1 3 COUPLED-CLUSTER THEORY

The coupled-cluster method represents the most successful approach to accurate many-electron
molecular wave functions. It can be applied to relatively large systems and is capable of recovering
a large part of the correlation energy. It is size-extensive and presents few if any problems with
respect to optimization. It does, however, require the existence of a reasonably accurate single-
determinant wave function and cannot — at least in its more common formulation — be applied to
systems with degenerate or nearly degenerate electronic configurations. In practice, therefore, the
application of the coupled-cluster method is restricted to systems that are dominated by a single
electronic configuration and the coupled-cluster wave function is best regarded as providing an
accurate correction to the Hartree—Fock description.

The present chapter contains a general discussion of the coupled-cluster method and also
a detailed exposition of the coupled-cluster singles-and-doubles (CCSD) model. We begin our
presentation of coupled-cluster theory in Section 13.1, where we introduce the underlying phys-
ical model of coupled-cluster theory and the concept of clusters. In Section 13.2, we introduce
the important exponential ansatz of coupled-cluster theory and employ this ansatz to study in
more detail the structure of the coupled-cluster wave function and its optimization. Following
these introductory sections, we go on to discuss various aspects of coupled-cluster theory such
as size-extensivity in Section 13.3 and optimization techniques in Section 13.4. The variational
Lagrangian formulation of coupled-cluster theory and the Hellmann—Feynman theorem are then
discussed in Section 13.5, followed by a treatment of the calculation of excited states and excita-
tion energies in Section 13.6. In Section 13.7, we turn our attention to an important special case
of coupled-cluster theory — the CCSD model, for which all expressions needed for the calculation
of the energy and the optimization of the wave function are explicitly derived. In Section 13.8,
we consider some important treatments of the correlation problem that are modifications of the
standard coupled-cluster theory (i.e. the Brueckner and quadratic CI models). We conclude this
chapter with a discussion of open-shell systems in Section 13.9. In this chapter, multireference
systems are not discussed since at present no consensus regarding the treatment of such systems
in the context of coupled-cluster theory has been established.

13.1 The coupled-cluster model

The purpose of the present section is to introduce the coupled-cluster model. First, in
Section 13.1.1, we consider the description of virtual excitation processes and correlated electronic
states by means of pair clusters. Next, in Section 13.1.2, we introduce the coupled-cluster model as
a generalization of the concept of pair clusters. After a discussion of connected and disconnected
clusters in Section 13.1.3, we consider the conditions for the optimized coupled-cluster state in
Section 13.1.4.
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13.1.1 PAIR CLUSTERS

In the independent-particle model, the wave function, which corresponds to a product of creation
operators working on the vacuum state, describes an uncorrelated motion of the electrons. The
variationally optimized electronic system is represented by a set of occupied spin orbitals from
which no virtual excitations ever occur since the electrons do not interact. As a refinement to
this model, we note that, within the orbital picture, the correlated motion of interacting electrons
manifests itself in virtual excitations of electrons from occupied to unoccupied spin orbitals. With
each such excitation, we may associate an amplitude, representing the probability that this particular
excitation will occur as a result of interactions among the electrons.

To a first approximation, we may restrict ourselves to a pairwise-correlated treatment of the
electrons. Consider two electrons that, in the independent-particle model, occupy the spin orbitals
I and J. As a result of the instantaneous interaction between the two electrons, their motion
is disturbed and the electrons are excited to a different set of spin orbitals A and B, initially
unoccupied. With each excitation process, we associate an amplitude t]F. Our description of the
motion of the two electrons is thus improved in the following manner

aIa}—r-a,a,—l—Z ”aAaI; (13.1.1)
A>B

and this expansion is known as a rwo-electron cluster or a pair cluster. We now introduce an
operator that describes this ‘correlation process’ of two electrons initially found in the spin orbitals
I and J of the reference state. Introducing the notation

#F = d\ajaka; (13.1.2)

and using the relation
ey =0 (13.1.3)

we may write the pair cluster IJ in the following way

[H(l + 14878 ] ajaj| ) =ajaj|l )+ tfakabl) (13.1.4)

A=B A=B

assuming that I and J are unoccupied in | ). Each operator of the form 1+ t#8%48 provides an
improved correlated description of the electronic system, generating a superposition of the original
state with a new state that represents the outcome of the excitation process.

Assuming a Hartree—Fock reference state and introducing cluster expansions of type (13.1.4)
for all pairs of occupied spin orbitals, we arrive at the following expression for our pair-correlated
electronic state [1]:

|CCD)=[ H (1 +67% BJ]HP} (13.1.5)

A=BI=]

Since the excitation operators (13.1.2) commute among one another, there are no problems with
the order of the operators in this expression. The resulting wave function (13.1.5) corresponds to
a particularly simple realization of the coupled-cluster model, in which only double excitations
are allowed: the coupled-cluster doubles (CCD) wave function. For a complete specification of
this model, we must also describe the method by which the amplitudes are determined. We shall
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return to this point in Section 13.1.4, following the introduction and discussion of the general
coupled-cluster model in Sections 13.1.2 and 13.1.3.

