Fig. 8.25 The symmetry classification of
the nitrogen atomic orbitals in NH,, a C;,
molecule, and the three symmetry-adapted
finear combinations of the His orbitals.
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energy levels shown in Fig. 8.26. There are eight electrons to accommodate, and
so the configuration of the ground state is expected to be
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The HOMO is the 2a;-orbital, which is largely a nonbonding orbital composed
of N2s- and N2p,-orbitals: the electrons that occupy it therefore constitute a
lone pair on the N atom.

8.9 Conjugated n-systems

A special class of polyatomic molecules consists of those containing r-bonded
atoms, particularly conjugated polyenes and arenes. They fall into a unique
class because the orbitals with local o and 7 symmetry can be discussed sepa-
rately. By ‘local’ symmetry we mean symmetry with respect to one internuclear
axis rather than the global symmetry of the molecule. For global symmetry we
have to classify orbitals according to the overall point group of the molecule,
and the o, 7 designation is relevant only for linear species. However, if we focus
on an individual A—B fragment of the molecule, then the orbitals do have a
characteristic rotational symmetry about that axis, and they can be classified as
locally a or =.

One reason for the separate treatment of locally ¢- and n-orbitals is that the
electrons in m-orbitals are typically less strongly bound than those in g-orbitals,

so there 1s little interaction between the two types of orbital (recall the principles
set out in Section 8.6). Another reason for the separation is that as n-orbitals are
typically found in planar molecules, they have global symmetry properties that
distinguish them from g-orbitals, and therefore span different irreducible repre-
sentations of the molecular point group. As a consequence, they factorize and
can be discussed separately.

The simplest organic n-system is the ethene molecule, CH,=CH,. The o-
orbitals in ethene are molecular orbitals composed of various symmetry-
adapted linear combinations of C2s, C2p,, C2p,, and Hls orbitals; the n-orbitals
are formed by overlap between C2p, orbitals (Fig. 8.27). This model immedi-
ately accounts for the torsional rigidity of the molecule, because (C2p,, C2p,)-
overlap is greatest when the molecule is planar. The n-orbital energies are found
by solving a 2 x 2 secular determinant, and the solutions given in eqn 8.17 may
be employed as the carbon—carbon fragment is homonuclear.

When the zn-system is conjugated, which means that the z-system extends
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terms of the Hiickel approximation. This drastic approximation makes the
following assumptions in the formulation of the secular determinant
det[H — ES|:

1. All overlap integrals are set equal to zero: Sj; = J;.

This is in fact a poor approximation, because actual overlap integrals are
typically close to 0.2. Nevertheless, when the rule is relaxed, the energies are
shifted in a simple way and their relative order is not greatly disturbed.

2. All diagonal matrix elements of the hamiltonian are ascribed the same
value: H; = a.
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Fig. 8.26 The molecular orbitals of NH; at
its equilibrium bond angle of 107°.

Figure 8.27 The structure of the n-orbital
in ethene.
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The parameter « is negative. This approximation is reasonable for species that
do not contain heteroatoms because all the conjugated atoms are electronically
similar. Some justification comes from the Coulson—Rushbrooke theorem,
which states that in alternant hydrocarbons’ the charge density on all the atoms
is the same,

3. All off-diagonal elements of the hamiltonian are set equal to zero except
for those between neighbouring atoms, all of which are set equal to .

The parameter ﬁ is negative. It
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Example 8.3 The implementation of the Huckel approximation

Set up and solve the secular determinant for w-orbitals of the butadiene
molecule in the Hiickel approximation.

Method. Construct the secular determinant by setting all diagonal ele-
ments equal to o« — £ and off-diagonal elements between neighbouring
atoms equal to f; all other elements are zero. Set the secular determinant
equal to zero, and solve the resulting quartic equation in x = o — E for x
and hence E.

Answer. The equation to solve is

«a—E B 0 0
B o—E B 0 |_ 0
0 g a—E B |
| 0 0 g a—E|
On setting x = o — E and expanding the determinant, we obtain

This quartic in x is in fact a quadratic equation in y = x2, so its roots can
be found by elementary methods:

1/2
3£45
We conclude that the energy levels are
E=a0+1.6188 o+ 0.6188

as shown in Fig. 8.28.

Comment. The secular determinant for butadiene is an example of a so-

nallad “tridiaonanal data nt’ in whisrh tha nanzara ala nta all lia
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along three neighbouring diagonal lines. From the theory of determinants,
an N x N tridiagonal determinant has the following roots:

5 An alternant hydrocarbon is one in which the atoms can be divided into two groups by putting a
star on alternate atoms and not having any neighbouring stars when the numbering is complete,
Benzene (1) is alternant, azulene (2) is nonalternant.
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Fig. 8.28 The Hiickel molecular orbitals
and their energies in butadiene (as viewed
down the axis of the p-orbitals).

Fig. 8.29 The contributions of the
p-orbitals to each n-orbital matches the
amplitude of a sine wave (the
wavefunction for a particle in a box) at the
parent carbon atom.
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Exercise 8.3. Find the roots of the secular determinant for the n-orbitals
of cyclobutadiene. [a£2B,0+p]

The worked example has shown how to calculate the molecular orbital
energy levels in a simple case. The coefficients of the orbitals can be found
by substituting these energies into the secular equations. However, in practice
it is much easier to employ a computer: the roots we have found are the eigen-
values of the secular matrix and the corresponding eigenfunctions of the matrix
are the coefficients of the atomic orbitals that contribute to each molecular
orbital. For example, the four molecular orbitals of butadiene are found in
this way to be

17 = 0.372¢, + 0.602¢5 + 0.602¢ + 0.372¢y,
27 = —0.602¢, — 0.372¢5 + 0.372¢¢ + 0.602¢y,
3n = —0.602¢), + 0.3725 + 0.372¢¢ — 0.602¢p,
47 = 0.372¢, — 0.602¢5 + 0.602¢ — 0.372¢p,

where the ¢; is a 2p,-orbital on atom J. The composition of these molecular
orbitals is independent of the values of o and . You should notice that the

enerav of the arhital increacec with the numher of nodes. and that the amnlitude
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of each coefficient follows a sine wave fitted to the length of the molecule
(Fig. 8.29).

The ground state configuration of the molecule is 172272, which corresponds
to a total m-electron energy of 4a + 2+/5p. The energy of a single unconjugated
n-orbital is « + B, and so if the molecule were described as having two uncon-
jugated m-bonds, its total m-electron energy would have been 4o + 45. The
difference, which in this case is 2(v/5 — 2)8 = 0.4728, is called the delocaliza-
tion energy of the molecule. The delocalization energy is independent of o
within the Hiickel approximation largely because all atoms are equivalent
and the total electron density on them is the same regardless of the extent of
delocalization of the orbitals.

