
VI. SPIN-ADAPTED CONFIGURATIONS

A. Preliminary Considerations

We have described the spin of a single electron by the two spin functions α(ω) ≡ α and

β(ω) ≡ β. In this Sect. we will discuss spin in more detail and consider the spin states

of many-electron systems. We will describe restricted Slater determinants that are formed

from spinorbitals whose spatial partis are restricted to be the same for α and β spins (i.e.,

{φi} = {ψiα, ψiβ}). Restricted determinants, except in special cases, are not eigenfunctions

of the total electron spin operator. However, by taking appropriate linear combinations of

such determinants we can form spin-adapted configurations, which are proper eigenfunctions.

Finally, we will describe unrestricted determinants, which are formed from spinorbitals that

have different spatial parts for different spins (i.e., {φi} = {ψα
i α, ψ

β
i β}).

In the usual nonrelativistic treatment, such as considered here, the Hamiltonian does not

contain any spin coordinates and hence both S2 and Sz commute with the Hamiltonian

[H, S2] = 0 = [H, Sz] (6.1)

Consequently, the exact eigenfunctions of the Hamiltonian are also eigenfunctions of the two

spin operators

S2 |Φ >= S (S + 1) |Φ > (6.2)

Sz |Φ >= MS |Φ > (6.3)

where S andMS are the spin quantum numbers describing the total spin and its z component

of an N -electron |Φ >. States with S = 0, 1/2, 1, 3/2, · · · have multiplicity 2S + 1 =

1, 2, 3, 4, · · · and are called singlets, doublets, triplets, quartets, etc. Approximate solutions of

the Schrödinger equation are not necessarily pure spin states. However, it is often convenient

to constrain approximate wavefunctions to be pure singlets, doublets, triplets, etc.

Any single determinant is an eigenfunction of Sz. In particular

Sz |φi φj · · ·φk >=
1

2
(Nα −Nβ) |φi φj · · ·φk >

= MS |φi φj · · ·φk > (6.4)

where Nα is the number of spinorbitals with α spin and Nβ is the number of spinorbitals

with β spin. However, single determinants are not necessarily eigenfunctions of S2. As we
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will discuss in the next Subsection, by combining a small number of single determinants it

is possible to form spin-adapted configurations that are correct eigenfunctions of S2.

B. Restricted Determinants and Spin-Adapted Configurations

As we have seen, given a set of K orthonormal spatial orbitals {ψi | i = 1, 2, · · · , K} we

can form a set of 2K spinorbitals {φi | i = 1, 2, · · · , 2K} by multiplying each spatial orbital

by either the α or β spin function

φ2i−1(x) = ψi(r)α(ω)

i = 1, 2, · · · , K

φ2i(x) = ψi(r) β(ω)

Such spinorbitals are called restricted spinorbitals and determinants formed from them

are restricted determinants. In such a determinant a given spatial orbital ψi can be occupied

either by a single electron (spin up or down) or by two electrons (one with up and the other

with spin down). It is convenient to classify types of restricted determinants according to

the number of spatial orbitals that are singly occupied. A determinant in which each spatial

orbital is doubly occupied is called a closed-shell determinant (see Fig. VI.1). An open shell

referes to a spatial orbital that contains a single electron. One refers to determinants by the

number of open shells they contain.
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...

...

· · · · · · · · · ψ6

· · · · · · · · · ψ5

· · · ↑↓ · · · ψ4

· · · · · · · · · ψ3

· · · ↑↓ · · · ψ2

· · · ↑↓ · · · ψ1

| 1Φ >= |φ1 φ1 φ2 φ2 φ4 φ4 >

Fig.V I.1 A singlet closed − shell determinant

All the electron spins are paired in a closed-shell determinant, and it is not surprising that a

closed-shell determinant is a pure singlet. That is, it is an eigenfunction of S2 with eigenvalue

zero,

S2 |φi φi φj φj · · · >= 0 (0 + 1) |φi φi φj φj · · · >= 0 (6.5)

Let us consider the construction of a wavefunction of a two-electron system in which

the two spinorbitals in the Hartree product are to be fabricated from two different space

orbitals ψ1 and ψ2 which are assumed to be separately normalized and mutually orthogonal;

for example, in the case of a two-electron atom, ψ1 and ψ2 may be two different hydrogenlike

atomic orbitals. Since we have two possible spin functions, α and β, we can form the four

different spinorbitals ψ1α, ψ1β, ψ2α, and ψ2β. In general, when one has 2N spinorbitals to

be used n at a time (n ≤ 2N), the total number of different combinations is given by

η =

(

2N

n

)

=
(2N)!

