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The advent of laser cooling techniques revolutionized
the study of many atomic-scale systems. This has fu-
eled progress towards quantum computers by prepar-
ing trapped ions in their motional ground state [1],
and generating new states of matter by achieving Bose-
Einstein condensation of atomic vapors [2]. Analogous
cooling techniques [3, 4] provide a general and flexible
method for preparing macroscopic objects in their mo-
tional ground state, bringing the powerful technology of
micromechanics into the quantum regime. Cavity opto-
or electro-mechanical systems achieve sideband cooling
through the strong interaction between light and mo-
tion [5–15]. However, entering the quantum regime,
less than a single quantum of motion, has been elu-
sive because sideband cooling has not sufficiently over-
whelmed the coupling of mechanical systems to their
hot environments. Here, we demonstrate sideband cool-
ing of the motion of a micromechanical oscillator to the
quantum ground state. Entering the quantum regime
requires a large electromechanical interaction, which is
achieved by embedding a micromechanical membrane
into a superconducting microwave resonant circuit. In
order to verify the cooling of the membrane motion
into the quantum regime, we perform a near quantum-
limited measurement of the microwave field, resolving
this motion a factor of 5.1 from the Heisenberg limit
[3]. Furthermore, our device exhibits strong-coupling
allowing coherent exchange of microwave photons and
mechanical phonons [16]. Simultaneously achieving
strong coupling, ground state preparation and efficient
measurement sets the stage for rapid advances in the
control and detection of non-classical states of motion
[17, 18], possibly even testing quantum theory itself in
the unexplored region of larger size and mass [19]. The
universal ability to connect disparate physical systems
through mechanical motion naturally leads towards fu-
ture methods for engineering the coherent transfer of
quantum information with widely different forms of
quanta.

Mechanical oscillators that are both decoupled from
their environment (high quality factor Q) and placed in the
quantum regime could allow us to explore quantum me-
chanics in entirely new ways [17–21]. For an oscillator to
be in the quantum regime, it must be possible to prepare
it in its ground state, to arbitrarily manipulate its quantum
state, and to detect its state near the Heisenberg limit. In or-
der to prepare an oscillator in its ground state, its tempera-

ture T must be reduced such that kBT < ~Ωm, where Ωm

is the resonance frequency of the oscillator, kB is Boltz-
mann’s constant, and ~ is the reduced Planck’s constant.
While higher resonance frequency modes (> 1 GHz) can
meet this cooling requirement with conventional refriger-
ation (T < 50 mK), these stiff oscillators are difficult to
control and to detect within their short mechanical life-
times. One unique approach using passive cooling has suc-
cessfully overcome these difficulties by using a piezoelec-
tric dilatation oscillator coupled to a superconducting qubit
[22]. Unfortunately, this method is incompatible with the
broad range of lower frequency, high Q, flexural mechani-
cal modes. In order to take advantage of the attractive me-
chanical properties of these oscillators, an alternative active
cooling method is required, one that can reduce the oscil-
lator’s temperature below that of the surrounding environ-
ment.

Cavity opto- or electro-mechanical systems [4] natu-
rally offer a method for both detecting mechanical mo-
tion and cooling a mechanical mode to its ground state
[23, 24]. An object whose motion alters the resonance
frequency ωc of an electromagnetic cavity experiences a
radiation pressure force governed by the parametric inter-
action Hamiltonian: Ĥint = ~Gn̂x̂, where G = dωc/dx,
n̂ is the cavity photon number, and x̂ is the displacement
of the mechanical oscillator. By driving the cavity at a
frequency ωd, the oscillator’s motion produces upper and
lower sidebands at ωd±Ωm. Because these sideband pho-
tons are inelastically scattered from the drive field, they
provide a way to exchange energy with the oscillator. If
the drive field is optimally detuned below the cavity res-
onance ∆ ≡ ωd − ωc = −Ωm, photons will be prefer-
entially up-converted to ωc because the photon density of
states is maximal there (Fig 1b). When an up-converted
photon leaves the cavity, it removes the energy of one me-
chanical quantum (one phonon) from the motion. Thus,
the mechanical oscillator is damped and cooled via this
radiation-pressure force. Because the mechanical motion is
encoded in scattered photons exiting the cavity, a quantum-
limited measurement of this photon field provides a near
Heisenberg-limited detection of mechanical motion [25].

