
Examples: If one comb the hair along  the longitude  (or latitude) directions , there are two +1 vortex at north and south poles.

If one assumes that human hair covers the north hemisphere (of the head) and pointing downward (to -z) at the equation, which is typically try for
human hairs, vorticity total is +1 (half of +2). For the majority of human beings, there is one +1 vortex. But there are more complicated cases, for
example two +1 and one -1, or three +1 and two -1. 

3.10. Topological index for an insulator

The topological index 

(3.164)C =
1

2 Π
â

n ©
BZ

F â k
®

This integral is a topological index only if we integrate F over the whole BZ (a closed manifold). Because a BZ has periodic boundary conditions
along x and y (for a 2D system), the BZ is a torus which is a closed manifold.

(3.165)FnKk
®O = Εij Y¶ki un,k ¶kj un,k]

(3.166)Σxy =
e2

h
â

n, valence bands
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2 Π
à
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®
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®OF +
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For 2D systems,  we will  show below that  the first  term is  quantized and is  topologically invariant.  The second term is  not  quantized and is  not
topologically invariant.

For insulators (first term only), the Hall conductivity is a topological index and is an Integer due to topological quantization.

For metals, the integral for the conducting band is take over only part of the BZ (the filled states, or say the Fermi sea). It is not quantized and it is
not a topological index.

In other words, F gives us 2D topological insulators, but no topological metals.

3.11. Second quantization

3.11.1. wave functions for indistinguishable particles
Second quantization is a technique to handle indistinguishable particles.

Two distinguishable particles: particle one on state Ψ1 and particle two on state Ψ2

(3.167)YHr1, r2L = Ψ1Hr1L Ψ2Hr2L
n distinguishable particles:

(3.168)YHr1, r2, r3, ..., rNL = Ψ1Hr1L Ψ2Hr2L … ΨnHrnL
Two indistinguishable particles: particle one on state Ψ1 and particle two on state Ψ2

(3.169)YHr1, r2L = ± YHr2, r1L
(3.170)YHr1, r2L = Ψ1Hr1L Ψ2Hr2L ± Ψ2Hr1L Ψ1Hr2L

3 indistinguishable particles:

(3.171)
YHr1, r2, r3L = Ψ1Hr1L Ψ2Hr2L Ψ3Hr3L ± Ψ1Hr1L Ψ3Hr3L Ψ2Hr2L ± Ψ2Hr2L Ψ1Hr1L Ψ3Hr3L +

Ψ3Hr3L Ψ1Hr1L Ψ2Hr2L + Ψ2Hr2L Ψ3Hr3L Ψ1Hr1L ± Ψ3Hr3L Ψ2Hr2L Ψ1Hr1L
n indistinguishable particles:

(3.172)YHr1, r2, r3, ..., rnL = â
P

H± 1LP
Ψi1 Hr1L Ψi2 Hr2L … ΨinHrnL

where P represents all permutations and there are n! terms here. For large n, this is an extremely complicated wavefunction. For even ten particles,
n=10, there are 2.6 million terms.
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3.11.2. Fock space
The problem here is because Schrodinger equations and wavefunctions are designed for distinguishable particles and one needs to symmetries or
anti-symmetries all the wavefunctions by hand.

For indistinguishable particles, it is more natural to use the particle number basis, the Fock space. In the Fock space, the many-body quantum state
are written in terms of occupation numbers:

(3.173)Y\ = n1, n2, n3 … nN\
where ni  is the number of particles in state Ψi\. Here we don’t specify which particle is in the state Ψi\, only count the number of particles on

this state, which makes the particle indistinguishable automatically.