13.1.2 THE COUPLED-CLUSTER WAVE FUNCTION

Excitations within the pair clusters of Section 13.1.1 provide the dominant contributions to the
description of the complicated correlated motion of interacting electrons. The pair clusters dominate
since the correlated motion is especially important for electrons that are close to each other and
since at most two electrons (with opposite spins) may coincide in space. However, for an accurate
treatment of the correlated motion of the electrons (within the orbital model), we must consider
clusters of all sizes. For the three-electron clusters, we thus introduce amplitudes #77§ that represent
the simultaneous interaction of three electrons, resulting in the excitation of three electrons from
three occupied spin orbitals to three unoccupied ones. Furthermore, we must allow excitations to
occur also within ‘clusters’ containing a single electron. Such one-electron processes represent
a relaxation of the spin orbitals and occur since the Hartree—Fock mean field experienced by
each electron before the excitations were introduced is modified by the many-electron excitation
processes occurring within the remaining clusters.

For a general discussion of the coupled-cluster method, we introduce the generic notation 7,, for
an excitation operator of unspecified excitation level (single, double, etc.) and #,, for the associated
amplitude. In our model, the effect of a given excitation p on any state | ) is to change this state
as follows

[y = (I +1,7)!) (13.1.6)

and the result of such correlating operators working on the Hartree—Fock state is the coupled-
cluster wave function

ICC) = [H(l + r#_%ﬂ_)} |HF) (13.1.7)
H

Several points should be noted about the form of this wave function. First, the coupled-cluster state
is manifestly in a product form, leading to a size-extensive treatment of the electronic system as
discussed in Sections 4.3 and 13.3. In this respect, the coupled-cluster model differs fundamentally
from the linear CI model, for which the corresponding wave function is not in a product form:

ICT) = (1 +> CM%H_) |HF) (13.1.8)
M

Second, the order of the operators in (13.1.7) is unimportant since the excitation operators 7,
commute:
[T, 0] =0 (13.1.9)

Commutation occurs since the excitation operators always excite from the set of occupied Hartree—
Fock spin orbitals to the virtual ones — see (13.1.2) for the double-excitation operators. The creation
and annihilation operators of the excitation operators therefore anticommute.

13.1.3 CONNECTED AND DISCONNECTED CLUSTERS

Let us now analyse the coupled-cluster state in terms of determinants

|u) = 7, |[HF) (13.1.10)
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Upon expansion of the product operator in (13.1.7), we obtain the expression [1]

|CC) = (1 D 0B+ )ttt 4 ) IHF)
In

pH=v

:IHF)+Z%|M)+ZI@J\;|#U)+"' (13111)
M

u=v

where, in the summation, the restriction p > v applies since each excitation operator appears
only once in the product (13.1.7). Clearly, we cannot associate each excitation operator and its
amplitude with a single unique determinant — the operator 7,, not only generates the determinant
[t} but also gives rise to a large number of determinants in collaboration with the other excitation
operators, for example

luwv) = 1,%,|HF) = 1,7, |HF) (13.1.12)

As seen from the expansion (13.1.11), the amplitude of such a composite excitation is obtained
by taking the product of the amplitudes of the contributing excitations.

Owing to the presence of product excitations in the coupled-cluster state (13.1.7), each deter-
minant may be reached in several distinct ways. For example, the introduction of a composite
excitation operator equivalent to the product of two separate excitations

R = T,7, (13.1.13)

means that the determinant |zv) may be reached by at least two distinct processes, with an overall
amplitude equal to the sum of the individual amplitudes:

0O =ty + tuty 4 - (13.1.14)
With respect to the determinant |uv), the amplitude 1, is referred to as a connected cluster
amplitude and t,t, as a disconnected cluster amplitude. In general, high-order excitations can be
reached by a large number of processes or mechanisms, each contributing to the total amplitude
with a weight equal to the product of the amplitudes of the individual excitations.