The Hiickel procedure leads to secular determinants of large dimension.
However, they may often be factorized into more manageable dimensions by
making use of the symmetry of the system beyond the simple mirror plane that
enables the m-system to be distinguished from the g-system. This additional
factorization follows from the usual arguments about the hamiltonian having
no nonzero elements between linear combinations of orbitals that belong to
different symmetry species of the molecular point group. For benzene, for
instance, the 6 x 6 determinant can be simplified very considerably by
making use of the D¢, symmetry of the molecule. In fact, because every 2p,-
orbital changes sign under reflection in the molecular plane, we lose no infor-
mation by using the Cg, subgroup of the molecule. The procedure involves
treating the C atoms as the peripheral atoms of a molecule, and setting up
SALCs of their 2p,-orbitals; however as there is no ‘central’ atom, these
SALCs are in this instance the actual m molecular orbitals of the molecule.
The projection operator technique described in Section 5.12 leads to the fol-
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ﬁ lowing linear combinations (labelled according to the symmetry species of the

T J 9 group Dgy,):

1 .
a, = Tg(pA +pp +Pc+pp+ e+ PF)

; - _ ] (@ Wi (2pa +Ps — Pc — 2Pp — P& + PF)
€ i |B r €1g = !
»’ (5) 5(PB +Pc — P — Pr)
B f (a) r::(sz —pPs —Pc +2Pp — pe — P¥)
1 (®) 2(PB pc +pe — pr)

by, = ﬁ(pA ~pp +pc—pPo+pe —PF)

~ These orbitals are sketched in Fig. 8.30. Note that the form of the orbitals is

L@ 3 e determined solely by the symmetry of the molecule and makes no reference to
il the values of a or fi. As we show in the following example, the energy levels are
E(g2u)=a+2'3 E(e;)=a+f Ele, ) =a—8 E{by)=a-28

_\l/ —\rzZa/ TATLg)

As we have already remarked, f§ is negative, so the orbitals lie in the order

eaiy NPT shown in the illustration.
g
Example 8.4 The energy levels of the benzene molecule
Fig. 8.30 The Hiickel molecular orbitals Determine the n-electron energy levels of the benzene molecule within
and their energies in benzene. the Hiickel approximation.

Method. The moiecuiar orbitais are specified above. We need form
secular determinants for each orbital species separately as the hamiltonian
has no off-diagonal elements between orbitals of different symimetry
species. Use the Hiickel rules for writing the matrix elements after
expanding the H;; in terms of the linear combinations of 2p, -orbitals.
The orbitals that span one-dimensional irreducible representations will
give simple 1 x 1 determinants, which are trivial to solve. The orbitals
that span two-dimensional irreducible representations will give 2 x 2
determinants, which will lead to quadratic equations. However, because
the e-orbitals of each set have different reflection symmetry, they too give
diagonal determinants, so the roots can be found trivially.

Answer. The matrix elements we require are as follows:
(aru|H|an,) _%@A ..+ pp|H|pA + .- +pp) =a+28
(bog|HIbsg) =Ypa — ... —pp|Hlpa — ... —pp) =a— 28

(erg(a)|Hleg(a)) = o+ B

(elg(b)lH leg(B)) = a+ ﬁ
(€2 a))
{ )
)

e (a)|Hley(a)
€ (b)lﬂlezu(b)
)

(ea)|H]e(b

a—
o—
0 for both types of e orbital




262

An introduction to molecular structure

The resulting energies are those quoted in the text and displayed in
Fig. 8.30.

Exercise 8.4. Use the (,, subgroup of naphthalene to find the n-electron

‘r‘

molecular orbital energy levels within the Hiickel approximation.

The ground-state electron configuration of benzene is
C6H6 a%ue‘llg 1Alg
and the delocalization energy is
Edeloc = (60( + 818) - 6(0( + ﬂ) = 2ﬂ

You should notice that the six electrons just complete the molecular orbitals
with net bonding effect, leaving unfilled the orbitals with net antibonding char-
acter. To some extent this configuration echoes the configuration of N,, and
both molecules have a pronounced chemical inactivity. Another feature of
the energy levels of benzene is that the array of levels is symmetrical: to

every bonding level there corresponds an antibonding level. This symmetry is
a characteristic feature of alternant hvdrocarbons and can be traced to the topo-
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logical character of the molecules. Indeed, many of the results of Hiickel theory
can be established on the basis of graph theory, the branch of topology con-
cerned with the properties of networks. One particular result of this kind of
analysis is the justification of the ‘(4n 4 2)-rule’ for the anticipation of aromatic
character, where » is the number of n-electrons.

As we have stressed, Hiickel theory, which virtually hijacks the disagreeable
integrals that appear in a full treatment, is only the most primitive stage of
discussing m-electron molecules. The modern, far more reliable numerical
approaches are described in Chapter 9.

8.10
The success of Hiickel theory is rooted in the fact that the orbitals themselves
are determined by the symmetry of the system. These symmetry-determined
orbitals are then put into an order of energies, essentially by counting the
number and noting the importance of their nodes. The energy differences
between the orbitals are typically so large that the coarseness of this procedure
does not unduly misrepresent their order. A similar situation occurs in the com-
plexes of d-metal ions. These complexes consist of a central metal ion

surrounded by a three-dimensional array of ligands. The compositions of the

orbitals of the complex are largely determined by the symmetry of the environ-
ment, and a single parameter can be used to give a rough indication of the order
of the energies of the molecular orbitals of the complex. Ligand field theory is
a kind of three-dimensional version of Hiickel theory, in which symmetry plays
a central role, and in which structural, spectroscopic, magnetic, and thermody-
namic properties are parametrized in terms of the ligand field splitting
parameter, A.

We shall denote the central metal ion by M and assume that it has the con-
figuration ¢”. The ligands will be denoted L, and we shall confine attention to
ML octahedral complexes with Oy, symmetry. The orbitals of the ligands will
be denoted A. In particular, we shall suppose that each ligand i supplies an
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The optimization of parameters is, in general, a difficult task for several
reasons. For one, accurate experimental data are often not available. Also, the
simultaneous optimization of several parameters for a large number of mole-
cules is very time-consuming. The parameters are interconnected in the sense
that significantly varying the value of one parameter in a nearly optimal para-
meter set needs to be accompanied by variations in several other parameters too.
The successive optimization of each parameter is not feasible. Semiempirical
methods were first developed for conjugated n-electron systems. We shall there-
fore begin our discussion with them and later describe more general methods.

9.12 Conjugated n-electron systems

We consider the case of a conjugated n-system with a total of n, n-electrons.
The n-electrons are dealt with separately from the o-electrons partly because
their energies are go different and partly on account of the different symmetries

of their orbitals. The effective n-electron hamiltonian H is given by
- O D W e Wt )
i mei ? 77 4mery

where the first term is the kinetic energy operator for the n-electrons, Vf’m is
the effective potential energy for n-electron i resulting from the potential field
of the nuclei and all g-electrons, and the final term represents the repulsive
potential energy due to n-interelectronic interactions. The core hamiltonian
h} for n-electron i is defined by

e + pret (54)
I3 2me I H
SO we can write
n?! nﬁ 62
H = LI
7 ; 1 + 2 ;47[80"{]‘ (55)

The analogy with eqn 7.43 is apparent. The hamiltonian H,, is approximate
because the n- and g-electrons have been treated separately and the effect of
the latter in H, appears only in the effective potential V,-"’eff. The use of
an approximate form for the hamiltonian in eqn 9.1 is characteristic of semi-
empirical methods.

The most famous semiempirical n-electron theory is Hiickel molecular
orbital theory (HMO). As this method has already been described in some
detail in Section 8.9, here we shall only point out some of the features of this
method that characterize it as semiempirical. In the HMO method, H, is
approximated as a sum of one-electron terms:

i "

where is an effective hamiltonian for n-electron i. The form of h?"’ff is left
unspecified; only its matrix elements appear in HMO. Because H,, is a sum of
one-clectron terms, the wavefunction ¥, can be written in terms of a product of
one-electron (molecular) orbitals ;, each of which is a solution of the eigen-
value equation

neff
hi

h?’eff‘//i = Ei‘l’i (57)
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where E; is the energy associated with the molecular orbital labelled i. Each
molecular orbital is written as a linear combination of atomic orbitals
(LCAO). For example, in an HMO treatment of a conjugated hydrocarbon
(such as benzene), the atomic orbitals are usually composed of the set of
C2p, atomic orbitals, The variation principle is then applied, and gives rise to
a set of secular equations, which have non-trivial solutions only if

det |h™T — ES] =0 (58)

where 5T is the matrix element of b between the atomic orbitals of the
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analogue of the Roothaan equatlons, eqn 9.21, but differs in the restriction of
the hamiltonian to a sum of one-electron terms and the orbitals to m-orbitals,
Solution of the secular determinant then yields the set of molecular orbital ener-
gies E; as well as the expansion coefficients of the LCAO. As described in
Section 8.9, HMO makes some assumptions about the values of the matrix ele-
ments A5 and S,.:

1. For all overlap integrals S,s = 0,5

2. Diagonal elements 4" = o

3. Off-diagonal elements h"’eff = f if atoms r and s are neighbours and 0
otherwise.

The setting of selected matrix elements to zero and the parametrizing of
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Because A, is written as a sum of one-electron terms with explicit forms left
unspecified, the HMO method treats repulsions between the n-electrons very
poorly (if at all!). As a result, it is only useful for qualitative discussions of
n-conjugated systems.

