of one of the
Bloch wave functions will be independent of k for the
same reason. If the atoms of the two types are really
identical, then the diagonal matrix components of
atoms of either type will be the same; but, if they are
not identical, these diagonal components will be
different, and it is just the effect of this difference which
we wish to investigate.

Let the diagonal energies of the two types of atoms
be H, and H;. Then the secular equation can be written
as given in Eq. (8). We can solve this equation, if we
assume that we have already solved the corresponding
five-by-five secular equation whose matrix components
are Hyi---Hgs. For that solution tells us how to find
linear combinations of our five functions, which diago-
nalize this matrix,

Hy Hy, Hiy; Hy, His

Hy Ho, Hy; Ho Hoys

Hy Hj, Hj; Hs, Hj;s

Hy Hyo Hys Hy Hys

Hy Hy, Hg; Hy Hys =0 (8)

H,—E 0 0 0 0 ’

0 H,—E 0 0 0

0 0 H,—E 0 0

0 0 0 H,—E 0

0 0 0 0 H,—E

interfere, however, with the other two corners of the
matrix, on account of the degeneracy of the problem,
the fact that all five functions have the same diagonal
energy. When we have made this transformation,
Eq. (8) will be transformed into

E; 0 0 0 0

0 E, 0 0 0

0 0 E; 0 0

0 0 0 E, 0

0 0 0 0 Es |_

H—E 0 0 0 o = ©)

0 H,—E 0 0 0

0 0 H,—E 0 0

0 0 0 H,—E 0

0 0 0 0 H,—E

The rest of the two-by-two secular equations are
handled in the same way. We shall now discuss first
the case where H,= H,=0, so that the two atoms are
really alike; but are handling the problem using a unit
cell twice as large as necessary, so that there are two
like atoms in the unit cell. In this case, the solutions
are E=4E,, 4-E,, etc.

This is just what we should expect. We are using the
cubic Brillouin zone, half as large as the correct Brillouin
zone for the body-centered structure. We must describe,
in this smaller zone, all the energy levels which should
properly be found inside the larger zone. But we have
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already found that the energy levels at any point of
one of the pyramids extending outside the cube are the
negatives of the values found at the point inside the
cube which is the mirror image in a cube face. Alter-
natively, the energy levels at any point of one of the
pyramids are the negatives of those at the point inside
the cube to which this pyramid would be shifted by a
translation of 7 along the x, y, or z axes. Thus the
solution E;, E,, etc., of our secular equation give the
energies which belong inside the cubic part of the
Brillouin zone, and the solutions —E;, —E,, etc., are
those corresponding to the pyramids outside the cube,
in the body-centered cubic case. We see the way, then,
in which our present description leads to just the same
energy levels as before, for the case where the two
atoms are really identical. This shows us that our
requirement, which we stated earlier, that the unit
cell be chosen as small as possible, in applying the
LCAO method, is dictated by convenience, not by
necessity. It leads to a smaller secular equation, but
the final results are the same in either case.

Now let us consider the case where the atoms are
really different, so that H, is not equal to H,. For
convenience, we may take Hy= — H,, so that the center
of gravity of the band is not disturbed by making the
atoms unlike. Then we see from Eq. (11) that the
effect of a nonvanishing value of H,— Hj is to push the
two energies == E; apart, enough so that the higher one
is always greater than 3 (H,— Hy), the lower one always
less than the negative of this quantity. In other words,
the effect of this perturbation is to make a real energy
gap, holding throughout the Brillouin zone, such that
no energy levels whatever will be found within a gap
of width H,— H,. This of course has an effect over the
bounding planes of the new cubic Brillouin zone. We
have already seen that in the absence of our perturba-
tion, there would always be one energy level equal to
zero on these planes. With our doubled number of
energy levels, this level now splits into two, one of
positive and one of negative energy. But there is a
similar situation wherever, inside the Brillouin zone, an
energy level of the unperturbed problem is equal to
zero. In Fig. 3, under the action of this perturbation,
a gap where N(E) is zero appears in the center of the
figure, of width H,— H,. Of course, the area under the
curve cannot be changed, and it is not hard to show
that N (E) will become infinite at the edges of the gap,
and rapidly fall to approximately its original value at
a distance from the gap of the order of the gap width,
the added height of the curve near the gap being just
enough to keep the original area. Such a gap has been
considered by Ganzhorn (reference 10); but it is not
clear from his argument whether he realizes that it
exists only for unlike atoms, vanishing when the two
atoms ¢ and b become alike.

It is interesting next to ask what is the effect of this
perturbation on the wave functions, with particular
reference to the problem of the antiferromagnetism of
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chromium. There are two cases: first, for those energy
levels far from the gap; secondly, for those close to the
gap. For those far from the gap E;, which plays the
part of the nondiagonal matrix component of energy
in Eq. (10), is large compared to H,—H;. That is, as
far as the secular equation is concerned, we have almost
a degenerate problem, and the solutions are almost
exactly the sum or difference of the two unperturbed
wave functions. The sum gives a solution involving
equal amplitudes of disturbances on the atoms of both
types, with phase relations just like those arising from
the Bloch sums for the problem where the atoms are
alike. That is, it reduces to our former solution, and
the wave functions are unperturbed far from the gap.
The difference is similar to this, except for the difference
in phase, which is just what is needed to describe the
former solution for { between x/2 and =, or in the
pyramidal region of the Brillouin zone of Fig. 4. Close
to the gap, however, E;, the nondiagonal matrix com-
ponent of energy in Eq. (10), is small compared to the
diagonal component, and the solution consists largely
of the one unperturbed solution or the other. The wave
functions corresponding to energies below the gap, and
near to it, consist of contributions coming almost
entirely from the lower potential wells, while those
corresponding to energies just above the gap consist of
contributions from the atoms with higher potential
wells.

We can now ask what is the application of this
situation to the antiferromagnetic case, as found in
chromium. We must assume that a gap of this type
really exists in the d band of chromium, as a result of
an alternating potential arising from the antiferro-
magnetism itself. This would give a lower band capable
of accommodating five d electrons per atom. We must
further assume that the s band, which will overlie the
d band, is located at such a height that the Fermi level,
coming when one electron per atom is located in the s
band, lies within the gap in the d band. This would
amount to a numerical coincidence, which would not
be particularly improbable. If we had this situation,
then in the ground state of chromium, we should have
one electron in the s band, five in the lower d band.
At the Fermi level, the electron density N(E) would
arise only from the s electron, and hence would be
quite small, consistent with the known low electronic
specific heat of chromium. The upper occupied & levels
would correspond to a considerable concentration of
electrons of one spin in sites of one type, electrons of
the other spin in sites of the other type, thus leading
to the type of antiferromagnetism observed. The lower
occupied d levels would have no such alternation of
spin, so that the net magnetic moment on each atomic
site would be far less than five Bohr magnetons. The
magnitude of the net magnetization would depend on
the ratio of the gap width to the whole band width,
and the observed small value would be consistent with
a rather narrow gap width. All of these predictions
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seem to be consistent with what is known about chro-
mium.

