
















6.1

6 Hückel Theory

This theory was originally introduced to permit qualitative study of the π-electron systems in planar,
conjugated hydrocarbon molecules (i.e. in "flat" hydrocarbon molecules which possess a mirror
plane of symmetry containing all the carbon atoms, and in which the atoms of the carbon skeleton
are linked by alternating double and single carbon-carbon bonds when the bonding is represented in a
localised fashion).  It is thus most appropriate for molecules such as benzene or butadiene, but the
approach and concepts have wider applicability.

Basic Assumptions

1. the atomic orbitals contributing to the π-bonding in a planar molecule (e.g. the so-called pπ

orbitals in a molecule such as benzene) are antisymmetric with respect to reflection in the
molecular plane; they are therefore of a different symmetry to the atomic orbitals contributing to
the σ-bonding and may be treated independently.

2. the Coulomb integrals for all the carbon atoms are assumed to be identical.

i.e. small differences in α-values due to the different chemical environment of C atoms in a
molecule such as                               are neglected.

3. all resonance integrals between directly-bonded atoms are assumed to be the same; whilst those
between atoms that are not directly bonded are neglected.

i.e. ∫ τφφ dH ji .ˆ =  β : if atoms i and j are directly σ-bonded.

=  0 : if atoms i and j are non-bonded.

4. all overlap integrals representing the overlap of atomic orbitals centred on different atoms are
neglected.

i.e. ∫ τφφ dji . =  0 : if  i ≠ j

(note -  if  i = j  then  ∫ τφφ dji . =  1  since it is assumed that the atomic orbitals are normalized)

Mirror plane (of molecule)

pπ  orbitals  or  pσ

orbital



6.2

A Closer Look at the Secular Determinant

The basic form of the secular determinant for the bonding arising from the overlap of two orbitals
(from 4.9) is reproduced below.
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For three overlapping orbitals the approach outlined in Chapter 4 leads to a secular determinant of
the form:
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From a comparison of the two secular determinants given above, it is becoming clear that all such
secular determinants have a characteristic structure:

1. each row and column may be associated with one of the atomic orbitals; thus the first row and
first column contain information about the nature of orbital 1 and its interactions with the other
orbitals, the second row and second column contain information about the nature of orbital 2 and
its interactions with the other orbitals.

2. The diagonal set of elements (comprised of those elements where row 1 intersects column 1, row
2 intersects column 2, ….. and so on) include the values of the relevant Coulomb integrals
(α1 , α2 etc.).

3. The off-diagonal elements (comprised of those elements having different row numbers and
column numbers) are equal to the relevant resonance integrals
(e.g.  β12 at the intersection of row 1 and column 2)

This structure is summarised below, where the rows and columns have been labelled with numbers
identifying the associated atomic orbital:
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Off-diagonal elements
consist of the resonance

integrals; in this instance that
corresponding to the

interaction between orbitals
on atoms 1 & 2

On-diagonal elements
incorporate the Coulomb

integrals for each atom; in this
case that for atom 2.

Orbital labels



6.3

Linear Conjugated Hydrocarbons

C3 Molecules  (3-atom chain)

Secular Determinant / Equation

1 2 3

1 α – E β 0

2 β α – E β

3 0 β α – E

⇒
β

α )(      where          0
10

11
01

Ex
x

x
x

−==

⇒             0)0.1.1(0)0.1.1(1)1.1.( =−+−−− xxxxx

⇒             03 =−− xxx

⇒             023 =− xx

⇒             0)2( 2 =−xx

⇒ 0=x or 2±=x

i.e. 2  ,  0    ,  2 −+=x

Now βα xE −=

So the energies of the molecular orbitals are:

βα .2−=E -  Highest Energy
α=E

βα .2+=E -  Lowest Energy

1 3
2

=  0
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The secular equations are:

c1(α – E) +      c2β +       0 = 0
    c1β +   c2(α – E) +     c3β = 0
      0 +      c2β +  c3(α – E) = 0

or, in terms of  x ,
     c1x +     c2 +       0 = 0 [1]
      c1 +   c2x +      c3 = 0 [2]
      0 +     c2 +     c3x = 0 [3]

For   x = 0 (i.e. E  =  α  )

[1]  ⇒ c2   =   0

[2]  ⇒ c1   +   c3   =   0 ⇒ c1   =   – c3

If we now apply the normalisation condition  ( 12 =∑ ic     - see Appendix 2 )

⇒
2

1
31 == cc

i.e.

For  2−=x (i.e. βα .2+=E   )

[1]  –  [3] ⇒ c1   –   c3   =   0 ⇒ c1   =   c3

[1]  ⇒ 0.2 21 =+− cc ⇒ 12 .2 cc =

If we now apply the normalisation condition  ( 12 =∑ ic   -  see Appendix 2)
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31 == cc ( = 0.500)

⇒
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1.22 ==c ( = 0.707)
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i.e.

For  2+=x (i.e. βα .2−=E   )

[1]  –  [3] ⇒ c1   –   c3   =   0 ⇒ c1   =   c3

[1]  ⇒ 0.2 21 =+ cc ⇒ 12 .2 cc −=

If we now apply the normalisation condition  ( 12 =∑ ic   -  see Appendix 2)

⇒
2
1

31 == cc ( = 0.500)

⇒
2
1

2
−=c ( =  – 0.707)

i.e.

In summary,
Nodes

2

1

0

< Lectures - examples of bond order and charge distribution calculations for allylic species >

Electron
Energy

3 of 2pz

α – 1.414 β
( ANTI-BONDING )

α + 1.414 β
( BONDING )

α
( NON-BONDING )
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General Solution  (n-atom chain ;  e.g.   CnH(n+2) conjugated polyenes)

The secular determinant has the same basic form, whatever the chain length, as illustrated below:

1 2 3 n

1 x 1 0 0 … 0

2 1 x 1

3 0 1 x

0

x 1

n 0 … … … 1 x

Consequently the solutions also have the same basic form, whatever the chain length, and it can be
demonstrated that:

Orbital coefficients:   are given by








+
∝

1
sin

n
kscs

π [4]

where n  - total number of atoms in the conjugated chain
s  - atom number   ( i.e.  1, 2, …., n )
k  - quantum number, identifying the MO   ( =  1, 2, …., n )

and the constant of proportionality can be determined by applying the normalisation condition.