From (13.1.11) it is apparent that a coupled-cluster wave function — generated, for example, by
all possible single- and double-excitation operators 7, — contains contributions from all determi-
nants entering the FCI wave function (although the number of free parameters is usually much
smaller). In practice, therefore, we cannot work with the coupled-cluster state in the expanded
form (13.1.11) but we must instead retain the wave function in the more compact form (13.1.7),
avoiding references to the individual determinants,

13.1.4 THE COUPLED-CLUSTER SCHRODINGER EQUATION

Given the product ansatz for the coupled-cluster wave function (13.1.7), let us consider its opti-
mization. We recall that, in CI theory, the wave function (13.1.8) is determined by minimizing the
expectation value of the Hamiltonian with respect to the linear expansion coefficients:

. (CIH|CI)
Ec = min —————% 13.1.15
“ Cin (CI|CI) ( )
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By analogy with CI theory, therefore, we might attempt to determine the coupled-cluster state by
minimizing the expectation value of the Hamiltonian with respect to the amplitudes:

_(CCIH|CC)
E i, =min————— 13.1.16
min = M0 = G 60 ( )
We recall that the derivatives of the CI wave function with respect to the variational parameters
may be written in a particularly simple form

)
—|CD = 13.1.17
acul ) =) ( )

giving rise to a standard eigenvalue problem for the CI coefficients (11.1.3)
(ulH|CT) = Eci(uICI) (13.1.18)

By contrast, the nonlinear parametrization of the coupled-cluster model (13.1.7) means that the
derivatives of the coupled-cluster state become complicated functions of the amplitudes

d ;
@lCC) = [1:[(1 +t,,tu)j| ") (13.1.19)

The variational conditions on the amplitudes (13.1.16) therefore give rise to an intractable set of
nonlinear equations for the amplitudes

{ul [H(l + 1,8 ] H|CC) = Emin{p| [H(l +r,.%j)] |CC) (13.1.20)

which involves the full set of FCI determinants and high-order products of the amplitudes. The
variational minimization of the coupled-cluster energy is thus a complicated undertaking, which
can be carried out only for small molecular systems. We shall therefore abandon the variation
principle as a basis for the optimization of the coupled-cluster wave function.

To establish a different principle for the optimization of the coupled-cluster wave function, we
note that, for the linear CI wave function, the variational minimization of the energy is entirely
equivalent to the solution of the projected Schrodinger equation (13.1.18). By contrast, for nonlin-
early parametrized wave functions, the solution of the projected Schriodinger equation is, in general,
not equivalent to the minimization of the energy. For such models, therefore, we may regard the
solution of the projected Schrodinger equation as an alternative to the minimization of the energy.
In particular, applied to the coupled-cluster model, projection of the Schrodinger equation against
those determinants that enter the coupled-cluster state (13.1.11) with connected amplitudes

(ul = (HF|Z} (13.1.21)
gives us the projected coupled-cluster equations
(WIHICC) = E{(uICC) (13.1.22)
where the coupled-cluster energy is obtained by projection against the Hartree—Fock state

E = (HF|H|CC) (13.1.23)
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since
(HF|CC) =1 (13.1.24)

Like the variational coupled-cluster conditions (13.1.20), the projected equations (13.1.22) are
nonlinear in the amplitudes. However, unlike the variational conditions, the expansion of the wave
function in (13.1.22) and (13.1.23) terminates after a few terms since the Hamiltonian operator
couples determinants that differ by no higher than double excitations, making the solution of the
projected equations and the calculation of the energy tractable. Of course, the calculated coupled-
cluster energy no longer represents an upper bound to the FCI energy. In practice, the deviation
from the variational energy turns out to be small and of little practical consequence.

The nonvariational character of the coupled-cluster energy may be observed in different situa-
tions. For example, in the course of the optimization of the wave function, we may sometimes find
that the partially optimized energy is below the final, fully optimized coupled-cluster energy — sce
Table 13.2. Similarly, the coupled-cluster energy calculated in a given basis and at a given trun-
cation level may sometimes be below the FCI energy — see Table 5.11, where the coupled-cluster
energies of the stretched water molecule are lower than the FCI energy at some levels of trunca-
tion. In general, this somewhat unsystematic behaviour of the coupled-cluster energy (compared
with a variationally determined energy) is irrelevant since the calculated energies are nevertheless
rather accurate.

The small difference between the energy calculated as an expectation value and by projection
is illustrated in Figure 13.1, where we have plotted both the standard CCSD energy (13.1.23) and
the energy obtained from the expression

_ {(CClH|CC)

& = TCCI00) (13.1.25)

for the water molecule in the cc-pVDZ basis. The left-hand plot shows that the two energies are
essentially the same, the difference being scarcely detectable. The right-hand plot, which contains
the errors relative to FCI, reveals that, for this system, the expectation value is always lower
than the standard CCSD energy, even though they have been obtained from the same amplitudes.
Obviously, a variational minimization of (13.1.25) would lead to a further (presumably small)
lowering of the energy. All things considered, we conclude that the more complicated variational
expression (13.1.25) does not improve the description significantly.
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Fig. 13.1. The CCSD energy (in E;) calculated in the standard manner (grey line) and as an expectation
value (black line) for the water molecule in the cc-pVDZ basis, at a fixed bond angle of 110.565°. On the
left, we have plotted the potential-energy curve as a function of the bond distance (in ap); on the right, we
have plotted the difference relative to the FCI energy.
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13.2 The coupled-cluster exponential ansatz