n! (2N − n)!
(6.6)

In the two-electron function we have four spinorbitals to be used two at a time, so that we

can obtain six different simple products, namely,

ΦHP αα
12 = ψ1(1)α(1)ψ2(2)α(2) 1

Φ
HP ββ
12 = ψ1(1) β(1)ψ2(2) β(2) − 1
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Φ
HP αβ
12 = ψ1(1)α(1)ψ2(2) β(2) 0

Φ
HP βα
12 = ψ1(1) β(1)ψ2(2)α(2) 0

Φ
HP αβ
11 = ψ1(1)α(1)ψ1(2) β(2) 0

Φ
HP αβ
22 = ψ2(1)α(1)ψ2(2) β(2) 0 (6.7)

Products such as ΦHP αα
11 are excluded on the basis of the exclusion principle. The numbers to

the right of each product function signify the Sz eigenvalues, i.e., MS. These eigenvalues are

readily verified by the direct application of Sz to a particular function using the appropriate

relations, for example

Sz ΦHP αα
12 = (Sz1 + Sz2)ψ1(1)α(1)ψ2(2)α(2)

= ψ1(1) [ Sz1 α(1) ]ψ2(2)α(2) + ψ1(1)α(1)ψ2(2) [ Sz2 α(2) ]

=
1

2
ψ1(1)α(1)ψ2(2)α(2) +

1

2
ψ1(1)α(1)ψ2(2)α(2) = ΦHP αα

12 (6.8)

i.e., the eigenvalue MS of ΦHP αα
12 is 1. In general, the MS eigenvalue of a product wavefunc-

tion (antisymmetrized or not) is given by the simple expression

MS =
1

2
(Nα −Nβ) (6.9)

The product functions (6.7), as they now stand, are not antisymmetric as required by the

Pauli principle. For example, we could just as well represent the first function in (6.7) by

ΦHP αα
21 = ψ2(1)α(1)ψ1(2)α(2) (6.10)

where the coordinates of the two electrons have been interchanged. Now consider the func-

tion obtained by taking the difference of ΦHP αα
12 and ΦHP αα

21 , namely,
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2−1/2 (ΦHP αα
12 − ΦHP αα

21 ) = 2−1/2 [ψ1(1)α(1)ψ2(2)α(2) − ψ2(1)α(1)ψ1(2)α(2)]

= 2−1/2 [ψ1(1)ψ2(2) − ψ2(1)ψ1(2)]α(1)α(2)

= −2−1/2 (ΦHP αα
21 − ΦHP αα

12 ) (6.11)

where 2−1/2 is the normalization factor. It is evident that the function (6.11) is antisym-

metric, as a result, in this case, of the spatial functions. It is readily verified that the

antisymmetric function (6.11) is also representable by the determinant

Φαα
12 =

1

2!1/2
Det

(

ψ1(1)α(1) ψ2(1)α(1)

ψ1(2)α(2) ψ2(2)α(2)

)

(6.12)

in which ΦHP αα
12 itself is the product of the diagonal elements and ΦHP αα

21 is the product of

the remaining elements. It is often convenient to adopt a simplified notation for determi-

nantal wavefunctions and to write (6.12) as

Φαα
12 = 2−1/2 (ψ1 ψ2 − ψ2 ψ1)αα (6.13)

where it is understood that electrons 1 and 2 are associated with each product in the natural

order 1, 2 from left to right. An even simpler notation, which we shall use quite frequently,

is

Φαα
12 = |φ1 φ2 | (6.14)

where the vertical bars imply a determinant (including the normalization factor) and φ1 and

φ2 imply spinorbitals formed from the spatial orbitals ψ1 and ψ2 along with spin functions.

For spinorbitals formed with β spin functions, one would write

Φ
ββ
12 = 2−1/2 (ψ1 ψ2 − ψ2 ψ1) β β = |φ1 φ2 | (6.15)

The horizontal bar over a spatial orbital indicates that a β spin function is to be associated

with that spatial orbital in forming the spinorbital.

Exactly the same trick suffices to antisymmetrize each of the remaining product functions

of Eq. (6.7). We thus obtain

Φ
αβ
12 = 2−1/2 (ψ1 ψ2 αβ − ψ2 ψ1 β α) = |φ1 φ2 |

Φ
βα
12 = 2−1/2 (ψ1 ψ2 β α− ψ2 ψ1 αβ) = |φ1 φ2 |

Φ
αβ
11 = 2−1/2 ψ1 ψ1 (αβ − β α) = |φ1 φ1 |

Φ
αβ
22 = 2−1/2 ψ2 ψ2 (αβ − β α) = |φ2 φ2 | (6.16)
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These determinantal forms arise from the special choice of representing approximate wave-

functions as antisymmetrized products of orbitals.