Example: consider the highest energy MO ( k = 3 ) of the three carbon chain ( n = 3 ).

⇒ 




∝

4
3sin scs
π

i.e.

2
1

4
3sin1 =





∝ πc    ,   1

4
6sin2 −=





∝ πc    ,   

2
1

4
9sin3 =





∝ πc

These coefficients are not normalized - to achieve this we need to multiply them all by the same
constant value, chosen to ensure that the new values of the coefficients satisfy the condition that

12 =∑ ic .

1                   3                                        n

2                   4               (n – 1)

=  0
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From the general expression for the coefficients given above it can be seen that the relative signs and
sizes can also be visualised using the following trigonometric construction.

Procedure :

1. Draw the n-regularly spaced atoms ( 1, 2, …., n ) in a straight line and then add two imaginary
atoms (labelled  0  and (n + 1) ) at either end of the chain.

2. Sketch portions of sine waves between these two imaginary end atoms, ensuring that the
imaginary end atoms correspond to nodes of the sine wave.

3. The lowest energy MO has no other nodes and corresponds to half a sine wave; the next MO has
one additional node in the middle and corresponds to a complete sine wave; the next MO has two
additional nodes  …. and so on.

e.g.  for the third MO ( k = 3 ) of the three carbon chain ( n = 3 ).

Orbital energies:   are given by








+
+=

1
cos2

n
kE πβα [5]

where n  - total number of atoms in the conjugated chain
k  - quantum number, identifying the MO   ( =  1, 2, …., n )

Note that the cosine function varies only between the limiting values of –1 and +1.

i.e.  1
1

cos1 +≤






+
≤−

n
kπ

hence )2()2( βαβα −≤≤+ E

Consequently all molecular orbital energies must lie within an energy range of  4β ,   ±2β of the
original atomic orbital energy.

Recall also that for an n-atom chain, in which each atom contributes one atomic orbital to the
conjugated π-system, there will be n overlapping atomic orbitals giving rise to n molecular orbitals.

Value of  s       0            1            2           3           4

Real atoms

Sinusoidal variation of
amplitude of orbital
coefficients
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Since all these MOs are confined to a fixed energy range, it follows that the average energy
separation must decrease as n increases.  This is illustrated below in an electron energy diagram
which also shows the electron occupancy (for the neutral molecule) for the first three members of the
series :

Note:

1. As  n  increases:  the HOMO-LUMO separation decreases - consequently the photon energy
required to excite an electron from the HOMO to LUMO also decreases.

i.e. hν  =  ∆E  =  EHOMO  –  ELUMO   decreases as  n  increases.

For conjugated carbon atom chains the photon energy changes from the UV (for small n ) to
the visible (large n ).  Consequently, molecules with extended conjugated systems are coloured.

2. As  n  →  ∞  :  the separation between any two energy levels decreases towards zero and the
energy levels (although still discrete in principle) effectively merge to give a continuous band
of energy levels.  The width of this band is 4β and is therefore determined by the effectiveness
of overlap of the individual atomic orbitals and hence the strength of interaction and the
magnitude of the resonance integral β .  The system approaches the metallic state - that is to
say that electrical conduction can readily occur (since the HOMO-LUMO separation is
essentially zero) and all wavelengths of visible light are readily absorbed.

Electron energy
(orbital energy)

α – 2β 

α + 2β 

α  

n =     2                   3                  4                                                        large

HOMO

LUMO
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Cyclic Conjugated Hydrocarbons

General Solution  (n-atom ring ;     CnHn , cyclic conjugated hydrocarbons)

The secular determinant has the same basic form, whatever the ring size, as illustrated below:

1 2 3 n

1 x 1 0 0 … 1

2 1 x 1

3 0 1 x

0

x 1

n 1 … … … 1 x

Consequently the solutions also have the same basic form, whatever the ring size, and it can be
demonstrated that the:

Orbital energies:   are given by






+=

n
kE πβα 2cos2 [6]

where n  - total number of atoms in the conjugated ring system
k  - quantum number, identifying the MO   ( =  0, 1, 2, …., n–1 )

but, given the periodic and "even" (symmetrical about θ = 0 ) nature of the cosine function, this
permitted range of k-values may also be written in the form

k  =  0, ±1, ±2, …., 






2
n for even n .

k  =  0, ±1, ±2, …., 




 −±

2
1n for odd n .

Note that the cosine function varies only between the limiting values of –1 and +1, and because the
cosine function is an even function, the energy depends only on  |k| .

=  0

1

n                            2

n – 1 3
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i.e.  12cos1 +≤




≤−

n
kπ

hence )2()2( βαβα −≤≤+ E

It is possible to represent equation [6] as a geometrical construction, and this is illustrated below.

Consider  n = 6  ( e.g.  C6H6  -  benzene) ; then the expression for  E  is






+=

6
2cos2 kE πβα

where
k  =  0, ±1, ±2,  3 (since n is even).

Whilst the above diagram highlights the relationship between the geometrical construction and the
equation for E , it also suggests that the energies of the orbitals may also be obtained using a simpler
construction - namely by drawing the corresponding regular polyhedron (i.e. a hexagon for n = 6)
inscribed inside the circle with one apex coincident with the bottom of the circle.