In Section 13.1, the coupled-cluster wave function was expressed as a product of correlating
operators working on the Hartree—Fock state (13.1.7). This expression for the coupled-cluster
wave function is useful for displaying the relation to CI theory and for exhibiting the fundamental
role played by the excitation operators in coupled-cluster theory. In general, however, the coupled-
cluster wave function is expressed as the exponential of an operator applied to the Hartree—Fock
determinant. In the present section, we introduce and explore this exponential ansatz for the
coupled-cluster wave function.

13.2.1 THE EXPONENTIAL ANSATZ

In the product form of the coupled-cluster wave function (13.1.7), the spin-orbital excitation
operators satisfy the relation
2 =0 (13.2.1)

and the correlating operators may therefore be written as exponentials of the excitation operators:
1 +12,%, =exp(t,Tu) (13.2.2)
Using the commutators (13.1.9), we may then write the wave function in the form
|CC) = exp(T)|HF) (13.2.3)

known as the exponential ansatz for the coupled-cluster wave function [2—4], where the cluster
operator

T=> t,t (13.2.4)
I

is a linear combination of excitation operators multiplied by the associated (connected) cluster
amplitudes. In the spin-orbital basis, expansion of the exponential operator in (13.2.3) leads to
the same expression as does the expansion of the product function (13.1.7), producing contribu-
tions from all possible configurations that may be obtained by excitations from the Hartree—Fock
state — as appropriate for an electronic-structure model that emphasizes the physical process of
excitations rather than the resulting configurations.

13.2.2 THE COUPLED-CLUSTER HIERARCHY OF EXCITATION LEVELS

In coupled-cluster theory, the wave function is written as an exponential of a cluster operator
(13.2.4) acting on a single-determinant reference state (13.2.3). In constructing the wave function,
the excitations included in the cluster operator are not selected individually. Rather, a hierarchy
of approximations is established by partitioning the cluster operator into classes comprising all
single (one-electron) excitations, all double (two-electron) excitations, all triple (three-electron)
excitations, and so on. We may then write the cluster operator in the form

T=T+T2+-+Tn (13.2.5)

where, for example, the one- and two-electron parts are given by

T =) tlaa =) 7% (13.2.6)
Al Al
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%2 = Zt‘?fa;a;aga; = ‘% Z tffala;agal = % Z l’?f%ﬁg (1327)

?>f AIBJ AlBJ

As before, the indices / and J are used for the occupied Hartree—Fock spin orbitals and the indices
A and B for the unoccupied (virtual) spin orbitals. The cluster amplitudes ¢/# are antisymmetric
with respect to permutations of A and B and permutations of I and J.

Each excitation operator in (13.2.5) excites at least one electron from an occupied to a virtual
spin orbital. Since there are N electrons in the system, the expansion (13.2.5) terminates after 7.
We further note that the excitation operators given by (13.2.6) and (13.2.7) satisfy the commutation
relation (13.1.9) and that the following relationship holds

2} [HF) =0 (13.2.8)
since it is impossible to excite an electron from an unoccupied orbital. We also note that
(75, T;1=0 (13.2.9)

as a simple consequence of the commutation relation for the individual excitation operators.

To compare the excitation-based coupled-cluster model with the configuration-based CI model,
we expand the exponential operator in (13.2.3) and collect terms to the same order in the excitation
level:

N
exp(T)HF) =~ C;|HF) (13.2.10)
i=0

The lowest-order ‘configuration’ operators C; are given by

Co=1 (13.2.11)
C =T, (13.2.12)
Cr =T+ 313 (13.2.13)
Cy=T3+TTo+ LT3} (13.2.14)
Co=Ta+T\T5+ 172+ 1727, + LT (13.2.15)

These equations show which excitation processes contribute at each excitation level. Thus, the
quadruply excited configurations are generated by five distinct mechanisms, where, for instance,
the disconnected '?% term represents the independent interactions within two distinct pairs of
electrons and the connected 7’4 term describes the simultaneous interaction of four electrons. The
disconnected terms represent interactions of product clusters within disjoint sets of electrons and
vanish whenever two or more spin-orbital indices are identical.