The Pariser-Parr-Pople method (PPP) is a much more substantial proce-
dure, but nevertheless quite primitive when compared with current
semiempirical procedures. It starts with the hamiltonian H, of eqn 9.55,
which includes n-interelectronic repulsions, and writes the n-electron wave-
function ¥, as a Slater determinant of n-electron spinorbitals ¢

P = (n,) "7 det |pT(1)PF(2). . .4 (n

-n s TTTIITaNT /T OoNT )T

) (59)

The optimal spinorbitals are determined by using the variation principle, and
satisfy

fra(1) = g¢,(1) (60)
where ¢7 is the orbital energy of spinorbital ¢7, and where
f=H+Y {0 - K1)} (61)
u

The Coulomb (J,) and exchange (K,) operators are defined as in eqns 9.9 and
9.10.

At this stage, the calculation is following the ab initio route described in
Sections 9.1 and 9.2. Indeed, proceeding as in Section 9.4 for the closed-shell
case, we can write the n-electron Spmt‘)i‘uual asa prﬁuuu ofa Splﬁ function and
a space function; the space function is then expanded in a basis of known

functions. The space functions are the = molecular orbitals and the known
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basis functions are atomic orbitals §; centred on each n-conjugated atom {. For
example, in a conjugated hydrocarbon, a basis set consisting of C2p, atomic
orbitals is typically employed. The use of the basis set results in a set of equa-
tions analogous to the Roothaan equations, eqn 9.19, with F; in the latter
replaced by the matrix elements F7:

/ 07 (11/76,(1) dr, 62)

and with ¢, replaced by &7. Next, we simplify the notation by defining the one-
electron integral

- / 0 (1)AH0,(1) dr, (63)
and using the symbol (ablcd) to represent two-electron integrals over the
atomic orbitals, we can write the matrix element F" as

Fj = hj + Zsz{ if|lm) — 3(im|}j)} (64)
im

where P,,, is defined in eqn 9.27.

At this point the PPP method makes some approximations beyond the
separation of 7 and ¢ orbitals. First, we set S;; = J;;, as in HMO theory. Then
we set some of the two-electron integrals

U?

to zero too, but in a more subtle way than in HMO. The product 6;(1)0,(1) in
which i # j is designated a differential overlap term (it is the integrand of an
overlap integral, so can formally be obtained from an overlap integral by differ-
entiation; hence the name). In the zero differential overlap approximation
(ZDO), the two-electron integral vanishes unless @ = b and ¢ = d. In other
words, we set the product of atomic orbitals

0,(1)8,(1) =0 ifa#b (65)
As a result, the two-electron integrals are given by
(ablcd) = 8,40 4(aalcc) (66)

and the integral {aa|cc), which could be computed theoretically, is often treated
as an empirical parameter. In the ZDO approximation, all three-centre and four-
centre two-electron integrals are neglected.

In addition, the PPP method usually does not calculate the integrals A7 the-
oretically but instead takes some to be empirical parameters and sets the
remainder to zero. In particular, for atomic orbitals 6; and 6; centred on
atoms 7 and j which are not bonded together, 4j; is set to zero, and for atomic
orbitals centred on atoms which are bonded together, the matrix element is
taken to be an empirical parameter f8; which varies with the nature of the
atoms i and j. The diagonal elements 4}, are usually set to an empirical para-
meter o,. (Note the resemblance to HMO theory at this point)

ll dll lWU"ClCLl[U[l uucgl dlb \uulcu are set to zero d'.[lU LUU llldlliz\ ClClllClllS
replaced by the matrix elements A7 “flthen the PPP method (an SCF treatment)
1s ‘reduced’ to the HMO method (Wthh is not an SCF treatment).



6  Hiickel Theory

This theory was originally introduced to permit qualitative study of the m-electron systems in planar,
conjugated hydrocarbon molecules (i.e. in "flat" hydrocarbon molecules which possess a mirror
plane of symmetry containing all the carbon atoms, and in which the atoms of the carbon skeleton
are linked by alternating double and single carbon-carbon bonds when the bonding is represented in a
localised fashion). It is thus most appropriate for molecules such as benzene or butadiene, but the
approach and concepts have wider applicability.

Basic Assumptions

1. the atomic orbitals contributing to the m-bonding in a planar molecule (e.g. the so-called p;
orbitals in a molecule such as benzene) are antisymmetric with respect to reflection in the
molecular plane; they are therefore of a different symmetry to the atomic orbitals contributing to
the 6-bonding and may be treated independently.

O O Mirror plane (of molecule)
§ Or Po pr orbital
orbital

2. the Coulomb integrals for all the carbon atoms are assumed to be identical.

i.e. small differences in o-values due to the different chemical environment of C atoms in a

molecule such as N are neglected.

3. all resonance integrals between directly-bonded atoms are assumed to be the same; whilst those
between atoms that are not directly bonded are neglected.

i.e. jq)l.lfl(]) ;dt = B :ifatomsiandj are directly 6-bonded.

0 :ifatoms i andj are non-bonded.

4. all overlap integrals representing the overlap of atomic orbitals centred on different atoms are

neglected.
ie. [o0,ar =0 :ifizj
(note - if i=, then jq)l.q)j .dt =1 since it is assumed that the atomic orbitals are normalized)

6.1



A Closer Look at the Secular Determinant

The basic form of the secular determinant for the bonding arising from the overlap of two orbitals
(from 4.9) is reproduced below.

a, -E ﬁ12
ﬂlz a, -E

For three overlapping orbitals the approach outlined in Chapter 4 leads to a secular determinant of
the form:

of -E ﬁlz ﬁlS
ﬁlz a, -E ﬂza
ﬂ13 ﬁzs o8 -E

From a comparison of the two secular determinants given above, it is becoming clear that all such
secular determinants have a characteristic structure:

1. each row and column may be associated with one of the atomic orbitals; thus the first row and
first column contain information about the nature of orbital 1 and its interactions with the other
orbitals, the second row and second column contain information about the nature of orbital 2 and
its interactions with the other orbitals.

2. The diagonal set of elements (comprised of those elements where row 1 intersects column 1, row
2 intersects column 2, ..... and so on) include the values of the relevant Coulomb integrals
(o, 0y etc.).

