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where χ
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g(ε
F
) is the Pauli susceptibility . The Pauli susceptibility is positive, and

hence is paramagnetic.

Using the formula for the density of states,
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Using e2/�c � 1/137.036 and assuming k
F
a

B
≈ 1, we find χ

P
≈ 10−6, which is comparable

in magnitude (though opposite in sign) from the Larmor susceptibility of closed shells.

4.5.2 Landau Diamagnetism

Next, we investigate the orbital contribution. We assume a parabolic band, in which case
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Appealing to the familiar results of a quantized charged particle in a uniform magnetic field,
the energy levels are given by
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where ωc = eH/m∗c is the cyclotron frequency . Note that µ
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where � =
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Thus, the grand potential,
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may be written as the sum,
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with λ = m∗/m,
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and

F (ν) =

∞
�

0

dω
√

ω
ln

�

1 + e(ν−ω)/k
B

T
�

. (4.81)

We now invoke the Euler-MacLaurin formula,
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We now sum over σ and perform a Taylor expansion in �ωc ∝ H, yielding

Ω(T, V, µ,H) = −
V k

B
T m∗3/2

2
√

2 π2�3

�

σ=±

� µ
�

−∞

dε F (ε) + 1
8

�

λ2 − 1
3

�

(�ωc)
2 F �(µ) + O(H4)

�

=

�

1 + 1
2

�

1− 1
3λ2

�

(µ
B
H)2

∂2

∂µ2
+ O(H4)

�

Ω(T, V, µ, 0) . (4.84)
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and the zero field magnetic susceptibility is
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The quantity χ
P

= µ2
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(∂n/∂µ) is simply the finite temperature Pauli susceptibility. The
orbital contribution is negative, i.e. diamagnetic. Thus, χ = χ
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is the Landau diamagnetic susceptibility . For free electrons, λ = m/m∗ = 1 and χ
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resulting in a reduced – but still paramagnetic – total susceptibility. However, in