Without truncation, the FCI and full coupled-cluster functions contain the same number of
parameters since there is then one connected cluster amplitude for each determinant. In this
special case, the CI and coupled-cluster models provide linear and nonlinear parametrizations
of the same state and there is then no obvious advantage in employing the more complicated
exponential parametrization. The advantages of the cluster parametrization become apparent only
upon truncation and are related to the fact that, even at the truncated level, the coupled-cluster
state contains contributions from all determinants in the FCI wave function, with weights obtained
from the different excitation processes leading to the determinants.
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The most common approximation in coupled-cluster theory is to truncate the cluster operator
at the doubles level, yielding the coupled-cluster singles-and-doubles (CCSD) model [5]. In this
model, the 7> operator describes the important electron-pair interactions and T, carries out the
orbital relaxations induced by the field set up by the pair interactions. The CCSD wave function
contains contributions from all determinants of the FC1 wave function, although the highly excited
determinants, generated by disconnected clusters, are in general less accurately described than
those that also contain connected contributions. However. the disconnected contributions may
also in many situations be dominant. For example, even though the T, and 75T, contributions
to the quadruples (13.2.15) are neglected at the CCSD level, these determinants are still quite
accurately described since the f‘% contributions, which represent the simultaneous but independent
interactions within disjoint pairs of electrons, usually constitute the dominant contributions to the
C,4 amplitudes.

To investigate the importance of the disconnected clusters, we have in Table 13.1 listed the
weights of the various excitation levels in the (normalized) CCSD and FCl wave functions of the
water molecule in the cc-pVDZ basis. At the reference geometry Ryr, the Hartree—Fock determi-
nant is a good zero-order approximation and the singles and doubles weights are similar at the
CCSD and FCI levels, differing by only about 5%. Turning our attention to the higher excitations
(which in CCSD theory are represented by disconnected clusters), we note that the CCSD wave
function recovers as much as 84% of the FCI quadruples weight. The quadruples are therefore
well described in CCSD theory, mainly by means of 72. On the other hand, the CCSD wave
function is incapable of describing the triple excitations, recovering as little as 4% of their total
weight in the FCI wave function — apparently, the triples are not well represented by disconnected
clusters,

At the stretched geometry 2Ry, the single-determinant reference state is no longer a good zero-
order approximation. The CCSD model is consequently a poor one, underestimating the doubles
by as much as 14%. Again the triples are poorly described but we note that the disconnected
quadruples represent as much as 81% of the total FCI quadruples weight. In conclusion, the
size-extensive CCSD model appears to recover most of the effects of the quadruples — at least
for systems without large contributions from static correlation. The CCSD model is discussed in
detail in Section 13.7.

For high accuracy, we must take into account also the connected triple excitations. Truncating
the cluster expansion (13.2.5) at the 73 level, we arrive at the coupled-cluster singles-doubles-and-
triples (CCSDT) model [6,7]. Although highly accurate for the description of dynamical correlation,
the CCSDT model is computationally very demanding and can be applied only to small systems.

Table 13.1 The weights of the excitation levels in the normalized CCSD
and FCI wave functions for the water molecule in the cc-pVDZ. basis

R refl Q’R ref
Excitation level CCSD FCI CCSD FCI

0 0.94410 0.94100 0.65114 0.58966
0.00056 0.00053 0.02494 0.02680
0.05413 0.05650 (.28762 0.33300
0.00002 0.00055 0.00371 0.01040
0.00115 0.00137 0.03225 0.03970
0.00000 0.00002 0.00006 0.00080
0.00001 0.00002 0.00028 0.00044

oy B R L
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Unlike the CCSD model, the CCSDT and higher models — such as the coupled-cluster singles-
doubles-triples-and-quadruples (CCSDTQ) model [8] — are therefore not treated in detail in this
chapter. Fortunately, accurate coupled-cluster models have been developed that include the effects
of the connected triples in an approximate fashion. We defer the discussion of such approximate
CCSDT treatments to Chapter 14.

13.2.3 THE PROJECTED COUPLED-CLUSTER EQUATIONS

In a given orbital basis. the full coupled-cluster wave function satisfies the Schrédinger equation
H exp(T)|HF) = E exp(T)|HF) (13.2.16)

Truncated coupled-cluster wave functions cannot satisfy this equation exactly and, as discussed in
Section 13.1.4, we use projection to determine the wave function. The optimized coupled-cluster
wave function then satisfies the Schrodinger equation (13.2.16) projected onto the Hartree—Fock
state and onto the excited projection manifold

(ul = (HF|%} (13.2.17)
The resulting projected coupled-cluster equations may be written as

(HF|H exp(T)|HF) = E (13.2.18)
(|H exp(T)|HF) = E (| exp(T)|HF) (13.2.19)

In the CCSD model, for example, the excited projection manifold comprises the full set of all
singly and doubly excited determinants, giving rise to one equation (13.2.19) for each connected
amplitude. For the full coupled-cluster wave function, the number of equations is equal to the
number of determinants and the solution of the projected equations recovers the FCI wave function.
The nonlinear equations (13.2.19) must be solved iteratively, substituting in each iteration the
coupled-cluster energy as calculated from (13.2.18).