While there has been substantial progress in cooling me-
chanical oscillators with radiation pressure forces, side-
band cooling to the quantum mechanical ground state has
been an outstanding challenge. Cavity optomechanical sys-
tems have realized very large sideband cooling rates [8–
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12, 14, 15]; however, these rates are not sufficient to over-
come the larger thermal heating rates of the mechanical
modes. Because electromechanical experiments use much
lower-energy photons [5–7, 13], they are naturally compat-
ible with operation below 100 mK, but have consequently
suffered from weak electromechanical interactions and in-
efficient detection of the photon fields.

Here, we present a cavity electromechanical system
where a flexural mode of a thin aluminum membrane is
parametrically coupled to a superconducting microwave
resonant circuit. Unlike previous microwave systems, this
device achieves large electromechanical coupling by con-
centrating nearly all the microwave electric fields near the
mechanical oscillator [16]. The oscillator is a 100 nm thick
aluminum membrane with a diameter of 15 µm, suspended
50 nm above a second aluminum layer on a sapphire sub-
strate [26] (see Fig. 1). These two metal layers form a
variable parallel-plate capacitor that is shunted by a 12 nH
spiral inductor. This combination of capacitor and induc-
tor creates a microwave cavity whose resonance frequency
depends on the mechanical displacement of the membrane
and is centered at ωc = 2π×7.54 GHz. The device is oper-
ated in a dilution refrigerator at 15 mK, where aluminum is
superconducting, and the microwave cavity has a total en-
ergy decay rate of κ ≈ 2π × 200 kHz. As expected from
the dimensions of the membrane, Ωm = 2π×10.56 MHz,
and we find an intrinsic damping rate of Γm = 2π×32 Hz,
resulting in a mechanical quality factor Qm = Ωm/Γm =
3.3× 105. The oscillator mass m = 48 pg implies that the
zero-point motion is xzp =

√
~/(2mΩm) = 4.1 fm. With

a ratio of Ωm/κ > 50, our system is deep in the resolved-
sideband regime and perfectly suited for sideband cooling
to the mechanical ground state [23, 24].

To measure the mechanical displacement, we apply a mi-
crowave field, which is detuned below the cavity resonance
frequency by ∆ = −Ωm, through heavily attenuated coax-
ial lines to the feed line of our device. The upper sideband
at ωc is amplified with a custom-built Josephson parametric
amplifier (JPA) [27, 28] followed by a low-noise cryogenic
amplifier, demodulated at room temperature, and finally
monitored with a spectrum analyzer. The thermal motion
of the membrane creates an easily resolvable peak in the
microwave noise spectrum. As described previously[28],
this measurement scheme constitutes a nearly shot-noise-
limited microwave interferometer with which we can mea-
sure mechanical displacement with minimum added noise
close to fundamental limits.

In order to calibrate the demodulated signal to the mem-
brane’s motion, we measure the thermal noise spectrum
while varying the cryostat temperature (Fig. 1c). Here a
weak microwave drive (∼ 3 photons in the cavity) is used
in order to ensure that radiation pressure damping and cool-
ing effects are negligible. When Ωm � κ � Γm and
∆ = −Ωm, the displacement spectral density Sx is re-
lated to the observed microwave noise spectral density S
by: Sx = 2(κΩm/Gκex)2S/Po, where κex is the cou-

pling rate between the cavity and the feed line, and Po is
the power of the microwave drive at the output of the cav-
ity. According to equipartition, the area under the reso-
nance curve of displacement spectral density Sx must be
proportional to the effective temperature of the mechani-
cal mode. This calibration procedure allows us to convert
the sideband in the microwave power spectral density to
a displacement spectral density and to extract the thermal
occupation of the mechanical mode. In Fig. 1c we show
the number of thermal quanta in the mechanical resonator
as a function of T . The linear dependence of the inte-
grated power spectral density with temperature shows that
the mechanical mode equilibrates with the cryostat even
for the lowest achievable temperature of 15 mK. This tem-
perature corresponds to a thermal occupancy nm = 30,
where nm = [exp(~Ωm/kBT ) − 1]−1. The calibra-
tion determines the electromechanical coupling strength
G/2π = 49 ± 2 MHz/nm. With the device parameters,
we can investigate both the fundamental sensitivity of our
measurement as well as the effects of radiation pressure
cooling.