3. The off-diagonal elements (comprised of those elements having different row numbers and
column numbers) are equal to the relevant resonance integrals
(e.g. P12 at the intersection of row 1 and column 2)

This structure is summarised below, where the rows and columns have been labelled with numbers
identifying the associated atomic orbital:

Orbital labels
1 2
1 o) — E ﬁ12
- ﬁlz o) — E
Off-diagonal elements On-diagonal elements
consist of the resonance incorporate the Coulomb
integrals; in this instance that integrals for each atom; in this
corresponding to the case that for atom 2.

interaction between orbitals
on atoms 1 & 2 6.2



Linear Conjugated Hydrocarbons

C; Molecules (3-atom chain)

2

NG

Secular Determinant / Equation

2 B oa-FE B =0
3 B oa—E
x 1 0
= I x 1]=0 where x:(a%f)
0 I x
= x(xx-1.1)-11.x-1.0)+0(1.1-x.0) =0
= X —x-x=0
= x=2x=0
= x(x*=2)=0
= x=0 or x=+J2
ie. x=+/2, 0,42
Now E=0-xp
So the energies of the molecular orbitals are:
E=a-2 - Highest Energy
E=«a
E=0+~2.p - Lowest Energy

6.3



The secular equations are:

C1((X—E) + Czﬁ + 0 = 0
ap + o-E) + = 0
0 + Czﬁ + c(—FE) = 0
or, in terms of x,
ci1x + o + 0 = 0 [1]
i + cox + = 0 [2]
0 + ¢ + X = 0 [3]
For x=0 (le. E=a)
[1] = ¢ =0
2] = co + a3 =0 = L = -3

If we now apply the normalisation condition ( 2 cl.2 =1 -see Appendix 2 )

= lal=kl=7;
Le.
—
For x=—/2 (i.e. E=a+\/§.ﬁ )
[1] = [3] = cip —c =0 = c1 = c3
[1] = —\/E.cl +c,=0 = c, =\/5.cl

If we now apply the normalisation condition ( 2 cl.2 =1 - see Appendix 2)

Zciz =cl +c)+c =c] +(\/§c1)2+cf =4c] =1

= C,=Cy=— (=0.500)

1

= =\/5%: (=0.707)

oy

6.4
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For x=+2 (i.e. E:a—ﬁ.ﬁ )
[1] - [3] = co —c =0 = c = o
1] = ﬁ.cl +c,=0 = c, = —\/E.cl

If we now apply the normalisation condition ( Z c,.2 =1 - see Appendix 2)
= ¢, =c;=— (=0.500)

-1
= ¢ =— = —0.707
2 \/E ( )

1.€.

In summary,

Nodes
A
o—1.414p 5
Electron // ( ANTI-BONDING )
Energy //
_// o 1
( NON-BONDING )
3of2p.
o+ 1.414p 0
( BONDING )

< Lectures - examples of bond order and charge distribution calculations for allylic species >

6.5



General Solution (n-atom chain ; e.g. C,H,+2) conjugated polyenes)

2 4 (n—1)

1 2 3 n
1 X 1 0 0 0
2 1 X 1
3 0 1 X
=0
0
X 1
n 0 1 X

Consequently the solutions also have the same basic form, whatever the chain length, and it can be
demonstrated that:

Orbital coefficients: are given by

. [ mks
c, o< sin| —— [4]
n+1
where n -  total number of atoms in the conjugated chain
s - atom number (ie. 1,2,....,n)

k -  quantum number, identifying the MO (= 1,2,....,n)
and the constant of proportionality can be determined by applying the normalisation condition.

Example: consider the highest energy MO ( k= 3 ) of the three carbon chain (7 =3).

. (37125‘)
= ¢, o< sin| —
4

c sin3—ﬂ —L c sin6—ﬁ =-1 c sin 9—ﬂ —L
1 4 \/5 IS 4 > &3 4 \/5

These coefficients are not normalized - to achieve this we need to multiply them all by the same
constant value, chosen to ensure that the new values of the coefficients satisfy the condition that

Zcizzl.

1.€.
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From the general expression for the coefficients given above it can be seen that the relative signs and
sizes can also be visualised using the following trigonometric construction.

Procedure :

1. Draw the n-regularly spaced atoms ( 1, 2, ...., n ) in a straight line and then add two imaginary
atoms (labelled 0 and (n + 1)) at either end of the chain.

2. Sketch portions of sine waves between these two imaginary end atoms, ensuring that the
imaginary end atoms correspond to nodes of the sine wave.

3. The lowest energy MO has no other nodes and corresponds to half a sine wave; the next MO has
one additional node in the middle and corresponds to a complete sine wave; the next MO has two
additional nodes .... and so on.

e.g. for the third MO ( k= 3 ) of the three carbon chain (n=3).

Sinusoidal variation of
1/'\_/ amplitude of orbital
coefficients
1 2 3

Value of s 0 4
[
Real atoms

Orbital energies: are given by

ik

E=0+2pcos| — [5]
n+1

where n -  total number of atoms in the conjugated chain

k - quantum number, identifying the MO (= 1,2, .....,n)

Note that the cosine function varies only between the limiting values of —1 and +1.

1.€. -1 Scos(ﬂ)ﬁ +1
n+l1
hence (@+2B)<E<(x-2p)

Consequently all molecular orbital energies must lie within an energy range of 43, +2f of the
original atomic orbital energy.

Recall also that for an n-atom chain, in which each atom contributes one atomic orbital to the
conjugated m-system, there will be n overlapping atomic orbitals giving rise to n molecular orbitals.
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Since all these MOs are confined to a fixed energy range, it follows that the average energy
separation must decrease as n increases. This is illustrated below in an electron energy diagram
which also shows the electron occupancy (for the neutral molecule) for the first three members of the
series :

Electron energy

(orbital energy)
A

o — Zﬂ B e e e ae— =

LUMO ~---_____ —

“ - =

HOMO ---""7~ —
o+ Zﬂ e mm——

n= 2 3 4 large
Note:

1. As n increases: the HOMO-LUMO separation decreases - consequently the photon energy
required to excite an electron from the HOMO to LUMO also decreases.

1.€. hv = AE = Eyomo — ELumo decreases as n increases.

For conjugated carbon atom chains the photon energy changes from the UV (for small ) to
the visible (large n ). Consequently, molecules with extended conjugated systems are coloured.

2. As n — oo : the separation between any two energy levels decreases towards zero and the
energy levels (although still discrete in principle) effectively merge to give a continuous band
of energy levels. The width of this band is 4 and is therefore determined by the effectiveness
of overlap of the individual atomic orbitals and hence the strength of interaction and the
magnitude of the resonance integral . The system approaches the metallic state - that is to
say that electrical conduction can readily occur (since the HOMO-LUMO separation is
essentially zero) and all wavelengths of visible light are readily absorbed.
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Cyclic Conjugated Hydrocarbons

General Solution (n-atom ring; C,H,, cyclic conjugated hydrocarbons)

1 2 3 n
1 X 1 0 0 1
2 1 X 1
0 X
=0
0
X 1
n 1 1 X

Consequently the solutions also have the same basic form, whatever the ring size, and it can be
demonstrated that the:

Orbital energies: are given by

E:a+2ﬁcos(%) [6]
n
where n -  total number of atoms in the conjugated ring system

k - quantum number, identifying the MO (= 0,1,2,....,n-1)

but, given the periodic and "even" (symmetrical about 8 = 0 ) nature of the cosine function, this
permitted range of k-values may also be written in the form

k=0,%1,%2, ..., [%) forevenn .

k=0,+1,+2, ..., i(”T_l) for odd 7 .

Note that the cosine function varies only between the limiting values of —1 and +1, and because the
cosine function is an even function, the energy depends only on |4] .
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1.e. —-1< cos(z—ﬁk)g +1
n
hence (@+2B)<E<(x-2p)

It is possible to represent equation [6] as a geometrical construction, and this is illustrated below.

Consider n=6 (e.g. C¢Hg - benzene) ; then the expression for E is

E=a+2p cos(%)
where
k=0,%1,%£2, 3 (since n is even).
E 3 Circle of radius 23]
A
-2 +2
o 4r
2
2[|cos| —
| oo %)
-1 o +1
6

Whilst the above diagram highlights the relationship between the geometrical construction and the
equation for £ , it also suggests that the energies of the orbitals may also be obtained using a simpler
construction - namely by drawing the corresponding regular polyhedron (i.e. a hexagon for n = 6)
inscribed inside the circle with one apex coincident with the bottom of the circle.