< Lecture - other examples, e.g. n = 3 , n = 5 >

0

+1–1

+2–2

3E

α

Circle of radius  |2β|








6
2cos2 πβ

6
2π

6
4π

0

+1–1

+2–2

3

 α + 2β

 α + β

 α – 2β

 α – β

α

E
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Note : for these cyclic conjugated systems
1. The lowest-energy MO is always non-degenerate
2. The highest-energy MO may be non-degenerate (if n is even) or degenerate (if n is odd).
3. All the remaining solutions form pairs of degenerate MOs

One consequence of this arrangement of the MOs is that only specific numbers of electrons can be
accommodated if a stable molecule is to result - this is embodied in the ….

     Hückel Rule

A stable, closed-shell conjugated cyclic structure is obtained for (4N + 2) electrons.

i.e. stable structures are obtained for  2, 6, 10, ….  electrons.

< Lecture - examples of stable cyclic systems >

What are the Wavefunctions ?

The wavefunctions are generally complex (i.e. contain imaginary parts), the exceptions being the
non-degenerate solution(s).

• The MO of lowest energy ( k = 0 ) is always non-degenerate ( irrespective of whether n is even or
odd) and has the same coefficient for each and every contributing atomic orbital - there are
therefore no angular nodes in the wavefunction.

e.g. for n = 6

     Top view         Side view

The molecular plane is a nodal plane for all the π-MOs , but for this particular MO there are no
angular nodal planes in the wavefunction and all the interactions between orbitals on adjacent
atoms are of a bonding nature.
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• The highest-energy MO of even n systems is also non-degenerate.

The magnitude of the coefficient is the same for each and every contributing atomic orbital but
the sign changes between adjacent atoms.

e.g. for n = 6

In this case there are three angular nodal planes as marked
(---) on the diagram - the wavefunction thus changes sign
between each pair of atoms and all the interactions between
orbitals on adjacent atoms are of an anti-bonding nature.

• The remaining degenerate pairs of solutions are complex wavefunctions but it is possible to
generate completely real linear combinations of these which are still solutions of the Schrödinger
equation with the same energies (in the same way that the px and py atomic orbitals may be
constructed from the p+ and p– atomic orbitals).

The coefficients for the real functions are:

s
s

k n
ks φπψ .2cos∑ 










∝+

s
s

k n
ks φπψ .2sin∑ 










∝−

e.g. for n = 6

k = ±1

s = 0

k = ±2

s = 0
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HÜCKEL MOLECULAR ORBITAL THEORY


In general, the vast majority polyatomic molecules can be thought of as 
consisting of a collection of two­electron bonds between pairs of atoms. So 
the qualitative picture of σ and π­bonding and antibonding orbitals that we 

developed for a diatomic like CO can be carried over give a qualitative 
starting point for describing the C=O bond in acetone, for example. One 
place where this qualitative picture is extremely useful is in dealing with 

conjugated systems – that is, molecules that contain a series of alternating 
double/single bonds in their Lewis structure like 1,3,5­hexatriene: 

Now, you may have been taught in previous courses that because there are

other resonance structures you can draw for this molecule, such as: 

that it is better to think of the molecule as having a series of bonds of 
order 1 ½ rather than 2/1/2/1/… MO theory actually predicts this 

behavior, and this prediction is one of the great successes of MO 
theory as a descriptor of chemistry. In this lecture, we show how even a 

very simple MO approximation describes conjugated systems. 

Conjugated molecules of tend to be planar, so that we can place all the atoms 

in the x­y plane. Thus, the molecule will have reflection symmetry about the 
z­axis: 

z 

Now, for diatomics, we had reflection symmetry about x and y and this gave 

rise to πx and πy orbitals that were odd with respect to reflection and σ 

orbitals that were even. In the same way, for planar conjugated systems the 
orbitals will separate into σ orbitals that are even with respect to reflection 
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and πz orbitals that are odd with respect to reflection about z. These πz 

orbitals will be linear combinations of the pz orbitals on each carbon atom: 

z 

In trying to understand the chemistry of these compounds, it makes sense 
to focus our attention on these πz orbitals and ignore the σ orbitals. The πz 

orbitals turn out to be the highest occupied orbitals, with the σ orbitals 

being more strongly bound. Thus, the forming and breaking of bonds – as 
implied by our resonance structures – will be easier if we talk about making 
and breaking π bonds rather than σ. Thus, at a basic level, we can ignore the 

existence of the σ­orbitals and deal only with the π­orbitals in a qualitative 
MO theory of conjugated systems. This is the basic approximation of 

Hückel theory, which can be outlined in the standard 5 steps of MO theory: 

1) Define a basis of atomic orbitals. Here, since we are only interested 

in the πz orbitals, we will be able to write out MOs as linear 
combinations of the pz orbitals. If we assume there are N carbon 
atoms, each contributes a pz orbital and we can write the µ th MOs as: 

N 

π µ = ∑ci 
µ 

pz

i 

i=1 

2) Compute the relevant matrix representations. Hückel makes some 
radical approximations at this step that make the algebra much 

simpler without changing the qualitative answer. We have to compute 
two matrices, H and S which will involve integrals between pz orbitals 
on different carbon atoms: 

H p H p d = p d τ
ij = ∫ z

i ˆ 
z

j τ S
ij ∫ pz

i 
z

j 

The first approximation we make is that the pz orbitals are 
orthonormal. This means that: 

⎧1     i = j 
S

ij = ⎨ 
⎩0  i ≠ j 
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Equivalently, this means S is the identity matrix, which reduces our 
generalized eigenvalue problem to a normal eigenvalue problem 

i α = EαS c i µ ⇒ H c µ = Eµc
µ

H c i 

The second approximation we make is to assume that any Hamiltonian 

integrals vanish if they involve atoms i,j that are not nearest 
neighbors. This makes some sense, because when the pz orbitals are 
far apart they will have very little spatial overlap, leading to an 

integrand that is nearly zero everywhere. We note also that the 
diagonal (i=j) terms must all be the same because they involve the 
average energy of an electron in a carbon pz orbital: 

H = p H p dτ ≡ α
ii ∫ z

i ˆ 
z

i 

Because it describes the energy of an electron on a single carbon, α is 
often called the on­site energy. Meanwhile, for any two nearest 

neighbors, the matrix element will also be assumed to be constant: 

H = p Ĥ p dτ ≡β i,j neigbors 
ij ∫ z

i 
z

j 

This last approximation is good as long as the C­C bond lengths in the 
molecule are all nearly equal. If there is significant bond length 
alternation (e.g. single/double/single…) then this approximation can be 

relaxed to allow β to depend on the C­C bond distance. As we will see, 
β allows us to describe the electron delocalization that comes from 
multiple resonance structures and hence it is often called a resonance 

integral. There is some debate about what the “right” values for the 
α, β parameters are, but one good choice is α=­11.2 eV and β=­.7 eV. 