This type of argument is not able to lead to a pre-
diction as to the expected magnitude of the gap width
or magnetic moment per atom. To do that, we should
calculate the energy of the whole crystal, as a function
of the magnitude of the antiferromagnetic moment,
and find that value of antiferromagnetic moment which
minimizes the energy. This would demand finding the
cohesive energy very accurately as a function of mag-
netic moment, and the calculation of cohesive energy,
involving a many-electron problem, is very much more
difficult than a discussion of one-electron energies,
which alone can be handled by the present simplified
methods. It is surely not adequate merely to identify
the cohesive energy of the crystal with the sum of the
one-electron energies, which is all that can be found
by the present methods. We can see qualitatively,
however, by considering the one-electron energies, why
we should expect a result such as is observed. If we
start with a model in which there is no antiferromag-
netism, there would be no gap. If we now introduce an
antiferromagnetic moment and alternating potential,
the gap will appear, and as a result the energies of the
upper energy levels of the lower occupied d band will
decrease. It certainly seems likely that this decrease of
one-electron energy is the feature of the problem which
stabilizes the antiferromagnetic state. On the other
hand, if we used only our simple one-electron argu-
ments, we should conclude that the one-electron ener-
gies, and hence the energy of the crystal, would continue
to decrease as the gap width increased. This would
suggest that the stable state was one with a complete
antiferromagnetic effect, with a moment of five Bohr
magnetons per atom, as was once suggested by Zener.!8
This is known not to occur by the results of Shull and
Wilkinson (reference 17).

The reason for this is moderately clear, if we ask
what happens to our prediction of energy bands as the
antiferromagnetic moment gets large. In Eq. (11), this
is the limit where H,— H, is large compared to any of
the Ey’s, or where the effect of the alternating potential,
arising from exchange, is large compared to the effect
of band splitting on account of the interaction of
neighboring atoms. Then Eq. (11) shows us that, though
the two halves of the d band are split widely apart,
each half-band is greatly narrowed (since in this limit
the effect of E, is found only as a second-order correction
to the energy). This narrowing is real and has a per-
fectly simple physical meaning. In this limit, all elec-
trons of plus spin are found on atomic sites of one type,
those of minus spin on sites of the other type. The
energy bands are set up only from electrons of one
spin, and as far as these are concerned, the electrons
are found only on atoms forming a simple cubic lattice
of side 2a. These atoms are much further apart than

8 C. Zener, Phys. Rev. 81, 440 (1951).
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the nearest neighbors in the nonmagnetic case, so that
we expect practically no broadening of the bands. The
energy difference between the two half-bands will be
independent of interatomic distance, and the broadening
of the bands, being very small, will hardly vary with
interatomic distance.

We shall thus lose, in this limit, the principal feature
undoubtedly contributing to the cohesive energy of
chromium. The fact that the body-centered transition
metals are so tightly bound unquestionably arises on
account of the contribution of the d electrons to the
binding energy.’® On our interpretation, the lower half
of the d band is occupied, consisting of those wave
functions contributing most strongly to the bonding,
while the upper half, containing the antibonding orbi-
tals, is empty. This view implies that it is the change in
average energy of the occupied d levels with internuclear
distance which is the important feature in the binding.
Clearly we lose this binding if the occupied & band
shrinks to a very narrow width, as it does for very large
antiferromagnetism. But a quantitative calculation of
these effects demands a thorough study of the many-
electron problem, as we have stated. In the limit of
large antiferromagnetism, the energy difference between
the two d bands, the occupied and the unoccupied ones,
will come entirely from an intra-atomic exchange
integral of a type which can only be properly treated
by a study of the energy of the many-electron problem
and of the configuration interaction involved in the
correct behavior of the system as the interatomic
distance increases to infinity. We do not feet that there
is any simplified way to estimate these effects and must
hope that at some future time a sufficiently exact
treatment of the cohesive energy of chromium can be
given so that a reliable estimate of the antiferromagnetic
moment can be made. In the meantime, it seems quite
legitimate to use the observed magnitude of this
quantity to derive results, as we have done here,
regarding the energy bands, and to use these results in
a qualitative way to correlate information on such
quantities as electronic specific heat.

If our views are correct, the case of chromium can be
rather unique. It is known from the work of Shull and
Wilkinson, quoted above, that molybdenum and tung-
sten, which have the same electronic structure as
chromium, are not antiferromagnetic and that vana-
dium, lying before chromium in the periodic table, also
is not antiferromagnetic. Molybdenum and tungsten
would have to be explained by supposing that the
coincidence by which the Fermi edge for the s electrons
lay within the gap for d electrons did not occur in those
elements. Thus the d band would be either more or less
than half-filled (it does not seem to make much differ-
ence which), and we could not get a stabilizing effect

9 This is in agreement with the views of Pauling (reference 9).
Pauling in that reference intimated that those who believe in the
energy band theory of the d band did not accept this view but
this is by no means the case.



1516 J.

by introducing the gap, since if the band were more
than half-filled there would be approximately equal
numbers of electrons increasing and decreasing their
energy, and if it were less than half-filled the energies
of the occupied levels would hardly be changed. Accord-
ing to the remarks made earlier, we feel that the tight
binding of these elements arises from the fact that the
d band is approximately half-filled and that it is strongly
bonding; but the antiferromagnetic effect would have
small effect on this, and we do not feel that the present
methods are adapted to making a calculation of the
cohesive energy. As for vanadium, with one less electron
than chromium, the energy levels in the neighborhood
of the middle of the d band are empty in any case, and
there would be no stabilizing effect from introducing an
antiferromagnetic moment, so that we expect a complete
lack of antiferromagnetism, and a very close approxi-
mation to an ordinary energy band picture, for this
element.

