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To check you’ve followed the essay, you should certainly try

the conceptual questions here. If you wish to master the ma-

terial, you should work through the problems. A cheat-sheet is

provided at the end for those wishing to check their answers.

Questions

Conceptual questions

The following questions are designed as a quick review to see if you

digested the basic ideas above well-enough to make deductions

on your own. Answers should be verbal or at most one equation.

1 Explain why a vibrational frequency is a property of the

ground-state of the electrons in a molecule.

2 Why is a KS calculation much faster than direct solution

of the Schr€odinger equation?

3 Why is the helium KS potential less deep than the original

potential, �2/r?

4 Is the sum of the KS eigenvalues equal to the total

energy?

5 What is EXC for a one-electron system?

6 Give the signs of E, T, Vee, V, U, EX, and EC for real systems

(i.e., atoms, molecules, and solids).

Pencil and paper problems

The next problems can all be done using the material presented,

but each requires taking steps beyond what was explicitly shown

in the chapter. They are designed to need only pencil and paper.

1 Apply F½n� ¼ hWjfT̂ þ V̂eegjWi to the KS system to define

TS without ever mentioning vS(r). Then prove that T � TS always.

2 Derive F[n] for a single electron. It has no electron-electron

interaction, and is known as the von Weizs€acker kinetic energy.

3 Use dimensional analysis to explain the powers of the

density in the local approximations of the kinetic energy in 1d

and 3d, as well as the exchange energy in 3d.

4 Derive a formula for EX[n:,n;] in terms of EX[n], evaluated

on various densities. Does the same formula apply to the KS

kinetic energy, but with EX replaced by TS? How about for EC?

5 What is the expectation value of the Hamiltonian

(Ĥ ¼ T̂ þ V̂ þ V̂ee) evaluated on the KS Slater determinant? Use

this to prove that the DFT definition of correlation energy is

never positive.

6 Write the formula that extracts vS(r) from n(r) for the he-

lium atom. Can you explain why this does not tell us the vital

vXC[n](r) for any spin-unpolarized two-electron systems?

7 Show that if electrons repelled via a contact repulsion, d(r

� r0), the exchange is given exactly by LDA, and give its

expression, including spin-dependence.

Computational problems

Finally, we come to calculational problems. In solving these

problems, one will greatly be aided by the use of a computer

algebra system such as Mathematica.

1 Calculate the TF kinetic energy for a 1d particle of mass

m ¼ 1 in (a) a harmonic well (v(x) ¼ x2/2) and (b) in a delta-

well (v(x) ¼ �d(x)). Give the % errors.

2 Evaluate the TF kinetic energy of the H atom and deduce

the % error. Repeat using spin-DFT.

3 Deduce the exact energy for N same-spin fermions in a flat

box of width 1 bohr. Then evaluate the local approximation to

the kinetic energy for N ¼ 1, 2, and 3, and calculate the % error.

Answers

Conceptual questions

1 Explain why a vibrational frequency is a property of the

ground-state of the electrons in a molecule.

Answer: Within the Born–Oppenheimer approximation, the

nuclei move on a potential energy surface (PES) given by the sum

of the electronic energy Ee(R) (found parametrically as a function

of the nuclear coordinates, R) and nuclear repulsion energy, Vnn(R).

Vibrational frequencies can then be deduced from the curvature

of the PES about the equilibrium nuclear coordinates. Finally,

because electronic excitations are negligible at room temperature,

the ground-state electronic energy E0
e(R) can be used to determine

the PES, and thus the vibrational frequencies of a molecule.

2 Why is a KS calculation much faster than direct solution of the

Schr€odinger equation?

Answer: A KS calculation only requires solving a non-interact-

ing Schr€odinger equation (a 3-dimensional differential equa-

tion), though a few iterations to reach self-consistency are

required. The direct solution of the interacting Schr€odinger

equation (a 3N-dimensional differential equation), on the other

hand, is extremely expensive and impractical but for small

numbers of electrons or systems of low dimensionality.

3 Why is the helium KS potential less deep than the original

potential, �2/r?

Answer: Interactions push electrons away from each other

and widen the density. Thus for the KS system to mimic the

effect of interactions, the KS potential must be less deep.
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4 Is the sum of the KS eigenvalues equal to the total energy?