For many purposes, it is convenient to express the projected coupled-cluster equations in a
slightly different form. First, we multiply the Schrédinger equation (13.2.16) from the left by the
operator exp(—7) to obtain

exp(—T)H exp(T)|HF) = E[HF) (13.2.20)

which may be regarded as a Schrodinger equation with an effective, non-Hermitian similarity-
transformed Hamiltonian:

H" = exp(—T)H exp(T) (13.2.21)

Projecting the similarity-transformed Schrodinger equation (13.2.20) against the same determinants
as in (13.2.18) and (13.2.19), we arrive at the following set of equations for the coupled-cluster
amplitudes and energy:

(HF| exp(—7)H exp(T)|HF) = E (13.2.22)
(| exp(—T)H exp(T)HF) = 0 (13.2.23)
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As will be shown shortly, these similarity-transformed equations are equivalent to (13.2.18)
and (13.2.19), yielding the same amplitudes and the same energy upon solution. In the
following, we shall refer to (13.2.23) as the linked coupled-cluster equations and to (13.2.19)
as the unlinked coupled-cluster equations. The reason for the use of the terms ‘linked’ and
‘unlinked’ is that, in diagrammatic coupled-cluster theory, the energy-independent (similarity-
transformed) equations (13.2.23) give rise to only linked diagrams, whereas the energy-dependent
equations (13.2.19) give rise to unlinked as well as to linked diagrams [9]. As we shall see in
Section 13.3, even though the linked and unlinked coupled-cluster equations are equivalent and
both provide a size-extensive treatment of the electronic system, the treatment of size-extensivity
is rather different in the two formulations.

For the full coupled-cluster wave function, the equivalence of the equations (13.2.16) and
(13.2.20) is trivial; for truncated cluster expansions, on the other hand, the equivalence of the
linked and unlinked forms of the amplitude equations is less obvious and requires special atten-
tion. First, the equivalence of the energy expressions (13.2.18) and (13.2.22) is easily established
since for any choice of amplitudes

(HF| exp(—7) = (HF| (13.2.24)

Next, to demonstrate the equivalence of the amplitude equations (13.2.19) and (13.2.23), we intro-
duce the unsymmetric matrices T+ and T~ with elements given by

7%, = (ulexp(ET)|v) = (ulv) £ @ITIv) + ST ) £ - - (13.2.25)

The lower triangular structure of these two matrices, illustrated in Figure 13.2, follows from the
fact that 7 contains only excitation operators and it is also retained if the definition of T is
extended to include the Hartree—Fock state. Since the upper-triangular elements are 0 and since
the diagonal elements are equal to 1, the matrices T* are nonsingular for any projection manifold,
irrespective of whether or not we omit, for example, excited determinants higher than doubles. We
note that the diagonal blocks with u and v belonging to the same excitation level — both singles
or both doubles, for instance — are equal to the identity matrices.

; " ' 1P N
HF 1 0 o .
s a1 ] o -
D R | :

Eﬁw : Msi g;’é _____ : -

Fig. 13.2. The lower triangular structure of the matrices T* in (13.2.25). The diagonal blocks contain
identity matrices, the lower triangular blocks are nonzero and the upper triangular blocks zero.
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Let us now assume that the similarity-transformed amplitude equations (13.2.23) are satisfied.
Since the matrix T* is nonsingular, the conditions (13.2.23) are equivalent to the conditions

A, = Z T, (vl exp(—T)H exp(7T)|HF)

=Y (ulexp(T)|v)(v| exp(—T)H exp(T)[HF) = 0 (13.2.26)

v

where p and v belong to the excitation manifold of (13.2.23). From the structure of T, we
note that (g exp(’f‘) contains determinants of excitation levels lower than or equal to that of (gel.
Assuming that the projection manifold is closed under de-excitation (i.e. if (pe] is a member of
the projection manifold, then so is (u|7), we may invoke the resolution of the identity

(el exp(T) =3 " (ul exp(T)[v){(v] + (1] exp(T)|HF) (HF| (13.2.27)

where the summation is again restricted to the excitation manifold. Equation (13.2.26) can now
be written as

Ay = (ul exp(T) exp(—T)H exp(T)|HF) — (1| exp()|HF) (HF| exp(—T)H exp(7)[HF)
= (ulH exp(T)|HF) — E (| exp(T)|HF) (13.2.28)

where we have used (13.2.27) and (13.2.22). We conclude that the conditions (13.2.26) are equiv-
alent to the unlinked equations (13.2.19) if the projection manifold is closed under de-excitation.
We have thus established the equivalence of the linked and unlinked coupled-cluster conditions
(13.2.23) and (13.2.19) for the standard models CCSD, CCSDT, and so on. Equivalence also
holds for all models containing only even-order excitations such as CCD. Finally, the projection
manifold is closed and equivalence is maintained if, at the highest excitation level, only selected
excitations are retained — for example, if selected triple excitations are included in addition to all
singles and doubles.