The total measured displacement noise results from two
sources: the membrane’s actual mean-square motion Sth

x

and the apparent motion Simp
x due to imprecision of the

measurement. Fig. 2a demonstrates how the use of low-
noise parametric amplification significantly lowers Simp

x ,
resulting in a reduction in the white-noise background by a
factor of more than 30. This greatly increases the signal-to-
noise ratio of the membrane’s thermal motion, reducing the
required integration time to resolve the thermal peak by a
factor of 1000. To investigate the measurement sensitivity
in the presence of dynamical backaction, we regulate the
cryostat temperature at 20 mK and increase the amplitude
of the detuned microwave drive while observing modifica-
tions in the displacement spectral density. We quantify the
strength of the drive by the resulting number of photons nd

in the microwave cavity. As shown in Fig. 2b, the measure-
ment imprecision Simp

x is inversely proportional to nd. At
the highest drive power (nd ≈ 105), the absolute displace-
ment sensitivity is 5.5× 10−34 m2/Hz.

As expected, the increased drive power also damps and
cools the mechanical oscillator [3, 23, 24]. The total me-
chanical dissipation rate Γ′m is the sum of the intrinsic dis-
sipation Γm and the radiation-pressure-induced damping
resulting from scattering photons to the upper/lower side-
band Γ = Γ+ − Γ−, where Γ± = 4g2κ/[κ2 + 4(∆ ±
Ωm)2]. Here, g is the coupling rate between the cavity
and the mechanical mode, which depends on the ampli-
tude of the drive: g = Gxzp

√
nd. Fig. 2c shows the

measured values of κ, g and Γ′m as the drive increases.
The radiation-pressure damping of the mechanical oscil-
lator becomes pronounced above a cavity drive amplitude
of approximately 75 photons, at which point Γ = Γm and
the mechanical linewidth has doubled.

While the absolute value of the displacement impre-
cision decreases with increasing power, the visibility of
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the thermal mechanical peak no longer improves once
the radiation-pressure force becomes the dominant dissi-
pation mechanism for the membrane. By expressing the
imprecision as equivalent thermal quanta of the oscillator
nimp = Γ′mS

imp
x /8x2

zp, we see that the visibility of the
thermal noise above the imprecision no longer improves
once the drive is much greater than nd ≈ 100 (Fig. 2d).
This is because a linear decrease in Simp

x is balanced by
a linear increase in Γ′m due to radiation-pressure damp-
ing. The asymptotic value of nimp is a direct measure of
the efficiency of the microwave measurement. Ideally, for
a lossless circuit, a quantum-limited microwave measure-
ment would imply nimp = 1/4. The incorporation of the
low-noise JPA improves nimp close to this ideal limit, re-
ducing the asymptotic value of nimp from 70 to 1.9 quanta.
This level of sensitivity is crucial, as we will now use this
measurement to resolve the residual thermal motion of the
membrane as it is cooled into the quantum regime.

Beginning from a cryostat temperature of 20 mK and a
thermal occupation of nT

m = 40 quanta, the fundamen-
tal mechanical mode of the membrane is cooled by the
radiation-pressure forces. Figure 3a shows the displace-
ment spectral density of the motional sideband as nd is
increased from 18 to 4,500 photons along with fits to a
Lorentzian lineshape (shaded area). As described above,
this increased drive results in three effects on the spectra:
lower noise floor, wider resonances and smaller area. As it
is the area that corresponds to the mean-square motion of
the membrane, it directly measures the effective tempera-
ture of the mode. At a drive intensity that corresponds to
4,000 photons in the cavity, the thermal occupation is re-
duced below one quantum of mechanical motion, entering
the quantum regime.

Observing the noise spectrum over a broader frequency
range reveals that there is also a second Lorentzian peak
with linewidth κ whose area corresponds to the finite ther-
mal occupation nc of the cavity. Over a broad frequency
range it is no longer valid to evaluate the cavity parame-
ters at a single frequency to infer the spectrum in units of
Sx. Instead, Fig. 3b shows the noise spectrum in units of
sideband power normalized by the power at the drive fre-
quency, S/Po. These two sources of noise originating from
either the mechanical or the electrical mode interfere with
each other and result in noise squashing [13] and eventu-
ally normal-mode splitting [29] once 2g > κ/

√
2. Us-

ing a quantum-mechanical description applied to our cir-
cuit [13, 25], the expected noise spectrum is

S/~ω =
1

2
+ nadd +

2κex

[
κnc(Γ

2
m + 4δ2) + 4Γmn

T
mg

2
]

∣∣∣4g2 +
(
κ+ 2j(δ + ∆̃)

)
(Γm + 2jδ)