Answer: No. The KS system introduces interactions through a

correction to the one-body potential, the Hartree exchange-

correlation potential, vHXC[n](r) ¼ vH[n](r) þ vXC[n](r), but

because the interactions are two-body effects, the energy of

these interactions must be accounted for using the Hartree

exchange-correlation energy functional, EHXC[n] ¼ EH[n] þ
EXC[n] (or EH[n] ¼ U[n]). The KS eigenvalues only know about

the potential, however, and not the energy:

XN

i¼1

ei ¼ TS þ V þ
Z

d3r vHXC½n�ðrÞnðrÞ (1)

6¼ TS þ V þ EHXC ¼ E: (2)

For example, the integral over the Hartree potential double-

counts the interaction energy:Z
d3r vH½n�ðrÞnðrÞ ¼ 2EH½n�: (3)

Therefore, to obtain the energy from the orbital eigenvalues

requires some extra computations. Comparing Eqs. (1) and (2),

one obtains:

E ¼
XN

i¼1

ei �
Z

d3r vHXC½n�ðrÞnðrÞ þ EHXC½n� (4)

Thus at the end of the calculation, EHXC[n] must be calculated

using the self-consistent density n(r) to obtain the total energy.

5 What is EXC for a one-electron system?

Answer: There is no interaction when there is only one elec-

tron, but the Hartree energy U[n] is always included in a DFT

calculation. Therefore for a one-electron system the exchange-

correlation energy must cancel the Hartree energy to negate

the effect of self-interaction. Thus EXC[n] ¼ �U[n]; specifically

EX[n] ¼ �U[n] and EC[n] ¼ 0.

6 Give the signs of E, T, Vee, V, U, EX, and EC for real systems (i.e.,

atoms, molecules, and solids).

Answer:

• E \ 0

• T [ 0

• Vee � 0

• V \ 0

• U [ 0

• EX \ 0

• EC � 0

Pencil and paper problems

1 Apply F½n� ¼ hWjfT̂ þ V̂eegjWi to the KS system to define TS

without ever mentioning vS(r). Then prove that T � TS always.

Solution: Considering the KS system, we have V̂ee ! 0. Then

F½n� ! TS½n� ¼ min
U!n
hUjT̂ jUi; (5)

where U is used instead of W to remind us that a Slater

determinant will minimize the non-interacting kinetic

energy.

It shall now become obvious that T � TS. T[n] is the

value when both T̂ and V̂ee are minimized for a given density

n(r), but TS[n] is the value when only T̂ is minimized for a

given density n(r). Therefore T[n] can never be as small as

TS[n], because TS[n] minimizes the kinetic energy for a given

density.

2 Derive F[n] for a single electron. It has no electron-electron

interaction, and is known as the von Weizs€acker kinetic

energy.

Solution: Since there is no Vee, we simply need to determine

T[n] for one electron with density n(r). First, the kinetic energy

of an electron with wavefunction /(r) is

F½n� ! T ½/� ¼ 1

2

Z
d3rjr/ðrÞj2: (6)

But we can also relate our density directly to the wavefunc-

tion; we can take the ground-state electronic eigenfunction to

be strictly real, so we have n(r) ¼ /(r)2. Then rearranging a lit-

tle bit:

T ½/� ¼ 1

2

Z
d3rðr/ðrÞÞ2 (7)

¼ 1

2

Z
d3r
ð2/r/Þ2

4/2
(8)

Since rn ¼ 2/r/, we can rewrite as

T VW½n� ¼ 1

8

Z
d3r
ðrnÞ2

n
; (9)

the von Weizs€acker kinetic energy.

3 Use dimensional analysis to explain the powers of the density

in the local approximations of the kinetic energy in 1d and 3d,

as well as the exchange energy in 3d.

Solution: In 3d, n ! 1/L3, where L is a unit of length, because

n(r)d3r should be a dimensionless probability. Now kinetic

energy scales by 1/L2, which we can see by considering a one-

electron system:

T ¼ 1

2

Z
d3rjr/ðrÞj2: (10)

Since jr/j2 has dimensions 1/L5, the integration provides L3,

so we’re left with 1/L2 dependence. Therefore

T TF /
Z

d3r n5=3ðrÞ; (11)

in order to give a 1/L5 dependence in the integrand, and a 1/

L2 overall dependence.