3
o-2p3
2/ \ +2 o p

>

1\\/“ —
0

o+2p

< Lecture - other examples, e.g. n =3 ,n=5>
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Note : for these cyclic conjugated systems

1. The lowest-energy MO is always non-degenerate

2. The highest-energy MO may be non-degenerate (if # is even) or degenerate (if # is odd).
3. All the remaining solutions form pairs of degenerate MOs

One consequence of this arrangement of the MOs is that only specific numbers of electrons can be
accommodated if a stable molecule is to result - this is embodied in the ....

Hiickel Rule
A stable, closed-shell conjugated cyclic structure is obtained for (4V + 2) electrons.
1.e. stable structures are obtained for 2, 6, 10, .... electrons.

< Lecture - examples of stable cyclic systems >

What are the Wavefunctions ?

The wavefunctions are generally complex (i.e. contain imaginary parts), the exceptions being the
non-degenerate solution(s).

e The MO of lowest energy ( k=0 ) is always non-degenerate ( irrespective of whether » is even or

odd) and has the same coefficient for each and every contributing atomic orbital - there are
therefore no angular nodes in the wavefunction.

e.g. forn==6

Top view Side view
The molecular plane is a nodal plane for all the T-MOs , but for this particular MO there are no

angular nodal planes in the wavefunction and all the interactions between orbitals on adjacent
atoms are of a bonding nature.
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e The highest-energy MO of even n systems is also non-degenerate.

The magnitude of the coefficient is the same for each and every contributing atomic orbital but
the sign changes between adjacent atoms.

e.g.forn==6

In this case there are three angular nodal planes as marked
(---) on the diagram - the wavefunction thus changes sign
between each pair of atoms and all the interactions between

orbitals on adjacent atoms are of an anti-bonding nature.

e The remaining degenerate pairs of solutions are complex wavefunctions but it is possible to
generate completely real linear combinations of these which are still solutions of the Schrodinger
equation with the same energies (in the same way that the p, and p, atomic orbitals may be
constructed from the p; and p_ atomic orbitals).

The coefficients for the real functions are:

ey
s

e.g. forn==6
k=12
k=+1

6.12



5.61 Physical Chemistry Lecture #31 1

HUCKEL MOLECULAR ORBITAL THEORY

In general, the vast majority polyatomic molecules can be thought of as
consisting of a collection of two-electron bonds between pairs of atoms. So
the qualitative picture of 6 and n-bonding and antibonding orbitals that we
developed for a diatomic like CO can be carried over give a qualitative
starting point for describing the C=0 bond in acetone, for example. One
place where this qualitative picture is extremely useful is in dealing with
conjugated systems - that is, molecules that contain a series of alternating
double/single bonds in their Lewis structure like 1,3,5-hexatriene:

NN

Now, you may have been taught in previous courses that because there are
other resonance structures you can draw for this molecule, such as:

that it is better to think of the molecule as having a series of bonds of
order 1 3 rather than 2/1/2/1/.. MO theory actually predicts this
behavior, and this prediction is one of the great successes of MO
theory as a descriptor of chemistry. In this lecture, we show how even a
very simple MO approximation describes conjugated systems.

Conjugated molecules of tend fo be planar, so that we can place all the atoms
in the x-y plane. Thus, the molecule will have reflection symmetry about the
Z-axis:
A
z

Now, for diatomics, we had reflection symmetry about x and y and this gave
rise to myx and m, orbitals that were odd with respect to reflection and ¢
orbitals that were even. In the same way, for planar conjugated systems the
orbitals will separate into ¢ orbitals that are even with respect to reflection
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and m; orbitals that are odd with respect to reflection about z. These =,

orbitals will be linear combinations of the p, orbitals on each carbon atom:
A

4

In trying to understand the chemistry of these compounds, it makes sense
to focus our attention on these m, orbitals and ignore the c orbitals. The =,
orbitals turn out o be the highest occupied orbitals, with the ¢ orbitals
being more strongly bound. Thus, the forming and breaking of bonds - as
implied by our resonance structures - will be easier if we talk about making
and breaking © bonds rather than 6. Thus, at a basic level, we can ignore the
existence of the c-orbitals and deal only with the m-orbitals in a qualitative
MO theory of conjugated systems. This is the basic approximation of
Hiickel theory, which can be outlined in the standard 5 steps of MO theory:

1) Define a basis of atomic orbitals. Here, since we are only interested
in the m, orbitals, we will be able to write out MOs as linear
combinations of the p, orbitals. If we assume there are N carbon
atoms, each contributes a p, orbital and we can write the 4™ MOs as:

N

u“o_ uoi

T __Ezcipz
i=1

2) Compute the relevant matrix representations. Hiickel makes some
radical approximations at this step that make the algebra much
simpler without changing the qualitative answer. We have to compute
two matrices, H and S which will involve integrals between p, orbitals
on different carbon atoms:

HU:J-pi H pldr S;j:'[Pi pldt
The first approximation we make is that the p, orbitals are
orthonormal. This means that:
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Equivalently, this means S is the identity matrix, which reduces our
generalized eigenvalue problem o a normal eigenvalue problem

Hec” =E,Se¢” = Hee=E,”
The second approximation we make is to assume that any Hamiltonian
integrals vanish if they involve atoms i,j that are not nearest
neighbors. This makes some sense, because when the p, orbitals are
far apart they will have very little spatial overlap, leading to an
integrand that is nearly zero everywhere. We note also that the
diagonal (i=j) terms must all be the same because they involve the
average energy of an electron in a carbon p, orbital:

H, =Ipi A pldr=a

Because it describes the energy of an electron on a single carbon, ais
often called the on-site energy. Meanwhile, for any two nearest
neighbors, the matrix element will also be assumed to be constant:

H, = '[p’ H pldt=B  ijneigbors
This last approximation is good as long as the C-C bond lengths in the
molecule are all nearly equal. If there is significant bond length
alternation (e.g. single/double/single...) then this approximation can be
relaxed to allow 5 to depend on the C-C bond distance. As we will see,
[ allows us to describe the electron delocalization that comes from
multiple resonance structures and hence it is often called a resonance
integral. There is some debate about what the "right” values for the
o, S parameters are, but one good choice is o=-11.2 eV and f=-.7 eV.

3) Solve the generalized eigenvalue problem. Here, we almost always
need to use a computer. But because the matrices are so simple, we
can usually find the eigenvalues and eigenvectors very quickly.

4) Occupy the orbitals according to a stick diagram. At this stage, we
note that from our Np, orbitals we will obtain N orbitals. Further,
each carbon atom has one free valence electron to contribute, for a
total of Nelectrons that will need to be accounted for (assuming the
molecule is neutral). Accounting for spin, then, there will be N/2
occupied molecular orbitals and A/2 unoccupied ones. For the ground
state, we of course occupy the lowest energy orbitals.

5) Compute the energy. Being a very approximate form of MO theory,
Hiickel uses the non-interacting electron energy expression:
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N
Emt = Z E[
i=1

where E; are the MO eigenvalues determined in the third step.

To illustrate how we apply Hiickel in practice, let's work out the energy of
benzene as an example.

6 2
5 3
4
1) Each of the MOs is a linear combination of 6 pz orbitals

¢
cs
6 Cﬂ
p' =2 clp! - =]
i=1 Cy
e
C

2) It is relatively easy to work out the Hamiltonian. It is a 6-by-6 matrix.