Examination of an expanded determinantal wavefunction reveals that it is not possible, in

general, to speak of an electron as occupying a definite orbital, since the antisymmetrization

has the formal effect of distributing each electron over more than one space orbital.

By use of the relations of spin operators we can investigate the behavior of the six

antisymmetrized functions given by Eqs. (6.14) to (6.16) with respect to the operator

S2. It is found (after some rather tedious algebra) that all except |φ1 φ2 | and |φ1 φ2 | are

eigenfunctions of S2. However, if we form the linear combinations

2−1/2 (|φ1 φ2 | ± |φ1 φ2 |) = 2−1 (ψ1 ψ2 ∓ ψ2 ψ1) (αβ ± β α) (6.17)

we obtain two different eigenfunctions of S2. The determinantal wavefunctions formed from

the products (6.7) along with their Sz and S2 eigenvalues are given by

Eigenfunctions MS S (S + 1)

|φ1 φ2 | 1 2

|φ1 φ2 | − 1 2

2−1/2 (|φ1 φ2 | + |φ1 φ2 |) 0 2

2−1/2 (|φ1 φ2 | − |φ1 φ2 |) 0 0

|φ1 φ1 | 0 0

|φ2 φ2 | 0 0

In the simple two-electron case considered here, the final wavefunctions all factor into a

spatial wavefunction and a spin wavefunction. This behavior does not carry over into wave-

functions involving more than two electrons.

The first three functions have the same spatial function, that is, ψ1 ψ2 − ψ2 ψ1, but each

has a different spin function. Since each of these has the same value of S (S+1), we say that

these functions form the three components of a triplet state, i.e., a state which has threefold

spin degeneracy. This degeneracy follows from the fact that the energy associated with a

wavefunction depends only upon the spatial functions. The remaining functions all have

S (S + 1) values of zero, and since they have different spatial portions, they represent three

different nondegenerate states, called singlet states. It should be noted that the triplet-state
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spatial function is antisymmetric with symmetric spin functions and that the singlet-state

spatial functions are all symmetric with antisymmetric spin functions.

Either of the last two functions can be used to describe the ground state of a two-electron

system. Thus if φ1 (or φ2) is φ1s (a hydrogenlike 1s orbital), we obtain the familiar ground-

state wavefunction for the helium atom, namely,

ξ = |φ1s φ1s | = 2−1/2 φ1s(1)φ1s(2) (αβ − β α) (6.18)

except that there is now a spin wavefunction present. It is easy to demonstrate that this spin

wavefunction is immaterial as far as expectation values of spin-free operators are concerned.

If G is a spin-free operator, its expectation value for a system described by the wavefunction

(6.18) is

< G >=< ξ |G | ξ >=
∫ ∫

|φ1s φ1s |G |φ1s φ1s | dr dσ

=
∫

φ∗
1s(1)φ∗

1s(2) Gφ1s(1)φ1s(2) dr
∫

|αβ − β α |2

2
dσ (6.19)

By use of Eq. (4.16) we see that the right-hand integral becomes

1

2

∫

|αβ − β α |2 dσ =
1

2

(

∫

α∗ α dσ1

∫

β∗ β dσ2

−2
∫

α∗ β dσ1

∫

β∗ α dσ2 +
∫

β∗ β dσ1

∫

α∗ α dσ2

)

=
1

2
(1 − 0 + 1) = 1 (6.20)

Thus, the spin functions integrate out to unity, and the expectation value of G is simply

< G >=< φ1s(1)φ1s(2) |G |φ1s(1)φ1s(2) > (6.21)

In the case of systems with more than two electrons, it turns out that the spin functions

also integrate to unity even though one cannot factor the total electronic wavefunction into

a spatial part and a spin part. In such a case it is necessary to take the spin functions into

account in setting up the total wavefunction in order to obtain a spatial wavefunction of the

correct symmetry. Once this is done, it is always possible to set up an expression for < G >

which does not involve the spin functions (see Sect. V.B).