As we proceed in the other direction in the periodic
table from chromium, we come to manganese, which
has a different crystal structure and so cannot be
treated by the present discussion. Its structure is
unfortunately so complicated that it would be very
difficult to handle it even by the present simplified
method, since it has many atoms in the unit cell. One
would guess, from the fact that it is known to be
slightly antiferromagnetic, that proper treatment, if it
could be given, would perhaps lead to a gap in this
case too, somewhat similar to that in chromium, but
separating the occupied from the unoccupied levels;
but this is entirely speculative. The next element is
iron,  which of course is ferromagnetic in its body-
centered form. Surely our arguments would not lead to
antiferromagnetism for it; and one should be able to
apply a rather straightforward energy-band argument
to its ferromagnetism. '

The only difference between this case and the stand-
ard one is that, if we ask what is probably the saturation
magnetization to be expected, we can conclude that
very likely it should be less than the value of approxi-
mately 2.6 Bohr magnetons which would be deduced
by extrapolating the well-known curve of saturation
magnetization of nickel and cobalt versus atomic num-
ber. The probable reason is that as enough electrons
have their spin reversed so that electrons of plus spin
will come somewhere near filling the d band, those of
minus spin will be reduced to something like 2.5 per
atom, so that their one-electron energies will lie near
the minimum of the distribution curve of Fig. 3. In
this case, it will require quite a large one-electron energy
to reverse the spin of an electron, so that the magnet-
ization will probably stop at this point, rather than
continuing until there are quite five electrons per atom
in the d band with plus spin. This could well lead to
the observed moment of something like 2.2 Bohr mag-
netons. This argument, as we seen, is not very different
from Pauling’s.? However, it is based on an energy-band
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theory rather than an attempted Heitler-London expla-
nation. Furthermore, unlike Pauling, we believe that
the proper quantitative discussion of the problem would
involve an accurate calculation of cohesive energy as a
function of magnetization, just as in the case of chro-
mium, and we are of the opinion that no simple and
easy argument can lead to a reliable calculation of the
saturation magnetization, such as Pauling attempted
in his paper already quoted or in a more recent and
entirely different discussion.?

In this section we have attempted to show that rather
simple arguments can lead to a qualitative interpreta-
tion of some of the features of the body-centered
metals, though those properties depending on cohesive
energy are necessarily hard to'treat. Our discussion of
chromium has depended on the very simplified tight
binding approximation involving only nearest neigh-
bors. It is easy to see that if second nearest-neighbor
interactions are included, the gap arising from the
alterating potential can disappear. In such a case, in
Eq. (8), the upper-left and lower-right corners of the
secular determinant would no longer have the simple
form assumed, and our arguments would entirely break
down. Of course, we should still have energy gaps
appearing at each point of the face of the cubic Brillouin
zone of the simple cubic structure, but these gaps
would no longer all be centered at the same energy,
and they could well not result in a gap in the N (E)
curve as a whole. To maintain our explanation, then,
we must assume that these terms are at least small. It
does not seem absurd that this should be the case, so
that our treatment really might represent a valid
approximation to the facts. The d electrons have rather
concentrated wave functions and second-nearest neigh-
bor interactions would really be expected to be small.
This would be in entire contrast to the 4s electrons,
whose interactions surely are so great that no gap
would appear in the 4s band. Only later calculations
by more accurate methods can answer these questions
properly.

VII. THE DIAMOND STRUCTURE

The diamond structure may most conveniently be
described as a face-centered cubic structure, but with
two atoms in the unit cell, rather than one. That is,
we have atoms at the points pai+gaj-rak, where p,
g, v are integers, and p--¢-+7 is an even integer, just as
in the face-centered structure; but also we have atoms
at points identical with the first, but displaced by a
vector $a(i+j-+k). The first lattice we shall denote by
1, the second by 2. We must now set up Bloch functions
of s, ps, Py, p. orbitals on each of the two types of
atomic sites, so that we shall have eight Bloch sums.
By the methods we have previously used, we can find
the matrix components of energy between these Bloch
sums. We shall denote these matrix components by such
symbols as (s/x)11, signifying a matrix component

2 1, Pauling, Proc. Natl. Acad. Sci. 39, 551 (1953). v
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TABLE V. Matrix components of energy for diamond structure.

(s/8)11=(5/5)22
(x/%) = (x/%)2
(s/5)12= (s/5)x*
(s/%)12=— (s/)1*
(s/%) 1= — (s/2)25*
(®/%)12= (x/2)2*
(x/9)12= (x/9)n*=
(x/9)u= (x/y)2s*

(y/x)12

E,, ,(000)4-4E,, ;(110) (cost cosn+cosn cos¢-}cosé cosg)
E.,+(000)+4E,, . (110) (cost cosn+cost cost)+4F;, . (011) cosy cost
4E,, +(333) (cos}£ cosdn cosit—i sinkt sindy sind¢)

4E, . (333) (¢ sin}£ cosdn cosit—cosié sindy sinki)

—4E,,,(011) sin¢ sing+44E,, . (110) (sin& cosy+sin cos¢)
4E.,,(33%) (cos}£ cosyn cosit—i sinié sindy sindy)

4E. ,(333) ( cos}E cosdn sink¢ —sindé sindy cosi¢)

—4E,, ,(110) sin£ sing—4¢E,,,(011) (sin& cos¢ —siny cos{)

between an s and a p. Bloch sum on the sites 1, or
(s/%)12 for the component between an s function on
site 1, a p, on site 2. We shall include interactions
between nearest and second-nearest neighbors. The
nearest neighbors of a given atom are four forming a
tetrahedral array around it, belonging to the other
lattice. Thus the four nearest neighbors of the atom at
the origin are located at the positions (33%), 3—3—1),
(—3i-1), —-2———7), all times @. The second-nearest

neighbors of a given atom belong to the same lattice,
and are the twelve neighbors of type ¢(110). When we
include these interactions, and use the same notation
as previously, we find the matrix components given in
Table V.

From the two-center approximation, we can derive
values which the various integrals of Table V would
have to have if this approximation were valid. We
find the following results:

E,, .(35%) = (ss0)s,

E., .(333) =5 (ppo)1+3 (ppm)s,
E. ,(33%) =3(ppo)1— 3 (ppm)1,
E,, 2(35%) =37 (spo),

E,, ,(110)= (s50)9,

E. .(011)= (ppm),,
E,,,(110)=3(ppo)a—3 (ppm)e,
E,, -(110)=3(ppo)a+3 (ppm)e,
E,, :(110)=27(spo)s,

E, .(011)=E, ,(011)=0.

For the nearest-neighbor interactions, we see that we
have four of the E integrals, and also four of the two-
center integrals, so that either scheme glves the same
degree of generality. For the second-nearest neighbors,
we have seven E integrals, and only four two-center
integrals, so that we lose disposable constants by using
the two-center approximation.

We can now use the results of Table V to investigate
propagation in special directions, in particular the 100
and 111 directions, in which the secular equations
simplify enough so that we can get part of the solution
analytically. -First we shall consider the origin, the
case k=0. Here it is clear that the secular equation

(12)

factors into four two-by-two secular equations, one
each for the s, p,, p,, and p, functions. Furthermore,
the diagonal matrix components of energy of the two
lattices are the same, so that the energies equal the
diagonal component, plus or minus the nondiagonal
component, and the wave functions are the sums and
differences of the atomic orbital functions on the two
lattices. The energies are the following: for the s states,
E, ;(000)+12E,, ,(110)=4E, ,(333) ; (+ sign, I'y sym-
metry,2 — sign, T'y’) and for the p states, which of
course are threefold degenerate, E,, ,(000)+8E.,, .(110)
+4E., .(011)+4E. .(333). (+ sign, Ty symmetry,
— sign, T'sy’).