∣∣∣2
(1)

where δ = ω − Ωm, ∆̃ = ωd + Ωm − ωc, and nadd

is added noise of the microwave measurement expressed
as an equivalent number of microwave photons. Fig. 3b
shows the measured spectra and corresponding fits (shaded
region) to Eq. 1 as the electromechanical system evolves

first into the quantum regime (nm, nc < 1) and then into
the strong-coupling regime (2g > κ/2). The results are
summarized in Fig. 3c, where the thermal occupancy of
both the mechanical and electrical modes are shown as a
function of nd. For low drive power, the cavity shows no
resolvable thermal population (to within our measurement
uncertainty of 0.05 quanta) as expected for a 7.5 GHz mode
at 20 mK. While it is unclear whether the observed popula-
tion at higher drive power is a consequence of direct heat-
ing of the substrate, heating of the microwave attenuators
preceding the circuit, or intrinsic cavity frequency noise,
we have determined that it is not the result of frequency or
amplitude noise of our microwave generator, as this noise
is reduced far below the microwave shot-noise level with
narrow-band filtering and cryogenic attenuation (see Sup-
plementary Information). Sideband cooling can never re-
duce the occupancy of the mechanical mode below that of
the cavity. Therefore, in order for the system to access the
quantum regime, the thermal population of the cavity must
remain less than one quantum. Assuming Ωm � κ, the
final occupancy of a mechanical mode is [29]

nm = nT
m

(
Γm

κ

4g2 + κ2

4g2 + κΓm

)
+nc

(
4g2

4g2 + κΓm

)
. (2)

This equation shows that for moderate coupling (
√
κΓm �

g � κ) the cooling of the mechanical mode is linear in the
number of drive photons. Beyond this regime, the onset of
normal-mode splitting abates further cooling. Here the me-
chanical cooling rate becomes limited not by the coupling
between the mechanical mode and the cavity, but instead
by the coupling rate κ between the cavity and its environ-
ment [29]. Thus, the final occupancy of the mechanical
mode can never be reduced to lower than nT

mΓm/κ, and
a stronger parametric drive will only increase the rate at
which the thermal excitations Rabi oscillate between the
cavity and mechanical modes. For our device we achieve
the desired hierarchy: as the coupling is increased, we first
cool to the ground state and then enter the strong-coupling
regime (nT

mΓm < κ < g). Once nd exceeds 2 × 104, the
mechanical occupancy converges toward the cavity popu-
lation, reaching a minimum of 0.34± 0.05 quanta. At the
highest power drive power (nd = 2 × 105) the mechan-
ical mode has hybridized with the cavity, resulting in the
normal-mode splitting characteristic of the strong-coupling
regime [16]. This level of coupling is required to utilize
the hybrid system for quantum information processing, as
it is only in the strong-coupling regime that a quantum state
may be manipulated faster than it decoheres from the cou-
pling of either the electromagnetic or mechanical modes to
the environment.

Together the measurements shown in Fig. 2 and 3 quan-
tify the overall measurement efficiency of the system. The
Heisenberg limit requires that a continuous displacement
measurement is necessarily accompanied by a backaction
force [3, 12, 25], such that

√
Simp
x SF ≥ ~, where SF is the

force noise spectral density. From the thermal occupancy
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and damping rate of the mechanical mode, we extract the
total force spectral density SF = 4~ΩmmΓ′m(nm + 1/2).
This places a conservative upper bound on the quantum
backaction by assuming that it alone is responsible for
the finite occupancy of the mechanical mode. This ex-
periment achieves the closest approach to Heisenberg-
limited displacement detection to date [14, 25] with
a lowest imprecision-backaction product

√
Simp
x SF =

4~
√
nimp(nm + 1/2) = (5.1 ± 0.4)~. Thus, this me-

chanical device simultaneously demonstrates ground-state
preparation, strong-coupling and near quantum-limited de-
tection.

Looking forward, this technology offers a feasible route
to achieve many of the longstanding goals for quantum me-
chanical systems. These prospects include a direct mea-
surement of the zero-point motion, observation of the fun-
damental asymmetry between the rate of emission and ab-
sorption of phonons [1], quantum nondemolition measure-
ments [3] and generation of entangled states of mechanical
motion [17, 18]. Furthermore, combining this device with a
single-photon source and detector (such as a superconduct-
ing qubit [22, 30]) would enable preparation of arbitrary
quantum states of mechanical motion as well as observa-
tion of a single excitation as it Rabi oscillates between a
7 GHz photon and a 10 MHz phonon [20]. Because the
interaction between the mechanical mode and the cavity
is parametric, the coupling strength is inherently tunable
and can be turned on and off quickly. Thus, once a quan-
tum state is transfered into the mechanical mode, it can be
stored there for a time τth = 1/(nT

mΓm) > 100 µs be-
fore absorbing one thermal phonon from its environment.
As this timescale is much longer than typical coherence
times of superconducting qubits, mechanical modes offer
the potential for delay and storage of quantum information.
Lastly, because mechanical oscillators can couple to light
of any frequency, they could serve as a unique intermediary
that transfers quantum information between the microwave
and optical domains [21].