3) Solve the generalized eigenvalue problem. Here, we almost always 

need to use a computer. But because the matrices are so simple, we 
can usually find the eigenvalues and eigenvectors very quickly. 

4) Occupy the orbitals according to a stick diagram. At this stage, we 

note that from our N pz orbitals we will obtain N π orbitals. Further, 
each carbon atom has one free valence electron to contribute, for a 
total of N electrons that will need to be accounted for (assuming the 

molecule is neutral). Accounting for spin, then, there will be N/2 
occupied molecular orbitals and N/2 unoccupied ones. For the ground 

state, we of course occupy the lowest energy orbitals. 
5) Compute the energy. Being a very approximate form of MO theory, 

Hückel uses the non­interacting electron energy expression: 
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N 

Etot = ∑Ei 
i=1 

where Ei are the MO eigenvalues determined in the third step. 

To illustrate how we apply Hückel in practice, let’s work out the energy of 
benzene as an example. 

1 

2 

35 

6 

4 

1) Each of the MOs is a linear combination of 6 pz orbitals 

⎛ cµ ⎞ 
⎜ 

1 

µ ⎟ 
⎜ c2 ⎟ 

6 ⎜ cµ ⎟ 
ψ µ = ∑c

µ 
pz

i → c
µ = ⎜ 3 

µ ⎟i 
i=1	 ⎜ c4 ⎟ 

⎜ cµ ⎟ 
⎜ 5 ⎟⎜ µ ⎟
⎝ c6 ⎠ 

2) It is relatively easy to work out the Hamiltonian. It is a 6­by­6 matrix. 
The first rule implies that every diagonal element is α: 

⎛α ⎞ 
⎜ ⎟ 
⎜ α ⎟ 
⎜ α ⎟ 

H = ⎜ ⎟ 
⎜ α ⎟ 
⎜ α ⎟ 
⎜ ⎟⎜	 α ⎟⎝	 ⎠ 

The only other non­zero terms will be between neighbors: 1­2, 2­3, 3­4, 4­5, 
5­6 and 6­1. All these elements are equal to β: 

⎛α β β ⎞ 
⎜ ⎟ 
⎜ β α β ⎟ 
⎜ β α β ⎟ 

H = ⎜ ⎟ 
⎜ β α β ⎟ 
⎜ β α β ⎟ 
⎜	 ⎟⎜	 ⎟
⎝ β	 β α ⎠ 

All the rest of the elements involve non­nearest neighbors and so are zero:
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⎛α β 0 0 0 β ⎞ 
⎜ ⎟ 
⎜ β α β 0 0 0 ⎟ 
⎜ 0 β α β 0 0 ⎟ 

H = ⎜ ⎟ 
⎜ 0 0 β α β 0 ⎟ 
⎜ 0 0 0 β α β ⎟ 
⎜ ⎟⎜ ⎟
⎝ β 0 0 0 β α ⎠ 

3) Finding the eigenvalues of H is easy with a computer. We find 4 distinct 
energies: 

E6=α−2β 

E4=E5=α−β 

E2=E3=α+β 

E1=α+2β 

The lowest and highest energies are non­degenerate. The second/third and 
fourth/fifth energies are degenerate with one another. With a little more 
work we can get the eigenvectors. They are: 

⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 
⎜ −1⎟ ⎜ −2⎟ ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ +2⎟ ⎜ +1⎟ 

1 ⎜ +1⎟ 1 ⎜ +1⎟ 1 ⎜ −1⎟ 1 ⎜ −1⎟ 1 ⎜ +1⎟ 1 ⎜ +1⎟ 
c 6 = ⎜ ⎟ c 5 = ⎜ ⎟ c 4 = ⎜ ⎟ c 3 = ⎜ ⎟ c 2 = ⎜ ⎟ c 1 = ⎜ ⎟ 

6 ⎜ −1⎟ 12 ⎜ +1⎟ 4 ⎜ +1⎟ 4 ⎜ −1⎟ 12 ⎜ −1⎟ 6 ⎜ +1⎟ 
⎜ +1⎟ ⎜ −2⎟ ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ −2⎟ ⎜ +1⎟ 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ −1⎠ ⎝ +1⎠ ⎝ −1⎠ ⎝ +1⎠ ⎝ −1⎠ ⎝ +1⎠ 

The pictures at the bottom illustrate the MOs by denting positive (negative) 
lobes by circles whose size corresponds to the weight of that particular pz 

orbital in the MO. The resulting phase pattern is very reminiscent of a 

particle on a ring, where we saw that the ground state had no nodes, the 
first and second excited states were degenerate (sine and cosine) and had 

one node, the third and fourth were degenerate with two nodes. The one 



6 5.61 Physical Chemistry Lecture #31


difference is that, in benzene the fifth excited state is the only one with

three nodes, and it is non­degenerate.