In 1d, n(x) ! 1/L, and kinetic energy still scales by 1/L2, e.g.

the one-electron kinetic energy is

T 1d ¼ 1

2

Z
dx

d/ðxÞ
dx

����
����

2

; (12)

so the integrand in our LDA approximation must have 1/L3 de-

pendence:
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T TF 1d /
Z

dx n3ðxÞ; (13)

In 3d, the exchange energy scales like 1/L because of the Cou-

lomb potential. To scale in this way, the local approximation

to exchange must be:

ELDA
X /

Z
d3r n4=3ðrÞ: (14)

4 Derive a formula for EX[n:,n;] in terms of EX[n], evaluated on

various densities. Does the same formula apply to the KS kinetic

energy, but with EX replaced by TS? How about for EC?

Solution: We will soon show the spin-scaling relation,

EX½n"; n#� ¼
1

2
ðEX½2n"� þ EX½2n#�Þ: (15)

In this notation, EX[2n] ¼ EX[n,n] is the expression of the

exchange energy as a pure density functional.

First, note that only like spins exchange, so an unpolarized

system can be separated into completely polarized parts:

EX½2n� ¼ EX½n; 0� þ EX½0; n�: (16)

Because EX[n,0] ¼ EX[0,n], we have that

EX½2n� ¼ 2EX½n; 0� ¼ 2EX½0; n�: (17)

Now separate EX[n:,n;] into spin components:

EX½n"; n#� ¼ EX½n"; 0� þ EX½0; n#� (18)

¼ 1

2
EX½2n"� þ

1

2
EX½2n#�; (19)

as desired.

The KS kinetic energy TS obeys the exact same spin-scaling

relation, because we can again separate out the contributions

from each spin:

TS½n"; n#� ¼
1

2
ðTS½2n"� þ TS½2n#�Þ: (20)

However, the correlation energy has no simple spin scaling

relation:

EC½n"; n#� ¼ complicated! (21)

5 What is the expectation value of the Hamiltonian

(Ĥ ¼ T̂ þ V̂ þ V̂ee) evaluated on the KS Slater determinant? Use

this to prove that the DFT definition of correlation energy is

never positive.

Solution: We want the expectation value of the Hamiltonian

evaluated on the KS Slater determinant, U:

hUjĤjUi ¼ TS þ V þ Uþ EX; (22)

since hUjV̂eejUi ¼ Uþ EX. So now consider the variational

principle. The true wavefunction W minimizes the expecta-

tion value of Ĥ, so the KS expectation should be higher in

energy:

hUjĤjUi � hWjĤjWi ¼ E: (23)

Now we can plug in E ¼ TS þ V þ U þ EX þ EC to the RHS of

(23), and plug in (22) into the LHS to obtain:

TS þ V þ Uþ EX � TS þ V þ Uþ EX þ EC; (24)

which implies that EC � 0.

6 Write the formula that extracts vS(r) from n(r) for the helium

atom. Can you explain why this does not tell us the vital

vXC[n](r) for any spin-unpolarized two-electron systems?

Solution: For any spin-unpolarized two-electron system, and sup-

posing there are no magnetic fields (so the ground state KS or-

bital /(r) can be taken as real), then n(r) ¼ 2(/(r))2, where /(r) is

the eigenvector with the lowest eigenvalue of the KS equation,

� 1

2
r2 þ vSðrÞ

� �
/ðrÞ ¼ e/ðrÞ: (25)

Therefore we can rearrange and solve for vS(r):

vSðrÞ ¼
r2/ðrÞ
2/ðrÞ þ e: (26)

Plugging in /ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðrÞ=2

p
will determine vS(r) up to a con-

stant.

However, this will not give us vXC(r), unless we also know

the external potential v(r), since

vXCðrÞ ¼ vSðrÞ � vðrÞ � vHðrÞ: (27)

If the external potential is known, then the constant e can be

determined by using Koopmans’ theorem, and thus vXC(r) can

also be determined.

As an aside, if there are magnetic fields, the up and down

spin orbitals /r(r) may in general be different as well as com-

plex. So instead of n(r) ¼ 2(/(r))2, we have n(r) ¼ |/:(r)|2 þ
|/;(r)|2; and there is no explicit way to get the phase informa-

tion to discover the spin-dependent KS potentials, vS,r(r).

7 Show that if electrons repelled via a contact repulsion, d(r �
r0), the exchange is given exactly by LDA, and give its expression,

including spin-dependence.