These measurements demonstrate the power of sideband
techniques to cool a macroscopic (∼ 1012 atoms) mechan-
ical mode, beyond what is feasible with conventional re-
frigeration techniques, into the quantum regime. These
broadly applicable methods for state preparation, manipu-
lation and detection, pave the way to access the quantum
nature of a wide class of long-lived mechanical oscilla-
tors. Through the strong interaction between photons and
phonons, mechanical systems can now inherit the experi-
mental and theoretical power of quantum optics, opening
the field of quantum acoustics.
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FIG. 3. Sideband cooling the mechanical mode to the ground state. a, The displacement noise spectra and Lorentzian fits (shaded
region) for five different drive powers. With higher power, the mechanical mode is both damped (larger linewidth) and cooled (smaller
area) by the radiation pressure forces. b, Over a broader frequency span, the normalized sideband noise spectra clearly show both the
narrow mechanical peak and a broader cavity peak due to finite occupancy of the mechanical and electrical modes, respectively. A
small, but resolvable, thermal population of the cavity appears as the drive power increases, setting the limit for the final occupancy of
the coupled optomechanical system. At the highest drive power, the coupling rate between the mechanical oscillator and the microwave
cavity exceeds the intrinsic dissipation of either mode, and the system hybridizes into optomechanical normal modes. c, Starting in
thermal equilibrium with the cryostat at T = 20 mK, sideband cooling reduces the thermal occupancy of the mechanical mode from
nm = 40 into the quantum regime, reaching a minimum of nm = 0.34± 0.05. These data demonstrate that the parametric interaction
between photons and phonons can initialize the strongly coupled, electromechanical system in its quantum ground state.
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Supplementary Information for “Sideband Cooling Micromechanical Motion to the Quantum
Ground State”

NOISE SPECTRUM OF AN OPTOMECHANICAL
SYSTEM

A mechanical degree of freedom that parametrically cou-
ples to the cavity resonance frequency modifies the power
emerging from the cavity by scattering photons to the up-
per or lower mechanical sidebands. To calculate the full
noise spectrum of the optomechanical system, we follow
the general method of input-output theory [1]. We define
g = Gxzp

√
nd, where G = dωc/dx, xzp =

√
~/2mΩm,

m is the mass, ωc is the cavity resonance frequency, Ωm

is the mechanical resonance frequency and nd is the num-
ber of photons in the cavity due to a drive at frequency ωd.
Furthermore, we define the response functions of the me-
chanical and cavity modes as χ−1c = κ/2 + j(δ + ∆̃) and
χ−1m = Γm/2 + jδ, where Γm is the mechanical dissipa-
tion rate, κ is the cavity dissipation rate, δ = ω − Ωm,
∆̃ = ωd − ωc + Ωm and j =

√
−1. κ is total cavity dissi-

pation rate due to both the intentional coupling to the trans-
mission line κex and the intrinsic losses κ0. From these pa-
rameters, we define the optomechanical self-energy [2, 3]
as a function of δ:

Σ(δ) = −jg2 [χc(δ)− χ∗c(δ + 2Ωm)] (S1)

≈ −jg2χc(δ) (S2)

The approximation assumes that the drive is near the opti-
mal detuning for cooling (|∆̃| � Ωm) and the system is
sufficiently in the good-cavity limit (Ωm � κ) such that
the cavity response at (δ + 2Ωm) may be neglected. Now
the effective mechanical response function χ̃m including
the optomechanical effects is:

χ̃m =
χm

1 + jχmΣ
(S3)

≈ χ−1c

g2 + χ−1m χ−1c

(S4)

The noise at the output of the cavity is characterized by
the noise operator b̂out, which is related to the cavity field
operator â by b̂out =

√
βκexâ. β is a dimensionless factor

that depends on the geometry. Our circuit (shown schemat-
ically in Fig. S1) couples power from the cavity equally
to the output and back to the input so here β = 1/2. In
principle, this fraction could be engineered by coupling
asymmetrically to the input and the output, or by using a
single port cavity (β = 1). Following directly the the-
oretical analysis of previous work [3, 4], we consider the
noise operators η̂m and η̂c associated with the mechanical
and cavity modes respectively, which satisfy the relations

input output

cavity

dissipation to environment

κex

κ0

ωc

FIG. S1. Cavity coupling block diagram.