Next let us consider the 100 direction, so that p=¢=0.
We then find by inspection of Table V that there are
no nondiagonal matrix components between any of the
four Bloch functions formed from the s or p, functions
on either lattice, and those formed from the p, or p,
functions on either lattice. We have thus, in the first
place, a fourth-order secular equation for the s and p.

"like functions. Let us denote the s function on the first

lattice as function 1, the p, on the first lattice as
function 2, the s on the second lattice as function 3,
the p. on the second lattice as function 4. When we
write out the secular equation, we find that certain
terms are imaginary; but these can all be made real by
multiplying the second and fourth columns by —i, the
second and fourth rows by ¢, which has the effect of
using imaginary coefficients for the x functions, real
coefficients for the s functions. When we do this, the
modified matrix components prove to be
H11=H33=Es,s(000)+4Es,3(110)+8Es,s(110) COSE’

H=Hy=E. ,(000)+4E., .(011)+8E, ,(110) cost,
H12=H34= SE., ,(110) Sil’lE,
Hy;=4E,, (333) cos}é,
Hyy=Hy3=4E, .(333) sin}f,
Hyy=4E, .(333) cos3é

The matrix in this form, since it is real, is symmetric
about the diagonal.

The biquadratic equation determined from these
matrix components can now be further factored into a

(13)

2 For the meaning of symmetry symbols for diamond structure
see C. Herring, J. Franklin Inst. 233, 525 (1942).
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form giving two quadratic equations. To do this, we
need only assume that S;=S3, Ss=S: (A; symmetry),
or S3=—351, Si=—3S2 (A symmetry), where the S’s
are the coefficients of the functions. These quadratic
equations are

H11+H13_E
Hio+His

H12+ H14 0
Hyut+Hu—E|

(14)

and a similar equation in which the signs of His, Hug,
and Hq are to be changed each time they appear. There
is a very interesting feature regarding this quadratic.
If we take Eq. (14), but use values of { between = and
27, we find that it becomes identical with the other
quadratic equation in the range from 0 to . Specifically,
if we find the solutions of (14) for a value of ¢ between
« and 2, this solution equals the solution of the other
quadratic for a value 2r—§&. The energy is a smooth
function of £ for this whole range, and this means that
the two quadratics have common roots for £=m, which
is the edge of the Brillouin zone in this direction. This
is similar to a case of accidental degeneracy; the roots
separate as we depart from this point in any direction
in the momentum space. Another result is that at this
special point, the energy, regarded as a function of &,
approaches the edge of the Brillouin zone with a finite
slope, instead of with a zero slope as we usually find.
At this special point £=m, since we have degeneracy,
the wave functions are not uniquely determined. There
is one way to set them up, however, which is interesting
and informing. We can set up one wave function as a
combination of the s functions on lattice 1 and the p.
on lattice 2, and the other as a combination of the s
functions on lattice 2 and the p. on lattice. 1. This
situation seems very peculiar at first sight, but when
we consider it we see that it is entirely reasonable. If
¢=m, the wavelength equals 2a. Now the ¥ component
of the distance between an atom of the first lattice and
one of the second is @¢/2, and hence a quarter wave-
length. If we have, then, a wave function which goes
to a maximum on the atoms of one lattice, represented
by s atomic orbitals, this wave function must be passing
through zero on the atoms of the other lattice, so that
it must be made up on that lattice out of p. orbitals,
with a nodal plane through the atoms. There will be,
of course, two degenerate states of this type (symmetry
type X1). .
We have now considered the four nondegenerate
levels formed from the s and p. functions for propaga-
tion along the 100 direction, and the special degeneracy
that occurs for £=m, at the edge of the Brillouin zone.
Next let us consider the doubly degenerate levels
formed from the p, and p, functions on the two lattices.
Let us denote the p, function on the first lattice as
function 1, the . on the first lattice as function 2, the
py on the second as function 3, the p. on the second as
function 4. Then the matrix components of energy
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between these four functions are

Hy=Hz=Hy=Hy=E, ,(000)+4E,, ,(110)
+[4E,, -(110)+4E,, .(011)] cosé,

Hy3=Hou=4E,, ,(333) cos3f,

Hyy=Hyy=4E.,,(333) sinj§,

H12= H34 = 0-

(15)

We find at once that the secular problem given by (15)
can be solved by assuming either that the coefficients
St and S2 of the first two functions are the same, and
similarly that S;=3S,, or by assuming that Ss=—S,
S1= —S;. Either solution leads at once to a quadratic,
and the energies are the same: E=H =+ (H3
+H,4H14%)%. One of these solutions corresponds to a
function of type p,+2., and the other to a function of
type py—p. (As symmetry). We verify at once that
these solutions lead to the value already found at k=0.
At the edge of the Brillouin zone, =, the solutions
are E, .(000)—4E, .(011)£4E, ,(333) (X symmetry).

We have now finished our discussion of propagation
along the 100 direction, and have found that in this
direction, out of our eight energy levels, there are four
single levels, which however join to form two doubly
degenerate levels at the edge of the Brillouin zone, and
two doubly degenerate levels. Next we may take up in
a similar way the solutions in the 111 direction. We
shall not give such a complete discussion of this case,
though it is carried through in a similar way. We first
set up matrix components of energy, using Table V,
and setting £=n=¢. We may then take advantage of
our knowledge of the symmetry properties of the solu-
tion along the trigonal 111 axis to factor the resulting
secular equation. We know that all solutions must
belong to one of the irreducible representations of the
threefold rotation group. One of these representations
is one-dimensional. This is a function which is un-
changed when we make a rotation of 120° about the
threefold axis; that is, when we cyclically permute the
letters «, v, z. In other words, for this type of function,
the ps, py, p. functions must have equal coefficients.
We may set up such a solution by assuming that the s
function on one lattice has one coefficient ; the pa, p, p.
functions on that lattice have a second coefficient, all
equal; the s on the other lattice has a third coefficient ;
and the p., p,, p. on the second lattice have a fourth
coefficient (A symmetry). When we make these substi-
tutions, we find that all the eight linear equations
leading to the eight-by-eight secular equation reduce
to four independent equations, leading thus to a fourth-
order secular equation with four roots.