C. The Excited States of the Helium Atom

The lowest excited state of the helium atom is represented to zeroth order by the con-

figuration 1s2s. In Sect. VI.B we saw that this configuration leads to singlet and triplet
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states. The zeroth-order approximation to the singlet-state wavefunction is

1ξ = 2−1/2 (|1s 2s| − |1s 2s|)

where we let 1s and 2s represent normalized hydrogenlike atomic orbitals. The zeroth-order

approximation to the triplet-state wavefunctions is given by one of the functions

3ξ =











2−1/2 (|1s 2s| + |1s 2s|)

|1s 2s|

|1s 2s|











We recall that the singlet function has the spatial portion ψ1sψ2s +ψ2sψ1s with an antisym-

metric spin function, whereas the triplet function has the spatial portion ψ1sψ2s − ψ2sψ1s

with one of three symmetric spin functions. The symmetric and antisymmetric spatial func-

tions may be said to arise as a result of the double degeneracy of the unperturbed state

(the independent-particle model); i.e., the two electrons are indistinguishable. The anti-

symmetrization is irrelevant to the unperturbed state (since the zeroth-order Hamiltonian

is a sum of two monoelectronic operators) but is required for the perturbed state since the

complete Hamiltonian contains the two-electron term 1/r12. The lowest singlet and triplet

states are usually designated by 2 1S0 and 2 3S1, the number preceding the term symbol rep-

resenting an effective principal quantum number. This effective principal quantum number

arises from the Rydberg series of the atomic spectrum.

The first-order perturbation energies of helium in the 1s2s configuration (and in the

absence of spin-orbit interaction) is given by the roots of the determinant

Det

(

H
(1)
11 − ε H

(1)
12

H
(1)
21 H

(1)
22 − ε

)

= 0

where

H
(1)
11 =

〈

1ξ

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

1ξ

〉

H
(1)
22 =

〈

3ξ

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

3ξ

〉

H
(1)
12 = H

(1)
21 =

〈

3ξ

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

1ξ

〉
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Since S2 commutes with 1/r12 and 3ξ and 1ξ have different S2 eigenvalues, the off-diagonal

matrix elements H12 and H21 vanish. The energies of the singlet and triplet states to first

order then are

1E = ε
(0)
1s + ε

(0)
2s + H

(1)
11

3E = ε
(0)
1s + ε

(0)
2s + H

(1)
22

where the zeroth-order energy is given by (ε
(0)
i = −Z2/2n2 in a.u.)

ε
(0)
1s + ε

(0)
2s = −

4

2
−

4

8
= −

5

2
a.u.

Since two-electron wavefunctions (in the orbital approximation) factor into space and spin

function, the matrix elements H
(1)
11 and H

(1)
22 can be evaluated from the spatial portions of

1ξ and 3ξ, respectively; i.e., the spin integrates out to unit. One obtains, with the notation

1s ≡ φ1s = ψ1sα, 2s ≡ φ2s = ψ2sα, 1s ≡ φ1s = ψ1sβ, 2s ≡ φ2s = ψ2sβ,

H
(1)
11 =

1

2

〈

|φ1s φ2s| − |φ1s φ2s|

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

|φ1s φ2s| − |φ1s φ2s|

〉

=

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ1s ψ2s

〉

+

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ2s ψ1s

〉

= J12 +K12

H
(1)
22 =

1

2

〈

|φ1s φ2s| + |φ1s φ2s|

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

|φ1s φ2s| + |φ1s φ2s|

〉

=

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ1s ψ2s

〉

−

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ2s ψ1s

〉

= J12 −K12

Thus, the energies of the 21S0 and 23S1 states are

1E = −
5

2
+ J12 +K12

3E = −
5

2
+ J12 −K12

The energy difference between the singlet and triplet states is

1E −3 E = 2K12

From Sect. V.C we recall that K12 > 0, so that the triplet state is the lower in energy. This

is in accord with Hund’s rule of maximum multiplicity.

It is important to note that if one had used a simple product wavefunction φ1sφ2s, the

singlet and triplet states would have the same energy, namely, − 5
2

+ J12. It is clear that

the antisymmetry principle accounts for the separation of different spin states. The spin

functions, although not affecting the total energy directly, nevertheless influence the total

energy by determining the form of the spatial portion of the wavefunction.
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The values of the coulombic and exchange integrals are 0.419 and 0.044 a.u., respectively.

The singlet- and triplet-state energies then are

1E = −2.037 a.u. (exp. − 2.147 a.u.)

3E = −2.125 a.u. (exp. − 2.176 a.u.)

The singlet state is in error by 0.110 a.u., and the triplet state is in error by 0.051 a.u. The

fact that the triplet-state error is lower is due largely to the fact that the screening effect

is not so important for electrons with parallel spins as for electrons with antiparallel spins.

This, in turn, is due to the fact that the antisymmetry principle tends to keep electrons with

the same spin farther apart. On the other hand, the antisymmetry principle implies that

electrons with different spins come closer together than is actually the case.