3.11.3. Creation and annihilation operators:
In the Fock space, all physical operators can be written in terms of creation and annihilation operators:

For bosons

(3.174)bi
† n1, n2, n3 … nN] = ni + 1 n1, n2, , … ni + 1, … nN_

(3.175)bi n1, n2, n3 … nN\ = ni n1, n2, , … ni - 1, … nN^
(3.176)Abi, b jE = Abi

†, b j
†E = 0

(3.177)Abi, b j
†E = ∆ij

For fermions ni = ± 1 (Pauli exclusive principle)

(3.178)ci
† … , 1, … ] = 0

(3.179)ci
† … , 0, … ] = … , 1, … ]

(3.180)ci … , 1, … \ = 0

(3.181)ci
† … , 0, … ] = … , 0, … ]

(3.182)9ci, c j= = 9ci
†, c j

†= = 0

(3.183)9ci, c j
†= = ∆ij

3.11.4. Particle number operator

Particle number operator for bosons ni = bi
†bi

(3.184)bi
†bi … , ni, … ] = ni

Total particle number N = Úi ni = Úi bi
†bi

Particle number operator for fermions ni = ci
†ci

(3.185)ci
†ci … , 0, … ] = 0

(3.186)ci
†ci … , 1, … ] = 1

Total particle number N = Úi ni = Úi ci
†ci

3.11.5. Quantum states
In the Fock space, all quantum states can be written in terms of  creation and annihilation operators:

Vacuum (ground states in high energy physics) G\. We assume that there is one and only one state in the Fock space that is annihilated by any

annihilation operators. This is our vacuum state.
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(3.187)ci G\ = 0 for any ci

one particle states

(3.188)Ψ = â
i
ai ci

† G^
two particle states

(3.189)Ψ = âaij c j
†ci

† G]
n particle states

(3.190)Ψ = âai1 … in cin
†… ci2

†ci
† G]

3.11.6. Physical observables and expectation values
All physical observables can be written in terms of expectation values for these creation and annihilation operators:

(3.191)X = XY X Y\ = â fi1,… iN YG ci1 … cin cin
†… ci2

†ci
† G]

Remarks: these procedures are known as the “Second Quantization”

� This name are used due to historical reasons. We are not quantizing something once again. We are just using a new basis to handle 
indistinguishable particles.

� It is just one step away from quantum field theory. (will be discussed later)

� In both high energy and condensed matter physics, quantum field theory utilize the “Second Quantization” construction. The reason is because 
quantum field theory deals with more than one indistinguishable palaces, and the Second Quantization formulas are the most natural way to 
describe this time of physics.

3.12. tight-binding models

Fermions hopping on a lattice and each lattice site can only have n discrete quantum state.  It is an simplified model for relay crystals  (a discretize
version of a metal). It captures most of the essential physics and provides the same physics phenomena.

One unit cell main contain multi sites (multi atoms in a unit cell), saying m sites. A site are marked by two numbers the unit cell index i=1, 2, ..., N
and the site index Α=1, 2, 3, … m

Coordinate of a site: for site (i,Α) the position is x = i a + rΑ

 Bloch wave: 

(3.192)Ψn,kHxL = un,kHxL ã
ä k x continues models

(3.193)Ψn, j, ΑHkL = un, ΑHkL ãä k x

2 Π � a
tight - binding models

Find the Bloch wave function = find un,Α

Berry connection and Berry curvature:

(3.194)An,k = -ä Yun,k ¶k un,k] = -ä à â x un,k
*HrL ¶k un,kHrL = -ä â

Α
un,ΑHkL*

¶k un,ΑHkL

(3.195)Fn,k = -ä Εij Y¶ki
un,k ¶k j

un,k] = -ä Εij à â x ¶ki
un,k

*HrL ¶k j
un,kHrL = -ä Εij â

Α
¶ki

un,ΑHkL*
¶k j

un,ΑHkL

3.12.1. Example: a one-band model
Lets consider a simple 1D lattice with only one type of atoms.

(3.196)H = -â
ij

Itij ci
†c j + tij

* c j
†ciM + â

i
Vi ci

†ci

The  first  term  describes  the  hopping  from site  j  to  i  and  the  second  term  describes  the  hopping  from i  to  j.  Because  H  is  Hermitian,  the  two
coefficients must be equal to each other. Because the lattice contains only one type of atoms, Vi=constant