This fourth-order secular equation for the four non-
degenerate functions cannot be further simplified,
except at the boundary of the Brillouin zone, which in
this direction comes for é=7=¢=m/2. For this propa-
gation vector, as often at the midpoints of faces of
Brillouin zones, we have a symmetry relation which
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we lack otherwise: the wave function must be sym-
metric or antisymmetric with respect to inversion in
the midpoint of the line joining the atom at the origin,
and the atom at position a/2, ¢/2, a/2, which is dis-
placed from it along the direction of propagation. If
we assume that the coefficients of the atomic orbital
on the two lattices are related in such a way that we
have either this symmetry or antisymmetry, we find
that we have an additional simplification of the secular
equation. It breaks down into two quadratic equations,
each of which can be solved by formula, though no
additional degeneracies are introduced: the four roots
are still distinct. The solutions of these quadratics is
given in Eq. (16). The solutions with the upper sign
(aside from the sign in front of the radical, which is & in
either case) refer to the symmetric (L; symmetry),
those with the lower sign to the antisymmetric (Lo’
symmetry), functions with respect to the inversion
mentioned.

E=3[E, .(000)+E,,»(000) ]F E,, +(333
+ B, +(33%3) F2E., ,(333) —4E.,,(110)
=+ [{ %[Es s (000) - E;v, z (OOO) ]:FEs, s (%%%
FE., o(353)£2E,,(353) +4E.,,(110)}?
+3{=£2E, .(333) +4E. (011)}*].  (16)

In addition to these four nondegenerate solutions in
the 111 direction, we also have twofold degenerate
solutions. We can build up the wave functions by using
only the p., py, and p, functions, omitting the s, and
using two arbitrary linear combinations of p., p,, and
#. which are orthogonal to the sum p.+p,+p. which
is used in the solution which we have already discussed.
The method of making these linear combinations is
arbitrary; we can, for instance, use the combination
ps—py, and p,—3(po+p,). If we do this, we find a
quadratic equation for the energy, identical in either
case, leading to twofold degenerate energy values
(A3 symmetry). The roots of this quadratic, at the
edge of the Brillouin zone, where §=n={=m/2, are

E=E, ,(000)+4E,, ,(110)
+[2E, .(333)+2E.,,(333)]1 (17)

(+ sign L; symmetry, — sign Ly’ symmetry).

We have now found formulas for the energies of all
eight bands, at the center of the Brillouin zone, and at
the edges of the zone along the 100 and 111 directions.
Fortunately, for this problem we have good calculations
of the energy bands of diamond at these points in the
Brillouin zone, carried out by Herman? by the method
of orthogonalized planes waves. We therefore can make
a good quantitative application of our method. Her-
man’s calculations provide enough information to
determine uniquely the parameters listed in Table VL.
These parameters are sufficient to fit all of Herman’s

22 F, Herman, Phys. Rev. 88, 1210 (1952); F. Herman and J.

Callaway, Phys. Rev. 89, 518 (1953). We are indebted to Dr.
Herman for supplying numerical data regarding his calculations.
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TaBLE VI. Energy integrals (in Rydbergs) for diamond,
from Herman’s calculations.

E,, 4(000) —1.37
E,,(000) —0.378
E, (333 —0.325
o (33%) 0.0563
2, 0(333) 0.277
s 2(333) 0.122
E,, ;(110) 0.019
E,,-(011) —0.064
E.,,(110) —0.022
E,,,(110) —0.006
E,, .(011) 0.119

calculations. The parameters E, ,(110) and E, ,(011)
cannot be determined from Herman’s calculations.

It is interesting to take the parameters from Table VI,
and see how accurately they fit in with the two-center
approximation, and also to what extent they justify
us in feeling that the integrals decrease as we go to
more and more distant neighbors. From Eq. (12), we
see that as far as the nearest neighbors are concerned,
we can derive the integrals uniquely from the values of
Table VI: we have (sso);=—0.325 rydbergs, (ppo):
=0.610, (ppm)1=—0.221, (spo)1=0.211. These values
are reasonable. They all have the right signs for two-
center integrals of the corresponding atomic orbitals,
and the right order of magnitude: the largest interaction
is (ppo)1, between two p orbitals pointing along the
bond, while (sso);, the interaction of s orbitals, is
considerably smaller, and the other interactions still
smaller.

As far as second-nearest neighbors are concerned, we
cannot derive two-center integrals uniquely from
the values of Table VI, showing that the two-center
approximation is not valid. We can, however, test its
correctness and get orders of magnitude for the inte-
grals. From Eq. (12), we know that E, ,(110), which
equals 0.019, uniquely equals (sso)s, and it is encour-
aging to find it so much smaller than (sso):. It is also
interesting to find it of the opposite sign; this is in line
with earlier remarks made in connection with the body-
centered structure in the alkalies, where we pointed out
that the s interaction between second-nearest neighbors
might often be of the opposite sign to the nearest-
neighbor interactions. The integral E. ,(011) should
equal (ppm)e, and its value —0.064 shows that this
quantity is considerably smaller than (ppm)i, so that
again we verify that the second-nearest neighbor inter-
action is considerably smaller than the nearest-neighbor
terms. But from Eq. (12), we see that we can also solve
for (ppm)s as well as (ppo)s from E,,(110) and
E, ,(110). When we do this, we find (ppo)s= —0.028,
(ppm)2=0.016. These are both small, in line with the
fact that they represent second-nearest neighbor inter-
actions, but the value of (ppm)s determined in this
way does not agree at all with the value found from
E, ,(011). This shows that the two-center approxima-
tion is not valid. This is shown even more by the
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considerable value of the integral E, ,(011), which is
0.119, the largest of the second-nearest neighbor terms.
For this is an integral which would vanish entirely if
we used the two-center approximation and can appear
only because the tetrahedral surroundings of each atom
in the diamond structure do not have the complete
cubic symmetry. In spite of this failure of the two-
center approximation, still it is possible to choose
integrals of a two-center type which form a passable

1 Xq

&

Tis

15l
-3

ENERGY (RYDBERGS)

o2r 04 [oX:3 4 08w v
3

(@)

s s,

Ay s

ENERGY (RYDBERGS)

-2t .
L2

Ly
5 Mx—ﬂ/

1 1 1
/8 /4 3m/8 me
E=n=t
(b)

Fi16. 5. Variation of energy with wave vector for diamond
calculated using Herman’s values at the center and boundaries
of the zone. (a) 100 direction; (b) 111 direction; (see reference 21
for the meaning of the symmetry symbols).

C. SLATER AND G. F. KOSTER

approximation to Herman’s results; but since they
cannot be chosen uniquely, but only as a compromise
between various errors, it does not seem worth while
pursuing this matter further.