〈η̂†mη̂m〉 = nTm and 〈η̂†c η̂c〉 = nc. Thus, the output noise is
[4]

b̂out =−
√
βκexχc

√
κ
(
1− g2χ̃mχc

)
η̂c

−
√
βκexχc

√
Γm (jgχ̃m) η̂m.

In the frequency domain, the power spectral density of the
noise at the output (in units of W/Hz) is S = ~ω〈b̂†outb̂out〉,

S =
4~ωβκex(Γ2

m + 4δ2)κnc∣∣∣4g2 +
(
κ+ 2j(δ + ∆̃)

)
(Γm + 2jδ)

∣∣∣2
+

16~ωβκexg
2Γmn

T
m∣∣∣4g2 +

(
κ+ 2j(δ + ∆̃)

)
(Γm + 2jδ)

∣∣∣2 .
The first term simply represents the thermal noise of a

cavity with occupancy nc whose spectral weight is dis-
tributed over the ‘dressed’ cavity mode. The ‘dressed’ cav-
ity mode includes the effect of optomechanically induced
transparency [7? ? ] and reduces to a single Lorentzian
lineshape in the limit of weak coupling (g �

√
κΓm).

The second term is the thermal noise of the mechanical
mode with its modified mechanical susceptibility. Unlike
previous derivations [4], we have not assumed the weak-
coupling regime. Thus, as this equation is valid in both
the weak- and strong-coupling regimes, it gives a unified
description of the thermal noise spectrum even in the pres-
ence of normal-mode splitting. Finally, the total noise at
the output of the measurement including the vacuum noise
of the photon field and the added noise of the measurement
is

S

~ω
=

1

2
+n′add+

4βκex [κnc(Γ
2
m + 4δ2) + 4Γmn

T
mg

2]∣∣∣4g2 +
(
κ+ 2j(δ + ∆̃)

)
(Γm + 2jδ)

∣∣∣2 ,
(S5)
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FIG. S2. Detailed schematic diagram. A microwave generator creates a tone at the drive frequency. This signal is filtered with a
resonant cavity at room temperature and split into two arms. The first arm excites the cavity through approximately 53 dB of cryogenic
attenuation. In order to avoid saturating the low-noise amplifier with the microwave drive tone, the second arm is used to cancel
the drive before amplification. A computer-controlled variable attenuator and phase shifter are run in a feedback loop to maintain
cancellation at the part per million level. A second microwave generator is used to provide the pump tone for the Josephson parametric
amplifier (JPA) as well as the reference oscillator for the mixer. This pump tone is 1.3 MHz above ωc so that the JPA is operated as
a non-degenerate parametric amplifier, which measures both quadratures of the electromagnetic filed at the upper sideband frequency.
The last stage of attenuation on all lines occurs inside a 20 dB directional coupler, which allows us to minimize the microwave power
dissipated on the cold stage of the cryostat. The JPA is a reflection amplifier; a signal incident on the strongly coupled port of the JPA
is reflected and amplified. A cryogenic circulator is used to separate the incident and reflected waves, defining the input and output
ports of the JPA. The other circulators are used to isolate the cavity from the noise emitted from the amplifier’s input.

where n′add is the total added noise of the measurement in
units of equivalent number of photons. For an ideal mea-
surement (i.e. for a quantum-limited measurement of both
quadratures of the light field), n′add = 1/2.

Before the onset of normal-mode splitting, one can di-
rectly relate the measured microwave power spectrum S to
the displacement spectral density Sx. Assuming ∆̃ = 0,

nc � nm and g, δ � κ,

S

~ω
=

1

2
+ n′add + 4β

κex

κ
Γ

Γmn
T
m

(Γm + Γ)
2

+ 4δ2
(S6)

=
1

2
+ n′add +

2βG2nd

κ

κex

κ
Sx, (S7)

where Γ = 4g2/κ is the optomechanical damping rate.
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MICROWAVE MEASUREMENT AND CALIBRATION