The first rule implies that every diagonal element is o
o

o

o

The only other non-zero terms will be between neighbors: 1-2, 2-3, 3-4, 4-5,
5-6 and 6-1. All these elements are equal to S

@ p s
pa p
S| Bsas
pa p
pa p
s B a

All the rest of the elements involve non-nearest neighbors and so are zero:
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a f 0 0 0 B
B a f 0 0 0
Ho| O B @ B 00
00 8 a B 0
00 0 B8 a f
B0 0 0 B8 «a
3) Finding the eigenvalues of H is easy with a computer. We find 4 distinct
energies:
Ee=a-20
E4=E5=0!—,3
E2=Ez=a+f
Ei=a+2p

The lowest and highest energies are non-degenerate. The second/third and
fourth/fifth energies are degenerate with one another. With a little more
work we can get the eigenvectors. They are:

+1 +1 +1 +1 +1 +1

-1 -2 0 0 +2 +1

e L[+l 1|+, 1 (-1 5 1/(-1| , 1|+ , 1]+l
¢ =—— ¢C =— ¢C =—— ¢ =—— ¢ =— ¢ =—

Je| -1 V12| +1 Ja|+1 Jal-1 V12| -1 J6| +1

+1 -2 0 0 -2 +1

-1 +1 -1 -1 +1

Ny ® aY. 0 ‘ @
¥/
[ 2 o‘, P ) . o‘ o%e
~ ' . 0
®® @ /'0’ ‘o @ O

The pictures at the bottom illustrate the MOs by denting positive (negative)
lobes by circles whose size corresponds to the weight of that particular p,
orbital in the MO. The resulting phase pattern is very reminiscent of a
particle on a ring, where we saw that the ground state had no nodes, the
first and second excited states were degenerate (sine and cosine) and had
one node, the third and fourth were degenerate with two nodes. The one
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difference is that, in benzene the fifth excited state is the only one with
three nodes, and it is non-degenerate.
4) There are 6 n electrons in benzene, so we doubly occupy the first 3 MOs:

Ee=a-20
E4=E5= 0!—,3

T
Ei=a+26 _l_T_

5) The Hiickel energy of benzene is then:
E=2E +2E,+2E, =60 +8f

Now, we get to the interesting part. What does this tell us about the
bonding in benzene? Well, first we note that benzene is somewhat more
stable than a typical system with three double bonds would be. If we do
Hiickel theory for ethylene, we find that a single ethylene double bond has
an energy
E—.=20+2p

Thus, if benzene simply had three double bonds, we would expect it fo have a
total energy of

E=3E._.=6a+6f
which is off by 24, We recall that £ is negative, so that the n-electrons in
benzene are more stable than a collection of three double bonds. We call
this aromatic stabilization, and Hiickel theory predicts a similar stabilization
of other cyclic conjugated systems with 4N+2 electrons. This energetic
stabilization explains in part why benzene is so unreactive as compared to
other unsaturated hydrocarbons.

We can go one step further in our analysis and look at the bond order. In
Hiickel theory the bond order can be defined as:

occ

- "
0, = Z ¢ ¢
Hu=l1

This definition incorporates the idea that, if molecular orbital ¢ has a bond
between the i™ and j™ carbons, then the coefficients of the MO on those
carbons should both have the same sign (e.g. we have p;' + p;’). If the orbital
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is antibonding between i and j, the coefficients should have opposite
signs(e.g. we have p;' - p//). The summand above reflects this because
cct >0 if ¢/, ¢/ have same sign
c/'ct <0 if ¢/, ¢/ have opposite sign
Thus the formula gives a positive contribution for bonding orbitals and a
negative contribution for antibonding. The summation over the occupied
orbitals just sums up the bonding or antibonding contributions from all the
occupied MOs for the particular ij-pair of carbons to get the total bond
order. Note that, in this summation, a doubly occupied orbital will appear
twice. Applying this formula to the 1-2 bond in benzene, we find that:

— u=1_u=1 u=2 u=2 H=3 . u=3
O, =2¢; ¢ +2c] ¢y +2c ¢

(G &L E
Vo )\ )T P E S\ s
oli,2 2
6 12 3

Thus, the C; and C; formally appear to share 2/3 of a n-bond [Recall that we
are omitting the c-orbitals, so the total bond order would be 1 2/3 including
the o bonds]. We can repeat the same procedure for each C-C bond in
benzene and we will find the same result: there are 6 equivalent n-bonds,
each of order 2/3. This gives us great confidence in drawing the Lewis

structure we all learned in freshman chemistry:

You might have expected this to give a bond order of 1/2 for each C-C n-
bond rather than 2/3. The extra 1/6 of a bond per carbon comes directly
from the aromatic stabilization: because the molecule is more stable than
three isolated n-bonds by 24, this effectively adds another n-bond to the
system, which gets distributed equally among all six carbons, resulting in an
increased bond order. This effect can be confirmed experimentally, as
benzene has slightly shorter C-C bonds than non-aromatic conjugated
systems, indicating a higher bond order between the carbons.

Just as we can use simple MO theory to describe resonance structures and
aromatic stabilization, we can also use it to describe crystal field and ligand
field states in transition metal compounds and the sp, sp® and sp* hybrid
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orbitals that arise in directional bonding. These results not only mean MO
theory is a useful ool - in practice these discoveries have led to MO theory
becoming part of the way chemists think about molecules.
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1 Introduction

Quantum chemists often find themselves using a computer to solve the Schrodinger
equation for a molecule they want to examine. Nowadays, the computational
methods give, in addition to the answer - total energy, orbital energies, and the
molecular orbitals - a great number of results derived directly from the answer.
These include, for example, bond dipole moments, polarizability, rotational con-
stants, and vibrational frequencies, among many others.

The input data required by the computations may easily be rather complex.
Modern chemists use modelling software to automatically produce input data files
for the computational software. The results are also, usually, a vast numerical
table of data, and interpreting it can be quite complicated. Again, modelling
software comes to the rescue: the numerical data can be easily visualized.

In this work, molecular orbital calculations are executed with a method that al-
lows manual calculations, and the results can be simply represented by drawings.
This method is called the Hiickel Molecular Orbital Method. With this method,
despite its simplicity, reasonably accurate results can be derived, when compared
to the more advanced computational methods of quantum chemistry. These re-
sults include wave functions, energies, atomic charges, and, to some extent, the
bond order. The Hiickel Molecular Orbital Method contains the most fundamen-
tal parts of computational chemistry, and therefore it has a significant role as a
visualizing tool.

2 Theoretical basis

2.1 General

The Hiickel Molecular Orbital Method (HMO) is a very simple calculative process
and it applies only to systems that include conjugated double bonds. Even though
the HMO as a calculative method is only an estimate, it is rather useful and
educational, because the calculations for small molecules can be done manually.

The necessary assumption, here called the Hiickel approximation, is that in canon-
ical structures (conjugated systems) the o- and m-electrons can be considered
separately. For unsaturated molecules, the basic geometry is usually defined by
its sigma bonds and the "spine” they form. The 2p,-orbitals of the molecule are
orthogonal to the spine of the molecule and they form the 7 part of the bonds.
For example, in a benzene molecule, the carbon atoms form o-bonds to their
nearest neighbours through the sp?-hybrid orbitals, which gives rise to a planar



hexagonal shape (figure la). The non-hybridized 2p-orbital of each carbom atom
is orthogonal to the spine of the molecule and can form a m-bond between two
neighbouring carbon atoms, with their respective 2p-orbitals (figure 1b).

Figure 1: The orbitals of a benzene molecule. a) The sp*-orbitals form o-bonds.

b) The delocalized w-bonds.