It is interesting to use the integrals given in Table VI
to calculate the energy at other points in the Brillouin
zone than those symmetry points for which Herman
has made calculations; this after all is the fundamental
object of the present study. To do this, we need the
two integrals E, ,(110) and E,, ,(011) which cannot be
determined from Herman’s values. Lacking further
information, we have arbitrarily chosen the values
0.021 and O for these two integrals; these are of the
order of magnitude of what would be deduced from a
two-center approximation. We have then used these
values (which are of small importance in the final
calculations) and the values of Table VI, and have
calculated the curves of Fig. 5, giving the energy as a
function of k along the 100 and 111 directions. This
demanded solving the fourth-order secular equation in
the 111 direction numerically. These curves of course
reduce exactly to Herman’s values at the edges of the
zone. Herman has made interpolations in his paper, but
our computed curves differ from his in some significant
details, such as in the peculiar nature of the nondegen-
erate levels in the conduction band in the 100 direction,
in which we have found accidental degeneracy to occur.
Nevertheless, the general form of energy bands is
similar to that deduced by Herman, giving of course
the energy gap between the four lower occupied bands
and the four higher empty bands. Similar calculations
of course could be made for germanium, since Herman
and Callaway? have made orthogonalized plane-wave
calculations for this material too. However, we under-
stand that they are improving the published numerical
values for germanium, and feel it better to wait for the
revised values before making numerical calculations.
It is clear from Fig. 5 that we have the possibility, as
has been frequently suggested, that the top of the
valence band and bottom of the conduction band should
not lie at k=0. In our case, it appears that the top of
the valence band would lie at six equivalent points
along the 100 directions

It is interesting to compare these results for diamond
with various other calculations which have been made
for crystals of this type. The first calculation by the
tight binding method is by Morita.?® His calculations
are like those of the present section, in most respects;
his values for the various integrals are just like those of
Table V. He does not express his integrals in terms of
two-center integrals, though he calculates them by a
two-center approximation. His results are known to
come out very differently from the results of Herman
and of the present study in that he finds the non-
degenerate level in the conduction band lying below
the threefold degenerate level at the center of the

2 A. Morita, Sci. Rep. T6hoku Univ. 33, 92 (1949).
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Brillouin zone. This discrepancy is so serious that it
has thrown considerable doubt on the use of the tight
binding approximation for diamond. It appears to us
likely, however, that this discrepancy is the result of
some unfortunate numerical error in Morita’s work. If
we work back from the numerical values of his integrals,
we find that some of the two-center integrals which we
derive from them are surprisingly close to those which
we have found from Herman’s calculations ; for instance,
the values of (sso); are almost exactly the same.
However, Morita’s value for (ppo); comes out to be
0.179 and for (ppm);, —0.349, as compared to our
values of 0.61 and —0.22, respectively. We should
certainly expect that (ppm) would be smaller numeri-
cally than (ppo), since the pr wave functions will
overlap less than the po’s, so that it seems likely that
Morita’s calculations of these quantities are in error.

This probably ties in with the fact that Morita finds -

that the s-like level is the lowest in the conduction
band, which we have already mentioned. This is largely
a result of the integrals which seem to be in error.
We therefore suspect that a tight binding calculation
made correctly by the method Morita used might well
give a good account of the conduction as well as the
valence band in diamond and germanium.

Another, and quite different, calculation of diamond
by the tight binding approximation has been made by
Hall.# Hall has used the equivalent orbitals which
have been discussed by him, Lennard-Jones, and others.
In the present case, he interprets these equivalent
orbitals as being the symmetric, or bonding, combina-
tions of directed orbitals on adjacent pairs of atoms.
He sets up Bloch functions made from each such
directed orbital, and solves the secular equation be-
tween these Bloch functions. Each bond in the unit
cell then has a directed symmetric orbital along it.
There are four such bonds in the unit cell (each of the
two atoms in unit cell has four bonds attached to it,
but each bond is shared between two atoms), so that
we have a four-by-four secular equation, and we may
expect in this way to get four states, and a description
of the valence band, but not of the conduction band.
If Hall had chosen to do so, he could also have set up
a four-by-four secular equation involving combinations
of antisymmetric or antibonding orbitals on each bond
and have thus got a description of the conduction band.

The results which Hall obtains are not in very good
agreement with experiment, or with the results which
we have so far been discussing. In particular, he finds
the levels at k=0 to be split essentially as in Fig. 5,
but the twofold degenerate level in the 100 or 110
direction proves to have an energy independent of k,
or to be a zero-width band, a peculiarity found also in
the cellular treatment? of this problem, to which Hall’s
results have close resemblance. There is no physical

% G, G. Hall, Phil. Mag. 43, 338 (1952).
2 G. E. Kimball, J. Chem. Phys. 3, 560 (1935).
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reason to think that the band really has this property
and this is a shortcoming of Hall’s calculation.

It is useful to consider the relation of Hall’s calcu-
lation to the one which we have been describing earlier
in this section, since at first sight one might think them
equivalent ; Hall?® clearly feels that his calculation has
a fundamental significance which we do not believe
that it possesses. In our discussion, we have already
seen that the lower band is made up at k=0 of sym-
metric combinations of s and p functions on the two
lattices, and the upper band of antisymmetric combi-
nations. From the s and p functions we can of course
build up tetrahedral directed orbitals, so that for k=0
we can build up the wave function properly for the
valence band from the symmetric combinations of
directed orbitals. In other words, Hall’s method would
give the same values for the energy at k=0 that we
have found by our more general treatment. However,
as k departs from zero, we have seen that the correct
combinations for the lower band are no longer the
symmetric combinations of orbitals on the two lattices.
By solving our eight-by-eight secular equation we have
automatically found the correct combinations, and our
results depart increasingly from Hall’s as k increases.
Of course, our energies will be lower than Hall’s, since
we are making a better approximation to a solution of
the Schrédinger equation. In particular, the band which
Hall finds to be of zero width is depressed in the more
accurate calculation, as k increases.

If we had carried out the calculations by Hall’s
method of equivalent orbitals, using his calculation of
the valence band by symmetric orbitals, and a similar
calculation of the conduction band by antisymmetric
orbitals, we should then find that there were non-
diagonal matrix components of energy between the
two bands, which vanished for k=0, but increased
with k. By including these nondiagonal matrix compo-
nents, we should find an eight-by-eight secular equation
which would have the same roots as our secular equa-
tion, since the symmetric and antisymmetric equivalent
orbitals are linear combinations of the s and p orbitals
on the two lattices which we have used as our starting
point. It might be convenient to use Hall’s procedure,
as amplified in this way, to make an actual calculation.
For by using Hall’s equivalent orbitals, but disregarding
the nondiagonal matrix components of energy between
valence and conduction band, we find an energy gap
between these two bands. Introduction of the non-
diagonal matrix components will then have the effect
of pushing certain levels apart, push the levels of the
valence band down and those of the conduction band
up. Since these levels are not degenerate, even in the
absence of nondiagonal matrix components, it is possible
that a second-order perturbation calculation would be
adequate for considering the effect of these nondiagonal
matrix components of energy, thereby making possible

26 G, G. Hall, Phys. Rev. 90, 317 (1953).



1522 J. C.

an approximation to the exact solution of the correct
secular equation. Since this secular equation is not very
difficult to handle anyway, however, it seems better to
use it directly, and in this case there is no advantage
in Hall’s procedure. In any case, Hall’s calculation for
the valence band alone is clearly a poorer approximation
than the one considered in the present section.