4) There are 6 π electrons in benzene, so we doubly occupy the first 3 MOs:


E6=α−2β 

E4=E5=α−β 

E2=E3=α+β 

E1=α+2β 

5) The Hückel energy of benzene is then: 
E = 2E + 2E + 2E = 6α + 8β1 2 3 

Now, we get to the interesting part. What does this tell us about the 
bonding in benzene? Well, first we note that benzene is somewhat more 

stable than a typical system with three double bonds would be. If we do 
Hückel theory for ethylene, we find that a single ethylene double bond has 
an energy 

E
C=C = 2α + 2β 

Thus, if benzene simply had three double bonds, we would expect it to have a 
total energy of 

E = 3E
C=C = 6α + 6β 

which is off by 2β. We recall that β is negative, so that the ππππ­electrons in 

benzene are more stable than a collection of three double bonds. We call 
this aromatic stabilization, and Hückel theory predicts a similar stabilization 
of other cyclic conjugated systems with 4N+2 electrons. This energetic 

stabilization explains in part why benzene is so unreactive as compared to 
other unsaturated hydrocarbons. 

We can go one step further in our analysis and look at the bond order. In 
Hückel theory the bond order can be defined as: 

occ 
µ µ

O
ij ≡ ∑c

i cj 
µ=1 

This definition incorporates the idea that, if molecular orbital µ has a bond 

between the ith and jth carbons, then the coefficients of the MO on those 
carbons should both have the same sign (e.g. we have pz

i + pz
j). If the orbital 
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is antibonding between i and j, the coefficients should have opposite 
signs(e.g. we have pz

i ­ pz
j). The summand above reflects this because 

c
i 
µ 
c

µ 
j > 0 if c

i 
µ , cµ 

j have same sign 

c
i 
µ 
c

µ 
j < 0 if c

i 
µ , cµ 

j have opposite sign 

Thus the formula gives a positive contribution for bonding orbitals and a 

negative contribution for antibonding. The summation over the occupied 
orbitals just sums up the bonding or antibonding contributions from all the 
occupied MOs for the particular ij­pair of carbons to get the total bond 

order. Note that, in this summation, a doubly occupied orbital will appear 
twice. Applying this formula to the 1­2 bond in benzene, we find that: 

O ≡ 2c
µ=1 

c
µ=1 + 2c

µ=2 
c

µ=2 + 2c
µ=3 

c
µ=3


12 1 2 1 2 1 2


⎛ +1 ⎞ ⎛ +1 ⎞ ⎛ +1 ⎞ ⎛ +2 ⎞ ⎛ +1 ⎞ ⎛ 0 ⎞ 
= 2 ⎜ ⎟ × ⎜ ⎟ + 2 ⎜ ⎟ × ⎜ ⎟ + 2 ⎜ ⎟ × ⎜ ⎟

⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎝ 4 ⎠ ⎝ 4 ⎠ 
1 2 2 

= 2 + 2 = 
6 12 3 

Thus, the C1 and C2 formally appear to share 2/3 of a π­bond [Recall that we 
are omitting the σ­orbitals, so the total bond order would be 1 2/3 including 

the σ bonds]. We can repeat the same procedure for each C­C bond in 
benzene and we will find the same result: there are 6 equivalent π­bonds, 
each of order 2/3. This gives us great confidence in drawing the Lewis 
structure we all learned in freshman chemistry: 

You might have expected this to give a bond order of 1/2 for each C­C π­
bond rather than 2/3. The extra 1/6 of a bond per carbon comes directly 

from the aromatic stabilization: because the molecule is more stable than 
three isolated π­bonds by 2β, this effectively adds another π­bond to the 

system, which gets distributed equally among all six carbons, resulting in an 
increased bond order. This effect can be confirmed experimentally, as 
benzene has slightly shorter C­C bonds than non­aromatic conjugated 

systems, indicating a higher bond order between the carbons. 

Just as we can use simple MO theory to describe resonance structures and 

aromatic stabilization, we can also use it to describe crystal field and ligand 
field states in transition metal compounds and the sp, sp2 and sp3 hybrid 
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orbitals that arise in directional bonding. These results not only mean MO 
theory is a useful tool – in practice these discoveries have led to MO theory 
becoming part of the way chemists think about molecules. 
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Hückel Molecular Orbital Method



1 Introduction
Quantum chemists often find themselves using a computer to solve the Schrödinger
equation for a molecule they want to examine. Nowadays, the computational
methods give, in addition to the answer - total energy, orbital energies, and the
molecular orbitals - a great number of results derived directly from the answer.
These include, for example, bond dipole moments, polarizability, rotational con-
stants, and vibrational frequencies, among many others.

The input data required by the computations may easily be rather complex.
Modern chemists use modelling software to automatically produce input data files
for the computational software. The results are also, usually, a vast numerical
table of data, and interpreting it can be quite complicated. Again, modelling
software comes to the rescue: the numerical data can be easily visualized.

In this work, molecular orbital calculations are executed with a method that al-
lows manual calculations, and the results can be simply represented by drawings.
This method is called the Hückel Molecular Orbital Method. With this method,
despite its simplicity, reasonably accurate results can be derived, when compared
to the more advanced computational methods of quantum chemistry. These re-
sults include wave functions, energies, atomic charges, and, to some extent, the
bond order. The Hückel Molecular Orbital Method contains the most fundamen-
tal parts of computational chemistry, and therefore it has a significant role as a
visualizing tool.

2 Theoretical basis

2.1 General

The Hückel Molecular Orbital Method (HMO) is a very simple calculative process
and it applies only to systems that include conjugated double bonds. Even though
the HMO as a calculative method is only an estimate, it is rather useful and
educational, because the calculations for small molecules can be done manually.

The necessary assumption, here called the Hückel approximation, is that in canon-
ical structures (conjugated systems) the σ- and π-electrons can be considered
separately. For unsaturated molecules, the basic geometry is usually defined by
its sigma bonds and the ”spine” they form. The 2pz-orbitals of the molecule are
orthogonal to the spine of the molecule and they form the π part of the bonds.
For example, in a benzene molecule, the carbon atoms form σ-bonds to their
nearest neighbours through the sp2-hybrid orbitals, which gives rise to a planar
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hexagonal shape (figure 1a). The non-hybridized 2p-orbital of each carbom atom
is orthogonal to the spine of the molecule and can form a π-bond between two
neighbouring carbon atoms, with their respective 2p-orbitals (figure 1b).