Solution: Take the definition of exchange, but replace the

Coulomb repulsion by the new delta interaction. The result is:

EX ¼ �
1

2

X
r; i; j

occ

Z
d3r

Z
d3r0dðr� r0Þ �

/�irðrÞ/�jrðr0Þ/irðr0Þ/jrðrÞ

(28)

¼ � 1

2

X
r; i; j
occ

Z
d3rj/irðrÞj2j/jrðrÞj2: (29)

Now take the sums over i, j inside the integral, because
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nrðrÞ ¼
X

j

j/jrðrÞj2; (30)

so

n2
rðrÞ ¼

X
i;j

j/irðrÞj2j/jrðrÞj2: (31)

So Eq. (29) becomes

EX ¼ �
1

2

X
r

Z
d3r n2

rðrÞ: (32)

Thus the exchange energy is in the LSDA form, so LSDA gives

the exact exchange energy for a contact repulsion.

As a cool-down exercise, one can also show that Hartree

becomes local:

U½n� ¼ 1

2

Z
d3r n2ðrÞ: (33)

Computational problems

1 Calculate the TF kinetic energy for a 1d particle of mass m ¼
1 in (a) a harmonic well (v(x) ¼ x2/2) and (b) in a delta-well

(v(x) ¼ �d(x)). Give the % errors.

Solution: Recall for a spin-polarized system, the TF kinetic

energy is

T TF 1d ¼ p2

6

Z
dx n3ðxÞ; (34)

whereas for one-particle, the exact kinetic energy is

T ¼ 1

2

Z
dx

d/ðxÞ
dx

����
����

2

; (35)

and n(x) ¼ (/(x))2.

(a) For particle of mass 1 in a harmonic well with a spring

constant of 1, the density is

nðxÞ ¼ 1ffiffiffi
p
p e�x2

; (36)

which produces TTF ¼ 0.302. The exact kinetic energy is T ¼
0.25, so there is a 21% error.

(b) For a particle in a delta well, the density is

nðxÞ ¼ e�2jxj; (37)

which makes TTF ¼ 0.548. The exact kinetic energy here is 0.5,

so TF makes a 9.6% error.

2 Evaluate the TF kinetic energy of the H atom and deduce the

% error. Repeat using spin-DFT.

Solution: Recall that for 3d problems, the spin-unpolarized TF

kinetic energy is

T TF½n� ¼ aS

Z
d3r n5=3ðrÞ; (38)

where aS ¼ 3(2p2)2/3/10 ¼ 2.871. For one-electron, we need to

spin-scale to get the right result (a one-electron system is a

polarized system):

T TF
pol½n� ¼

1

2
T TF½2n� ¼ 22=3 aS

Z
d3r n5=3ðrÞ: (39)

The LDA calculation involves the unpolarized TTF, whereas the

LSDA calculation involves the polarized TTF
pol. (LSDA is some-

times meant when LDA is said, because LSDA is a natural

extension of LDA and gives more accurate energies.)

For the H atom, the ground-state wavefunction is

wðrÞ ¼ 1ffiffiffi
p
p e�r; (40)

and T ¼ �E ¼ 0.5. Putting n(r) ¼ |w(r)|2 into the LDA and

LSDA TF gives 0.289 and 0.459, respectively, with errors of -

42% and -8%. Now we can see why people use LSDA!

3 Deduce the exact energy for N same-spin fermions in a flat

box of width 1 bohr. Then evaluate the local approximation to

the kinetic energy for N ¼ 1, 2, and 3, and calculate the % error.

Solution: Considering the well from x ¼ 0 to x ¼ 1, we have

eigenfunctions

/jðxÞ ¼
ffiffiffi
2
p

sin jpx (41)

with energies

ej ¼
p2j2

2
: (42)

Therefore the exact energy of a system with N non-interacting

particles (same-spin) will be

E ¼
XN

j¼1

ej ¼
p2

6
NðNþ 1ÞðNþ 1

2
Þ: (43)

The density will be

nðxÞ ¼
XN

j¼1

j/jðxÞj2: (44)

Again using (34), we obtain Table 1.

An intriguing question is: why does TF underestimate the ki-

netic energy of a particle in a box, but overestimate for the

harmonic oscillator and d-well?

Table 1. Exact and TF energies for N particles in a box.

N E ETF % error

1 4.935 4.112 �17%

2 24.67 21.80 �12%

3 69.09 62.92 �8.9%
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