Before leaving the problem of the diamond structure,
we should say a few words about the compounds, such
as InSb, crystallizing in the zincblende structure. This
is the case in which the two interpenetrating face-
centered lattices are no longer equivalent. For instance,
the atom at the origin might be In, that at the point
a/2, a/2, a/2 might be Sb. We shall lose, then, any
results depending on symmetry or antisymmetry be-
tween these two lattices, but otherwise the results of the
calculations will be essentially unchanged. We can
introduce the modification by using one set of diagonal
energy values, E; ;(000) and E., .(000), for the atoms
of one type, another set for the atoms of the other type,
much as we did in our earlier treatment of the body-
centered cubic structure when modified to have unlike
atoms at the centers and corners of the cube. Here,
however, in contrast to that case, the treatment we
have already given has the correct unit cell, holding
two atoms, even if the atoms are unlike.

We shall still have eight bands arising from our s
and p orbitals on the two lattices. At k=0, we shall
still have two nondegenerate bands of s-like type and

two threefold degenerate bands of p-like type, and the
other consequences of symmetry will mostly be the
same as for diamond. One exception is the degeneracy
between the two bands formed from s and p, functions,
at the point £=m, n=¢=0. We remember that the
wave functions for one of these bands consisted of s
orbitals on one lattice, . on the other, and for the
other band the role of the two lattices was interchanged.
If the two lattices are no longer equivalent, it is quite
clear that these two wave functions will have different
energies. This is one of the few qualitative differences
between the energy band structures in the two cases,
however. The general situation, according to which we
have a lower set of bands capable of holding eight
electrons per unit cell, and an upper set of bands holding
the same number, will still hold, so that since we have
just eight electrons per cell in any of these crystals,
we shall in every case fill the valence band, leaving the
conduction band empty, and shall have an insulator
or semiconductor as with the diamond group of ele-
ments. The situation is quite different from what we
had in the body-centered cubic case, where making the
two types of atoms unlike introduced an energy gap
which was not present previously. Here, we have an
energy gap anyway, on account of the lack of equiva-
lence of the two atoms in unit cell even in diamond,
and this gap can be modified in width by making the
two atoms unlike, but no new gaps are introduced.
There can be a good deal of qualitative difference
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between the wave functions for diamond and for a
crystal forming the zincblende structure, however, and
in some cases there can be reversals of the order of the
bands, which we can understand from general quali-
tative arguments. To have a specific example, let us
take InSb, formed from the elements on the two sides
of Sn. The potential wells about the Sb atoms will be
deeper than around the In atoms, and if the atoms were
electrically neutral, there would be three outer electrons
around each In atom, five around each Sb atom. We
cannot of course guarantee this neutrality ; the chemists
often speculate in such cases whether the crystal is
formed from neutral atoms or ions, and in a case like
this we could even speculate as to which sign the
charges on the ions were. We could take extreme points
of view. We could say that the crystal was completely
ionic, the In forming a positive ion with triple charge,
losing its three electrons, which would go onto the Sb
to form a closed shell of eight electrons. Or we could
take a quite opposite point of view, supposing that the
In took up an extra electron, forming a negative ion,
so as to have four outer electrons like a tetravalent
atom, and that similarly the Sb lost an electron, again
so as to have four outer electrons. There is no good
reason for thinking that either of these extreme points
of view has any close relation to the actual facts of the
situation. We can, however, from our general approach,
get a much sounder view of the charge distribution in
this crystal, which points the way to an interpretation
of many other crystals in which there is an ambiguity
between different points of view.

We remember that our determination of one-electron
wave functions is one part of a self-consistent field
calculation, and that the final decision as to how much
charge lies on each type of atom is one that is to be
made by carrying through a self-consistent problem.
Let us assume that at a given stage of this calculation
we are given a periodic potential and are trying to find
the wave functions, that is, we are solving our eight-by-
eight secular equations. When we have done this, for
each k value, we find the total charge density of elec-
trons distributed in the lower or valence band, leaving
the conduction band empty, and we use this charge
density in computing a potential to use in the next
stage of the self-consistent calculation. If, for instance,
as seems highly likely, the final result of the self-
consistent method should be that each of the atoms is
approximately electrically neutral in the crystal, then
the charge distribution corresponding to the valence
band would actually correspond to three electrons per
atom in the In atoms, five per atom in the Sb atoms.
We shall now show that such a result is altogether
probable.

For any particular k value, we have to determine the
eight wave functions corresponding to the various
energy bands. As a very simple example, let us consider
k=0; the other k values, though more complicated,
will not be different in principle. We know that at k=0,
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our problem factors on account of symmetry, so that
we find two s-like states, two p, like, two p, like, two
p. like. Each of these is handled in a similar way. In
the s-like states, for instance, we know that if we are
dealing with the diamond structure we have a quadratic
secular equation in which the two diagonal matrix
components are equal, since the diagonal energies will
be the same whether the atomic orbitals are on the one
face-centered lattice or on the other. The two linear
combinations, then, will be the sum and difference of
the unperturbed functions, so that in either case the
resulting charge density will have equal values on the
atoms of both lattices.

With the InSb, however, this secular problem for the
two s-like states no longer has this property of de-
generacy. The diagonal energy of an s orbital on an In
atom will be considerably higher than that of an s
orbital on an Sb atom, since the Sb has a deeper
potential well. The nondiagonal matrix component
between the two states may well be much as in the
diamond case, but the perturbation will have a very
different effect, on account of the lack of degeneracy.
It will separate the energies of the two states somewhat.
But the wave function of the lower of the two resulting
states will be a mixture of a large fraction of that
unperturbed wave function whose diagonal energy is
lower (that is, an s function on the Sb) and a much
smaller fraction of that function whose diagonal energy
is higher (that is, an s function on the In). Conversely,
for the upper state, we shall have a combination in
which most of the charge density is on the In, a lesser
amount on the Sb. Only the lower state is filled, how-
ever, so that we are left with more charge on the Sh,
less on the In. The same situation will hold for the p
states with k=0, and in fact for every k value; so that
it is quite certain that the charge distribution corre-
sponding to the electrons in the valence band will have
a good deal more charge on the Sb than on the In. It
is entirely possible, as has been suggested above, that
the final result would come out with almost complete
electrical neutrality, about five-eighths of the charge
being on the Sb, three-eights on the In. Certainly we
should have something much closer to this than to
either of the extreme ionic states which we discussed
earlier.