Figure 1: The orbitals of a benzene molecule. a) The sp2-orbitals form σ-bonds.

b) The delocalized π-bonds.
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2.2 Energy levels and molecular orbitals

In the HMO method, every π- molecular orbital, Ψi, is represented by the LCAO
principles, as a linear combination of the molecule’s atomic p-orbitals, φi’s:

Ψi = ci1φ1 + ci2φ2 + . . .+ cinφn =
n∑
µ=1

ciµφµ (1)

These orbitals represent the π-electron behaviour in a field formed by the nu-
clei of the atoms, the shell electrons, and the electrons partaking in σ-bonds or
non-bonding pairs. In surroundings like this, the Hamiltonian of a single elec-
tron’s Schrödinger equation becomes very complicated. Let us discard the inter-
electronic interactions by assuming the π-electrons move only in the effective field
formed by the σ-bonds. Now we form a single-electron Schrödinger equation that
can be divided for each separate π- molecular orbital

ĤeffΨi = EiΨi (2)

⇒ Ei =

〈
Ψi|Ĥeff |Ψi

〉
〈Ψi|Ψi〉

, i = 1,2, . . . . (3)

The Hamiltonian is an energy operator that gives out energy values. Minimizing
these energies, the LCAO coefficients ciµ (Equation (1)) can be determined. The
π-electron energy levels of the system can be calculated from Equation (3) by
using the variation principle to minimize the energy eigenvalues relating them to
the atomic orbital coefficients ciµ

∂Ei
∂ciµ

= 0, µ = 1,2, . . . ,n. (4)

To calculate the energies Ei, two necessary assumptions are made:

1. The atomic orbitals are normalized:

〈φi|φi〉 = 1, i = 1,2, . . . .

2. Non-concentric atomic orbitals φi and φj are orthogonal, and therefore

〈φi|φj〉 = 0, i 6= j; i,j = 1,2, . . . .
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With the assumptions above, and by substituting molecular orbitals in the form
of Equation (1) into Equation (3), we get for the energies

Ei =

∑
µ c

2
iµHµµ + 2

∑
µ<ν ciµciνHµν∑

µ c
2
iµSµµ + 2

∑
µ<ν ciµciνSµν

. (5)

The following notation was used in Equation (5) for simplicity:

1. Hµµ =
〈
φµ|Ĥ|φµ

〉
, which is the coulomb integral representing the energy of a

π-electron on an atomic orbital φµ.

2. Hµν =
〈
φµ|Ĥ|φν

〉
, when µ 6= ν, is the resonance integral representing the elec-

tronic interactions of the electrons on an atomic orbital.

3. Sµν = 〈φµ|φν〉, which is the overlap integral of two different atomic orbitals.

Now, by differentiating the energy with respect to the coefficients ciµ and finding
the points where the derivative is zero, we get a system of equations comprised
of n equations.

n∑
ν=1

cν (Hµν − ESµν) = 0, µ = 1, . . . ,n (6)

The system of equations has, in addition to trivial solution, other solutions if the
secular determinant formed from the coefficients equals to zero.

∣∣∣∣∣∣∣∣∣∣
H11 − ES11 H12 − ES12 · · · H1n − ES1n

H21 − ES21 H22 − ES22 · · · H2n − ES2n
...

... . . . ...
Hn1 − ESn1 Hn2 − ESn2 · · · Hnn − ESnn

∣∣∣∣∣∣∣∣∣∣
= 0 (7)

To simplify these secular Equations (6), the following approximations are made
in the HMO Method:

1. The coulomb integrals Hµµ are equal for all carbon atoms (= α<0).
2. The resonance integral Hµν is a constant β < 0, when atoms µ and ν are
bonded.
3. The resonance integral Hµν = 0 when there is no bond between atoms µ and
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ν.
4. It is assumed that the orbitals of neighbouring atoms do not overlap, therefore
Sµν = 0 and Sµµ = 1.

After the following, the secular determinant in Equation (7) gets the form

∣∣∣∣∣∣∣∣∣∣
(α− E) β12 · · · β1n

β21 (α− E) · · · β2n
...

... . . . ...
βn1 βn2 · · · (α− E)

∣∣∣∣∣∣∣∣∣∣
= 0, (8)

where βµν = β, when µ and ν are bonded and βµν = 0 when there is no bond
between µ and ν.

When the energies have been calculated through the secular determinant, the
π-electrons are placed on the energy levels, according to the Pauli principle. On
the degenerate energy levels, the Hund rule is applied, placing as many electrons
with parallel spins as possible. The molecule has degenerate energy levels when
Equation (8) has multiple root solutions. The method presented represents the
principle atoms are formed by. The total energy of the molecule can, in this
simplified case, be calculated as the sum of the energies of the occupied molecular
orbitals.

When calculating for a hydrocarbon molecule, the energy difference between a
structure where the π-electrons are delocalized and the structure where they are
localized, is called the delocalization energy. Usually, the values of the delocal-
ization energy tell of the stability of the delocalized electronic structure.

Because of the simplicity of the Hückel model, and the Hamiltonian being un-
affected by bond lengths and angles, the model does not tell anything of the
molecule’s structure. Through the model it is possible, however, to determine the
energetically most favorable structure, if there are known alternative structures.
Because only the bond locations with respect to one another are considered, the
model is topological. The matrix representation of the secular equations is called
the topological matrix.

2.3 π-electron density and bond order

The molecular orbitals represent the distribution of electrons in the molecule. The
shape of the orbital indicates the reaction mechanisms taking place in substitution
reactions. The squares and the products of the coefficients can be used to calculate
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useful quantities of the molecule, and to get an impression of the molecule’s
properties given by the model.