The tendency for electrons with like spins to avoid each other is often referred to as

a spin correlation or exchange correlation effect. Such an effect is in addition to the ra-

dial and angular correlation. In general, the use of single-configurational antisymmetrized

wavefunctions accounts for correlation effects in triplet states much better than in singlet

states.

D. Construction of Determinantal Eigenfunctions of S2

As mentioned in Subsection VI.A, wavefunctions which are eigenfunctions of S2 are said to

describe pure spin states, i.e., states which are characterized by a definite relative alignment

of electron spins. Since one is almost always concerned with atoms and molecules which are

in pure spin states, and since determinantal wavefunctions are generally not automatically

eigenfunctions of S2, it is convenient to describe a systematic procedure for constructing

wavefunctions for pure spin states.

Consider the eigenvalue equation

Sz ω = MS ω (6.22)

where ω is an N -electron function containing spin coordinates. For N = 3 we have

MS = ms1 +ms2 +ms3 =
1

2
+

1

2
+

1

2
=

3

2

MS = ms1 +ms2 +ms3 =
1

2
+

1

2
−

1

2
=

1

2
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MS = ms1 +ms2 +ms3 =
1

2
−

1

2
−

1

2
= −

1

2

MS = ms1 +ms2 +ms3 = −
1

2
−

1

2
−

1

2
= −

3

2

i.e., there are four different possible spin alignments. Below we show that there are 23 = 8

different ways in which these four MS values can arise. These eight possibilities can be

grouped as follows: the group − 3
2
≤ MS ≤ 3

2
, which corresponds to S = 3

2
and thus

represents a state with multiplicity 2S + 1 = 4, and two groups − 1
2
≤ MS ≤ 1

2
, which

corresponds to S = 1
2

and thus represent states of multiplicity 2S+1 = 2. This means that

an atom or molecule having three electrons outside a closed shell may exist in a quadruplet

state or in one of two different doublet states.

Possible values of the Sz eigenvalues for a three− electron system

ms1 ms2 ms3 MS Φi

1

2

1

2

1

2

3

2
|φ1 φ2 φ3 |

1

2

1

2
−

1

2

1

2
|φ1 φ2 φ3 |

1

2
−

1

2
−

1

2
−

1

2
|φ1 φ2 φ3 |

−
1

2
−

1

2
−

1

2
−

3

2
|φ1 φ2 φ3 |

−
1

2
−

1

2

1

2
−

1

2
|φ1 φ2 φ3 |

−
1

2

1

2

1

2

1

2
|φ1 φ2 φ3 |

−
1

2

1

2
−

1

2
−

1

2
|φ1 φ2 φ3 |

1

2
−

1

2

1

2

1

2
|φ1 φ2 φ3 |
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For N > 3 the above procedure is rather tedious to carry out, since there will be 2N

different spin couplings to write down. Thus a systematic procedure is required.

We now develop general methods which enable us to obtain:

(i) the number of independent spin states characterized by the quantum number S which

exists for a system of N electrons when the space orbitals occupied by each electron are

different. We denote this number f(N, S).

Consider a many-electron spin function which is a simple product of N one-electron spin

wavefunctions. Since each one-electron spin wavefunction is restricted to either α or β type,

it follows that 2N different many-electron spin wavefunctions may be generated. Each of

these, of necessity, is a eigenfunction of Sz.

For a three-electron system, the possible values of S are 3/2 and 1/2. The values of

f(N, S) for this system are readily seen to be

f(3, 3/2) =
3!

3! 0!
= 1 (6.23)

f(3, 1/2) =
3!

2! 1!
− 1 = 2 (6.24)

In Eq. (6.23) we have in essence calculated the number of possible spin orientations

which yield MS = 3/2; the state S = 3/2 also contains three other spin components with

MS = 1/2, −1/2, and −3/2. Thus, in Eq. (6.24) where we calculate the number of possible

spin orientations with MS = 1/2, before we associate the number 3 with the number of

independent spin states S = 1/2 we must substract out that one spin orientation with

MS = 1/2 belonging to S = 3/2 - hence Eq. (6.24). Thus, the three-electron system

possesses one quartet spin wavefunction and two doublet spin wavefunctions. The total

number of wavefunctions is 8 = 23 = 1 × 4 + 2 × 2.

For a four-electron system, the values of S are 2, 1, and 0. The values of f(N, S) are

f(4, 2) =
4!

4! 0!
= 1 1 quintet (6.25)

f(4, 1) =
4!

3! 1!
− 1 = 3 3 triplets (6.26)

f(4, 0) =
4!

2! 2!
− 3 − 1 = 2 2 singlets (6.27)

100



The total number of wavefunctions is 16 = 24 = 1 × 5 + 3 × 3 + 2 × 1.