Let us now compare the coupled-cluster equations in the linked and unlinked forms. We begin
by reiterating that these two forms of the coupled-cluster equations are equivalent for the stan-
dard models in the sense that they have the same solutions. Moreover, applied at the important
CCSD level of theory, neither form is superior to the other, requiring about the same number
of floating-point operations. The energy-dependent unlinked form (13.2.19) exhibits more closely
the relationship with CI theory, where the projected equations may be written in a similar form
(13.1.18). On the other hand, the linked form (13.2.23) has some important advantages over the
unlinked one (13.2.19), making it the preferred form in most situations.

First, when the similarity-transformed Hamiltonian is expressed as a BCH expansion (see
Section 13.2.5), the coupled-cluster equations may be shown to be no higher than quartic in
the cluster amplitudes — for any truncation of the cluster operator. As a bonus, the nested commu-
tators of the BCH expansion reduce the rank of the operators, further simplifying the algebra.
Second, although the linked and unlinked equations yield the same, size-extensive wave func-
tion. the linked equations have the useful additional property of being size-extensive term by
term (see Section 13.3), allowing for a simple control of size-extensivity upon modification of the
coupled-cluster equations and making this particular form a useful starting point for the develop-
ment of perturbation theory as discussed in Section 14.3. Third, the similarity-transformed linked
equations also constitute the starting point for the development of a coupled-cluster approach for
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the calculation of excited states in Section 13.6. Fourth, by carrying out an explicit similarity
transformation of the Hamiltonian using the singles amplitudes, the algebra of the coupled-cluster
equations is significantly simplified, as discussed for the CCSD wave function in Section 13.7.
For these reasons, we shall, in the remainder of this chapter, mostly employ the coupled-cluster
equations in the linked form.

13.24 THE COUPLED-CLUSTER ENERGY

In coupled-cluster theory, the electronic energy is obtained from (13.2.22):
E = (HF| exp(—T)H exp(T)|HF) = (HF|H exp(T)|HF) (13.2.29)

Expanding the cluster amplitudes, we obtain
E = (HF|H (1 + T4 1724 ) IHF) = (HF|H (1 + 7+ %fﬁ*) IHF) (13.2.30)

Cluster operators higher than doubles do not contribute to the energy since H is a two-particle
operator. Because of the Brillouin theorem, the one-particle operators contribute only to second
order:

(HF|HT/|HF) = 0 (13.2.31)

As a result, only singles and doubles amplitudes contribute directly to the coupled-cluster energy —
irrespective of the truncation level in the cluster operator. Of course, the higher-order excitations
contribute indirectly since all amplitudes are coupled by the projected equations (13.2.23).

13.2.5 THE COUPLED-CLUSTER AMPLITUDE EQUATIONS

Having examined the coupled-cluster energy and seen that it is no higher than quadratic in the
cluster amplitudes, let us now turn our attention to the structure of the linked projected coupled-
cluster equations (13.2.23):

(1| exp(—=TYH exp(T)|HF) = 0 (13.2.32)

Since 7 is not anti-Hermitian, it gives rise to a nonunitary transformation and the similarity-
transformed Hamiltonian operator is therefore non-Hermitian. Naively, we would expect the BCH
expansion (3.1.7) of the similarity-transformed Hamiltonian to yield an infinite sequence of nested
commutators. Nevertheless, we shall see that the expansion terminates after five terms.

Let the up rank s} and the down rank s, of a string of elementary operators A be given by

sy = 3(n§ +np) (13.2.33)
Sp = %(n; + nl) (13.2.34)

where n¢ and n¢ are the numbers of creation operators in A for the virtual and occupied spin
orbitals, respectively; likewise, n? and »? are the numbers of occupied and virtual annihilation
operators. We also introduce the excitation rank sa as the difference between the up and down
ranks

Sp =S5 — s, (13.2.35)
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and note that the sum of the up and down ranks is equal to the particle rank of A. In Section 13.2.8,
we prove the following cluster-commutation condition for the vanishing of k nested commutators
of A with cluster operators:

k>2sy = [[...UA Ty, ). Tp,). .. 1, T,,1=0 (13.2.36)

Since the highest down rank of the Hamiltonian is 2, it follows that the BCH expansion of the
similarity-transformed Hamiltonian is no higher than quartic in the amplitudes:

exp(—D)H exp(T) = H + [H, T1+ JIIA, 1, 71+ LA, 71, 71, T1+ LA, 71, 71,71, 7)
(13.2.37)
The projected coupled-cluster Schrodinger equation (13.2.32) therefore yields at most quartic
equations in the cluster amplitudes — even for the full cluster expansion. The BCH expansion
terminates because of the special structure of the cluster operators, which are linear combinations
of commuting excitation operators of the form (13.2.6) and (13.2.7).