If the expression of the ith HMO is written in the form of Equation (1), the square
of this expression is a quantity describing the electron occurrence probability, i.e.
the electron density on the molecular orbital in question:

〈Ψi|Ψi〉 =
∑
µ

c2iµ, (9)

because it was assumed that the overlap integrals are zero when the atoms are not
the same. The squares of the coefficients ciµ are the Hückel molecular orbital elec-
tron densities. If the squares of the coefficients are summed up over all occupied
molecular orbitals, the total electron density for the atom µ can be calculated
from

qµ =
occ.∑
r

nrc
2
rµ, (10)

where nr is the amount of electrons on the orbital r. For every electrically neutral
carbon atom, there is one π-electron in the molecule.

When the atoms µ and ν are bonded, their bond strength can de described by so
called bond order

pµν =
occ.∑
r

nrcrµcrν , (11)

where the sum is again over all occupied molecular orbitals. The bond order tells
of the electron density between the bonded atoms µ and ν.

These properties have spectroscopic applications, for example in EPR (Electron
paramagnetic resonance) spectroscopy. In EPR, the coupling between the pair-
less electron and the nuclei can be reduced into the spin density at the atom
in question. Also for carbon-NMR spectra, the chemical transitions have been
discovered to follow the order of magnitude of the atomic charges.

6



3 Examples

3.1 Butadiene

First we shall look at butadiene, C(1)=C(2)-C(3)=C(4), and how it behaves under
the HMO method. First, finding the secular equations. Butadiene has four carbon
atoms, so a system of four equations and a 4× 4 secular determinant is formed.
The secular equations can be written using Equation (6) with the simplifying
assumptions. For example, for the first carbon atom (µ = 1):

c1(H11 − ES11) + c2(H12 − ES12) + c3(H13 − ES13) + c4(H14 − ES14) = 0

⇒ c1(α− E) + c2(β − E × 0) + c3(0− E × 0) + c4(0− E × 0) = 0

⇒ c1(α− E) + c2β = 0

Respectively, for the other carbon atoms (µ = 2,3,4), so the system of equations
for butadiene is


(α− E)c1 +βc2 = 0

βc1 +(α− E)c2 +βc3 = 0
βc2 +(α− E)c3 +βc4 = 0

βc3 +(α− E)c4 = 0

(12)

Let’s form a smaller determinant by dividing all equations with β and assigning
x := α−E

β
, so the secular equations get the form


xc1 +c2 = 0
c1 +xc2 +c3 = 0

c2 +xc3 +c4 = 0
+c3 +xc4 = 0

, (13)

of which the determinant is

∣∣∣∣∣∣∣∣∣
x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣∣ = 0. (14)

The secular determinant (14) is easy to write directly without solving the system
of equations. The number of atoms on the spine of the molecule determines the
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size of the determinant. In the case of butadiene, a 4× 4 determinant is formed,
and i.e. for benzene, the secular determinant would be 6 × 6. The elements aij
of the determinant can be found with the above x-substitution written onto the
diagonal, and the other elements being determined according the bonding in the
molecule’s spine.

Let’s review the secular determinant of butadiene (Equation 14). The diagonal
will be marked as x. For the first row, the other elements come from the bonding
of the first carbon atom:
• C(1) bonds with C(2) → element a12 = 1
• C(1) doesn’t form a bond with C(3) or C(4) → element a13 = a14 = 0

Respectively for the second row:
• C(2) bonds with C(1) and C(3) → element a21 = a23 = 1
• C(2) doesn’t form a bond with C(4) → element a24 = 0.
This way, by only considering the bonding of the atoms in the molecule’s spine,
the molecular secular determinant can be formed. And, by advancing through
Equations (12)-(14) in reverse order, the molecular secular equations can also be
found.

The next step is to solve Equation (14), to get the energies and the coefficients.
By unwrapping the determinant,

x4 − 3x2 + 1 = 0⇒ x2 =
3±
√

5

2

x = ±1.618, or x = ±0.618.

From above, the notation x = α−E
β

was used, so the energies can be calculated
directly from there. The energies are E = α ± 0.618β and E = α ± 1.618β. The
molecular orbital coefficients ciµ are found by directly substituting one of the
solutions for x into Equation (13), giving the system of equations


−1.618c1 +c2 = 0

c1 −1.618c2 +c3 = 0
c2 −1.618c3 +c4 = 0

+c3 −1.618c4 = 0

, (15)

from which the conditions for the coefficients are determined:


1.618c1 = c2
c3 = 1.618c2 − c1 = 1.618c1
c4 = c1

(16)
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From the normalization, c21 + c22 + c23 + c24 = 1, which finally gives c1 = ±0.37.

Because the sign of the wave function does not matter, the positive solution is
selected, which gives the values c1 = 0.37, c2 = 0.60, c3 = 0.60 and c4 = 0.37 for
the coefficients.

Therefore, the expression for the molecular orbital Ψ1 is

Ψ1 = 0.37φ1 + 0.60φ2 + 0.60φ3 + 0.37φ4;E1 = α + 1.618β. (17)

Respectively, for the other three molecular orbitals


Ψ2 = 0.60φ1 +0.37φ2 −0.37φ3 −0.60φ4; E2 = α + 0.618β
Ψ3 = 0.60φ1 −0.37φ2 −0.37φ3 +0.60φ4; E3 = α− 0.618β
Ψ4 = 0.37φ1 −0.60φ2 +0.60φ3 −0.37φ4; E4 = α− 1.618β

(18)

Let’s draw the energy level diagram for butadiene, place the four π-electrons on
the lowest energy levels, and sketch the molecular orbitals.