The results for the three- and four-electrons systems are now generalized in analogical

fashion to yield

f(N, S) =
N !

(N/2 − S)! (N/2 + S)!
−

N !

(N/2 − S − 1)! (N/2 + S + 1)!

=
(2S + 1)N !

(N/2 + S + 1)! (N/2 − S)!
(6.28)

Multiplication of this expression by 2S + 1 and performing a summation over S gives the

total number of wavefunctions

∑

S

(2S + 1) f(N, S) = 2N (6.29)

Thus, by insertion of the appropriate values of N and S into f(N, S) we can evaluate the

number of independent spin states of a given multiplicity available for an N -electron system.

The results of such an evaluation are often presented in graphic form, in a construct such

as Fig. VI.2 termed branching diagram, from which it is possible to carry out the analysis

with very little labor. This diagram shows the number of states of different multiplicities

obtainable for a given number of independent electrons. The diagram is very easy to con-

struct beginning with a single electron and successively coupling other electron spins to it

in all possible algebraic ways. In the diagram the number of states of a given multiplicity

is indicated within a circle whose abscissa is the number of electrons and whose ordinate is

the multiplicity. The diagram is constructed in such a way that each encircled number is

the sum of the two adjacent encircled numbers to the left. We see that for four electrons

one would have two singlet states (MS = 0), three triplet states (MS = −1, 0, and 1), and

one quintet state (MS = −2,−1, 0, 1, and 2). Thus for four electrons not in closed shells

one could write down 16 linearly independent wavefunctions (not all of which would be

automatically orthogonal) leading to six different energies.
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(ii) A readily usable form of the operator S2. We may expand this operator as

S2 = S2
x + S2

y + S2
z (6.30)

If we now define

S+ ≡ Sx + i Sy S− ≡ Sx − i Sy (6.31)
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we obtain

S−S+ = S2
x + S2

y − h̄ Sz (6.32)

where the commutator relationship [Sx, Sy] = i h̄ Sz has been used. Insertion of Eq. (6.32)

into (6.30) yields

S2 = S2
z + h̄ Sz + S− S+ (6.33)

An equivalent form readily verifiable, is

S2 = S2
z − h̄ Sz + S+ S− (6.34)

At this point we note that

S+ ≡
∑

j

s+(j) S− ≡
∑

j

s−(j) (6.35)

s+(j) ≡ sx(j) + i sy(j) s−(j) ≡ sx(j) − i sy(j) (6.36)

where j is an electron numbering index and s is a one-electron operator. The effects of s+

and s− on the spin functions are

s−(j)

(

α(j)

β(j)

)

= h̄

(

β(j)

0

)

s+(j)

(

α(j)

β(j)

)

= h̄

(

0

α(j)

)

(6.37)

The operator s− steps down α to β but annihilates β whereas s+ annihilates α but steps up

β to α. If the operands of S2 are limited to Slater determinants or to simple products of

spinorbitals (these will be always assumed to be the cases), the Eqs. (6.33) and (6.34) can

be simplified further.

Consider the determinant

Φ = |ψ1 α(1)ψ2 β(2)ψ3 α(3) · · ·ψN α(N) | (6.38)

in which each electron is associated with a different space function. Since the spin operators

do not affect the orbital parts and since no restriction need be placed on the spin function

associated with a given space function (i.e., the spin function may be either α or β) it follows

that the determinantal wavefunction of Eq. (6.38) may be abbreviated to

Φ = |α(1) β(2)α(3) · · ·α(N) | (6.39)
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Indeed, with no loss of information, we can use the condensation

Φ = α(1) β(2)α(3) · · · ≡ α β α · · · (6.40)

as long as we remember that all of these constitute a short hand for Eq. (6.38).

The results of operating on Φ of Eqs. (6.38), (6.39), or (6.40) with Sz and S2
z are

Sz Φ =
1

2
(Nα −Nβ) h̄Φ (6.41)

S2
z Φ =

1

4
(Nα −Nβ)2 h̄2 Φ (6.42)

We may rewrite S−S+ in the form

S− S+ =
N
∑

i

s−(i) s+(i) +
N
∑

i

N
∑

i6=j

s−(i) s+(j) (6.43)

and consider each of the parts on the right-hand side of this equation with respect to their

effects on Φ. Consider first

N
∑

i

s−(i) s+(i)Φ =
N
∑

i

s−(i) s+(i) |α(1) β(2) · · · α(N) | (6.44)

By virtue of the one-electron nature of the s−(i) s+(i) operator, Eq. (6.44) reduces to