32   Phys620.nb



(3.197)H = -â
ij

Itij ci
†c j + tij

* c j
†ciM + V â

i
ci

†ci = -â
ij

Itij ci
†c j + tij

* c j
†ciM + V N

The  last  term  V N  is  a  constant.  It  shift  the  total  energy  by  a  constant,  and  has  no  other  physical  contribution  (can  be  ignored  if  we  are  not
interested in the total energy). In addition, we assume the electrons can only hop to the nearest neighbor: Due to translational symmetry, for all NN
hoppings, the t must be the same. If we assume t is real (which is always the case for 1D NN hopping-only models)

(3.198)H = -t âXij\ Ici
†c j + c j

†ciM = -t â
i
ci

†ci+1 + h.c.

Fourier series:

Typically, Fourier series are applied to a periodic function in the real space, which will have a describe set of wavevectors in the k space. Here, it
is the opposite. We have a continuous k-space and it is periodic (BZ),  but the real space is discrete.

(3.199)ck =
a

2 Π

â
i
ci ã

-ä k x

(3.200)ci =
a

2 Π

à
BZ

â k ck ã
ä k x

(3.201)

9ck , ck '
†= = : 1

2 Π � a
â

i
ci ã

-ä k xi ,
1

2 Π � a
â

j
c j

†
ã

ä k ' x j > =

â
i, j

9ci, c j
†= 1

2 Π � a
ã

-ä k xi ã
ä k ' x j = â

i, j
∆i, j

1

2 Π � a
ã

-ä Hk-k 'L xi = â
i

1

2 Π � a
ã

-ä Hk-k 'L i a
= a ∆HHk - k 'L aL = ∆Hk - k 'L

(3.202)

9ci, c j
†= = : 1

2 Π � a
à

BZ
â k ck ã

ä k xi ,
1

2 Π � a
à

BZ
â k ' ck '

†
ã

-ä k ' x j > =

1

2 Π � a
à

BZ
â k à

BZ
â k ' 9 ck , ck '

†= ã
ä k xi ã

-ä k ' x j =
1

2 Π � a
à

BZ
â k à

BZ
â k ' ∆Hk - k 'L ã

ä k xi ã
-ä k ' x j =

1

2 Π � a
à

BZ
â k ã

ä k Hxi-x jL = ∆ij

The Hamiltonian:

(3.203)H = -t â
i
ci

†ci+1 + h.c.

(3.204)

â
j
c j

†c j+1 = â
j

1

2 Π � a
à

BZ
â k ck

†
ã

-ä k a j
1

2 Π � a
à

BZ
â k ' ck ' ã

ä k ' H j+1L a
=

â
j

1

2 Π � a
à

BZ
â k à

BZ
â k ' ck

†ck ' ã
ä k ' a

ã
-ä Hk '-kL a j

= à
BZ

â k à
BZ

â k ' ck
†ck ' ã

ä k ' a
∆Hk - k 'L = à

BZ
â k ck

†ck ã
ä k a

(3.205)

H = -t â
i
ci

†ci+1 + h.c. = -t à
BZ

â k ck
†ck ã

ä k a
+ h.c. =

-t à
BZ

â k ck
†ck ã

ä k a
- t à

BZ
â k ck

†ck ã
-ä k a

= -2 t à
BZ

â k ck
†ck cos k a = à

BZ
â k H-2 t cos k aL nk

(3.206)E = à â k Εk nk

Dispersion relation:

(3.207)Εk = -2 t cos k a

Εk  is a periodic function of k. However, we only have one band.

Bloch wave:

(3.208)ΨnHkL = un, ΑHkL ãä k x

2 Π � a
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