The total π-electron energy for butadiene is the sum of the molecular orbital
energies, 4α+4.4472β. If butadiene didn’t have energy delocalization, the system
would comprise of two ethene units. The binding molecular orbital energy for
ethene is α + β [1], and therefore the energy difference

Eπ(butadiene)− 2× Eπ(ethene) = 0.472β (19)

is the delocalization energy. If for β we use the value −75 kJ
mol

, the delozalization
energy for butadiene is about −35 kJ

mol
, which is the extent of the stability of

butadiene when compared to a structure with two non-conjugated double bonds.
The stabilization is the consequence of π-electrons delocalizing over the whole
carbon spine.

Let us calculate the π-electron densities and bond orders for butadiene. The total
energy density can be calculated from Equation (10), which gives for butadiene
q1 = q2 = 1.00. Because of symmetry, the atoms 3 and 4 have the same charges
as the atoms 1 and 2, so the π-electron density is one on every atom. This means
that an electron can be found with equal probability next to any of the four
atoms.

The bond orders can be calculated from Equation (11). For butadiene, p12 =
p34 = 0.89 and p23 = 0.45. According to the bond orders, butadiene has double
bond character between atoms C(1) and C(2), and between C(3) and C(4).
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Figure 2: The energy levels of butadiene and the Hückel molecular orbitals.

3.2 Cyclopropenyl

As another example, let us examine cyclopropenyl, and find the energy levels
and molecular orbitals. First, let us write the secular determinant, with the same
choice for x as previously:

∣∣∣∣∣∣∣
x 1 1
1 x 1
1 1 x

∣∣∣∣∣∣∣ . (20)

Solving for the energies, we get E1 = α + 2β, E2 = α ± β and E3 = α ± β. We
get three energy levels, of which two are degenerate. Cyclopropenyl has three π-
electrons, of which two are to be placed on the lowest energy level with opposite
spins and the third going to the energy level E2. Therefore, the total π-electron
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energy for cyclopropenyl is Eπ = 3α+3β. The secular equations for cyclopropenyl
are


xc1 +c2 +c3 = 0
c1 +xc2 +c3 = 0
c1 +c2 +xc3 = 0

(21)

Substituting the x’s we solved earlier into the secular equations, the coefficients
for the molecular orbitals can be calculated. This results in c1 = c2 = c3, and
from the normalization, c1 = ± 1√

3
. Therefore, for the first molecular orbital, for

x1 = −2

Ψ1 =
1√
3
φ1 +

1√
3
φ2 +

1√
3
φ3. (22)

For the second molecular orbital, x2 = 1, the situation is a bit more complicated,
because of the degeneration of the orbital energies. By substituting it into the
secular equations, three similar equations will be gotten, for which c1+c2+c3 = 0.

For degenerate orbitals, the molecular orbital theory does not give separate so-
lutions for the coefficients. They can be chosen freely, as long as they follow the
orthogonality rule of the secular equations. For the second molecular orbital of
cyclopropenyl, Ψ2, it can simply be chosen that c1 = c1, c2 = 0 and c3 = −c1.
Again, through the normalization, c1 = 1√

2
, and for the molecular orbital

Ψ2 =
1√
2
φ1 +

1√
2
φ3, (23)

which is orthogonal to Ψ1. In finding the third molecular orbital, Ψ3 we can-
not choose the coefficients freely anymore, but the orthogonality rules must be
followed:

〈Ψ3|Ψ1〉 = 0, 〈Ψ3|Ψ2〉 = 0. (24)

For the third molecular orbital, through Equation (1),

〈Ψ3|Ψ2〉 =
1√
2
〈c1φ1 + c2φ2 + c3φ3|φ1 − φ3〉

=
1√
2
c1 −

1√
2
c3 = 0,
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so c1 = c3. Substitute this into the secular equation, which gives c2 = −2c1. From
normalization, c1 = 1√

6
= c3 and c2 = − 2√

6
. Therefore the third molecular orbital

for cyclopropenyl is

Ψ3 =
1√
6
φ1 −

2√
6
φ2 +

1√
6
φ3, (25)

which is orthogonal also with Ψ1.

3.3 Heteroatoms

The HMO method can be expanded to heteroatomic systems. In this case, for
heteroatom X, in place of the coulombic integral α = αC , and the resonance
integral β = βCC we’ll use

{
αx = αC + hxβCC
βRx = kRxβCC

, (26)

where the constants hx and kRx are dependent of the heteroatom and the bond
between the two atoms. Some values for these constants for different heteroatoms
can be found in Table 1.

As an example, let us form the secular determinant of C(1)H2=C(2)=O(3):

∣∣∣∣∣∣∣
α− E β 0
β α− E βCO
0 βCO αO − E

(27)

Table 1: Values for the heteroatomic constants hx and kRx
Atom X hx bond R-X kRx

N- 0.5 C-N 0.8

N= 1.5 C=N 1.0

N+ 2.0 N-O 0.7

O- 1.0 C-O 0.8

O= 2.0 C=O 1.0

By using the constants in Table 1, we’ll get
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{
αO = α + 2.0β
βCO = 1.0β

, (28)

where α = αC and β = βCC . The secular determinant is therefore

∣∣∣∣∣∣∣
α− E β 0
β α− E 1,0β
0 1.0β α− E + 2.0β

∣∣∣∣∣∣∣ = 0, (29)

which gives with the same method as previously

∣∣∣∣∣∣∣
x 1 0
1 x 1,0
0 1.0 x+ 2.0β

∣∣∣∣∣∣∣ = 0, (30)

which can be solved as before.

4 Calculations and results
First, manually calculate, for a small molecule given to you by the assistant,
the π-electron energies, the orbital coefficients ciµ, π-electron densities and bond
orders for each atom and bond. In the report, a sufficient amount of intermediate
steps in calculations must be provided, in addition to written comments about
the steps made. Discuss and comment on the results.

Then, draw an energy level diagram, and place the π-electrons according to rules
and principles. Sketch the molecular orbitals, taking note on the signs.
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