N
∑

i

s−(i) s+(i)Φ = Nβ h̄
2 Φ (6.45)

where the last equality follows from the noncommutativity of s− and s+ and from

s−(i) s+(i)

(

α(i)

β(i)

)

= h̄2

(

0

β(i)

)

(6.46)

Consider next the two-electron operator part
∑

i

∑

i6=j s−(i)s+(j) and note that the result

s−(i) s+(j)α(i) β(j) = h̄2 β(i)α(j) (6.47)

implies a formal identity of the operators

∑

i

∑

i6=j

s−(i) s+(j) = h̄2
∑

P

Pαβ (6.48)

where Pαβ is an operator which exchanges α and β functions in the original determinant (i.e.,

Pαβ is that subclass of all electron permutation operators which leads to an interchange of α

and β spins), and where the sum is taken over all possible interchanges. For the two-electron
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permutations, no terms survive. The effect of the operator S− S+ on Φ is then summarized

in the expression

S− S+ Φ =

(

Nβ +
∑

P

Pαβ

)

h̄2 Φ (6.49)

If we now collect all the terms of Eqs. (6.41), (6.42), and (6.49) and insert them into Eq.

(6.33), we obtain after a small amount of rearrangement

S2 Φ =

[

∑

P

Pαβ +
1

4
[(Nα −Nβ)2 + 2N ]

]

h̄2 Φ (6.50)

where N = Nα +Nβ. Thus, given Φ as an eigenfunction of S2, it is a relatively simple matter

to determine S.

(iii) A general method for construction of eigenfunctions with given S and MS charac-

teristics. For this purpose, we use projection operator techniques.

We now turn out attention to the generation of eigenfunctions of S2. Suppose we start

with a trial wavefunction Φt which satisfies one condition - namely, that it be resolvable

into a linear combination of eigenfunctions of S2

Φt =
∑

k

cik Φ(Sk) (6.51)

where the summation runs over all possible values of Sk consistent with the specific number

of electrons under consideration and where

S2 Φ(Sk) = Sk (Sk + 1) h̄2 Φ(Sk) (6.52)

The coefficients cik need not be known; all that is required is that Φt be a function in the

domain spanned by the basis set Φ(Sk). It then follows that

[S2 − Si (Si + 1) h̄2]Φt =
∑

k 6=i

dk Φ(Sk) (6.53)

We may consider [S2 − Si(Si + 1)] to be an operator which eliminates any admixture of an

Si wavefunction from Φt. Successive application of such annihilators finally yields one pure

spin state of specified multiplicity - if such a spin state exists in Φt. The required operator,

with λj = Sj(Sj + 1)h̄2, can be written as

O(Sk) =
∏

i6=k

(

S2 − λi

λk − λi

)

(6.54)

This operator projects a wavefunction of the required spin quantum number (i.e., Sk) out

of the general spin space; O(Sk) is a spin-projection operator.
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E. Spin Eigenfunctions of a Three-Electron System: An Example Calculation

The eigenfunctions of Sz may be written immediately. In a simple short-hand form,

using the condensate notation of Eq. (6.40) and from the results previously obtained for a

three-electron system, they are

ααα MS =
3

2

ααβ MS =
1

2

αβ α MS =
1

2

β αα MS =
1

2

αβ β MS = −
1

2

β αβ MS = −
1

2

β β α MS = −
1

2

β β β MS = −
3

2

where, for example, αβ α denotes |ψ1 α(1)ψ2 β(2)ψ3 α(3) | ≡ |φ1 φ2 φ3 | with ψ1 6= ψ2 6= ψ3.

Inspection of the branching diagram of Fig. VI.2 indicates that we should obtain one quartet

spin state (S = 3
2
) and two doublet spin states (S = 1

2
). The projection operators are

O[3/2] =
S2 − 3/4

15/4 − 3/4
(6.55)

O[1/2] =
S2 − 15/4

3/4 − 15/4
(6.56)

where, for brevity, we have eliminated the factor h̄2 from the operator S2. Since we have

made no attempt to normalize the spin-projection operators, we fully expect that the spin-

projected wavefunctions require normalization.

(a) Spin Eigenfunctions with S = 3
2
, MS = 3

2
, 1

2
,−1

2
,−3

2

We first let O[3/2] operate on ααα. The result is

O[3/2]ααα =
[0 + 1

4
(32 + 2 × 3)]ααα− 3

4
ααα

15/4 − 3/4
= ααα (6.57)
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Thus, it is clear that ααα is a satisfactory eigenfunction with S = 3
2
, MS = 3

2
. Using the

notation 2S+1ΦMS
to denote the eigenfunctions of a given multiplicity and a given MS we

can write

4Φ3/2 = ααα (6.58)

In order to exemplify the manner in which unwanted functions are eliminated, consider the

result of O[1/2 operating on ααα. The result is

O[1/2]ααα =
[0 + 1

4
(32 + 2 × 3)]ααα− 15

4
ααα

3/4 − 15/4
= 0 (6.59)

Thus, as evidenced by our inability to project a doublet spin eigenfunction out of ααα,

there is no doublet character in ααα. This, of course, had to be the case - ααα is, after

all, a quartet eigenfunction.