Although the similarity-transformed Hamiltonian is quartic in the cluster amplitudes, the
equations for the cluster amplitudes (13.2.32) need not contain all the amplitudes to this order.
In Section 13.2.8, we use the cluster-commutation condition (13.2.36) to show that, for a general
operator O of particle rank mg, the state

Iming...ong) =IL.. 10, T 1, T, 1. .. ), T, JIHF) (13.2.38)

is a linear combination of determinants with excitation ranks s in the range
k k
D ni—mo<s<y ni+mo—k (13.2.39)

where n; is the excitation rank of 7. Using these conditions, we may set up the following
expressions for the CCSD amplitude equations:

(1 |HIHF) + (uy[[H, T\I[HF) + (u|[A, T2)HF) + LA, 711, T\]1|HF)

+ (alllA, T11, TL1HF) + LA, 7)1, 711, T11HF) = 0 (13.2.40)
(2| HIHF) + (uol (H, T11HF) + (uo|[A, THF) + Yo l(1H. T1), T,1/HF)

+ (pall1A, T11, T21HF) + uol[[A, T21, T>]|HF)

+ ¢ (allllA, T:), T\1, T\1HF) + Yuoll[IA, 711, 711, T21HF)

+ 55 (2lllllA, T1), T1), 1), T\ ]HF) = 0 (13.2.41)

Whereas the singles occur to fourth order, the doubles appear only quadratically in these expressions.
Moreover, from (13.2.39), it is easily verified that, except for the singles and the doubles, the
amplitudes of the highest excitation level always occur only linearly in the coupled-cluster equations.
These additional simplifications in the coupled-cluster equations — beyond what is dictated by the
termination of the BCH expansion (13.2.37) — occur because of the restrictions on the excitation
levels in the projection space (u;|. If instead we had calculated the energy from the variation
principle, the expansion of the exponentials would not terminate (except, of course, for the fact that
we have only a finite number of electrons to excite from the occupied spin orbitals). The evaluation
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of the energy and the amplitudes in such a model is therefore considerably more difficult than in
standard coupled-cluster theory.

13.2.6 COUPLED-CLUSTER THEORY IN THE CANONICAL REPRESENTATION

In coupled-cluster theory, it is often convenient to work in the canonical representation of the spin
orbitals. The Hamiltonian operator is then partitioned into the Fock operator f the fluctuation
potential & and the nuclear—nuclear contribution ki, as discussed in Section 10.4.5:

H=F+®+ hu (13.2.42)

In the canonical representation, the Fock operator may be written in terms of the orbital energies
Ep as

¥ = Zé‘pa};a}) (13.2.43)
P

The commutator of the Fock operator with the cluster operator is found to be

=Y eututy (13.2.44)

where ¢, is the sum of all unoccupied orbital energies minus the sum of all occupied orbital
energies of the spin orbitals in 7,,, for example,

EAl = €A — € (13.2.45)
EAIB] = €A — &1 + Ep — €] (13.2.46)

Inserting the Hamiltonian (13.2.42) into the expressions for the energy (13.2.22) and the nonlinear
equations (13.2.23), we obtain the following expressions for the coupled-cluster energy and the
amplitude equations:

E = Eup + (HF|® (i‘"z + %i‘”f) IHF) (13.2.47)

eut, = —(ul exp(—T)® exp(T)HF) (13.2.48)

where we have used the commutator (13.2.44) and the fact that all higher commutators of the Fock
operator vanish since the down rank of the Fock operator is % As we shall see in Section 14.3,
(13.2.47) and (13.2.48) form a convenient starting point for the development of a perturbation
theory with the Fock operator as the zero-order Hamiltonian. Moreover, 1n Section 13.4, we shall
use (13.2.48) to set up an efficient iterative scheme for the optimization of the coupled-cluster
wave function.

13.2.7 COMPARISON OF THE CI AND COUPLED-CLUSTER HIERARCHIES

Owing to the presence of the disconnected clusters, coupled-cluster wave functions truncated at
a given excitation level also contain contributions from determinants corresponding to higher-
order excitations. The terms that are missing relative to FCI represent higher-order connected
clusters and the associated disconnected clusters. By contrast, CI wave functions truncated at the
same level contain contributions from determinants only up to this level. Since the disconnected
contributions to the energy are significant (and dominant for extended systems), the accuracy



