ESTRUCTURA DE LA MATERIA 2

PRIMER CUATRIMESTRE DE 2018

Guía 4: Métodos de cálculo de estructura electrónica (Enlaces Fuertes)

1. TIGHT BINDING EN UNA DIMENSION

Considere una cadena lineal de átomos iguales separados por una distancia a. El hamiltoniano del sistema está caracterizado por términos diagonales ϵ y no diagonales entre primeros vecinos t.

- a) Encuentre la estructura de bandas (considerando un solo orbital tipo s por sitio).
- b) Calcule la densidad de estados.
- c) Si hay un electrón por sitio, calcule el nivel de Fermi.
- d) Estime cualitativamente que ocurriría al aplicar presión.

2. TIGHT BINDING UNIDIMENSIONAL CON BASE

Considere una cadena lineal de átomos alternados tipo A y B y con energías de sitio ε_A y ε_B respectivamente. El término de salto t es distinto de cero sólo entre primeros vecinos. Repita los primeros tres puntos del problema anterior.

3. TIGHT BINDING EN TRES DIMENSIONES

Encuentre las bandas de energía por el método tight-binding en un sólido de estructura cúbica simple. Suponga que cada sitio aporta un único orbital de tipo s con energía ϵ , e interacción con los primeros vecinos t.

- a) Calcule la masa efectiva a lo largo de toda la banda.
- b) Grafique las curvas de dispersión a lo largo del siguiente recorrido: $\Gamma \to X \to K \to \Gamma \to W \to K$, donde $\Gamma = (0,0,0)$; X = (k,0,0); K = (k,k,0) y W = (k,k,k), con $k = \pi/a$.
- c) Repita el cálculo para una red FCC.
- 4. Encuentre las bandas de energía por el método tight-binding en un sólido de estructura BCC. Suponga que cada sitio aporta un único orbital tipo s con energía de sitio ε , la interacción con los primeros vecinos es -t y con los segundos vecinos $-\gamma$. Grafique las curvas de dispersión a lo largo del siguiente recorrido: $\Gamma \to H \to N \to P \to \Gamma$, donde $\Gamma = (0,0,0)$; H = (0,2k,0); N = (k,k,0) y P = (k,k,k), con $k = \pi/a$.
- 5. Se tiene una cadena unidimensional en la que los electrones se pueden considerar fuertemente ligados, con dos orbitales por sitio, uno tipo s y otro tipo p, de energías de sitio ε_s y ε_p , respectivamente. Los parámetros de 'salto' son t_{ps} entre orbitales p y s del mismo sitio, y $-t_s(t_p)$ entre orbitales s(p) de sitios primeros vecinos.
 - a) Escriba el hamiltoniano en el espacio real.
 - b) ¿Cómo es la relación de dispersión si $t_s = t_p = 0$? Grafique la densidad de estados.
 - c) ¿Cómo es la relación de dispersión si $t_s \neq t_p \neq 0$? Ubique el nivel de Fermi si cada átomo aporta dos electrones s y uno p.

- d) Suponga $t_{sp} = 0$ y t_s y t_p 'chicos' (¿con respecto a qué?). Grafique cualitativamente la densidad de estados.
- 6. Considere una bicapa de una red FCC de parámetro *a*, a lo largo de la dirección (100). Suponiendo que la interacción es sólo entre primeros vecinos y que cada átomo aporta un electrón *s*, halle la energía por el método de electrones fuertemente ligados.

7. FUNCIONES DE WANNIER

Si $\psi_{\mathbf{k},n}(\mathbf{r})$ es la función de Bloch de vector de onda \mathbf{k} (perteneciente a la primer zona de Brillouin) e índice de banda n, entonces se define la función de Wannier como:

$$\phi_n(\mathbf{r} - \mathbf{R}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} \psi_{\mathbf{k},n}(\mathbf{r}) e^{-i\mathbf{k}.\mathbf{R}}$$

Demuestre que dos funciones de Wannier centradas en diferentes sitios o con diferentes índices de banda n son ortogonales. Pruebe que las funciones de Wannier están normalizadas si las funciones de Bloch lo están (o sea son ortonormales).