The detailed circuit diagram for our measurements is
shown in Fig. S2. In order to calibrate the value of g0 =
Gxzp for this device, we applied a microwave drive op-
timally red-detuned (∆̃ = 0) and measured the thermal
noise spectrum of the mechanical oscillator as a function
of cryostat temperature. Here we restricted nd ≈ 3 in or-
der to ensure that radiation pressure effects are negligible.
With the value of g0 now determined, we increase the drive
amplitude and measure the thermal noise spectrum at each
drive power. The noise spectra are recorded and averaged
with commercial FFT spectrum analyser. Each spectrum
is typically an average of 500 traces with a measurement
time of 0.5 s per trace. The cavity response is then mea-
sured with a weak probe tone with a vector network anal-
yser to determine precise cavity parameters at each mi-
crowave drive power, including the precise detuning and
κ. For larger microwave drive powers where the cavity
spectrum exhibits optomechanically induced transparency
effects [7? ? ], this spectrum also serves as a direct mea-
sure of g. Finally, using additional calibration tones, each
noise spectrum is calibrated in units of absolute microwave
noise quanta and fit with Eq. 5 to determine the occupancy
of both the cavity and mechanical modes.

For our measurements, we infer that our entire measure-
ment chain has an effective added noise of n′add = 2.1.
This value is consistent with the independently measured
value for the added noise of the JPA (nadd = 0.8) and the
2.5 dB of loss between the output of the cavity and the JPA
[8, 9].
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FIG. S3. Measured transmission of filter cavity. A tunable
resonant cavity was implemented at room temperature in order to
suppress noise ∼ 10 MHz above the drive frequency. As shown
here, this cavity reduces the noise at the cavity frequency by more
than 40 dB, ensuring that the phase or amplitude noise of the
generator is not responsible for the finite occupancy of the cavity
at large drive power.

In order to ensure that the amplitude or phase noise of
the signal generator was not responsible for the finite oc-
cupancy of the cavity at high drive power, we designed and

built a custom filter cavity [4]. As shown in Fig. S3, when
the filter cavity is tuned to precisely the frequencies of our
circuit, it provides an addition 40 dB of noise suppression
at the cavity resonance frequency. The phase and ampli-
tude noise of our signal generator alone are specified by the
manufacturer to be less than -150 dBc at Fourier frequen-
cies 10 MHz away from the drive. With the addition of fil-
ter cavity, we lower this noise to well below the shot-noise
level of our microwave drive. Furthermore, even without
the filter cavity, we could not resolve an appreciable differ-
ence in the cavity occupation. Thus, while we do not know
the precise mechanism for this occupancy, we conclusively
determine the generator noise is not the cause.

INFERRING CAVITY PARAMETER AND NUMBER OF
DRIVE PHOTONS

The measured microwave cavity parameters may be in-
ferred from the transmitted power spectrum. The power at
the output of the cavity Po is related to the input power Pi

by [7]

Po = Pi

(
κ2
0 + 4∆2

κ2 + 4∆2

)
, (S8)

where ∆ = ωd − ωc is the difference between the fre-
quency of the drive ωd and the cavity resonance frequency
ωc. κ is the total intensity decay rate of the cavity (full
width at half maximum) with κ = κ0 + κex. κ0 is the
coupling rate to the dissipative environment, and κex is the
coupling rate to the transmission line used to excite and
monitor the cavity.

The number of photons in the cavity due to a coherent
input drive at detuning ∆ may be calculated from the stored
energy E in the cavity.

nd =
E

~ωd

=
2Pi

~ωd

κex

κ2 + 4∆2
(S9)

For our circuit, κex = 2π × 133 kHz. Thus, when the
drive is optimally detuned such that ∆ = −Ωm, the input
power required to excite the cavity with one photon is Pi ≈
2~ωdΩ2

m/κex ≈ 50 fW.

FUNDAMENTAL LIMITS OF SIDEBAND COOLING

Equation 2 in the main text gives an expression for the
final occupancy of a mechanical mode, assuming that the
microwave drive is optimally detuned (∆ = −Ωm). This
expression is only the lowest order approximation in the
small quantities g/Ωm and κ/Ωm. Up to second order, the
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final occupancy is [10]

nm = nT
m

(
Γm

κ

4g2 + κ2

4g2 + κΓm

)[
1 +

g2

Ω2
m

4g2 + κΓm

4g2 + κ2

]
+ nc

(
4g2

4g2 + κΓm

)[
1 +

8g2 + κ2

8Ω2
m

4g2 + κΓm

4g2

]
+

8g2 + κ2

16Ω2
m

.

The last term represents the fundamental limit for sideband
cooling and demonstrates the importance of the resolved-
sideband regime. For our system, Ωm � κ, g; and hence
this last term only contributes negligibly to the final occu-
pancy of the mechanical mode (< 10−4 quanta).