The final type of wave function, and charge distri-
bution, which we have found in this case can throw a
good deal of light on' the question of ionic or nonionic
crystals in general. We have different amounts of
charge on the atoms of the two types; we do not even
have to have integral charges, on the average, on each
type of atom. And yet our total charge distribution
consists of the entirely filled valence bands, entirely
empty conduction bands, just as in diamond. The total
charge density has the same sort of spherical symmetry
about each atom (modified by overlap with the neigh-
boring atoms) which we should have in diamond, and
which we should find from filling s, $., p,, . bands.
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The interesting feature is the way in which, by making
up our energy band functions as linear combinations of
atomic orbitals, we can simultaneously achieve these
two results of variable total charge, and yet the char-
acteristics of a closed shell of electrons. Our wave
function for the crystal as a whole is set up as a single
determinant, since we have only filled energy bands.
We have all the advantages which we meet in the
molecular orbital model of molecules, including the way
in which that model leads naturally to the interpretation
of the polarity of molecules, and the possibility of
having fractional amounts of electronic charge on each
atom. We must now forget that we have the drawbacks
of the molecular orbital model as well; we could get
better results if we took a certain amount of configura-
tion interaction into account. Thus, in particular, if we
wished to give a proper account of the energy bands
in our crystals of the diamond or zincblende type as a
function of internuclear separation, we should have to
consider a configuration interaction, of a practically
impossible degree of difficulty, between the single
determinantal state we have been describing, and other
configurations in which varying numbers of electrons
are excited to the antibonding energy bands. Even in
the absence of such configuration interaction, however,
our energy band method gives a good general account
of the situation.

From the discussion which we have given of the
zincblende structure, we can see that in certain cases
the order of energy levels may be different in it from
what it is in the diamond structure, as shown in Fig. 5.
In Fig. 5, we saw that the lowest state of the valence
band and the highest of the conduction band were of
the s-like type, while the top of the valence band and
the bottom of the conduction band were of the p-like
type. The reason for this arrangement is seen in the
magnitudes of the various matrix components of energy.
Thus we found that the energies of the s states, for
k=0, were E, ;(000)+12E, ,(110)-4E, ,(3i1)=—1.14
+1.30 rydbergs, and for the p states we had E,, .(000)
+8E., ;(110)4+-4E,, ,(011)+4E, ,(311)=—0.68=0.23.
The smaller nondiagonal matrix component for the p
states is responsible for the fact that these two states
are not widely separated. On the other hand, as we go
to a compound like InSb, where we shall no longer
have a degenerate problem, the diagonal s and p
components on the Sb sites will lie considerably below
those on the In sites. Furthermore, we may expect that
the diagonal energy of the s state, on either site, will
lie considerably below that of the p state on the same
site, on account of the general rule that s states lie
lower than p states; this is consistent with our value of
—1.14 for the s energy, —0.68 for the p, above. Hence
as far as diagonal energies are concerned, the lowest
level of all will be the s Sb orbital, next the p Sb orbitals,
next the s In orbital, with the p In orbitals highest.
If the orbitals on the two sites are considerably sepa-
rated in energy, the nondiagonal matrix components,
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even if they are still of the same general magnitude as
those given above, still will not produce nearly as much
displacement of the energy as in the diamond case,
since they will produce only a second-order change in
energy rather than a first-order change in a nondegen-
erate problem. Consequently, it may well be that they
will not invert the order of the s and p states in the
conduction band, but will rather leave the lowest state
in the conduction band an s-like rather than a p-like
state. This would explain an observation of Pearson
and Tanenbaum,? according to which the conduction
band of InSb appears to be nondegenerate at its lowest
energy value.

Many of the properties of the crystals like InSb,
then, seem to be interpreted easily in terms of our
approximate tight binding method. In fact, the diamond
structure appears to be the one in which, at the moment,
we are able to make the best use of it, partly on account
of the results of Herman by means of the orthogonalized
plane-wave method. This, in particular, is the only
case in which we are at present able to evaluate the
effect of second-nearest neighbors, by comparison of
our LCAO method with values calculated by other
methods; and it is particularly gratifying that the
contributions of second-nearest neighbors appear to be
a good deal less than those of nearest neighbors, lending
support to our hypothesis that we really are dealing
with a series of terms which decrease rapidly as we go
to more distant neighbors. If this turns out to be a
general situation, it really may be that the method
possesses a rather fundamental significance and need
not be regarded merely as a convenient interpolation
method.

APPENDIX

We wish to show in this appendix that the transfor-
mation properties of the Lowdin functions ¢, are the
same as those of the nonorthogonal functions ¢, from
which they arise. Let us suppose that under some
operation O, of the group of the crystal, the transfor-
mation properties of the nonorthogonal functions are
given by

O¢pn= Z (m)‘t‘mr (O)mn- (Al)

Here I'(0) mr is a unitary matrix ((T'(0) 1 ],un=T(0)*,m).

We must show that the transformation properties of
the ¥,’s are the same; that is,

=2 (m)YmI' (0) ma. (A2)

27 G. L. Pearson and M. Tanenbaum, Phys. Rev. 90,8153 (1953).
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The relation between the ¥,’s and the ¢,’s is given by

Lowdin,2
Yn=2_ (m)pn (A"} mn. (A3)

Here (A%),., is the mnth matrix element of the re-
ciprocal of the square root of the overlap matrix A,,,

Amn= f Gm*Padr. (A4)

[The same orbitals are included in this summation in
Eq. (A3) as in the summations expressing the transfor-
mation properties of the ¢,’s.] Applying the operator
O to Eq. (A3) we see that

Obn=Z (DL (M)$iT (0) i (A~ . (A5)

In order to prove our theorem, we must show that the
right-hand sides of Eq. (A5) and Eq. (A2) are equal.
Explicitly, we must prove the equality

2 (DX M) (A7) 1T (0) n
=2 (DX M)l (0)1n(8H)pp.  (A6)
In Eq. (A6), the left-hand side was obtained from

Eq. (A2) through the use of Eq. (A5). To establish
the validity of Eq. (A6), it suffices to show that

2 (m) (A8l O)ma=2(m)T 0)im (A . (A7)

Multiplying both sides by [T'(0)~'],; and summing
over ! yields the result

2 (OX )T O0)Ja(A™) 1l (O)mn
= Z (l) Z (m) [F (O)_lj qu (O) Im (A_*) mn
= Z (l)Z (m)aqm (A= (a3 qne

In other words, we have established our theorem if we
can show that the reciprocal of the square root of the
overlap matrix is invariant with respect to the unitary
matrix I'(0)ma. Under certain very general conditions,
this is true if the overlap matrix itself is invariant with
respect to the unitary transformation. This, however,
is easily seen to be true since

(A8)

Amn=f¢m*¢ndT=f0¢m*O¢ndT
=X @ O (0)en*T (O)in f b budr
= Z @ QLT O) Tnahel ()i

Thus we have established our theorem.

(A9)