2.2 Energy levels and molecular orbitals

In the HMO method, every m- molecular orbital, ¥;, is represented by the LCAO
principles, as a linear combination of the molecule’s atomic p-orbitals, ¢;’s:

U, = cinor + cipda + ... + CinOp = Z CinPp (1)
pn=1

These orbitals represent the m-electron behaviour in a field formed by the nu-
clei of the atoms, the shell electrons, and the electrons partaking in o-bonds or
non-bonding pairs. In surroundings like this, the Hamiltonian of a single elec-
tron’s Schrodinger equation becomes very complicated. Let us discard the inter-
electronic interactions by assuming the m-electrons move only in the effective field
formed by the o-bonds. Now we form a single-electron Schrodinger equation that
can be divided for each separate m- molecular orbital

—

Heff\Iji == EZ‘PZ (2)

(Wil HepglWs)
= F; = A i=1.2,.... (3)
The Hamiltonian is an energy operator that gives out energy values. Minimizing
these energies, the LCAO coefficients ¢;, (Equation (1)) can be determined. The
m-electron energy levels of the system can be calculated from Equation (3) by
using the variation principle to minimize the energy eigenvalues relating them to
the atomic orbital coefficients ¢,

0E;
861-“

=0,up=12,...,n. (4)

To calculate the energies F;, two necessary assumptions are made:

1. The atomic orbitals are normalized:

(Dilpi) =1,i=12,....

2. Non-concentric atomic orbitals ¢; and ¢, are orthogonal, and therefore

(D) = 0,0 # jrij=12,....



With the assumptions above, and by substituting molecular orbitals in the form
of Equation (1) into Equation (3), we get for the energies

2
_ Z,u CiuH#u +2 Zu<y Ci,u,ciz/H/u/

E; = :
Zu sz,u,Su/L +2 Z#<V Ciuciusp,u

(5)
The following notation was used in Equation (5) for simplicity:

1. H,, = <¢u|j-]\ |gz$u>, which is the coulomb integral representing the energy of a
m-electron on an atomic orbital ¢,.

2.H, = <<;5M|1EI\ \(;S,,>, when p # v, is the resonance integral representing the elec-
tronic interactions of the electrons on an atomic orbital.

3. S, = (¢ul¢v), which is the overlap integral of two different atomic orbitals.

Now, by differentiating the energy with respect to the coefficients ¢;, and finding
the points where the derivative is zero, we get a system of equations comprised
of n equations.

> oo (Huw—ESW)=0,pu=1,...n (6)
v=1

The system of equations has, in addition to trivial solution, other solutions if the
secular determinant formed from the coefficients equals to zero.

Hll_ESH H12_E512 Hln_Esln
H21 _'ES21 H22 _'ESQQ H2n _ES2n —0 (7)
Hnl - ESnl -Hn2 - ESn2 e Hnn - ESTL'(Z

To simplify these secular Equations (6), the following approximations are made
in the HMO Method:

1. The coulomb integrals H,, are equal for all carbon atoms (= a<0).
2. The resonance integral H,, is a constant § < 0, when atoms p and v are

bonded.
3. The resonance integral H,,, = 0 when there is no bond between atoms p and



V.
4. It is assumed that the orbitals of neighbouring atoms do not overlap, therefore
S =0and S, = 1.

After the following, the secular determinant in Equation (7) gets the form

(a - E) 512 to ﬁln
5:21 (a — L) : ﬁ?n _o, ®
ﬁnl ﬁn2 Tt (Oé - E)

where 3,, = 3, when p and v are bonded and (3, = 0 when there is no bond
between p and v.

When the energies have been calculated through the secular determinant, the
m-electrons are placed on the energy levels; according to the Pauli principle. On
the degenerate energy levels, the Hund rule is applied, placing as many electrons
with parallel spins as possible. The molecule has degenerate energy levels when
Equation (8) has multiple root solutions. The method presented represents the
principle atoms are formed by. The total energy of the molecule can, in this
simplified case, be calculated as the sum of the energies of the occupied molecular
orbitals.

When calculating for a hydrocarbon molecule, the energy difference between a
structure where the m-electrons are delocalized and the structure where they are
localized, is called the delocalization energy. Usually, the values of the delocal-
ization energy tell of the stability of the delocalized electronic structure.

Because of the simplicity of the Hiickel model, and the Hamiltonian being un-
affected by bond lengths and angles, the model does not tell anything of the
molecule’s structure. Through the model it is possible, however, to determine the
energetically most favorable structure, if there are known alternative structures.
Because only the bond locations with respect to one another are considered, the
model is topological. The matrix representation of the secular equations is called
the topological matrix.

2.3 m-electron density and bond order

The molecular orbitals represent the distribution of electrons in the molecule. The
shape of the orbital indicates the reaction mechanisms taking place in substitution
reactions. The squares and the products of the coefficients can be used to calculate



useful quantities of the molecule, and to get an impression of the molecule’s
properties given by the model.

If the expression of the ith HMO is written in the form of Equation (1), the square
of this expression is a quantity describing the electron occurrence probability, i.e.
the electron density on the molecular orbital in question:

(i) => e, (9)

because it was assumed that the overlap integrals are zero when the atoms are not
the same. The squares of the coefficients ¢;, are the Hiickel molecular orbital elec-
tron densities. If the squares of the coefficients are summed up over all occupied
molecular orbitals, the total electron density for the atom p can be calculated
from

occ.

qp = ancg;u (10)

where n, is the amount of electrons on the orbital r. For every electrically neutral
carbon atom, there is one m-electron in the molecule.

When the atoms p and v are bonded, their bond strength can de described by so
called bond order

occ.

Puv = ancrucrm (11)

where the sum is again over all occupied molecular orbitals. The bond order tells
of the electron density between the bonded atoms p and v.

These properties have spectroscopic applications, for example in EPR (Electron
paramagnetic resonance) spectroscopy. In EPR, the coupling between the pair-
less electron and the nuclei can be reduced into the spin density at the atom
in question. Also for carbon-NMR spectra, the chemical transitions have been
discovered to follow the order of magnitude of the atomic charges.



3 Examples

3.1 Butadiene

First we shall look at butadiene, C(1)=C(2)-C(3)=C(4), and how it behaves under
the HMO method. First, finding the secular equations. Butadiene has four carbon
atoms, so a system of four equations and a 4 x 4 secular determinant is formed.
The secular equations can be written using Equation (6) with the simplifying
assumptions. For example, for the first carbon atom (u = 1):

C1(H11 — ESH) + CQ(HlQ — E512) + 03(H13 — E513> + C4(H14 — ESM) =0

=c(a—FE)+c(f—Ex0)+c(0—-Ex0)+c(0—-Ex0)=0
=clla—E)+cf=0

Respectively, for the other carbon atoms (u = 2,3,4), so the system of equations
for butadiene is

(a0 — E)ey +0cy =0
ﬁcl —{—(CE - E)CQ +ﬁ03 - (12)
Bes +(a — E)es +0cy =0

Bes +(a—FE)es =0

Let’s form a smaller determinant by dividing all equations with [ and assigning

T = %, so the secular equations get the form
G e =0
C1 +xco Hc3 =
Co +xcs H+cyg = 0’ (13)
4+c3 4xey =0
of which the determinant is
z 1 0 0
1 = 1 0
01 » 11— 0. (14)
00 1 =z

The secular determinant (14) is easy to write directly without solving the system
of equations. The number of atoms on the spine of the molecule determines the



size of the determinant. In the case of butadiene, a 4 x 4 determinant is formed,
and i.e. for benzene, the secular determinant would be 6 x 6. The elements a;;
of the determinant can be found with the above x-substitution written onto the
diagonal, and the other elements being determined according the bonding in the
molecule’s spine.

Let’s review the secular determinant of butadiene (Equation 14). The diagonal
will be marked as z. For the first row, the other elements come from the bonding
of the first carbon atom:

o C(1) bonds with C(2) — element a5 =1

o C(1) doesn’t form a bond with C(3) or C(4) — element a;3 = a14 =0
Respectively for the second row:

o C(2) bonds with C(1) and C(3) — element ay; = ags = 1

o C(2) doesn’t form a bond with C(4) — element agy = 0.