Measurement imprecision and backaction

Throughout the main text and this supplementary infor-
mation, we use the “single-sided” convention for all spec-
tral densities in which for any quantity A, the mean-square
fluctuations are 〈A2〉 =

∫∞
0
SA(ω)dω

2π
. This yields the fa-

miliar classical result that an oscillator coupled to a thermal
bath of temperature T will experience a random force char-
acterized by the force spectral density SF = 4kBTmΓm.
More generally,

SF = 4~Ωm

(
nT
m +

1

2

)
mΓm , (S10)

where nT
m is the Bose-Einstein occupancy factor given by

nT
m = [exp(~Ωm/kBT )− 1]−1.
Independent of any convention for defining the spec-

tral density, the visibility of a thermal mechanical peak of
given mechanical occupancy above the noise floor of the
measurement represents a direct measure of the overall ef-
ficiency of the detection. As shown in Fig. S4, ratio of
the peak height to the white-noise background allows us
to quantify the imprecision of the measurement in units of
mechanical quanta [9], nimp ≡ Simp

x mΩmΓ′m/(4~). In-
spection of Eq. S6 implies

nimp =
1

4β

κ

κex

4g2 + κΓm

4g2

(
1

2
+ n′add

)
(S11)

Once the drive is strong enough that g �
√
κΓm), nimp

no longer decreases with increasing drive. It is precisely
because we are measuring with a detuned drive that also
damps the mechanical motion, that nimp asymptotically ap-
proaches a constant value [3, 11]. For an ideal measure-
ment (β = 1, κ = κex, and n′add = 1/2), nimp → 1/4.
Implicit in obtaining this optimal value for n′add and hence
nimp is that all the photons exiting the cavity are measured.
Any losses between the cavity and the detector can be mod-
eled as a beam-splitter that only transmits a fraction η of the

photons to the detector and adds a fraction (1− η) of vac-
uum noise. So the effective added noise n′add accounting
for these losses becomes

n′add =
nadd

η
+

(
1− η
η

)
1

2
, (S12)

Thus, shot-noise limited detection of the photons (nadd =
1/2) is a necessary, but not sufficient, condition for reach-
ing the best possible level of precision.

Quantum mechanics also requires that a continuous dis-
placement measurement must necessarily impart a force
back on the measured object. For an optimally detuned
drive (∆̃ = 0) in the resolved-sideband regime, this back-
action force spectral density Sba

F approaches a constant
value as a function of increasing drive strength and asymp-
totically approaches Sba

F = 2~ΩmmΓ′m. Again, express-
ing the spectral density in units of mechanical quanta gives
nba ≡ Sba

F /(4~ΩmmΓ′m)→ 1/2.
Fundamentally, the Heisenberg limit does not restrict the

imprecision Simp
x or the backaction SbaF alone, but rather it

requires their product has a minimum value [3, 12]√
Simp
x SbaF = 4~√nimpnba ≥ ~. (S13)

An ideal cavity optomechanical system can achieve this
lower limit for a continuous measurement with a drive
applied at the cavity resonance frequency. When con-
sidering the case where the drive is instead applied de-
tuned below the cavity resonance (∆̃ = 0), this product
never reaches this lower limit [3, 11] and is at minimum√
Simp
x SbaF = ~

√
2.

To estimate these quantities for our measurements, we
can infer the total force spectral density experienced by

3
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FIG. S4. Measurement imprecision in units of mechanical
quanta.
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our oscillator as Stotal
F = 4~ΩmmΓ′m(nm + 1/2). As

this total necessarily includes the backaction, we may make
the most conservative assumption that it was solely due
to backaction that our oscillator remained at finite occu-
pancy. Hence, nba ≤ nm + 1/2. The low thermal oc-
cupancies attained in this work allow us to place an upper
bound on how large the backaction could possibly be, and
hence quantify our measurement in terms of approach to

the Heisenberg limit. Thus,
√
Simp
x SbaF = 4~√nimpnba ≤

4~
√
nimp(nm + 1/2). At nd = 3 × 104, we simulta-

neously achieve nm = 0.36 and nimp = 1.9 (Stotal
F =

1.6 × 10−34 N2/Hz and Simp
x = 1.7 × 10−33 m2/Hz)

yielding an upper limit on the measured product of back-
action and imprecision of 5.1 ~. As stated above, the best
possible backaction-imprecision product is ~

√
2 when us-

ing red-detuned excitation; thus our measurement is only a
factor of 3.6 above this limit. It may also be noted that this
factor would have been 1.8 except that our chosen geome-
try losses half of the signal back to the input (β = 1/2). In
future experiments, using a single-port geometry (β = 1)
will improve this inefficiency.
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