We next construct the spin wavefunction with S = 3
2
, MS = 1

2
. Clearly, this eigenfunc-

tion may be a linear combination of ααβ, α β α, and β αα only. We start with ααβ to

find

O[3/2]ααβ =

(

∑

P Pαβ + 1
4
[(Nα −Nβ)2 + 2Nα + 2Nβ]

)

ααβ − 3
4
ααβ

15/4 − 3/4

=
αβ α + β αα+ 1

4
[12 + 2 × 2 + 2 × 1]ααβ − 3

4
αα β

15/4 − 3/4

=
1

3
(αβ α+ β αα + ααβ)

(6.60)

Normalization yields

4Φ1/2 =
1

31/2
(αβ α+ β αα + ααβ) (6.61)

The spin wavefunction with S = 3
2
, MS = −1

2
is constructed in like manner from α β β,

β αβ, β β α. It is found to be

4Φ−1/2 =
1

31/2
(αβ β + β α β + β β α) (6.62)

The last of these four spin wavefunctions is

4Φ−3/2 = β β β (6.63)
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(b) Spin Eigenfunctions with S = 1
2
, MS = 1

2
, −1

2

There are two doublet spin wavefunctions. Those with MS = 1/2 are constructed from

αα β, αβ α, and β αα. Letting O[1/2] operate on each of these in turn, we find

O[1/2]ααβ =

(

∑

P Pαβ + 1
4
[(Nα −Nβ)2 + 2Nα + 2Nβ]

)

αα β − 15
4
αα β

3/4 − 15/4

=
α β α + β αα + 1

4
[12 + 2 × 2 + 2 × 1]ααβ − 15

4
ααβ

3/4 − 15/4

= −
1

3
(αβ α + β αα− 2ααβ) (6.64)

Analogously, it is found

O[1/2]αβ α = −
1

3
(ααβ + β αα− 2αβ α) (6.65)

O[1/2] β αα = −
1

3
(αβ α + ααβ − 2 β αα) (6.66)

Normalization of these three functions yields

2Φ1/2 = (1/6)1/2 (αβ α+ β αα− 2ααβ)

2Φ1/2 = (1/6)1/2 (αα β + β αα− 2αβ α)

2Φ1/2 = (1/6)1/2 (αβ α+ ααβ − 2 β αα)

Thus three wavefunctions with S = 1
2
, MS = 1

2
have been constructed. However, one of

them is linearly dependent on the other two and they are not orthogonal. Redundancy can

be eliminated and orthogonality produced if we note the cyclic symmetry exhibited by these

three wavefunctions and make maximum use of it. It is clear that these three wavefunc-

tions can be represented as three in-plane vectors separated by 120◦. Thus, the difference

of any two functions is orthogonal to the remaining one. A possible set of orthonormal

wavefunctions, then, is

2Φ1/2 = (1/6)1/2 (αβ α + β αα− 2αα β) (6.67)

2Φ1/2 = (1/2)1/2 (β αα− α β α) (6.68)

The generation of the two wavefunctions 2Φ−1/2 proceeds in a similar way. One gets

2Φ−1/2 = (1/6)1/2 (β αβ + β β α− 2αβ β) (6.69)
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2Φ−1/2 = (1/2)1/2 (β β α− β α β) (6.70)

These results are summarized as follows:

S MS Spin Adapted Configuration

3/2 + 3/2 4Φ3/2 = ααα

3/2 + 1/2 4Φ1/2 = 1/31/2 (αβ α + β αα + ααβ)

3/2 − 1/2 4Φ−1/2 = 1/31/2 (αβ β + β αβ + β β α)

3/2 − 3/2 4Φ−3/2 = β β β

1/2 + 1/2 2Φ1/2 = 1/61/2 (αβ α + β αα− 2ααβ)

1/2 + 1/2 2Φ1/2 = 1/21/2 (β αα− αβ α)

1/2 − 1/2 2Φ−1/2 = 1/61/2 (β α β + β β α− 2αβ β)

1/2 − 1/2 2Φ−1/2 = 1/21/2 (β β α− β α β)
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