This way, by only considering the bonding of the atoms in the molecule’s spine,
the molecular secular determinant can be formed. And, by advancing through

Equations (12)-(14) in reverse order, the molecular secular equations can also be
found.

The next step is to solve Equation (14), to get the energies and the coefficients.
By unwrapping the determinant,

, 3+5

=3 +1=0=2"= 5

r = £1.618,0r x = £0.618.

From above, the notation x = % was used, so the energies can be calculated

directly from there. The energies are ' = a + 0.6183 and E = o 4+ 1.61873. The
molecular orbital coefficients ¢;, are found by directly substituting one of the
solutions for z into Equation (13), giving the system of equations

—161801 +cCo =0
C1 —1.61862 +cs3 =
Co —161863 +cCyq =0 (15)
+c3 —1.618¢cs =0
from which the conditions for the coefficients are determined:
1.61801 = C2
C3 == 161802 — C1 = 161861 (16)
Cy = C1



From the normalization, ¢ + ¢3 + ¢3 + ¢ = 1, which finally gives ¢; = £0.37.

Because the sign of the wave function does not matter, the positive solution is
selected, which gives the values ¢; = 0.37, ¢o = 0.60, ¢3 = 0.60 and ¢4 = 0.37 for
the coefficients.

Therefore, the expression for the molecular orbital ¥, is

U, = 0.37¢; + 0.60¢ + 0.6005 + 0.37¢4; By = o + 1.6188. (17)

Respectively, for the other three molecular orbitals

\112 = O60§b1 +037¢2 —037¢3 —0.609254; EQ = o+ O618ﬂ
Uy = 0.60¢; —0.37¢s —0.37¢5 +0.60ds E;=a —0.6183 (18)
\114 = O37¢1 —060¢2 +060¢3 —0.37¢4; E4 =0 — 1618ﬁ

Let’s draw the energy level diagram for butadiene, place the four m-electrons on
the lowest energy levels, and sketch the molecular orbitals.

The total m-electron energy for butadiene is the sum of the molecular orbital
energies, 4o +4.4472(. If butadiene didn’t have energy delocalization, the system
would comprise of two ethene units. The binding molecular orbital energy for
ethene is o + 3 [1], and therefore the energy difference

E,(butadiene) — 2 x E.(ethene) = 0.472( (19)

is the delocalization energy. If for § we use the value —75 %, the delozalization
energy for butadiene is about —35 %, which is the extent of the stability of
butadiene when compared to a structure with two non-conjugated double bonds.
The stabilization is the consequence of m-electrons delocalizing over the whole

carbon spine.

Let us calculate the m-electron densities and bond orders for butadiene. The total
energy density can be calculated from Equation (10), which gives for butadiene
¢1 = ¢2 = 1.00. Because of symmetry, the atoms 3 and 4 have the same charges
as the atoms 1 and 2, so the m-electron density is one on every atom. This means
that an electron can be found with equal probability next to any of the four
atoms.

The bond orders can be calculated from Equation (11). For butadiene, p1o =
p3s = 0.89 and po3 = 0.45. According to the bond orders, butadiene has double
bond character between atoms C(1) and C(2), and between C(3) and C(4).



E,=o—1.618p

T l E,= o+ 0.618p

T l E,=a+ 1.618J3

Figure 2: The energy levels of butadiene and the Hiickel molecular orbitals.

3.2 Cyclopropenyl

As another example, let us examine cyclopropenyl, and find the energy levels
and molecular orbitals. First, let us write the secular determinant, with the same
choice for x as previously:

— = 8

1 1
x 1]. (20)
1 z

Solving for the energies, we get By = a + 20, Fo = a+ [ and E3 = a+ (5. We
get three energy levels, of which two are degenerate. Cyclopropenyl has three m-
electrons, of which two are to be placed on the lowest energy level with opposite
spins and the third going to the energy level E5. Therefore, the total m-electron
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energy for cyclopropenyl is E, = 3a+303. The secular equations for cyclopropenyl
are

xrc +co +c3 = 0
c1 t+xcs +e3 =0 (21)
¢, 4c H+zes =0

Substituting the z’s we solved earlier into the secular equations, the coefficients
for the molecular orbitals can be calculated. This results in ¢; = ¢ = ¢3, and
from the normalization, ¢; = :I:%. Therefore, for the first molecular orbital, for
r1 = -2

0, (22)

1 1 1
= —=01 + —F=¢2 + —=¢3.
VARV e
For the second molecular orbital, zo = 1, the situation is a bit more complicated,

because of the degeneration of the orbital energies. By substituting it into the
secular equations, three similar equations will be gotten, for which ¢;4+co+c3 = 0.

For degenerate orbitals, the molecular orbital theory does not give separate so-
lutions for the coefficients. They can be chosen freely, as long as they follow the
orthogonality rule of the secular equations. For the second molecular orbital of
cyclopropenyl, W, it can simply be chosen that ¢; = ¢;, co = 0 and ¢3 = —¢;.
Again, through the normalization, ¢; = %, and for the molecular orbital

Uy (23)

1 1
= — + e ,
V2 P V2 bs
which is orthogonal to ¥;. In finding the third molecular orbital, V3 we can-

not choose the coefficients freely anymore, but the orthogonality rules must be
followed:

(U3|Wy) =0, (V3|Ty) = 0. (24)
For the third molecular orbital, through Equation (1),

1

(W3]Wy) = 7 (101 + c202 + c303|P1 — ¢P3)
1 1
= ﬁcl — ECB = 0,
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S0 ¢; = c3. Substitute this into the secular equation, which gives ¢c; = —2¢;. From
normalization, ¢; = =c3and ¢y = —%. Therefore the third molecular orbital
for cyclopropenyl is

sk

1 2 1
Vs = %Cbl - %sz + %92537 (25)

which is orthogonal also with W;.

3.3 Heteroatoms

The HMO method can be expanded to heteroatomic systems. In this case, for
heteroatom X, in place of the coulombic integral a = a¢, and the resonance
integral 0 = foc we'll use

{ a, = oo+ hBec

Bre = kroBoc (26)

where the constants h, and kg, are dependent of the heteroatom and the bond
between the two atoms. Some values for these constants for different heteroatoms
can be found in Table 1.

As an example, let us form the secular determinant of C(1)Hy=C(2)=0(3):

a—F I} 0
ﬂ a—F ﬂco (27)
0 Bco ao—FE

Table 1: Values for the heteroatomic constants h, and kg,
Atom X | h, | bond R-X | kg,

N- 0.5 C-N 0.8
N= 1.5 C=N 1.0
N+ 2.0 N-O 0.7
O- 1.0 C-0O 0.8
O= 2.0 C=0 1.0

By using the constants in Table 1, we’ll get

12



ap =a+2.008
, 28
{ Beo =100 (28)
where @ = a¢ and 8 = [cc. The secular determinant is therefore
a—F I} 0
I} a—F 1,06 =0, (29)
0 1.0 a—FE+203
which gives with the same method as previously
z 1 0
1 =z 1,0 =0, (30)
0 1.0 x+208

which can be solved as before.

4 Calculations and results

First, manually calculate, for a small molecule given to you by the assistant,
the m-electron energies, the orbital coefficients ¢;,, m-electron densities and bond
orders for each atom and bond. In the report, a sufficient amount of intermediate
steps in calculations must be provided, in addition to written comments about
the steps made. Discuss and comment on the results.

Then, draw an energy level diagram, and place the m-electrons according to rules
and principles. Sketch the molecular orbitals, taking note on the signs.
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